10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 18:16:04 +01:00

Merge pull request #315 from AbdAmmar/dev-stable

Dev stable
This commit is contained in:
Anthony Scemama 2024-01-26 21:41:29 +01:00 committed by GitHub
commit 98a9f3ab09
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 598 additions and 106 deletions

View File

@ -99,7 +99,7 @@ size: (ao_basis.ao_num)
type: double precision type: double precision
doc: coefficients of the 1-electron Jastrow in AOsxAOs doc: coefficients of the 1-electron Jastrow in AOsxAOs
interface: ezfio interface: ezfio
size: (ao_basis.ao_num*ao_basis.ao_num) size: (ao_basis.ao_num,ao_basis.ao_num)
[j1e_coef_ao3] [j1e_coef_ao3]
type: double precision type: double precision

View File

@ -78,7 +78,7 @@ END_PROVIDER
double precision :: cx, cy, cz double precision :: cx, cy, cz
double precision :: time0, time1 double precision :: time0, time1
double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:) double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:)
double precision, allocatable :: coef_fit(:), coef_fit2(:), coef_fit3(:,:) double precision, allocatable :: coef_fit(:), coef_fit2(:,:), coef_fit3(:,:)
PROVIDE j1e_type PROVIDE j1e_type
@ -243,7 +243,7 @@ END_PROVIDER
PROVIDE aos_grad_in_r_array PROVIDE aos_grad_in_r_array
allocate(coef_fit2(ao_num*ao_num)) allocate(coef_fit2(ao_num,ao_num))
if(mpi_master) then if(mpi_master) then
call ezfio_has_jastrow_j1e_coef_ao2(exists) call ezfio_has_jastrow_j1e_coef_ao2(exists)
@ -254,7 +254,7 @@ END_PROVIDER
IRP_ENDIF IRP_ENDIF
IRP_IF MPI IRP_IF MPI
include 'mpif.h' include 'mpif.h'
call MPI_BCAST(coef_fit2, ao_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr) call MPI_BCAST(coef_fit2, (ao_num*ao_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef_ao2 with MPI' stop 'Unable to read j1e_coef_ao2 with MPI'
endif endif
@ -264,7 +264,7 @@ END_PROVIDER
write(6,'(A)') '.. >>>>> [ IO READ: j1e_coef_ao2 ] <<<<< ..' write(6,'(A)') '.. >>>>> [ IO READ: j1e_coef_ao2 ] <<<<< ..'
call ezfio_get_jastrow_j1e_coef_ao2(coef_fit2) call ezfio_get_jastrow_j1e_coef_ao2(coef_fit2)
IRP_IF MPI IRP_IF MPI
call MPI_BCAST(coef_fit2, ao_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr) call MPI_BCAST(coef_fit2, (ao_num*ao_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef_ao2 with MPI' stop 'Unable to read j1e_coef_ao2 with MPI'
endif endif
@ -272,14 +272,14 @@ END_PROVIDER
endif endif
else else
call get_j1e_coef_fit_ao2(ao_num*ao_num, coef_fit2) call get_j1e_coef_fit_ao2(ao_num, coef_fit2)
call ezfio_set_jastrow_j1e_coef_ao2(coef_fit2) call ezfio_set_jastrow_j1e_coef_ao2(coef_fit2)
endif endif
!$OMP PARALLEL & !$OMP PARALLEL &
!$OMP DEFAULT (NONE) & !$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ij, ipoint, c) & !$OMP PRIVATE (i, j, ipoint, c) &
!$OMP SHARED (n_points_final_grid, ao_num, & !$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP aos_grad_in_r_array, coef_fit2, & !$OMP aos_grad_in_r_array, coef_fit2, &
!$OMP aos_in_r_array, j1e_gradx, j1e_grady, j1e_gradz) !$OMP aos_in_r_array, j1e_gradx, j1e_grady, j1e_gradz)
@ -292,9 +292,7 @@ END_PROVIDER
do i = 1, ao_num do i = 1, ao_num
do j = 1, ao_num do j = 1, ao_num
ij = (i-1)*ao_num + j c = coef_fit2(j,i)
c = coef_fit2(ij)
j1e_gradx(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,1) + aos_grad_in_r_array(i,ipoint,1) * aos_in_r_array(j,ipoint)) j1e_gradx(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,1) + aos_grad_in_r_array(i,ipoint,1) * aos_in_r_array(j,ipoint))
j1e_grady(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,2) + aos_grad_in_r_array(i,ipoint,2) * aos_in_r_array(j,ipoint)) j1e_grady(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,2) + aos_grad_in_r_array(i,ipoint,2) * aos_in_r_array(j,ipoint))

View File

@ -120,15 +120,18 @@ subroutine get_j1e_coef_fit_ao2(dim_fit, coef_fit)
implicit none implicit none
integer , intent(in) :: dim_fit integer , intent(in) :: dim_fit
double precision, intent(out) :: coef_fit(dim_fit) double precision, intent(out) :: coef_fit(dim_fit,dim_fit)
integer :: i, j, k, l, ipoint integer :: i, j, k, l, ipoint
integer :: ij, kl integer :: ij, kl, mn
integer :: info, n_svd, LWORK
double precision :: g double precision :: g
double precision :: t0, t1 double precision :: t0, t1
double precision, allocatable :: A(:,:), b(:), A_inv(:,:) double precision :: cutoff_svd, D1_inv
double precision, allocatable :: A(:,:,:,:), b(:)
double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:) double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:)
double precision, allocatable :: u1e_tmp(:) double precision, allocatable :: u1e_tmp(:), tmp(:,:,:)
double precision, allocatable :: U(:,:), D(:), Vt(:,:), work(:)
PROVIDE j1e_type PROVIDE j1e_type
@ -136,6 +139,9 @@ subroutine get_j1e_coef_fit_ao2(dim_fit, coef_fit)
PROVIDE elec_alpha_num elec_beta_num elec_num PROVIDE elec_alpha_num elec_beta_num elec_num
PROVIDE mo_coef PROVIDE mo_coef
cutoff_svd = 1d-10
call wall_time(t0) call wall_time(t0)
print*, ' PROVIDING the representation of 1e-Jastrow in AOs x AOs ... ' print*, ' PROVIDING the representation of 1e-Jastrow in AOs x AOs ... '
@ -169,98 +175,123 @@ subroutine get_j1e_coef_fit_ao2(dim_fit, coef_fit)
! --- --- --- ! --- --- ---
! get A ! get A
allocate(A(ao_num*ao_num,ao_num*ao_num)) allocate(tmp(n_points_final_grid,ao_num,ao_num))
allocate(A(ao_num,ao_num,ao_num,ao_num))
!$OMP PARALLEL & !$OMP PARALLEL &
!$OMP DEFAULT (NONE) & !$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, k, l, ij, kl, ipoint) & !$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, & !$OMP SHARED (n_points_final_grid, ao_num, final_weight_at_r_vector, aos_in_r_array_transp, tmp)
!$OMP final_weight_at_r_vector, aos_in_r_array_transp, A)
!$OMP DO COLLAPSE(2) !$OMP DO COLLAPSE(2)
do k = 1, ao_num do j = 1, ao_num
do l = 1, ao_num do i = 1, ao_num
kl = (k-1)*ao_num + l do ipoint = 1, n_points_final_grid
tmp(ipoint,i,j) = dsqrt(final_weight_at_r_vector(ipoint)) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
do i = 1, ao_num
do j = 1, ao_num
ij = (i-1)*ao_num + j
A(ij,kl) = 0.d0
do ipoint = 1, n_points_final_grid
A(ij,kl) += final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j) &
* aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,l)
enddo
enddo
enddo enddo
enddo enddo
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
! print *, ' A' call dgemm( "T", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
! do ij = 1, ao_num*ao_num , tmp(1,1,1), n_points_final_grid, tmp(1,1,1), n_points_final_grid &
! write(*, '(100000(f15.7))') (A(ij,kl), kl = 1, ao_num*ao_num) , 0.d0, A(1,1,1,1), ao_num*ao_num)
! enddo
! --- --- --- ! --- --- ---
! get b ! get b
allocate(b(ao_num*ao_num)) allocate(b(ao_num*ao_num))
!$OMP PARALLEL & do ipoint = 1, n_points_final_grid
!$OMP DEFAULT (NONE) & u1e_tmp(ipoint) = dsqrt(final_weight_at_r_vector(ipoint)) * u1e_tmp(ipoint)
!$OMP PRIVATE (i, j, ij, ipoint) & enddo
!$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP final_weight_at_r_vector, aos_in_r_array_transp, u1e_tmp, b)
!$OMP DO COLLAPSE(2)
do i = 1, ao_num
do j = 1, ao_num
ij = (i-1)*ao_num + j
b(ij) = 0.d0 call dgemv("T", n_points_final_grid, ao_num*ao_num, 1.d0, tmp(1,1,1), n_points_final_grid, u1e_tmp(1), 1, 0.d0, b(1), 1)
do ipoint = 1, n_points_final_grid !call dgemm( "T", "N", ao_num*ao_num, 1, n_points_final_grid, 1.d0 &
b(ij) = b(ij) + final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j) * u1e_tmp(ipoint) ! , tmp(1,1,1), n_points_final_grid, u1e_tmp(1), n_points_final_grid &
enddo ! , 0.d0, b(1), ao_num*ao_num)
deallocate(u1e_tmp)
deallocate(tmp)
! --- --- ---
! solve Ax = b
! double precision, allocatable :: A_inv(:,:,:,:)
! allocate(A_inv(ao_num,ao_num,ao_num,ao_num))
! call get_pseudo_inverse(A(1,1,1,1), ao_num*ao_num, ao_num*ao_num, ao_num*ao_num, A_inv(1,1,1,1), ao_num*ao_num, cutoff_svd)
! A = A_inv
allocate(D(ao_num*ao_num), U(ao_num*ao_num,ao_num*ao_num), Vt(ao_num*ao_num,ao_num*ao_num))
allocate(work(1))
lwork = -1
call dgesvd( 'S', 'A', ao_num*ao_num, ao_num*ao_num, A(1,1,1,1), ao_num*ao_num &
, D(1), U(1,1), ao_num*ao_num, Vt(1,1), ao_num*ao_num, work, lwork, info)
if(info /= 0) then
print *, info, ': SVD failed'
stop
endif
LWORK = max(5*ao_num*ao_num, int(WORK(1)))
deallocate(work)
allocate(work(lwork))
call dgesvd( 'S', 'A', ao_num*ao_num, ao_num*ao_num, A(1,1,1,1), ao_num*ao_num &
, D(1), U(1,1), ao_num*ao_num, Vt(1,1), ao_num*ao_num, work, lwork, info)
if(info /= 0) then
print *, info, ':: SVD failed'
stop 1
endif
deallocate(work)
if(D(1) .lt. 1d-14) then
print*, ' largest singular value is very small:', D(1)
n_svd = 1
else
n_svd = 0
D1_inv = 1.d0 / D(1)
do ij = 1, ao_num*ao_num
if(D(ij)*D1_inv > cutoff_svd) then
D(ij) = 1.d0 / D(ij)
n_svd = n_svd + 1
else
D(ij) = 0.d0
endif
enddo
endif
print*, ' n_svd = ', n_svd
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ij, kl) &
!$OMP SHARED (ao_num, n_svd, D, Vt)
!$OMP DO
do kl = 1, ao_num*ao_num
do ij = 1, n_svd
Vt(ij,kl) = Vt(ij,kl) * D(ij)
enddo enddo
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
deallocate(u1e_tmp) ! A = A_inv
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_svd, 1.d0 &
, U(1,1), ao_num*ao_num, Vt(1,1), ao_num*ao_num &
, 0.d0, A(1,1,1,1), ao_num*ao_num)
! --- --- --- deallocate(D, U, Vt)
! solve Ax = b
allocate(A_inv(ao_num*ao_num,ao_num*ao_num))
!call get_inverse(A, ao_num*ao_num, ao_num*ao_num, A_inv, ao_num*ao_num) ! ---
call get_pseudo_inverse(A, ao_num*ao_num, ao_num*ao_num, ao_num*ao_num, A_inv, ao_num*ao_num, 5d-8)
! coef_fit = A_inv x b ! coef_fit = A_inv x b
call dgemv("N", ao_num*ao_num, ao_num*ao_num, 1.d0, A_inv, ao_num*ao_num, b, 1, 0.d0, coef_fit, 1) call dgemv("N", ao_num*ao_num, ao_num*ao_num, 1.d0, A(1,1,1,1), ao_num*ao_num, b(1), 1, 0.d0, coef_fit(1,1), 1)
!call dgemm( "N", "N", ao_num*ao_num, 1, ao_num*ao_num, 1.d0 &
! , A(1,1,1,1), ao_num*ao_num, b(1), ao_num*ao_num &
! , 0.d0, coef_fit(1,1), ao_num*ao_num)
integer :: mn deallocate(A, b)
double precision :: tmp, acc, nrm
acc = 0.d0
nrm = 0.d0
do ij = 1, ao_num*ao_num
tmp = 0.d0
do kl = 1, ao_num*ao_num
tmp += A(ij,kl) * coef_fit(kl)
enddo
tmp = tmp - b(ij)
if(dabs(tmp) .gt. 1d-7) then
print*, ' problem found in fitting 1e-Jastrow'
print*, ij, tmp
endif
acc += dabs(tmp)
nrm += dabs(b(ij))
enddo
print *, ' Relative Error (%) =', 100.d0*acc/nrm
deallocate(A, A_inv, b)
call wall_time(t1) call wall_time(t1)
print*, ' END after (min) ', (t1-t0)/60.d0 print*, ' END after (min) ', (t1-t0)/60.d0

View File

@ -0,0 +1,94 @@
! ---
program print_j1ecoef_info
implicit none
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
if(tc_integ_type .eq. "numeric") then
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
my_n_pt_a_extra_grid = tc_grid2_a
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
endif
call print_j1ecoef()
end
! ---
subroutine print_j1ecoef()
implicit none
integer :: i, j, ij
integer :: ierr
logical :: exists
character(len=10) :: ni, nj
double precision, allocatable :: coef_fit2(:)
PROVIDE ao_l_char_space
allocate(coef_fit2(ao_num*ao_num))
if(mpi_master) then
call ezfio_has_jastrow_j1e_coef_ao2(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
call MPI_BCAST(coef_fit2, ao_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef_ao2 with MPI'
endif
IRP_ENDIF
if(exists) then
if(mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1e_coef_ao2 ] <<<<< ..'
call ezfio_get_jastrow_j1e_coef_ao2(coef_fit2)
IRP_IF MPI
call MPI_BCAST(coef_fit2, ao_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef_ao2 with MPI'
endif
IRP_ENDIF
endif
else
call get_j1e_coef_fit_ao2(ao_num*ao_num, coef_fit2)
call ezfio_set_jastrow_j1e_coef_ao2(coef_fit2)
endif
do i = 1, ao_num
write(ni, '(I0)') ao_l(i)+1
do j = 1, ao_num
write(nj, '(I0)') ao_l(j)+1
ij = (i-1)*ao_num + j
print *, trim(adjustl(ni)) // trim(adjustl(ao_l_char_space(i))), " " &
, trim(adjustl(nj)) // trim(adjustl(ao_l_char_space(j))), " " &
, dabs(coef_fit2(ij))
enddo
! print *, ' '
enddo
deallocate(coef_fit2)
return
end
! ---

View File

@ -39,8 +39,11 @@ program test_non_h
!call test_j1e_fit_ao() !call test_j1e_fit_ao()
call test_tc_grad_and_lapl_ao_new() !call test_tc_grad_and_lapl_ao_new()
call test_tc_grad_square_ao_new() !call test_tc_grad_square_ao_new()
!call test_fit_coef_A1()
call test_fit_coef_inv()
end end
! --- ! ---
@ -1112,3 +1115,333 @@ END_PROVIDER
! --- ! ---
subroutine test_fit_coef_A1()
implicit none
integer :: i, j, k, l, ij, kl, ipoint
double precision :: t1, t2
double precision :: accu, norm, diff
double precision, allocatable :: A1(:,:)
double precision, allocatable :: A2(:,:,:,:), tmp(:,:,:)
! ---
allocate(A1(ao_num*ao_num,ao_num*ao_num))
call wall_time(t1)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, k, l, ij, kl, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP final_weight_at_r_vector, aos_in_r_array_transp, A1)
!$OMP DO COLLAPSE(2)
do k = 1, ao_num
do l = 1, ao_num
kl = (k-1)*ao_num + l
do i = 1, ao_num
do j = 1, ao_num
ij = (i-1)*ao_num + j
A1(ij,kl) = 0.d0
do ipoint = 1, n_points_final_grid
A1(ij,kl) += final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j) &
* aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,l)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(t2)
print*, ' WALL TIME FOR A1 (min) =', (t2-t1)/60.d0
! ---
call wall_time(t1)
allocate(tmp(ao_num,ao_num,n_points_final_grid))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, final_weight_at_r_vector, aos_in_r_array_transp, tmp)
!$OMP DO COLLAPSE(2)
do j = 1, ao_num
do i = 1, ao_num
do ipoint = 1, n_points_final_grid
tmp(i,j,ipoint) = dsqrt(final_weight_at_r_vector(ipoint)) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
allocate(A2(ao_num,ao_num,ao_num,ao_num))
call dgemm( "N", "T", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, tmp(1,1,1), ao_num*ao_num, tmp(1,1,1), ao_num*ao_num &
, 0.d0, A2(1,1,1,1), ao_num*ao_num)
deallocate(tmp)
call wall_time(t2)
print*, ' WALL TIME FOR A2 (min) =', (t2-t1)/60.d0
! ---
accu = 0.d0
norm = 0.d0
do k = 1, ao_num
do l = 1, ao_num
kl = (k-1)*ao_num + l
do i = 1, ao_num
do j = 1, ao_num
ij = (i-1)*ao_num + j
diff = dabs(A2(j,i,l,k) - A1(ij,kl))
if(diff .gt. 1d-10) then
print *, ' problem in A2 on:', i, i, l, k
print *, ' A1 :', A1(ij,kl)
print *, ' A2 :', A2(j,i,l,k)
stop
endif
accu += diff
norm += dabs(A1(ij,kl))
enddo
enddo
enddo
enddo
deallocate(A1, A2)
print*, ' accuracy (%) = ', 100.d0 * accu / norm
return
end
! ---
subroutine test_fit_coef_inv()
implicit none
integer :: i, j, k, l, ij, kl, ipoint
integer :: n_svd, info, lwork, mn
double precision :: t1, t2
double precision :: accu, norm, diff
double precision :: cutoff_svd, D1_inv
double precision, allocatable :: A1(:,:), A1_inv(:,:), A1_tmp(:,:)
double precision, allocatable :: A2(:,:,:,:), tmp(:,:,:), A2_inv(:,:,:,:)
double precision, allocatable :: U(:,:), D(:), Vt(:,:), work(:), A2_tmp(:,:,:,:)
cutoff_svd = 5d-8
! ---
call wall_time(t1)
allocate(A1(ao_num*ao_num,ao_num*ao_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, k, l, ij, kl, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP final_weight_at_r_vector, aos_in_r_array_transp, A1)
!$OMP DO COLLAPSE(2)
do k = 1, ao_num
do l = 1, ao_num
kl = (k-1)*ao_num + l
do i = 1, ao_num
do j = 1, ao_num
ij = (i-1)*ao_num + j
A1(ij,kl) = 0.d0
do ipoint = 1, n_points_final_grid
A1(ij,kl) += final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j) &
* aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,l)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(t2)
print*, ' WALL TIME FOR A1 (min) =', (t2-t1)/60.d0
allocate(A1_inv(ao_num*ao_num,ao_num*ao_num))
call get_pseudo_inverse(A1, ao_num*ao_num, ao_num*ao_num, ao_num*ao_num, A1_inv, ao_num*ao_num, cutoff_svd)
call wall_time(t1)
print*, ' WALL TIME FOR A1_inv (min) =', (t1-t2)/60.d0
! ---
call wall_time(t1)
allocate(tmp(n_points_final_grid,ao_num,ao_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, final_weight_at_r_vector, aos_in_r_array_transp, tmp)
!$OMP DO COLLAPSE(2)
do j = 1, ao_num
do i = 1, ao_num
do ipoint = 1, n_points_final_grid
tmp(ipoint,i,j) = dsqrt(final_weight_at_r_vector(ipoint)) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
allocate(A2(ao_num,ao_num,ao_num,ao_num))
call dgemm( "T", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, tmp(1,1,1), n_points_final_grid, tmp(1,1,1), n_points_final_grid &
, 0.d0, A2(1,1,1,1), ao_num*ao_num)
deallocate(tmp)
call wall_time(t2)
print*, ' WALL TIME FOR A2 (min) =', (t2-t1)/60.d0
allocate(A1_tmp(ao_num*ao_num,ao_num*ao_num))
A1_tmp = A1
allocate(A2_tmp(ao_num,ao_num,ao_num,ao_num))
A2_tmp = A2
allocate(A2_inv(ao_num,ao_num,ao_num,ao_num))
allocate(D(ao_num*ao_num), U(ao_num*ao_num,ao_num*ao_num), Vt(ao_num*ao_num,ao_num*ao_num))
allocate(work(1))
lwork = -1
call dgesvd( 'S', 'A', ao_num*ao_num, ao_num*ao_num, A1_tmp(1,1), ao_num*ao_num &
!call dgesvd( 'S', 'A', ao_num*ao_num, ao_num*ao_num, A2_tmp(1,1,1,1), ao_num*ao_num &
, D(1), U(1,1), ao_num*ao_num, Vt(1,1), ao_num*ao_num, work, lwork, info)
if(info /= 0) then
print *, info, ': SVD failed'
stop
endif
LWORK = max(5*ao_num*ao_num, int(WORK(1)))
deallocate(work)
allocate(work(lwork))
call dgesvd( 'S', 'A', ao_num*ao_num, ao_num*ao_num, A1_tmp(1,1), ao_num*ao_num &
!call dgesvd( 'S', 'A', ao_num*ao_num, ao_num*ao_num, A2_tmp(1,1,1,1), ao_num*ao_num &
, D(1), U(1,1), ao_num*ao_num, Vt(1,1), ao_num*ao_num, work, lwork, info)
if(info /= 0) then
print *, info, ':: SVD failed'
stop 1
endif
deallocate(A2_tmp)
deallocate(work)
n_svd = 0
D1_inv = 1.d0 / D(1)
do ij = 1, ao_num*ao_num
if(D(ij)*D1_inv > cutoff_svd) then
D(ij) = 1.d0 / D(ij)
n_svd = n_svd + 1
else
D(ij) = 0.d0
endif
enddo
print*, ' n_svd = ', n_svd
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ij, kl) &
!$OMP SHARED (ao_num, n_svd, D, Vt)
!$OMP DO
do kl = 1, ao_num*ao_num
do ij = 1, n_svd
Vt(ij,kl) = Vt(ij,kl) * D(ij)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_svd, 1.d0 &
, U(1,1), ao_num*ao_num, Vt(1,1), ao_num*ao_num &
, 0.d0, A2_inv(1,1,1,1), ao_num*ao_num)
deallocate(D, U, Vt)
call wall_time(t1)
print*, ' WALL TIME FOR A2_inv (min) =', (t1-t2)/60.d0
! ---
accu = 0.d0
norm = 0.d0
do k = 1, ao_num
do l = 1, ao_num
kl = (k-1)*ao_num + l
do i = 1, ao_num
do j = 1, ao_num
ij = (i-1)*ao_num + j
diff = dabs(A2(j,i,l,k) - A1(ij,kl))
if(diff .gt. 1d-10) then
print *, ' problem in A2 on:', i, i, l, k
print *, ' A1 :', A1(ij,kl)
print *, ' A2 :', A2(j,i,l,k)
stop
endif
accu += diff
norm += dabs(A1(ij,kl))
enddo
enddo
enddo
enddo
print*, ' accuracy on A (%) = ', 100.d0 * accu / norm
accu = 0.d0
norm = 0.d0
do k = 1, ao_num
do l = 1, ao_num
kl = (k-1)*ao_num + l
do i = 1, ao_num
do j = 1, ao_num
ij = (i-1)*ao_num + j
diff = dabs(A2_inv(j,i,l,k) - A1_inv(ij,kl))
if(diff .gt. cutoff_svd) then
print *, ' problem in A2_inv on:', i, i, l, k
print *, ' A1_inv :', A1_inv(ij,kl)
print *, ' A2_inv :', A2_inv(j,i,l,k)
stop
endif
accu += diff
norm += dabs(A1_inv(ij,kl))
enddo
enddo
enddo
enddo
deallocate(A1_inv, A2_inv)
deallocate(A1, A2)
print*, ' accuracy on A_inv (%) = ', 100.d0 * accu / norm
return
end
! ---

View File

@ -55,7 +55,7 @@ END_PROVIDER
do j = 1, nucl_num do j = 1, nucl_num
do i = 1, n_points_radial_grid -1 do i = 1, n_points_radial_grid -1
do k = 1, n_points_integration_angular do k = 1, n_points_integration_angular
if(dabs(final_weight_at_r(k,i,j)) < thresh_grid)then if(dabs(final_weight_at_r(k,i,j)) < thresh_grid) then
cycle cycle
endif endif
i_count += 1 i_count += 1
@ -67,6 +67,13 @@ END_PROVIDER
index_final_points(2,i_count) = i index_final_points(2,i_count) = i
index_final_points(3,i_count) = j index_final_points(3,i_count) = j
index_final_points_reverse(k,i,j) = i_count index_final_points_reverse(k,i,j) = i_count
if(final_weight_at_r_vector(i_count) .lt. 0.d0) then
print *, ' !!! WARNING !!!'
print *, ' negative weight !!!!'
print *, i_count, final_weight_at_r_vector(i_count)
stop
endif
enddo enddo
enddo enddo
enddo enddo

View File

@ -1321,19 +1321,23 @@ subroutine get_inverse(A,LDA,m,C,LDC)
deallocate(ipiv,work) deallocate(ipiv,work)
end end
subroutine get_pseudo_inverse(A,LDA,m,n,C,LDC,cutoff) subroutine get_pseudo_inverse(A, LDA, m, n, C, LDC, cutoff)
implicit none
BEGIN_DOC BEGIN_DOC
! Find C = A^-1 ! Find C = A^-1
END_DOC END_DOC
integer, intent(in) :: m,n, LDA, LDC
double precision, intent(in) :: A(LDA,n)
double precision, intent(in) :: cutoff
double precision, intent(out) :: C(LDC,m)
double precision, allocatable :: U(:,:), D(:), Vt(:,:), work(:), A_tmp(:,:) implicit none
integer :: info, lwork integer, intent(in) :: m, n, LDA, LDC
integer :: i,j,k double precision, intent(in) :: A(LDA,n)
double precision, intent(in) :: cutoff
double precision, intent(out) :: C(LDC,m)
integer :: info, lwork
integer :: i, j, k, n_svd
double precision :: D1_inv
double precision, allocatable :: U(:,:), D(:), Vt(:,:), work(:), A_tmp(:,:)
allocate (D(n),U(m,n),Vt(n,n),work(1),A_tmp(m,n)) allocate (D(n),U(m,n),Vt(n,n),work(1),A_tmp(m,n))
do j=1,n do j=1,n
do i=1,m do i=1,m
@ -1355,22 +1359,47 @@ subroutine get_pseudo_inverse(A,LDA,m,n,C,LDC,cutoff)
stop 1 stop 1
endif endif
do i=1,n if(D(1) .lt. 1d-14) then
if (D(i)/D(1) > cutoff) then print*, ' largest singular value is very small:', D(1)
D(i) = 1.d0/D(i) n_svd = 1
else else
D(i) = 0.d0 n_svd = 0
endif D1_inv = 1.d0 / D(1)
enddo do i = 1, n
if(D(i)*D1_inv > cutoff) then
D(i) = 1.d0 / D(i)
n_svd = n_svd + 1
else
D(i) = 0.d0
endif
enddo
endif
C = 0.d0 print*, ' n_svd = ', n_svd
do i=1,m
do j=1,n !$OMP PARALLEL &
do k=1,n !$OMP DEFAULT (NONE) &
C(j,i) = C(j,i) + U(i,k) * D(k) * Vt(k,j) !$OMP PRIVATE (i, j) &
enddo !$OMP SHARED (n, n_svd, D, Vt)
!$OMP DO
do j = 1, n
do i = 1, n_svd
Vt(i,j) = D(i) * Vt(i,j)
enddo enddo
enddo enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm("N", "N", m, n, n_svd, 1.d0, U, m, Vt, n, 0.d0, C, LDC)
! C = 0.d0
! do i=1,m
! do j=1,n
! do k=1,n
! C(j,i) = C(j,i) + U(i,k) * D(k) * Vt(k,j)
! enddo
! enddo
! enddo
deallocate(U,D,Vt,work,A_tmp) deallocate(U,D,Vt,work,A_tmp)