10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 01:55:59 +01:00

fixed conflict in fock_matrix file

This commit is contained in:
Abdallah Ammar 2024-09-28 13:56:40 +02:00
commit 9750ade130
21 changed files with 617 additions and 251 deletions

View File

@ -8,7 +8,7 @@ qpsh
:command:`qpsh` is the |qp| shell. It is a Bash shell with all the :command:`qpsh` is the |qp| shell. It is a Bash shell with all the
required evironment variables loaded, a modified prompt, and the required environment variables loaded, a modified prompt, and the
:ref:`qp` command. :ref:`qp` command.

View File

@ -132,6 +132,7 @@ let run slave ?prefix exe ezfio_file =
(** Run executable *) (** Run executable *)
let prefix = let prefix =
match prefix with match prefix with
| Some "gdb" -> "gdb --args "
| Some x -> x^" " | Some x -> x^" "
| None -> "" | None -> ""
and exe = and exe =

View File

@ -5,7 +5,7 @@ double precision function get_ao_integ_chol(i,j,k,l)
! i(r1) j(r1) 1/r12 k(r2) l(r2) ! i(r1) j(r1) 1/r12 k(r2) l(r2)
END_DOC END_DOC
integer, intent(in) :: i,j,k,l integer, intent(in) :: i,j,k,l
double precision, external :: ddot double precision, external :: ddot
get_ao_integ_chol = ddot(cholesky_ao_num, cholesky_ao_transp(1,i,j), 1, cholesky_ao_transp(1,k,l), 1) get_ao_integ_chol = ddot(cholesky_ao_num, cholesky_ao_transp(1,i,j), 1, cholesky_ao_transp(1,k,l), 1)
end end
@ -76,8 +76,7 @@ END_PROVIDER
ndim8 = ao_num*ao_num*1_8+1 ndim8 = ao_num*ao_num*1_8+1
double precision :: wall0,wall1 double precision :: wall0,wall1
type(c_ptr) :: c_pointer(2) type(mmap_type) :: map
integer :: fd(2)
PROVIDE nproc ao_cholesky_threshold do_direct_integrals qp_max_mem PROVIDE nproc ao_cholesky_threshold do_direct_integrals qp_max_mem
PROVIDE nucl_coord ao_two_e_integral_schwartz PROVIDE nucl_coord ao_two_e_integral_schwartz
@ -156,7 +155,7 @@ END_PROVIDER
enddo enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
endif endif
! Just to guarentee termination ! Just to guarentee termination
D(ndim8) = 0.d0 D(ndim8) = 0.d0
D_sorted(:) = -D(:) D_sorted(:) = -D(:)
@ -181,14 +180,9 @@ END_PROVIDER
if (elec_num > 10) then if (elec_num > 10) then
rank_max = min(np,20*elec_num*elec_num) rank_max = min(np,20*elec_num*elec_num)
endif endif
call mmap(trim(ezfio_work_dir)//'cholesky_ao_tmp', (/ ndim8, rank_max /), 8, fd(1), .False., .True., c_pointer(1))
call c_f_pointer(c_pointer(1), L, (/ ndim8, rank_max /))
! Deleting the file while it is open makes the file invisible on the filesystem,
! and automatically deleted, even if the program crashes
iunit = getUnitAndOpen(trim(ezfio_work_dir)//'cholesky_ao_tmp', 'R')
close(iunit,status='delete')
call mmap_create_d('', (/ ndim8, rank_max /), .False., .True., map)
L => map%d2
! 3. ! 3.
N = 0 N = 0
@ -205,7 +199,7 @@ END_PROVIDER
do while ( (Dmax > tau).and.(np > 0) ) do while ( (Dmax > tau).and.(np > 0) )
! a. ! a.
i = i+1 i = i+1
block_size = max(N,24) block_size = max(N,24)
@ -317,7 +311,7 @@ END_PROVIDER
! g. ! g.
iblock = 0 iblock = 0
do j=1,nq do j=1,nq
if ( (Qmax < Dmin).or.(N+j*1_8 > ndim8) ) exit if ( (Qmax < Dmin).or.(N+j*1_8 > ndim8) ) exit
@ -480,7 +474,7 @@ END_PROVIDER
enddo enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
call munmap( (/ ndim8, rank_max /), 8, fd(1), c_pointer(1) ) call mmap_destroy(map)
cholesky_ao_num = rank cholesky_ao_num = rank

View File

@ -154,14 +154,14 @@ subroutine run_ccsd_space_orb
allocate(all_err(nO*nV+nO*nO*nV*(nV*1_8),cc_diis_depth), all_t(nO*nV+nO*nO*nV*(nV*1_8),cc_diis_depth)) allocate(all_err(nO*nV+nO*nO*nV*(nV*1_8),cc_diis_depth), all_t(nO*nV+nO*nO*nV*(nV*1_8),cc_diis_depth))
!$OMP PARALLEL PRIVATE(i,j) DEFAULT(SHARED) !$OMP PARALLEL PRIVATE(i,j) DEFAULT(SHARED)
!$OMP DO COLLAPSE(2)
do j=1,cc_diis_depth do j=1,cc_diis_depth
!$OMP DO
do i=1, size(all_err,1) do i=1, size(all_err,1)
all_err(i,j) = 0d0 all_err(i,j) = 0d0
all_t(i,j) = 0d0 all_t(i,j) = 0d0
enddo enddo
!$OMP END DO NOWAIT
enddo enddo
!$OMP END DO NOWAIT
!$OMP END PARALLEL !$OMP END PARALLEL
endif endif
@ -237,6 +237,7 @@ subroutine run_ccsd_space_orb
call update_t2(nO,nV,cc_space_f_o,cc_space_f_v,r2%f,t2%f) call update_t2(nO,nV,cc_space_f_o,cc_space_f_v,r2%f,t2%f)
else else
print*,'Unkown cc_method_method: '//cc_update_method print*,'Unkown cc_method_method: '//cc_update_method
call abort
endif endif
call update_tau_space(nO,nV,t1%f,t1,t2,tau) call update_tau_space(nO,nV,t1%f,t1,t2,tau)

View File

@ -223,12 +223,11 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
exit exit
endif endif
if (itermax > 4) then if (disk_based_davidson) then
itermax = itermax - 1
else if (m==1.and.disk_based_davidson) then
m=0 m=0
disk_based = .True. disk_based = .True.
itermax = 6 else if (itermax > 4) then
itermax = itermax - 1
else else
nproc_target = nproc_target - 1 nproc_target = nproc_target - 1
endif endif
@ -267,14 +266,12 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
if (disk_based) then if (disk_based) then
! Create memory-mapped files for W and S ! Create memory-mapped files for W and S
type(c_ptr) :: ptr_w, ptr_s type(mmap_type) :: map_s, map_w
integer :: fd_s, fd_w
call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),& call mmap_create_d('', (/ 1_8*sze, 1_8*N_st_diag*itermax /), .False., .True., map_w)
8, fd_w, .False., .True., ptr_w) call mmap_create_s('', (/ 1_8*sze, 1_8*N_st_diag*itermax /), .False., .True., map_s)
call mmap(trim(ezfio_work_dir)//'davidson_s', (/int(sze,8),int(N_st_diag*itermax,8)/),& w => map_w%d2
4, fd_s, .False., .True., ptr_s) s => map_s%s2
call c_f_pointer(ptr_w, w, (/sze,N_st_diag*itermax/))
call c_f_pointer(ptr_s, s, (/sze,N_st_diag*itermax/))
else else
allocate(W(sze,N_st_diag*itermax), S(sze,N_st_diag*itermax)) allocate(W(sze,N_st_diag*itermax), S(sze,N_st_diag*itermax))
endif endif
@ -755,13 +752,8 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
if (disk_based)then if (disk_based)then
! Remove temp files ! Remove temp files
integer, external :: getUnitAndOpen call mmap_destroy(map_w)
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w ) call mmap_destroy(map_s)
fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
close(fd_w,status='delete')
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 4, fd_s, ptr_s )
fd_s = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_s','r')
close(fd_s,status='delete')
else else
deallocate(W,S) deallocate(W,S)
endif endif
@ -774,6 +766,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
lambda & lambda &
) )
FREE nthreads_davidson FREE nthreads_davidson
end end

View File

@ -330,6 +330,10 @@ END_PROVIDER
deallocate(eigenvectors,eigenvalues) deallocate(eigenvectors,eigenvalues)
endif endif
! ! Dominant determinants for each states
! call print_dominant_det(psi_det,CI_eigenvectors,N_det,N_states,N_int)
! call wf_overlap(psi_det,psi_coef,N_states,N_det,psi_det,CI_eigenvectors,N_states,N_det)
END_PROVIDER END_PROVIDER
subroutine diagonalize_CI subroutine diagonalize_CI

View File

@ -179,10 +179,12 @@ subroutine H_u_0_nstates_openmp_work_$N_int(v_t,u_t,N_st,sze,istart,iend,ishift,
! !
! compute_singles = (mem+rss > qp_max_mem) ! compute_singles = (mem+rss > qp_max_mem)
! !
! if (.not.compute_singles) then compute_singles=.True.
! provide singles_beta_csc
! endif if (.not.compute_singles) then
compute_singles=.True. provide singles_alpha_csc singles_beta_csc
endif
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
@ -287,8 +289,7 @@ compute_singles=.True.
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
!--- if (compute_singles) then
! if (compute_singles) then
l_a = psi_bilinear_matrix_columns_loc(lcol) l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det) ASSERT (l_a <= N_det)
@ -311,69 +312,67 @@ compute_singles=.True.
buffer, idx, tmp_det(1,1), j, & buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a ) singles_a, n_singles_a )
!----- else
! else
! ! Search for singles
! ! Search for singles
! ! Right boundary
!call cpu_time(time0) l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1
! ! Right boundary ASSERT (l_a <= N_det)
! l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1 do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
! ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol) ASSERT (lrow <= N_det_alpha_unique)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique) left = singles_alpha_csc_idx(krow)
! right_max = -1_8
! left = singles_alpha_csc_idx(krow) right = singles_alpha_csc_idx(krow+1)
! right_max = -1_8 do while (right-left>0_8)
! right = singles_alpha_csc_idx(krow+1) k8 = shiftr(right+left,1)
! do while (right-left>0_8) if (singles_alpha_csc(k8) > lrow) then
! k8 = shiftr(right+left,1) right = k8
! if (singles_alpha_csc(k8) > lrow) then else if (singles_alpha_csc(k8) < lrow) then
! right = k8 left = k8 + 1_8
! else if (singles_alpha_csc(k8) < lrow) then else
! left = k8 + 1_8 right_max = k8+1_8
! else exit
! right_max = k8+1_8 endif
! exit enddo
! endif if (right_max > 0_8) exit
! enddo l_a = l_a-1
! if (right_max > 0_8) exit enddo
! l_a = l_a-1 if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow)
! enddo
! if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow) ! Search
! n_singles_a = 0
! ! Search l_a = psi_bilinear_matrix_columns_loc(lcol)
! n_singles_a = 0 ASSERT (l_a <= N_det)
! l_a = psi_bilinear_matrix_columns_loc(lcol)
! ASSERT (l_a <= N_det) last_found = singles_alpha_csc_idx(krow)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
! last_found = singles_alpha_csc_idx(krow) lrow = psi_bilinear_matrix_rows(l_a)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol) ASSERT (lrow <= N_det_alpha_unique)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique) left = last_found
! right = right_max
! left = last_found do while (right-left>0_8)
! right = right_max k8 = shiftr(right+left,1)
! do while (right-left>0_8) if (singles_alpha_csc(k8) > lrow) then
! k8 = shiftr(right+left,1) right = k8
! if (singles_alpha_csc(k8) > lrow) then else if (singles_alpha_csc(k8) < lrow) then
! right = k8 left = k8 + 1_8
! else if (singles_alpha_csc(k8) < lrow) then else
! left = k8 + 1_8 n_singles_a += 1
! else singles_a(n_singles_a) = l_a
! n_singles_a += 1 last_found = k8+1_8
! singles_a(n_singles_a) = l_a exit
! last_found = k8+1_8 endif
! exit enddo
! endif l_a = l_a+1
! enddo enddo
! l_a = l_a+1 j = j-1
! enddo
! j = j-1 endif
!
! endif
!-----
! Loop over alpha singles ! Loop over alpha singles
! ----------------------- ! -----------------------

View File

@ -218,10 +218,13 @@ subroutine H_S2_u_0_nstates_openmp_work_$N_int(v_t,s_t,u_t,N_st,sze,istart,iend,
! !
! compute_singles = (mem+rss > qp_max_mem) ! compute_singles = (mem+rss > qp_max_mem)
! !
! if (.not.compute_singles) then compute_singles=.True.
! provide singles_beta_csc
! endif if (.not.compute_singles) then
compute_singles=.True. provide singles_alpha_csc
provide singles_beta_csc
endif
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
@ -314,6 +317,7 @@ compute_singles=.True.
singles_b(n_singles_b) = singles_beta_csc(k8) singles_b(n_singles_b) = singles_beta_csc(k8)
enddo enddo
endif endif
endif endif
kcol_prev = kcol kcol_prev = kcol
@ -326,8 +330,7 @@ compute_singles=.True.
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
!--- if (compute_singles) then
! if (compute_singles) then
l_a = psi_bilinear_matrix_columns_loc(lcol) l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det) ASSERT (l_a <= N_det)
@ -352,69 +355,66 @@ compute_singles=.True.
buffer, idx, tmp_det(1,1), j, & buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a ) singles_a, n_singles_a )
!----- else
! else
! ! Search for singles
! ! Search for singles
! ! Right boundary
!call cpu_time(time0) l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1
! ! Right boundary ASSERT (l_a <= N_det)
! l_a = psi_bilinear_matrix_columns_loc(lcol+1)-1 do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
! ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol) ASSERT (lrow <= N_det_alpha_unique)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique) left = singles_alpha_csc_idx(krow)
! right_max = -1_8
! left = singles_alpha_csc_idx(krow) right = singles_alpha_csc_idx(krow+1)
! right_max = -1_8 do while (right-left>0_8)
! right = singles_alpha_csc_idx(krow+1) k8 = shiftr(right+left,1)
! do while (right-left>0_8) if (singles_alpha_csc(k8) > lrow) then
! k8 = shiftr(right+left,1) right = k8
! if (singles_alpha_csc(k8) > lrow) then else if (singles_alpha_csc(k8) < lrow) then
! right = k8 left = k8 + 1_8
! else if (singles_alpha_csc(k8) < lrow) then else
! left = k8 + 1_8 right_max = k8+1_8
! else exit
! right_max = k8+1_8 endif
! exit enddo
! endif if (right_max > 0_8) exit
! enddo l_a = l_a-1
! if (right_max > 0_8) exit enddo
! l_a = l_a-1 if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow)
! enddo
! if (right_max < 0_8) right_max = singles_alpha_csc_idx(krow) ! Search
! n_singles_a = 0
! ! Search l_a = psi_bilinear_matrix_columns_loc(lcol)
! n_singles_a = 0 ASSERT (l_a <= N_det)
! l_a = psi_bilinear_matrix_columns_loc(lcol)
! ASSERT (l_a <= N_det) last_found = singles_alpha_csc_idx(krow)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
! last_found = singles_alpha_csc_idx(krow) lrow = psi_bilinear_matrix_rows(l_a)
! do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol) ASSERT (lrow <= N_det_alpha_unique)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique) left = last_found
! right = right_max
! left = last_found do while (right-left>0_8)
! right = right_max k8 = shiftr(right+left,1)
! do while (right-left>0_8) if (singles_alpha_csc(k8) > lrow) then
! k8 = shiftr(right+left,1) right = k8
! if (singles_alpha_csc(k8) > lrow) then else if (singles_alpha_csc(k8) < lrow) then
! right = k8 left = k8 + 1_8
! else if (singles_alpha_csc(k8) < lrow) then else
! left = k8 + 1_8 n_singles_a += 1
! else singles_a(n_singles_a) = l_a
! n_singles_a += 1 last_found = k8+1_8
! singles_a(n_singles_a) = l_a exit
! last_found = k8+1_8 endif
! exit enddo
! endif l_a = l_a+1
! enddo enddo
! l_a = l_a+1 j = j-1
! enddo
! j = j-1 endif
!
! endif
!-----
! Loop over alpha singles ! Loop over alpha singles
! ----------------------- ! -----------------------

View File

@ -48,7 +48,7 @@ default: false
[distributed_davidson] [distributed_davidson]
type: logical type: logical
doc: If |true|, use the distributed algorithm doc: If |true|, use the distributed algorithm. If you plan to run multi-node calculations, set this to true before running.
default: True default: False
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml

View File

@ -30,31 +30,30 @@
ref_bitmask_energy += mo_one_e_integrals(occ(i,1),occ(i,1)) + mo_one_e_integrals(occ(i,2),occ(i,2)) ref_bitmask_energy += mo_one_e_integrals(occ(i,1),occ(i,1)) + mo_one_e_integrals(occ(i,2),occ(i,2))
ref_bitmask_kinetic_energy += mo_kinetic_integrals(occ(i,1),occ(i,1)) + mo_kinetic_integrals(occ(i,2),occ(i,2)) ref_bitmask_kinetic_energy += mo_kinetic_integrals(occ(i,1),occ(i,1)) + mo_kinetic_integrals(occ(i,2),occ(i,2))
ref_bitmask_n_e_energy += mo_integrals_n_e(occ(i,1),occ(i,1)) + mo_integrals_n_e(occ(i,2),occ(i,2)) ref_bitmask_n_e_energy += mo_integrals_n_e(occ(i,1),occ(i,1)) + mo_integrals_n_e(occ(i,2),occ(i,2))
do j = i+1, elec_alpha_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(j,1),occ(i,1))
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(j,1),occ(i,1))
enddo
do j= 1, elec_alpha_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj(occ(j,1),occ(i,2))
ref_bitmask_energy += mo_two_e_integrals_jj(occ(j,1),occ(i,2))
enddo
do j = i+1, elec_beta_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(j,2),occ(i,2))
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(j,2),occ(i,2))
enddo
enddo enddo
do i = elec_beta_num+1,elec_alpha_num do i = elec_beta_num+1,elec_alpha_num
ref_bitmask_energy += mo_one_e_integrals(occ(i,1),occ(i,1)) ref_bitmask_energy += mo_one_e_integrals(occ(i,1),occ(i,1))
ref_bitmask_kinetic_energy += mo_kinetic_integrals(occ(i,1),occ(i,1)) ref_bitmask_kinetic_energy += mo_kinetic_integrals(occ(i,1),occ(i,1))
ref_bitmask_n_e_energy += mo_integrals_n_e(occ(i,1),occ(i,1)) ref_bitmask_n_e_energy += mo_integrals_n_e(occ(i,1),occ(i,1))
enddo do j = i+1, elec_alpha_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(j,1),occ(i,1))
do j= 1, elec_alpha_num ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(j,1),occ(i,1))
do i = j+1, elec_alpha_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(i,1),occ(j,1))
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(i,1),occ(j,1))
enddo enddo
enddo enddo
do j= 1, elec_beta_num
do i = j+1, elec_beta_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj_anti(occ(i,2),occ(j,2))
ref_bitmask_energy += mo_two_e_integrals_jj_anti(occ(i,2),occ(j,2))
enddo
do i= 1, elec_alpha_num
ref_bitmask_two_e_energy += mo_two_e_integrals_jj(occ(i,1),occ(j,2))
ref_bitmask_energy += mo_two_e_integrals_jj(occ(i,1),occ(j,2))
enddo
enddo
ref_bitmask_one_e_energy = ref_bitmask_kinetic_energy + ref_bitmask_n_e_energy ref_bitmask_one_e_energy = ref_bitmask_kinetic_energy + ref_bitmask_n_e_energy
ref_bitmask_energy_ab = 0.d0 ref_bitmask_energy_ab = 0.d0

View File

@ -910,6 +910,8 @@ subroutine copy_psi_bilinear_to_psi(psi, isize)
end end
use mmap_module
BEGIN_PROVIDER [ integer*8, singles_alpha_csc_idx, (N_det_alpha_unique+1) ] BEGIN_PROVIDER [ integer*8, singles_alpha_csc_idx, (N_det_alpha_unique+1) ]
&BEGIN_PROVIDER [ integer*8, singles_alpha_csc_size ] &BEGIN_PROVIDER [ integer*8, singles_alpha_csc_size ]
implicit none implicit none
@ -925,12 +927,11 @@ end
idx0(i) = i idx0(i) = i
enddo enddo
!$OMP PARALLEL DEFAULT(NONE) & !$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, & !$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, &
!$OMP idx0, N_int, singles_alpha_csc, & !$OMP idx0, N_int, singles_alpha_csc_idx) &
!$OMP elec_alpha_num, mo_num, singles_alpha_csc_idx) &
!$OMP PRIVATE(i,s,j) !$OMP PRIVATE(i,s,j)
allocate (s(elec_alpha_num * (mo_num-elec_alpha_num) )) allocate (s(N_det_alpha_unique))
!$OMP DO SCHEDULE(static,64) !$OMP DO SCHEDULE(static,64)
do i=1, N_det_alpha_unique do i=1, N_det_alpha_unique
call get_all_spin_singles( & call get_all_spin_singles( &
@ -966,7 +967,7 @@ BEGIN_PROVIDER [ integer, singles_alpha_csc, (singles_alpha_csc_size) ]
!$OMP PARALLEL DO DEFAULT(NONE) & !$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, & !$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, &
!$OMP idx0, N_int, singles_alpha_csc, singles_alpha_csc_idx)& !$OMP idx0, N_int, singles_alpha_csc, singles_alpha_csc_idx)&
!$OMP PRIVATE(i,k) SCHEDULE(static,1) !$OMP PRIVATE(i,k) SCHEDULE(static)
do i=1, N_det_alpha_unique do i=1, N_det_alpha_unique
call get_all_spin_singles( & call get_all_spin_singles( &
psi_det_alpha_unique, idx0, psi_det_alpha_unique(1,i), N_int,& psi_det_alpha_unique, idx0, psi_det_alpha_unique(1,i), N_int,&
@ -978,7 +979,36 @@ BEGIN_PROVIDER [ integer, singles_alpha_csc, (singles_alpha_csc_size) ]
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ type(mmap_type), singles_alpha_csc_map ]
implicit none
BEGIN_DOC
! Indices of all single excitations
END_DOC
integer :: i, k
integer, allocatable :: idx0(:)
call mmap_create_i('', (/ 1_8*singles_alpha_csc_size /), &
.False., .False., singles_alpha_csc_map)
allocate (idx0(N_det_alpha_unique))
do i=1, N_det_alpha_unique
idx0(i) = i
enddo
!$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, &
!$OMP idx0, N_int, singles_alpha_csc_map, singles_alpha_csc_idx)&
!$OMP PRIVATE(i,k) SCHEDULE(static)
do i=1, N_det_alpha_unique
call get_all_spin_singles( &
psi_det_alpha_unique, idx0, psi_det_alpha_unique(1,i), N_int, N_det_alpha_unique, &
singles_alpha_csc_map%i1(singles_alpha_csc_idx(i):singles_alpha_csc_idx(i)+N_det_alpha_unique-1),&
k)
enddo
!$OMP END PARALLEL DO
deallocate(idx0)
END_PROVIDER
BEGIN_PROVIDER [ integer*8, singles_beta_csc_idx, (N_det_beta_unique+1) ] BEGIN_PROVIDER [ integer*8, singles_beta_csc_idx, (N_det_beta_unique+1) ]
@ -996,13 +1026,12 @@ END_PROVIDER
idx0(i) = i idx0(i) = i
enddo enddo
!$OMP PARALLEL DEFAULT(NONE) & !$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, & !$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, &
!$OMP idx0, N_int, singles_beta_csc, & !$OMP idx0, N_int, singles_beta_csc_idx) &
!$OMP elec_beta_num, mo_num, singles_beta_csc_idx) &
!$OMP PRIVATE(i,s,j) !$OMP PRIVATE(i,s,j)
allocate (s(elec_beta_num*(mo_num-elec_beta_num))) allocate (s(N_det_beta_unique))
!$OMP DO SCHEDULE(static,1) !$OMP DO SCHEDULE(static)
do i=1, N_det_beta_unique do i=1, N_det_beta_unique
call get_all_spin_singles( & call get_all_spin_singles( &
psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int,& psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int,&
@ -1037,7 +1066,7 @@ BEGIN_PROVIDER [ integer, singles_beta_csc, (singles_beta_csc_size) ]
!$OMP PARALLEL DO DEFAULT(NONE) & !$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, & !$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, &
!$OMP idx0, N_int, singles_beta_csc, singles_beta_csc_idx)& !$OMP idx0, N_int, singles_beta_csc, singles_beta_csc_idx)&
!$OMP PRIVATE(i,k) SCHEDULE(static,64) !$OMP PRIVATE(i,k) SCHEDULE(static)
do i=1, N_det_beta_unique do i=1, N_det_beta_unique
call get_all_spin_singles( & call get_all_spin_singles( &
psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int,& psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int,&
@ -1049,6 +1078,37 @@ BEGIN_PROVIDER [ integer, singles_beta_csc, (singles_beta_csc_size) ]
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ type(mmap_type), singles_beta_csc_map ]
implicit none
BEGIN_DOC
! Indices of all single excitations
END_DOC
integer :: i, k
integer, allocatable :: idx0(:)
call mmap_create_i('', (/ 1_8*singles_beta_csc_size /), &
.False., .False., singles_beta_csc_map)
allocate (idx0(N_det_beta_unique))
do i=1, N_det_beta_unique
idx0(i) = i
enddo
!$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, &
!$OMP idx0, N_int, singles_beta_csc_map, singles_beta_csc_idx)&
!$OMP PRIVATE(i,k) SCHEDULE(static)
do i=1, N_det_beta_unique
call get_all_spin_singles( &
psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int, N_det_beta_unique, &
singles_beta_csc_map%i1(singles_beta_csc_idx(i):singles_beta_csc_idx(i)+N_det_beta_unique-1),&
k)
enddo
!$OMP END PARALLEL DO
deallocate(idx0)
END_PROVIDER
@ -1111,16 +1171,16 @@ subroutine get_all_spin_singles_1(buffer, idx, spindet, size_buffer, singles, n_
integer :: i integer :: i
integer(bit_kind) :: v integer(bit_kind) :: v
integer :: degree integer :: degree
integer :: add_single(0:64) = (/ 0, 0, 1, 0, 0, (0, i=1,60) /)
include 'utils/constants.include.F' include 'utils/constants.include.F'
n_singles = 1 n_singles = 0
do i=1,size_buffer do i=1,size_buffer
degree = popcnt(xor( spindet, buffer(i) )) degree = popcnt(xor( spindet, buffer(i) ))
singles(n_singles) = idx(i) if (degree == 2) then
n_singles = n_singles+add_single(degree) n_singles = n_singles+1
singles(n_singles) = idx(i)
endif
enddo enddo
n_singles = n_singles-1
end end
@ -1142,15 +1202,15 @@ subroutine get_all_spin_doubles_1(buffer, idx, spindet, size_buffer, doubles, n_
integer :: i integer :: i
include 'utils/constants.include.F' include 'utils/constants.include.F'
integer :: degree integer :: degree
integer :: add_double(0:64) = (/ 0, 0, 0, 0, 1, (0, i=1,60) /)
n_doubles = 1 n_doubles = 0
do i=1,size_buffer do i=1,size_buffer
degree = popcnt(xor( spindet, buffer(i) )) degree = popcnt(xor( spindet, buffer(i) ))
doubles(n_doubles) = idx(i) if (degree == 4) then
n_doubles = n_doubles+add_double(degree) n_doubles = n_doubles+1
doubles(n_doubles) = idx(i)
endif
enddo enddo
n_doubles = n_doubles-1
end end
@ -1181,8 +1241,8 @@ subroutine get_all_spin_singles_and_doubles_$N_int(buffer, idx, spindet, size_bu
integer(bit_kind) :: xorvec($N_int) integer(bit_kind) :: xorvec($N_int)
integer :: degree integer :: degree
n_singles = 1 n_singles = 0
n_doubles = 1 n_doubles = 0
do i=1,size_buffer do i=1,size_buffer
do k=1,$N_int do k=1,$N_int
@ -1196,16 +1256,14 @@ subroutine get_all_spin_singles_and_doubles_$N_int(buffer, idx, spindet, size_bu
enddo enddo
if ( degree == 4 ) then if ( degree == 4 ) then
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1 n_doubles = n_doubles+1
doubles(n_doubles) = idx(i)
else if ( degree == 2 ) then else if ( degree == 2 ) then
singles(n_singles) = idx(i)
n_singles = n_singles+1 n_singles = n_singles+1
singles(n_singles) = idx(i)
endif endif
enddo enddo
n_singles = n_singles-1
n_doubles = n_doubles-1
end end
@ -1230,7 +1288,7 @@ subroutine get_all_spin_singles_$N_int(buffer, idx, spindet, size_buffer, single
integer(bit_kind) :: xorvec($N_int) integer(bit_kind) :: xorvec($N_int)
integer :: degree integer :: degree
n_singles = 1 n_singles = 0
do i=1,size_buffer do i=1,size_buffer
do k=1,$N_int do k=1,$N_int
@ -1247,11 +1305,10 @@ subroutine get_all_spin_singles_$N_int(buffer, idx, spindet, size_buffer, single
cycle cycle
endif endif
singles(n_singles) = idx(i)
n_singles = n_singles+1 n_singles = n_singles+1
singles(n_singles) = idx(i)
enddo enddo
n_singles = n_singles-1
end end
@ -1275,7 +1332,7 @@ subroutine get_all_spin_doubles_$N_int(buffer, idx, spindet, size_buffer, double
include 'utils/constants.include.F' include 'utils/constants.include.F'
integer(bit_kind) :: xorvec($N_int) integer(bit_kind) :: xorvec($N_int)
n_doubles = 1 n_doubles = 0
do i=1,size_buffer do i=1,size_buffer
do k=1,$N_int do k=1,$N_int
@ -1292,13 +1349,11 @@ subroutine get_all_spin_doubles_$N_int(buffer, idx, spindet, size_buffer, double
cycle cycle
endif endif
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1 n_doubles = n_doubles+1
doubles(n_doubles) = idx(i)
enddo enddo
n_doubles = n_doubles-1
end end
SUBST [ N_int ] SUBST [ N_int ]

View File

@ -60,3 +60,16 @@ BEGIN_PROVIDER [ character*(1024), ezfio_work_dir ]
ezfio_work_dir = trim(ezfio_filename)//'/work/' ezfio_work_dir = trim(ezfio_filename)//'/work/'
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ character*(1024), ezfio_work_dir_pid ]
use c_functions
implicit none
BEGIN_DOC
! EZFIO/work/pid_
END_DOC
character*(32) :: pid_str
integer :: getpid
write(pid_str,*) getpid()
ezfio_work_dir_pid = trim(ezfio_work_dir)//'/'//trim(pid_str)//'_'
END_PROVIDER

View File

@ -268,8 +268,12 @@ module gpu
implicit none implicit none
type(gpu_double1), intent(inout) :: ptr type(gpu_double1), intent(inout) :: ptr
integer, intent(in) :: s integer, intent(in) :: s
integer*8 :: s_8, n
call gpu_allocate_c(ptr%c, s*8_8) s_8 = s
n = s_8 * 8_8
call gpu_allocate_c(ptr%c, n)
call c_f_pointer(ptr%c, ptr%f, (/ s /)) call c_f_pointer(ptr%c, ptr%f, (/ s /))
end subroutine end subroutine
@ -277,8 +281,13 @@ module gpu
implicit none implicit none
type(gpu_double2), intent(inout) :: ptr type(gpu_double2), intent(inout) :: ptr
integer, intent(in) :: s1, s2 integer, intent(in) :: s1, s2
integer*8 :: s1_8, s2_8, n
call gpu_allocate_c(ptr%c, s1*s2*8_8) s1_8 = s1
s2_8 = s2
n = s1_8 * s2_8 * 8_8
call gpu_allocate_c(ptr%c, n)
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2 /)) call c_f_pointer(ptr%c, ptr%f, (/ s1, s2 /))
end subroutine end subroutine
@ -286,8 +295,14 @@ module gpu
implicit none implicit none
type(gpu_double3), intent(inout) :: ptr type(gpu_double3), intent(inout) :: ptr
integer, intent(in) :: s1, s2, s3 integer, intent(in) :: s1, s2, s3
integer*8 :: s1_8, s2_8, s3_8, n
call gpu_allocate_c(ptr%c, s1*s2*s3*8_8) s1_8 = s1
s2_8 = s2
s3_8 = s3
n = s1_8 * s2_8 * s3_8 * 8_8
call gpu_allocate_c(ptr%c, n)
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3 /)) call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3 /))
end subroutine end subroutine
@ -295,8 +310,15 @@ module gpu
implicit none implicit none
type(gpu_double4), intent(inout) :: ptr type(gpu_double4), intent(inout) :: ptr
integer, intent(in) :: s1, s2, s3, s4 integer, intent(in) :: s1, s2, s3, s4
integer*8 :: s1_8, s2_8, s3_8, s4_8, n
call gpu_allocate_c(ptr%c, s1*s2*s3*s4*8_8) s1_8 = s1
s2_8 = s2
s3_8 = s3
s4_8 = s4
n = s1_8 * s2_8 * s3_8 * s4_8 * 8_8
call gpu_allocate_c(ptr%c, n)
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4 /)) call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4 /))
end subroutine end subroutine
@ -304,8 +326,16 @@ module gpu
implicit none implicit none
type(gpu_double5), intent(inout) :: ptr type(gpu_double5), intent(inout) :: ptr
integer, intent(in) :: s1, s2, s3, s4, s5 integer, intent(in) :: s1, s2, s3, s4, s5
integer*8 :: s1_8, s2_8, s3_8, s4_8, s5_8, n
call gpu_allocate_c(ptr%c, s1*s2*s3*s4*s5*8_8) s1_8 = s1
s2_8 = s2
s3_8 = s3
s4_8 = s4
s5_8 = s5
n = s1_8 * s2_8 * s3_8 * s4_8 * s5_8 * 8_8
call gpu_allocate_c(ptr%c, n)
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4, s5 /)) call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4, s5 /))
end subroutine end subroutine
@ -313,8 +343,17 @@ module gpu
implicit none implicit none
type(gpu_double6), intent(inout) :: ptr type(gpu_double6), intent(inout) :: ptr
integer, intent(in) :: s1, s2, s3, s4, s5, s6 integer, intent(in) :: s1, s2, s3, s4, s5, s6
integer*8 :: s1_8, s2_8, s3_8, s4_8, s5_8, s6_8, n
call gpu_allocate_c(ptr%c, s1*s2*s3*s4*s5*s6*8_8) s1_8 = s1
s2_8 = s2
s3_8 = s3
s4_8 = s4
s5_8 = s5
s6_8 = s6
n = s1_8 * s2_8 * s3_8 * s4_8 * s5_8 * s6_8 * 8_8
call gpu_allocate_c(ptr%c, n)
call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4, s5, s6 /)) call c_f_pointer(ptr%c, ptr%f, (/ s1, s2, s3, s4, s5, s6 /))
end subroutine end subroutine

View File

@ -19,16 +19,41 @@ END_PROVIDER
! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components. ! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components.
END_DOC END_DOC
integer :: i,j integer :: i,j
HF_energy = nuclear_repulsion double precision :: tmp1, tmp2
HF_energy = 0.d0
HF_two_electron_energy = 0.d0 HF_two_electron_energy = 0.d0
HF_one_electron_energy = 0.d0 HF_one_electron_energy = 0.d0
do j=1,ao_num do j=1,ao_num
do i=1,ao_num do i=1,ao_num
HF_two_electron_energy += 0.5d0 * ( ao_two_e_integral_alpha(i,j) * SCF_density_matrix_ao_alpha(i,j) & tmp1 = 0.5d0 * ( ao_two_e_integral_alpha(i,j) * SCF_density_matrix_ao_alpha(i,j) &
+ao_two_e_integral_beta(i,j) * SCF_density_matrix_ao_beta(i,j) ) +ao_two_e_integral_beta (i,j) * SCF_density_matrix_ao_beta (i,j) )
HF_one_electron_energy += ao_one_e_integrals(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) ) tmp2 = ao_one_e_integrals(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) )
HF_two_electron_energy += tmp1
HF_one_electron_energy += tmp2
HF_energy += tmp1 + tmp2
enddo
enddo
HF_energy += nuclear_repulsion
END_PROVIDER
BEGIN_PROVIDER [ double precision, HF_kinetic_energy]
&BEGIN_PROVIDER [ double precision, HF_n_e_energy]
implicit none
BEGIN_DOC
! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components.
END_DOC
integer :: i,j
double precision :: tmp1, tmp2
HF_n_e_energy = 0.d0
HF_kinetic_energy = 0.d0
do j=1,ao_num
do i=1,ao_num
tmp1 = ao_integrals_n_e(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) )
tmp2 = ao_kinetic_integrals(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) )
HF_n_e_energy += tmp1
HF_kinetic_energy += tmp2
enddo enddo
enddo enddo
HF_energy += HF_two_electron_energy + HF_one_electron_energy
END_PROVIDER END_PROVIDER

View File

@ -277,7 +277,7 @@ subroutine ao_to_mo(A_ao,LDA_ao,A_mo,LDA_mo)
T, ao_num, & T, ao_num, &
0.d0, A_mo, size(A_mo,1)) 0.d0, A_mo, size(A_mo,1))
call restore_symmetry(mo_num,mo_num,A_mo,size(A_mo,1),1.d-12) call restore_symmetry(mo_num,mo_num,A_mo,size(A_mo,1),1.d-15)
deallocate(T) deallocate(T)
end end

View File

@ -18,6 +18,6 @@ BEGIN_PROVIDER [ double precision, mo_one_e_integrals,(mo_num,mo_num)]
call ezfio_set_mo_one_e_ints_mo_one_e_integrals(mo_one_e_integrals) call ezfio_set_mo_one_e_ints_mo_one_e_integrals(mo_one_e_integrals)
print *, 'MO one-e integrals written to disk' print *, 'MO one-e integrals written to disk'
ENDIF ENDIF
call nullify_small_elements(mo_num,mo_num,mo_one_e_integrals,size(mo_one_e_integrals,1),1.d-10) call nullify_small_elements(mo_num,mo_num,mo_one_e_integrals,size(mo_one_e_integrals,1),1.d-15)
END_PROVIDER END_PROVIDER

View File

@ -70,6 +70,10 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
else else
call add_integrals_to_map(full_ijkl_bitmask_4) call add_integrals_to_map(full_ijkl_bitmask_4)
endif endif
double precision, external :: map_mb
print*,'Molecular integrals provided:'
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
print*,' Number of MO integrals: ', mo_map_size
endif endif
call wall_time(wall_2) call wall_time(wall_2)
@ -78,10 +82,6 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
integer*8 :: get_mo_map_size, mo_map_size integer*8 :: get_mo_map_size, mo_map_size
mo_map_size = get_mo_map_size() mo_map_size = get_mo_map_size()
double precision, external :: map_mb
print*,'Molecular integrals provided:'
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
print*,' Number of MO integrals: ', mo_map_size
print*,' cpu time :',cpu_2 - cpu_1, 's' print*,' cpu time :',cpu_2 - cpu_1, 's'
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')' print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'

View File

@ -15,5 +15,21 @@ end
subroutine run subroutine run
implicit none implicit none
call print_mol_properties call print_mol_properties
print *, psi_energy + nuclear_repulsion print *, psi_energy + nuclear_repulsion
! call print_energy_components
! print *, 'E(HF) = ', HF_energy
! print *, 'E(CI) = ', psi_energy + nuclear_repulsion
! print *, ''
! print *, 'E_kin(CI) = ', ref_bitmask_kinetic_energy
! print *, 'E_kin(HF) = ', HF_kinetic_energy
! print *, ''
! print *, 'E_ne (CI) = ', ref_bitmask_n_e_energy
! print *, 'E_ne (HF) = ', HF_n_e_energy
! print *, ''
! print *, 'E_1e (CI) = ', ref_bitmask_one_e_energy
! print *, 'E_1e (HF) = ', HF_one_electron_energy
! print *, ''
! print *, 'E_2e (CI) = ', ref_bitmask_two_e_energy
! print *, 'E_2e (HF) = ', HF_two_electron_energy
end end

View File

@ -56,9 +56,14 @@ subroutine routine_s2
double precision :: accu(N_states) double precision :: accu(N_states)
print *, 'Weights of the CFG' print *, 'Weights of the CFG'
do i=1,N_det integer :: step
step = max(1,N_det/100)
do i=1,N_det-1,step
print *, i, real(weight_configuration(det_to_configuration(i),:)), real(sum(weight_configuration(det_to_configuration(i),:))) print *, i, real(weight_configuration(det_to_configuration(i),:)), real(sum(weight_configuration(det_to_configuration(i),:)))
enddo enddo
i=N_det
print *, i, real(weight_configuration(det_to_configuration(i),:)), real(sum(weight_configuration(det_to_configuration(i),:)))
print*, 'Min weight of the configuration?' print*, 'Min weight of the configuration?'
read(5,*) wmin read(5,*) wmin

View File

@ -2,6 +2,34 @@ module mmap_module
use iso_c_binding use iso_c_binding
type mmap_type
type(c_ptr) :: ptr ! Pointer to the data
character*(128) :: filename ! Name of the file
integer*8 :: length ! Size of the array in bytes
integer :: fd ! File descriptor
! Pointers to data
integer, pointer :: i1(:)
integer, pointer :: i2(:,:)
integer, pointer :: i3(:,:,:)
integer, pointer :: i4(:,:,:,:)
integer*8, pointer :: i81(:)
integer*8, pointer :: i82(:,:)
integer*8, pointer :: i83(:,:,:)
integer*8, pointer :: i84(:,:,:,:)
double precision, pointer :: d1(:)
double precision, pointer :: d2(:,:)
double precision, pointer :: d3(:,:,:)
double precision, pointer :: d4(:,:,:,:)
real, pointer :: s1(:)
real, pointer :: s2(:,:)
real, pointer :: s3(:,:,:)
real, pointer :: s4(:,:,:,:)
end type mmap_type
interface interface
! File descriptors ! File descriptors
@ -82,7 +110,7 @@ module mmap_module
length = length * shape(i) length = length * shape(i)
enddo enddo
fd_ = fd fd_ = fd
call c_munmap_fortran( length, fd_, map) call c_munmap_fortran(length, fd_, map)
end subroutine end subroutine
subroutine msync(shape, bytes, fd, map) subroutine msync(shape, bytes, fd, map)
@ -106,6 +134,200 @@ module mmap_module
call c_msync_fortran( length, fd_, map) call c_msync_fortran( length, fd_, map)
end subroutine end subroutine
! Functions for the mmap_type
subroutine mmap_create(filename, shape, bytes, read_only, single_node, map)
implicit none
character*(*), intent(in) :: filename ! Name of the mapped file
integer*8, intent(in) :: shape(:) ! Shape of the array to map
integer, intent(in) :: bytes ! Number of bytes per element
logical, intent(in) :: read_only ! If true, mmap is read-only
logical, intent(in) :: single_node! If true, mmap is on a single node
type(mmap_type), intent(out) :: map ! mmap
integer :: i
logical :: temporary
temporary = ( trim(filename) == '' )
if (.not.temporary) then
map%filename = filename
else
call getenv('EZFIO_FILE', map%filename)
map%filename = trim(map%filename) // '/work/tmpfile'
endif
map%length = int(bytes,8)
do i=1,size(shape)
map%length = map%length * shape(i)
enddo
call mmap(map%filename, &
shape, &
bytes, &
map%fd, &
read_only, &
single_node, &
map%ptr)
if (temporary) then
! Deleting the file while it is open makes the file invisible on the filesystem,
! and automatically deleted, even if the program crashes
open(UNIT=47, FILE=trim(map%filename), STATUS='OLD')
close(47,STATUS='DELETE')
endif
map%d1 => NULL()
map%d2 => NULL()
map%d3 => NULL()
map%d4 => NULL()
map%s1 => NULL()
map%s2 => NULL()
map%s3 => NULL()
map%s4 => NULL()
map%i1 => NULL()
map%i2 => NULL()
map%i3 => NULL()
map%i4 => NULL()
map%i81 => NULL()
map%i82 => NULL()
map%i83 => NULL()
map%i84 => NULL()
end
subroutine mmap_create_d(filename, shape, read_only, single_node, map)
implicit none
character*(*), intent(in) :: filename ! Name of the mapped file
integer*8, intent(in) :: shape(:) ! Shape of the array to map
logical, intent(in) :: read_only ! If true, mmap is read-only
logical, intent(in) :: single_node! If true, mmap is on a single node
type(mmap_type), intent(out) :: map ! mmap
call mmap_create(filename, shape, 8, read_only, single_node, map)
select case (size(shape))
case (1)
call c_f_pointer(map%ptr, map%d1, shape)
case (2)
call c_f_pointer(map%ptr, map%d2, shape)
case (3)
call c_f_pointer(map%ptr, map%d3, shape)
case (4)
call c_f_pointer(map%ptr, map%d4, shape)
case default
stop 'mmap: dimension not implemented'
end select
end subroutine
subroutine mmap_create_s(filename, shape, read_only, single_node, map)
implicit none
character*(*), intent(in) :: filename ! Name of the mapped file
integer*8, intent(in) :: shape(:) ! Shape of the array to map
logical, intent(in) :: read_only ! If true, mmap is read-only
logical, intent(in) :: single_node! If true, mmap is on a single node
type(mmap_type), intent(out) :: map ! mmap
call mmap_create(filename, shape, 4, read_only, single_node, map)
select case (size(shape))
case (1)
call c_f_pointer(map%ptr, map%s1, shape)
case (2)
call c_f_pointer(map%ptr, map%s2, shape)
case (3)
call c_f_pointer(map%ptr, map%s3, shape)
case (4)
call c_f_pointer(map%ptr, map%s4, shape)
case default
stop 'mmap: dimension not implemented'
end select
end subroutine
subroutine mmap_create_i(filename, shape, read_only, single_node, map)
implicit none
character*(*), intent(in) :: filename ! Name of the mapped file
integer*8, intent(in) :: shape(:) ! Shape of the array to map
logical, intent(in) :: read_only ! If true, mmap is read-only
logical, intent(in) :: single_node! If true, mmap is on a single node
type(mmap_type), intent(out) :: map ! mmap
call mmap_create(filename, shape, 4, read_only, single_node, map)
select case (size(shape))
case (1)
call c_f_pointer(map%ptr, map%i1, shape)
case (2)
call c_f_pointer(map%ptr, map%i2, shape)
case (3)
call c_f_pointer(map%ptr, map%i3, shape)
case (4)
call c_f_pointer(map%ptr, map%i4, shape)
case default
stop 'mmap: dimension not implemented'
end select
end subroutine
subroutine mmap_create_i8(filename, shape, read_only, single_node, map)
implicit none
character*(*), intent(in) :: filename ! Name of the mapped file
integer*8, intent(in) :: shape(:) ! Shape of the array to map
logical, intent(in) :: read_only ! If true, mmap is read-only
logical, intent(in) :: single_node! If true, mmap is on a single node
type(mmap_type), intent(out) :: map ! mmap
call mmap_create(filename, shape, 8, read_only, single_node, map)
select case (size(shape))
case (1)
call c_f_pointer(map%ptr, map%i81, shape)
case (2)
call c_f_pointer(map%ptr, map%i82, shape)
case (3)
call c_f_pointer(map%ptr, map%i83, shape)
case (4)
call c_f_pointer(map%ptr, map%i84, shape)
case default
stop 'mmap: dimension not implemented'
end select
end subroutine
subroutine mmap_destroy(map)
implicit none
type(mmap_type), intent(inout) :: map
call c_munmap_fortran(map%length, map%fd, map%ptr)
map%ptr = C_NULL_PTR
map%filename = ''
map%length = 0
map%fd = 0
map%s1 => NULL()
map%s2 => NULL()
map%s3 => NULL()
map%s4 => NULL()
map%d1 => NULL()
map%d2 => NULL()
map%d3 => NULL()
map%d4 => NULL()
map%i1 => NULL()
map%i2 => NULL()
map%i3 => NULL()
map%i4 => NULL()
map%i81 => NULL()
map%i82 => NULL()
map%i83 => NULL()
map%i84 => NULL()
end subroutine
subroutine mmap_sync(map)
implicit none
type(mmap_type), intent(inout) :: map
call c_msync_fortran(map%length, map%fd, map%ptr)
end subroutine
end module mmap_module end module mmap_module

View File

@ -53,10 +53,10 @@ subroutine diis_cc(all_err,all_t,sze,m,iter,t)
!$OMP END PARALLEL !$OMP END PARALLEL
do i = 1, m_iter do i = 1, m_iter
B(i,m_iter+1) = -1 B(i,m_iter+1) = -1.d0
enddo enddo
do j = 1, m_iter do j = 1, m_iter
B(m_iter+1,j) = -1 B(m_iter+1,j) = -1.d0
enddo enddo
! Debug ! Debug
!print*,'B' !print*,'B'
@ -493,7 +493,7 @@ subroutine update_t_ccsd_diis_v3(nO,nV,nb_iter,f_o,f_v,r1,r2,t1,t2,all_err,all_t
do i = 1, nO*nV do i = 1, nO*nV
tmp(i) = t1(i) tmp(i) = t1(i)
enddo enddo
!$OMP END DO NOWAIT !$OMP END DO
!$OMP DO !$OMP DO
do i = 1, nO*nO*nV*nV do i = 1, nO*nO*nV*nV
tmp(i+nO*nV) = t2(i) tmp(i+nO*nV) = t2(i)
@ -515,7 +515,7 @@ subroutine update_t_ccsd_diis_v3(nO,nV,nb_iter,f_o,f_v,r1,r2,t1,t2,all_err,all_t
do i = 1, nO*nV do i = 1, nO*nV
t1(i) = tmp(i) t1(i) = tmp(i)
enddo enddo
!$OMP END DO NOWAIT !$OMP END DO
!$OMP DO !$OMP DO
do i = 1, nO*nO*nV*nV do i = 1, nO*nO*nV*nV
t2(i) = tmp(i+nO*nV) t2(i) = tmp(i+nO*nV)