10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-09 04:43:13 +01:00

Merge pull request #131 from QuantumPackage/dev

Dev
This commit is contained in:
Emmanuel Giner 2020-09-11 12:49:24 +02:00 committed by GitHub
commit 9453f8e416
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
33 changed files with 815 additions and 514 deletions

View File

@ -8,7 +8,7 @@
os: linux os: linux
dist: trusty dist: bionic
sudo: false sudo: false
@ -19,9 +19,11 @@ addons:
packages: packages:
- gfortran - gfortran
- gcc - gcc
- liblapack-dev - libatlas-base-dev
- libblas-dev # - liblapack-dev
# - libblas-dev
- wget - wget
- eatmydata
env: env:
- OPAMROOT=$HOME/.opam - OPAMROOT=$HOME/.opam
@ -29,12 +31,23 @@ env:
cache: cache:
directories: directories:
- $HOME/.opam/ - $HOME/.opam/
- $HOME/cache
language: python language: python
python: python:
- "2.7" - "3.7"
stages:
- configuration
- compilation
- testing
jobs:
include:
- stage: configuration
script: eatmydata travis/configuration.sh
- stage: compilation
script: eatmydata travis/compilation.sh
- stage: testing
script: eatmydata travis/testing.sh
script:
- ./configure --install all --config ./config/travis.cfg
- source ./quantum_package.rc ; ninja -j 1 -v
- source ./quantum_package.rc ; qp_test -a

View File

@ -36,7 +36,7 @@ Requirements
- Fortran compiler : GNU Fortran, Intel Fortran or IBM XL Fortran - Fortran compiler : GNU Fortran, Intel Fortran or IBM XL Fortran
- `GNU make`_ - `GNU make`_
- `Autoconf`_ - `Autoconf`_
- `Python`_ > 3.0 - `Python`_ > 3.7
- |IRPF90| : Fortran code generator - |IRPF90| : Fortran code generator
- |EZFIO| : Easy Fortran Input/Output library generator - |EZFIO| : Easy Fortran Input/Output library generator
- |BLAS| and |LAPACK| - |BLAS| and |LAPACK|
@ -142,6 +142,14 @@ IRPF90
*IRPF90* is a Fortran code generator for programming using the Implicit Reference *IRPF90* is a Fortran code generator for programming using the Implicit Reference
to Parameters (IRP) method. to Parameters (IRP) method.
If you have *pip* for Python2, you can do
.. code:: bash
python2 -m pip install --user irpf90
Otherwise,
* Download the latest version of IRPF90 * Download the latest version of IRPF90
here : `<https://gitlab.com/scemama/irpf90/-/archive/v1.7.2/irpf90-v1.7.2.tar.gz>`_ and move here : `<https://gitlab.com/scemama/irpf90/-/archive/v1.7.2/irpf90-v1.7.2.tar.gz>`_ and move
the downloaded archive in the :file:`${QP_ROOT}/external` directory the downloaded archive in the :file:`${QP_ROOT}/external` directory
@ -385,3 +393,17 @@ Otherwise,
* Copy :file:`docopt-0.6.2/docopt.py` in the :file:`${QP_ROOT}/scripts` directory * Copy :file:`docopt-0.6.2/docopt.py` in the :file:`${QP_ROOT}/scripts` directory
resultsFile
-----------
*resultsFile* is a Python package to extract data from output files of quantum chemistry
codes.
If you have *pip* for Python3, you can do
.. code:: bash
python3 -m pip install --user resultsFile

View File

@ -11,9 +11,9 @@
# #
[COMMON] [COMMON]
FC : gfortran -ffree-line-length-none -I . -g -fPIC FC : gfortran -ffree-line-length-none -I . -g -fPIC
LAPACK_LIB : -llapack -lblas LAPACK_LIB : -llapack -lblas
IRPF90 : irpf90 IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert IRPF90_FLAGS : --ninja --align=32 --assert
# Global options # Global options
################ ################
@ -35,14 +35,14 @@ OPENMP : 1 ; Append OpenMP flags
# -ffast-math and the Fortran-specific # -ffast-math and the Fortran-specific
# -fno-protect-parens and -fstack-arrays. # -fno-protect-parens and -fstack-arrays.
[OPT] [OPT]
FCFLAGS : -Ofast -march=native FCFLAGS : -Ofast -march=native
# Profiling flags # Profiling flags
################# #################
# #
[PROFILE] [PROFILE]
FC : -p -g FC : -p -g
FCFLAGS : -Ofast -fimplicit-none FCFLAGS : -Ofast -fimplicit-none
@ -53,7 +53,7 @@ FCFLAGS : -Ofast -fimplicit-none
# -g : Extra debugging information # -g : Extra debugging information
# #
[DEBUG] [DEBUG]
FCFLAGS : -Ofast -fcheck=all -g -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant FCFLAGS : -Ofast -fcheck=all -g -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant
# OpenMP flags # OpenMP flags
@ -61,5 +61,5 @@ FCFLAGS : -Ofast -fcheck=all -g -Waliasing -Wampersand -Wconversion -Wsurprising
# #
[OPENMP] [OPENMP]
FC : -fopenmp FC : -fopenmp
IRPF90_FLAGS : --openmp IRPF90_FLAGS : --openmp

6
configure vendored
View File

@ -17,7 +17,7 @@ export CC=gcc
# /!\ When updating version, update also etc files # /!\ When updating version, update also etc files
EZFIO_TGZ="EZFIO.2.0.2.tar.gz" EZFIO_TGZ="EZFIO-v2.0.3.tar.gz"
BATS_URL="https://github.com/bats-core/bats-core/archive/v1.1.0.tar.gz" BATS_URL="https://github.com/bats-core/bats-core/archive/v1.1.0.tar.gz"
BUBBLE_URL="https://github.com/projectatomic/bubblewrap/releases/download/v0.3.3/bubblewrap-0.3.3.tar.xz" BUBBLE_URL="https://github.com/projectatomic/bubblewrap/releases/download/v0.3.3/bubblewrap-0.3.3.tar.xz"
DOCOPT_URL="https://github.com/docopt/docopt/archive/0.6.2.tar.gz" DOCOPT_URL="https://github.com/docopt/docopt/archive/0.6.2.tar.gz"
@ -185,7 +185,7 @@ if [[ ${EZFIO} = $(not_found) ]] ; then
cd "\${QP_ROOT}"/external cd "\${QP_ROOT}"/external
tar --gunzip --extract --file ${EZFIO_TGZ} tar --gunzip --extract --file ${EZFIO_TGZ}
rm -rf ezfio rm -rf ezfio
mv EZFIO ezfio mv EZFIO ezfio || mv EZFIO-v*/ ezfio
EOF EOF
fi fi
@ -500,7 +500,7 @@ echo " ||----w | "
echo " || || " echo " || || "
echo "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" echo "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
echo "" echo ""
echo "If you have PIP, you can install the Basis Sex Exchange command-line tool:" echo "If you have PIP, you can install the Basis Set Exchange command-line tool:"
echo "" echo ""
echo " ./configure -i bse" echo " ./configure -i bse"
echo "" echo ""

BIN
external/EZFIO-v2.0.3.tar.gz vendored Normal file

Binary file not shown.

Binary file not shown.

View File

@ -1,34 +1,43 @@
subroutine run_cipsi subroutine run_cipsi
implicit none implicit none
use selection_types
BEGIN_DOC BEGIN_DOC
! Selected Full Configuration Interaction with deterministic selection and ! Selected Full Configuration Interaction with deterministic selection and
! stochastic PT2. ! stochastic PT2.
END_DOC END_DOC
integer :: i,j,k integer :: i,j,k
double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:), zeros(:) type(pt2_type) :: pt2_data, pt2_data_err
integer :: n_det_before, to_select double precision, allocatable :: zeros(:)
integer :: to_select
logical, external :: qp_stop
double precision :: threshold_generators_save
double precision :: rss double precision :: rss
double precision, external :: memory_of_double double precision, external :: memory_of_double
PROVIDE H_apply_buffer_allocated
N_iter = 1
threshold_generators = 1.d0
SOFT_TOUCH threshold_generators
rss = memory_of_double(N_states)*4.d0 rss = memory_of_double(N_states)*4.d0
call check_mem(rss,irp_here) call check_mem(rss,irp_here)
N_iter = 1 allocate (zeros(N_states))
allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states)) call pt2_alloc(pt2_data, N_states)
call pt2_alloc(pt2_data_err, N_states)
double precision :: hf_energy_ref double precision :: hf_energy_ref
logical :: has logical :: has
double precision :: relative_error double precision :: relative_error
PROVIDE H_apply_buffer_allocated
relative_error=PT2_relative_error relative_error=PT2_relative_error
zeros = 0.d0 zeros = 0.d0
pt2 = -huge(1.e0) pt2_data % pt2 = -huge(1.e0)
rpt2 = -huge(1.e0) pt2_data % rpt2 = -huge(1.e0)
norm = 0.d0 pt2_data % overlap(:,:) = 0.d0
variance = huge(1.e0) pt2_data % variance = huge(1.e0)
if (s2_eig) then if (s2_eig) then
call make_s2_eigenfunction call make_s2_eigenfunction
@ -55,61 +64,57 @@ subroutine run_cipsi
call save_wavefunction call save_wavefunction
endif endif
n_det_before = 0
double precision :: correlation_energy_ratio double precision :: correlation_energy_ratio
double precision :: threshold_generators_save
threshold_generators_save = threshold_generators
double precision :: error(N_states)
logical, external :: qp_stop
correlation_energy_ratio = 0.d0 correlation_energy_ratio = 0.d0
do while ( & do while ( &
(N_det < N_det_max) .and. & (N_det < N_det_max) .and. &
(maxval(abs(rpt2(1:N_states))) > pt2_max) .and. & (maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) .and. &
(maxval(variance(1:N_states)) > variance_max) .and. & (maxval(abs(pt2_data % variance(1:N_states))) > variance_max) .and. &
(correlation_energy_ratio <= correlation_energy_ratio_max) & (correlation_energy_ratio <= correlation_energy_ratio_max) &
) )
write(*,'(A)') '--------------------------------------------------------------------------------' write(*,'(A)') '--------------------------------------------------------------------------------'
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
to_select = max(N_states_diag, to_select)
if (do_pt2) then if (do_pt2) then
pt2 = 0.d0 call pt2_dealloc(pt2_data)
variance = 0.d0 call pt2_dealloc(pt2_data_err)
norm = 0.d0 call pt2_alloc(pt2_data, N_states)
call pt2_alloc(pt2_data_err, N_states)
threshold_generators_save = threshold_generators
threshold_generators = 1.d0 threshold_generators = 1.d0
SOFT_TOUCH threshold_generators SOFT_TOUCH threshold_generators
call ZMQ_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, & call ZMQ_pt2(psi_energy_with_nucl_rep,pt2_data,pt2_data_err,relative_error, 0) ! Stochastic PT2
norm, 0) ! Stochastic PT2
threshold_generators = threshold_generators_save threshold_generators = threshold_generators_save
SOFT_TOUCH threshold_generators SOFT_TOUCH threshold_generators
else
call pt2_dealloc(pt2_data)
call pt2_alloc(pt2_data, N_states)
call ZMQ_selection(to_select, pt2_data)
endif endif
do k=1,N_states
rpt2(k) = pt2(k)/(1.d0 + norm(k))
enddo
correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / & correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / &
(psi_energy_with_nucl_rep(1) + rpt2(1) - hf_energy_ref) (psi_energy_with_nucl_rep(1) + pt2_data % rpt2(1) - hf_energy_ref)
correlation_energy_ratio = min(1.d0,correlation_energy_ratio) correlation_energy_ratio = min(1.d0,correlation_energy_ratio)
call write_double(6,correlation_energy_ratio, 'Correlation ratio') call write_double(6,correlation_energy_ratio, 'Correlation ratio')
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2) call print_summary(psi_energy_with_nucl_rep, &
pt2_data, pt2_data_err, N_det,N_occ_pattern,N_states,psi_s2)
call save_energy(psi_energy_with_nucl_rep, rpt2) call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det) call save_iterations(psi_energy_with_nucl_rep(1:N_states),pt2_data % rpt2,N_det)
call print_extrapolated_energy() call print_extrapolated_energy()
N_iter += 1 N_iter += 1
if (qp_stop()) exit if (qp_stop()) exit
n_det_before = N_det ! Add selected determinants
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor) call copy_H_apply_buffer_to_wf()
to_select = max(N_states_diag, to_select) ! call save_wavefunction
to_select = max(to_select,1)
call ZMQ_selection(to_select, pt2, variance, norm)
PROVIDE psi_coef PROVIDE psi_coef
PROVIDE psi_det PROVIDE psi_det
@ -118,11 +123,7 @@ subroutine run_cipsi
call diagonalize_CI call diagonalize_CI
call save_wavefunction call save_wavefunction
call save_energy(psi_energy_with_nucl_rep, zeros) call save_energy(psi_energy_with_nucl_rep, zeros)
if (qp_stop()) exit if (qp_stop()) exit
print *, (N_det < N_det_max)
print *, (maxval(abs(rpt2(1:N_states))) > pt2_max)
print *, (maxval(variance(1:N_states)) > variance_max)
print *, (correlation_energy_ratio <= correlation_energy_ratio_max)
enddo enddo
if (.not.qp_stop()) then if (.not.qp_stop()) then
@ -133,13 +134,13 @@ print *, (correlation_energy_ratio <= correlation_energy_ratio_max)
endif endif
if (do_pt2) then if (do_pt2) then
pt2(:) = 0.d0 call pt2_dealloc(pt2_data)
variance(:) = 0.d0 call pt2_dealloc(pt2_data_err)
norm(:) = 0.d0 call pt2_alloc(pt2_data, N_states)
call pt2_alloc(pt2_data_err, N_states)
threshold_generators = 1d0 threshold_generators = 1d0
SOFT_TOUCH threshold_generators SOFT_TOUCH threshold_generators
call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, & call ZMQ_pt2(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, relative_error, 0) ! Stochastic PT2
norm,0) ! Stochastic PT2
SOFT_TOUCH threshold_generators SOFT_TOUCH threshold_generators
endif endif
print *, 'N_det = ', N_det print *, 'N_det = ', N_det
@ -147,15 +148,13 @@ print *, (correlation_energy_ratio <= correlation_energy_ratio_max)
print *, 'N_states = ', N_states print *, 'N_states = ', N_states
print*, 'correlation_ratio = ', correlation_energy_ratio print*, 'correlation_ratio = ', correlation_energy_ratio
call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2)
do k=1,N_states call print_summary(psi_energy_with_nucl_rep(1:N_states), &
rpt2(k) = pt2(k)/(1.d0 + norm(k)) pt2_data, pt2_data_err, N_det,N_occ_pattern,N_states,psi_s2)
enddo call save_iterations(psi_energy_with_nucl_rep(1:N_states),pt2_data % rpt2,N_det)
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
call save_energy(psi_energy_with_nucl_rep, rpt2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det)
call print_extrapolated_energy() call print_extrapolated_energy()
endif endif
call pt2_dealloc(pt2_data)
call pt2_dealloc(pt2_data_err)
end end

View File

@ -37,3 +37,11 @@ BEGIN_PROVIDER [ double precision, pt2_E0_denominator, (N_states) ]
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, pt2_overlap, (N_states, N_states) ]
implicit none
BEGIN_DOC
! Overlap between the perturbed wave functions
END_DOC
pt2_overlap(1:N_states,1:N_states) = 0.d0
END_PROVIDER

View File

@ -31,7 +31,7 @@ BEGIN_PROVIDER [double precision, pert_2rdm_provider, (n_orb_pert_rdm,n_orb_pert
END_PROVIDER END_PROVIDER
subroutine fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf, psi_det_connection, psi_coef_connection_reverse, n_det_connection) subroutine fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf, psi_det_connection, psi_coef_connection_reverse, n_det_connection)
use bitmasks use bitmasks
use selection_types use selection_types
implicit none implicit none
@ -44,12 +44,10 @@ subroutine fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fo
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num) logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
double precision, intent(in) :: fock_diag_tmp(mo_num) double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states) double precision, intent(in) :: E0(N_states)
double precision, intent(inout) :: pt2(N_states) type(pt2_type), intent(inout) :: pt2_data
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
type(selection_buffer), intent(inout) :: buf type(selection_buffer), intent(inout) :: buf
logical :: ok logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate integer :: s1, s2, p1, p2, ib, j, istate, jstate
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2) integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp, alpha_h_psi, coef(N_states) double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp, alpha_h_psi, coef(N_states)
double precision, external :: diag_H_mat_elem_fock double precision, external :: diag_H_mat_elem_fock
@ -152,9 +150,16 @@ subroutine fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fo
e_pert = 0.5d0 * (tmp - delta_E) e_pert = 0.5d0 * (tmp - delta_E)
coef(istate) = e_pert / alpha_h_psi coef(istate) = e_pert / alpha_h_psi
print*,e_pert,coef,alpha_h_psi print*,e_pert,coef,alpha_h_psi
pt2(istate) = pt2(istate) + e_pert pt2_data % pt2(istate) += e_pert
variance(istate) = variance(istate) + alpha_h_psi * alpha_h_psi pt2_data % variance(istate) += alpha_h_psi * alpha_h_psi
norm(istate) = norm(istate) + coef(istate) * coef(istate) enddo
do istate=1,N_states
alpha_h_psi = mat(istate, p1, p2)
e_pert = coef(istate) * alpha_h_psi
do jstate=1,N_states
pt2_data % overlap(jstate,jstate) = coef(istate) * coef(jstate)
enddo
if (weight_selection /= 5) then if (weight_selection /= 5) then
! Energy selection ! Energy selection

View File

@ -61,15 +61,15 @@ logical function testTeethBuilding(minF, N)
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators)) allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
norm = 0.d0 double precision :: norm2
double precision :: norm norm2 = 0.d0
do i=N_det_generators,1,-1 do i=N_det_generators,1,-1
tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate) * & tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate) * &
psi_coef_sorted_gen(i,pt2_stoch_istate) psi_coef_sorted_gen(i,pt2_stoch_istate)
norm = norm + tilde_w(i) norm2 = norm2 + tilde_w(i)
enddo enddo
f = 1.d0/norm f = 1.d0/norm2
tilde_w(:) = tilde_w(:) * f tilde_w(:) = tilde_w(:) * f
tilde_cW(0) = -1.d0 tilde_cW(0) = -1.d0
@ -107,7 +107,7 @@ end function
subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in) subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
use f77_zmq use f77_zmq
use selection_types use selection_types
@ -117,10 +117,8 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
integer, intent(in) :: N_in integer, intent(in) :: N_in
! integer, intent(inout) :: N_in ! integer, intent(inout) :: N_in
double precision, intent(in) :: relative_error, E(N_states) double precision, intent(in) :: relative_error, E(N_states)
double precision, intent(out) :: pt2(N_states),error(N_states) type(pt2_type), intent(inout) :: pt2_data, pt2_data_err
double precision, intent(out) :: variance(N_states),norm(N_states) !
integer :: i, N integer :: i, N
double precision :: state_average_weight_save(N_states), w(N_states,4) double precision :: state_average_weight_save(N_states), w(N_states,4)
@ -138,11 +136,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
endif endif
if (N_det <= max(4,N_states) .or. pt2_N_teeth < 2) then if (N_det <= max(4,N_states) .or. pt2_N_teeth < 2) then
pt2=0.d0 call ZMQ_selection(N_in, pt2_data)
variance=0.d0
norm=0.d0
call ZMQ_selection(N_in, pt2, variance, norm)
error(:) = 0.d0
else else
N = max(N_in,1) * N_states N = max(N_in,1) * N_states
@ -248,8 +242,8 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
mem_collector = 8.d0 * & ! bytes mem_collector = 8.d0 * & ! bytes
( 1.d0*pt2_n_tasks_max & ! task_id, index ( 1.d0*pt2_n_tasks_max & ! task_id, index
+ 0.635d0*N_det_generators & ! f,d + 0.635d0*N_det_generators & ! f,d
+ 3.d0*N_det_generators*N_states & ! eI, vI, nI + pt2_n_tasks_max*pt2_type_size(N_states) & ! pt2_data_task
+ 3.d0*pt2_n_tasks_max*N_states & ! eI_task, vI_task, nI_task + N_det_generators*pt2_type_size(N_states) & ! pt2_data_I
+ 4.d0*(pt2_N_teeth+1) & ! S, S2, T2, T3 + 4.d0*(pt2_N_teeth+1) & ! S, S2, T2, T3
+ 1.d0*(N_int*2.d0*N + N) & ! selection buffer + 1.d0*(N_int*2.d0*N + N) & ! selection buffer
+ 1.d0*(N_int*2.d0*N + N) & ! sort selection buffer + 1.d0*(N_int*2.d0*N + N) & ! sort selection buffer
@ -264,7 +258,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
nproc_target * 8.d0 * & ! bytes nproc_target * 8.d0 * & ! bytes
( 0.5d0*pt2_n_tasks_max & ! task_id ( 0.5d0*pt2_n_tasks_max & ! task_id
+ 64.d0*pt2_n_tasks_max & ! task + 64.d0*pt2_n_tasks_max & ! task
+ 3.d0*pt2_n_tasks_max*N_states & ! pt2, variance, norm + pt2_type_size(N_states)*pt2_n_tasks_max*N_states & ! pt2, variance, overlap
+ 1.d0*pt2_n_tasks_max & ! i_generator, subset + 1.d0*pt2_n_tasks_max & ! i_generator, subset
+ 1.d0*(N_int*2.d0*ii+ ii) & ! selection buffer + 1.d0*(N_int*2.d0*ii+ ii) & ! selection buffer
+ 1.d0*(N_int*2.d0*ii+ ii) & ! sort selection buffer + 1.d0*(N_int*2.d0*ii+ ii) & ! sort selection buffer
@ -293,21 +287,24 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
call omp_set_nested(.false.) call omp_set_nested(.false.)
print '(A)', '========== ================= =========== =============== =============== =================' print '(A)', '========== ======================= ===================== ===================== ==========='
print '(A)', ' Samples Energy Stat. Err Variance Norm Seconds ' print '(A)', ' Samples Energy Variance Norm^2 Seconds'
print '(A)', '========== ================= =========== =============== =============== =================' print '(A)', '========== ======================= ===================== ===================== ==========='
PROVIDE global_selection_buffer PROVIDE global_selection_buffer
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(nproc_target+1) & !$OMP PARALLEL DEFAULT(shared) NUM_THREADS(nproc_target+1) &
!$OMP PRIVATE(i) !$OMP PRIVATE(i)
i = omp_get_thread_num() i = omp_get_thread_num()
if (i==0) then if (i==0) then
call pt2_collector(zmq_socket_pull, E(pt2_stoch_istate),relative_error, w(1,1), w(1,2), w(1,3), w(1,4), b, N) call pt2_collector(zmq_socket_pull, E(pt2_stoch_istate),relative_error, pt2_data, pt2_data_err, b, N)
pt2(pt2_stoch_istate) = w(pt2_stoch_istate,1) pt2_data % rpt2(pt2_stoch_istate) = &
error(pt2_stoch_istate) = w(pt2_stoch_istate,2) pt2_data % pt2(pt2_stoch_istate)/(1.d0+pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate))
variance(pt2_stoch_istate) = w(pt2_stoch_istate,3)
norm(pt2_stoch_istate) = w(pt2_stoch_istate,4) !TODO : We should use here the correct formula for the error of X/Y
pt2_data_err % rpt2(pt2_stoch_istate) = &
pt2_data_err % pt2(pt2_stoch_istate)/(1.d0 + pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate))
else else
call pt2_slave_inproc(i) call pt2_slave_inproc(i)
@ -315,11 +312,30 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
!$OMP END PARALLEL !$OMP END PARALLEL
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'pt2') call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'pt2')
print '(A)', '========== ================= =========== =============== =============== =================' print '(A)', '========== ======================= ===================== ===================== ==========='
do k=1,N_states
pt2_overlap(pt2_stoch_istate,k) = pt2_data % overlap(k,pt2_stoch_istate)
enddo
SOFT_TOUCH pt2_overlap
enddo enddo
FREE pt2_stoch_istate FREE pt2_stoch_istate
! Symmetrize overlap
do j=2,N_states
do i=1,j-1
pt2_overlap(i,j) = 0.5d0 * (pt2_overlap(i,j) + pt2_overlap(j,i))
pt2_overlap(j,i) = pt2_overlap(i,j)
enddo
enddo
print *, 'Overlap of perturbed states:'
do k=1,N_states
print *, pt2_overlap(k,:)
enddo
print *, '-------'
if (N_in > 0) then if (N_in > 0) then
b%cur = min(N_in,b%cur) b%cur = min(N_in,b%cur)
if (s2_eig) then if (s2_eig) then
@ -334,11 +350,8 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
state_average_weight(:) = state_average_weight_save(:) state_average_weight(:) = state_average_weight_save(:)
TOUCH state_average_weight TOUCH state_average_weight
endif endif
do k=N_det+1,N_states
pt2(k) = 0.d0
enddo
call update_pt2_and_variance_weights(pt2, variance, norm, N_states) call update_pt2_and_variance_weights(pt2_data, N_states)
end subroutine end subroutine
@ -352,7 +365,7 @@ subroutine pt2_slave_inproc(i)
end end
subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, variance, norm, b, N_) subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2_data, pt2_data_err, b, N_)
use f77_zmq use f77_zmq
use selection_types use selection_types
use bitmasks use bitmasks
@ -361,15 +374,15 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(in) :: relative_error, E double precision, intent(in) :: relative_error, E
double precision, intent(out) :: pt2(N_states), error(N_states) type(pt2_type), intent(inout) :: pt2_data, pt2_data_err
double precision, intent(out) :: variance(N_states), norm(N_states)
type(selection_buffer), intent(inout) :: b type(selection_buffer), intent(inout) :: b
integer, intent(in) :: N_ integer, intent(in) :: N_
type(pt2_type), allocatable :: pt2_data_task(:)
double precision, allocatable :: eI(:,:), eI_task(:,:), S(:), S2(:) type(pt2_type), allocatable :: pt2_data_I(:)
double precision, allocatable :: vI(:,:), vI_task(:,:), T2(:) type(pt2_type), allocatable :: pt2_data_S(:)
double precision, allocatable :: nI(:,:), nI_task(:,:), T3(:) type(pt2_type), allocatable :: pt2_data_S2(:)
type(pt2_type) :: pt2_data_teeth
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer, external :: zmq_delete_tasks_async_send integer, external :: zmq_delete_tasks_async_send
@ -377,11 +390,14 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
integer, external :: zmq_abort integer, external :: zmq_abort
integer, external :: pt2_find_sample_lr integer, external :: pt2_find_sample_lr
PROVIDE pt2_stoch_istate
integer :: more, n, i, p, c, t, n_tasks, U integer :: more, n, i, p, c, t, n_tasks, U
integer, allocatable :: task_id(:) integer, allocatable :: task_id(:)
integer, allocatable :: index(:) integer, allocatable :: index(:)
double precision :: v, x, x2, x3, avg, avg2, avg3, eqt, E0, v0, n0 double precision :: v, x, x2, x3, avg, avg2, avg3(N_states), eqt, E0, v0, n0(N_states)
double precision :: eqta(N_states)
double precision :: time, time1, time0 double precision :: time, time1, time0
integer, allocatable :: f(:) integer, allocatable :: f(:)
@ -406,11 +422,10 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
! updated in ZMQ_pt2 ! updated in ZMQ_pt2
allocate(task_id(pt2_n_tasks_max), index(pt2_n_tasks_max), f(N_det_generators)) allocate(task_id(pt2_n_tasks_max), index(pt2_n_tasks_max), f(N_det_generators))
allocate(d(N_det_generators+1)) allocate(d(N_det_generators+1))
allocate(eI(N_states, N_det_generators), eI_task(N_states, pt2_n_tasks_max)) allocate(pt2_data_task(pt2_n_tasks_max))
allocate(vI(N_states, N_det_generators), vI_task(N_states, pt2_n_tasks_max)) allocate(pt2_data_I(N_det_generators))
allocate(nI(N_states, N_det_generators), nI_task(N_states, pt2_n_tasks_max)) allocate(pt2_data_S(pt2_N_teeth+1))
allocate(S(pt2_N_teeth+1), S2(pt2_N_teeth+1)) allocate(pt2_data_S2(pt2_N_teeth+1))
allocate(T2(pt2_N_teeth+1), T3(pt2_N_teeth+1))
@ -418,26 +433,31 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
call create_selection_buffer(N_, N_*2, b2) call create_selection_buffer(N_, N_*2, b2)
pt2(:) = -huge(1.) pt2_data % pt2(pt2_stoch_istate) = -huge(1.)
error(:) = huge(1.) pt2_data_err % pt2(pt2_stoch_istate) = huge(1.)
variance(:) = huge(1.) pt2_data % variance(pt2_stoch_istate) = huge(1.)
norm(:) = 0.d0 pt2_data_err % variance(pt2_stoch_istate) = huge(1.)
S(:) = 0d0 pt2_data % overlap(:,pt2_stoch_istate) = 0.d0
S2(:) = 0d0 pt2_data_err % overlap(:,pt2_stoch_istate) = huge(1.)
T2(:) = 0d0
T3(:) = 0d0
n = 1 n = 1
t = 0 t = 0
U = 0 U = 0
eI(:,:) = 0d0 do i=1,pt2_n_tasks_max
vI(:,:) = 0d0 call pt2_alloc(pt2_data_task(i),N_states)
nI(:,:) = 0d0 enddo
do i=1,pt2_N_teeth+1
call pt2_alloc(pt2_data_S(i),N_states)
call pt2_alloc(pt2_data_S2(i),N_states)
enddo
do i=1,N_det_generators
call pt2_alloc(pt2_data_I(i),N_states)
enddo
f(:) = pt2_F(:) f(:) = pt2_F(:)
d(:) = .false. d(:) = .false.
n_tasks = 0 n_tasks = 0
E0 = E E0 = E
v0 = 0.d0 v0 = 0.d0
n0 = 0.d0 n0(:) = 0.d0
more = 1 more = 1
call wall_time(time0) call wall_time(time0)
time1 = time0 time1 = time0
@ -457,11 +477,11 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
t=t+1 t=t+1
E0 = 0.d0 E0 = 0.d0
v0 = 0.d0 v0 = 0.d0
n0 = 0.d0 n0(:) = 0.d0
do i=pt2_n_0(t),1,-1 do i=pt2_n_0(t),1,-1
E0 += eI(pt2_stoch_istate, i) E0 += pt2_data_I(i) % pt2(pt2_stoch_istate)
v0 += vI(pt2_stoch_istate, i) v0 += pt2_data_I(i) % variance(pt2_stoch_istate)
n0 += nI(pt2_stoch_istate, i) n0(:) += pt2_data_I(i) % overlap(:,pt2_stoch_istate)
end do end do
else else
exit exit
@ -471,45 +491,59 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
! Add Stochastic part ! Add Stochastic part
c = pt2_R(n) c = pt2_R(n)
if(c > 0) then if(c > 0) then
!print *, 'c>0'
x = 0d0 call pt2_alloc(pt2_data_teeth,N_states)
x2 = 0d0
x3 = 0d0
do p=pt2_N_teeth, 1, -1 do p=pt2_N_teeth, 1, -1
v = pt2_u_0 + pt2_W_T * (pt2_u(c) + dble(p-1)) v = pt2_u_0 + pt2_W_T * (pt2_u(c) + dble(p-1))
i = pt2_find_sample_lr(v, pt2_cW,pt2_n_0(p),pt2_n_0(p+1)) i = pt2_find_sample_lr(v, pt2_cW,pt2_n_0(p),pt2_n_0(p+1))
x += eI(pt2_stoch_istate, i) * pt2_W_T / pt2_w(i) v = pt2_W_T / pt2_w(i)
x2 += vI(pt2_stoch_istate, i) * pt2_W_T / pt2_w(i) call pt2_add ( pt2_data_teeth, v, pt2_data_I(i) )
x3 += nI(pt2_stoch_istate, i) * pt2_W_T / pt2_w(i) call pt2_add ( pt2_data_S(p), 1.d0, pt2_data_teeth )
S(p) += x call pt2_add2( pt2_data_S2(p), 1.d0, pt2_data_teeth )
S2(p) += x*x enddo
T2(p) += x2 call pt2_dealloc(pt2_data_teeth)
T3(p) += x3
end do avg = E0 + pt2_data_S(t) % pt2(pt2_stoch_istate) / dble(c)
avg = E0 + S(t) / dble(c) avg2 = v0 + pt2_data_S(t) % variance(pt2_stoch_istate) / dble(c)
avg2 = v0 + T2(t) / dble(c) avg3(:) = n0(:) + pt2_data_S(t) % overlap(:,pt2_stoch_istate) / dble(c)
avg3 = n0 + T3(t) / dble(c)
if ((avg /= 0.d0) .or. (n == N_det_generators) ) then if ((avg /= 0.d0) .or. (n == N_det_generators) ) then
do_exit = .true. do_exit = .true.
endif endif
if (qp_stop()) then if (qp_stop()) then
stop_now = .True. stop_now = .True.
endif endif
pt2(pt2_stoch_istate) = avg pt2_data % pt2(pt2_stoch_istate) = avg
variance(pt2_stoch_istate) = avg2 pt2_data % variance(pt2_stoch_istate) = avg2
norm(pt2_stoch_istate) = avg3 pt2_data % overlap(:,pt2_stoch_istate) = avg3(:)
call wall_time(time) call wall_time(time)
! 1/(N-1.5) : see Brugger, The American Statistician (23) 4 p. 32 (1969) ! 1/(N-1.5) : see Brugger, The American Statistician (23) 4 p. 32 (1969)
if(c > 2) then if(c > 2) then
eqt = dabs((S2(t) / c) - (S(t)/c)**2) ! dabs for numerical stability eqt = dabs((pt2_data_S2(t) % pt2(pt2_stoch_istate) / c) - (pt2_data_S(t) % pt2(pt2_stoch_istate)/c)**2) ! dabs for numerical stability
eqt = sqrt(eqt / (dble(c) - 1.5d0)) eqt = sqrt(eqt / (dble(c) - 1.5d0))
error(pt2_stoch_istate) = eqt pt2_data_err % pt2(pt2_stoch_istate) = eqt
eqt = dabs((pt2_data_S2(t) % variance(pt2_stoch_istate) / c) - (pt2_data_S(t) % variance(pt2_stoch_istate)/c)**2) ! dabs for numerical stability
eqt = sqrt(eqt / (dble(c) - 1.5d0))
pt2_data_err % variance(pt2_stoch_istate) = eqt
eqta(:) = dabs((pt2_data_S2(t) % overlap(:,pt2_stoch_istate) / c) - (pt2_data_S(t) % overlap(:,pt2_stoch_istate)/c)**2) ! dabs for numerical stability
eqta(:) = sqrt(eqta(:) / (dble(c) - 1.5d0))
pt2_data_err % overlap(:,pt2_stoch_istate) = eqta(:)
if ((time - time1 > 1.d0) .or. (n==N_det_generators)) then if ((time - time1 > 1.d0) .or. (n==N_det_generators)) then
time1 = time time1 = time
print '(G10.3, 2X, F16.10, 2X, G10.3, 2X, F14.10, 2X, F14.10, 2X, F10.4, A10)', c, avg+E, eqt, avg2, avg3, time-time0, '' print '(I10, X, F12.6, X, G10.3, X, F10.6, X, G10.3, X, F10.6, X, G10.3, X, F10.4)', c, &
pt2_data % pt2(pt2_stoch_istate) +E, &
pt2_data_err % pt2(pt2_stoch_istate), &
pt2_data % variance(pt2_stoch_istate), &
pt2_data_err % variance(pt2_stoch_istate), &
pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate), &
pt2_data_err % overlap(pt2_stoch_istate,pt2_stoch_istate), &
time-time0
if (stop_now .or. ( & if (stop_now .or. ( &
(do_exit .and. (dabs(error(pt2_stoch_istate)) / & (do_exit .and. (dabs(pt2_data_err % pt2(pt2_stoch_istate)) / &
(1.d-20 + dabs(pt2(pt2_stoch_istate)) ) <= relative_error))) ) then (1.d-20 + dabs(pt2_data % pt2(pt2_stoch_istate)) ) <= relative_error))) ) then
if (zmq_abort(zmq_to_qp_run_socket) == -1) then if (zmq_abort(zmq_to_qp_run_socket) == -1) then
call sleep(10) call sleep(10)
if (zmq_abort(zmq_to_qp_run_socket) == -1) then if (zmq_abort(zmq_to_qp_run_socket) == -1) then
@ -524,10 +558,10 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
else if(more == 0) then else if(more == 0) then
exit exit
else else
call pull_pt2_results(zmq_socket_pull, index, eI_task, vI_task, nI_task, task_id, n_tasks, b2) call pull_pt2_results(zmq_socket_pull, index, pt2_data_task, task_id, n_tasks, b2)
if(n_tasks > pt2_n_tasks_max)then if(n_tasks > pt2_n_tasks_max)then
print*,'PB !!!' print*,'PB !!!'
print*,'If you see this, send an email to Anthony scemama with the following content' print*,'If you see this, send a bug report with the following content'
print*,irp_here print*,irp_here
print*,'n_tasks,pt2_n_tasks_max = ',n_tasks,pt2_n_tasks_max print*,'n_tasks,pt2_n_tasks_max = ',n_tasks,pt2_n_tasks_max
stop -1 stop -1
@ -536,16 +570,14 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
stop 'PT2: Unable to delete tasks (send)' stop 'PT2: Unable to delete tasks (send)'
endif endif
do i=1,n_tasks do i=1,n_tasks
if(index(i).gt.size(eI,2).or.index(i).lt.1)then if(index(i).gt.size(pt2_data_I,1).or.index(i).lt.1)then
print*,'PB !!!' print*,'PB !!!'
print*,'If you see this, send an email to Anthony scemama with the following content' print*,'If you see this, send a bug report with the following content'
print*,irp_here print*,irp_here
print*,'i,index(i),size(ei,2) = ',i,index(i),size(ei,2) print*,'i,index(i),size(pt2_data_I,1) = ',i,index(i),size(pt2_data_I,1)
stop -1 stop -1
endif endif
eI(1:N_states, index(i)) += eI_task(1:N_states,i) call pt2_add(pt2_data_I(index(i)),1.d0,pt2_data_task(i))
vI(1:N_states, index(i)) += vI_task(1:N_states,i)
nI(1:N_states, index(i)) += nI_task(1:N_states,i)
f(index(i)) -= 1 f(index(i)) -= 1
end do end do
do i=1, b2%cur do i=1, b2%cur
@ -558,6 +590,16 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
endif endif
end if end if
end do end do
do i=1,N_det_generators
call pt2_dealloc(pt2_data_I(i))
enddo
do i=1,pt2_N_teeth+1
call pt2_dealloc(pt2_data_S(i))
call pt2_dealloc(pt2_data_S2(i))
enddo
do i=1,pt2_n_tasks_max
call pt2_dealloc(pt2_data_task(i))
enddo
!print *, 'deleting b2' !print *, 'deleting b2'
call delete_selection_buffer(b2) call delete_selection_buffer(b2)
!print *, 'sorting b' !print *, 'sorting b'
@ -757,13 +799,13 @@ END_PROVIDER
tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate)**2 !+ 1.d-20 tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate)**2 !+ 1.d-20
enddo enddo
double precision :: norm double precision :: norm2
norm = 0.d0 norm2 = 0.d0
do i=N_det_generators,1,-1 do i=N_det_generators,1,-1
norm += tilde_w(i) norm2 += tilde_w(i)
enddo enddo
tilde_w(:) = tilde_w(:) / norm tilde_w(:) = tilde_w(:) / norm2
tilde_cW(0) = -1.d0 tilde_cW(0) = -1.d0
do i=1,N_det_generators do i=1,N_det_generators

128
src/cipsi/pt2_type.irp.f Normal file
View File

@ -0,0 +1,128 @@
subroutine pt2_alloc(pt2_data,N)
implicit none
use selection_types
type(pt2_type), intent(inout) :: pt2_data
integer, intent(in) :: N
integer :: k
allocate(pt2_data % pt2(N) &
,pt2_data % variance(N) &
,pt2_data % rpt2(N) &
,pt2_data % overlap(N,N) &
)
pt2_data % pt2(:) = 0.d0
pt2_data % variance(:) = 0.d0
pt2_data % rpt2(:) = 0.d0
pt2_data % overlap(:,:) = 0.d0
end subroutine
subroutine pt2_dealloc(pt2_data)
implicit none
use selection_types
type(pt2_type), intent(inout) :: pt2_data
deallocate(pt2_data % pt2 &
,pt2_data % variance &
,pt2_data % rpt2 &
,pt2_data % overlap &
)
end subroutine
subroutine pt2_add(p1, w, p2)
implicit none
use selection_types
BEGIN_DOC
! p1 += w * p2
END_DOC
type(pt2_type), intent(inout) :: p1
double precision, intent(in) :: w
type(pt2_type), intent(in) :: p2
if (w == 1.d0) then
p1 % pt2(:) = p1 % pt2(:) + p2 % pt2(:)
p1 % rpt2(:) = p1 % rpt2(:) + p2 % rpt2(:)
p1 % variance(:) = p1 % variance(:) + p2 % variance(:)
p1 % overlap(:,:) = p1 % overlap(:,:) + p2 % overlap(:,:)
else
p1 % pt2(:) = p1 % pt2(:) + w * p2 % pt2(:)
p1 % rpt2(:) = p1 % rpt2(:) + w * p2 % rpt2(:)
p1 % variance(:) = p1 % variance(:) + w * p2 % variance(:)
p1 % overlap(:,:) = p1 % overlap(:,:) + w * p2 % overlap(:,:)
endif
end subroutine
subroutine pt2_add2(p1, w, p2)
implicit none
use selection_types
BEGIN_DOC
! p1 += w * p2**2
END_DOC
type(pt2_type), intent(inout) :: p1
double precision, intent(in) :: w
type(pt2_type), intent(in) :: p2
if (w == 1.d0) then
p1 % pt2(:) = p1 % pt2(:) + p2 % pt2(:) * p2 % pt2(:)
p1 % rpt2(:) = p1 % rpt2(:) + p2 % rpt2(:) * p2 % rpt2(:)
p1 % variance(:) = p1 % variance(:) + p2 % variance(:) * p2 % variance(:)
p1 % overlap(:,:) = p1 % overlap(:,:) + p2 % overlap(:,:) * p2 % overlap(:,:)
else
p1 % pt2(:) = p1 % pt2(:) + w * p2 % pt2(:) * p2 % pt2(:)
p1 % rpt2(:) = p1 % rpt2(:) + w * p2 % rpt2(:) * p2 % rpt2(:)
p1 % variance(:) = p1 % variance(:) + w * p2 % variance(:) * p2 % variance(:)
p1 % overlap(:,:) = p1 % overlap(:,:) + w * p2 % overlap(:,:) * p2 % overlap(:,:)
endif
end subroutine
subroutine pt2_serialize(pt2_data, n, x)
implicit none
use selection_types
type(pt2_type), intent(in) :: pt2_data
integer, intent(in) :: n
double precision, intent(out) :: x(*)
integer :: i,k,n2
n2 = n*n
x(1:n) = pt2_data % pt2(1:n)
k=n
x(k+1:k+n) = pt2_data % rpt2(1:n)
k=k+n
x(k+1:k+n) = pt2_data % variance(1:n)
k=k+n
x(k+1:k+n2) = reshape(pt2_data % overlap(1:n,1:n), (/ n2 /))
end
subroutine pt2_deserialize(pt2_data, n, x)
implicit none
use selection_types
type(pt2_type), intent(inout) :: pt2_data
integer, intent(in) :: n
double precision, intent(in) :: x(*)
integer :: i,k,n2
n2 = n*n
pt2_data % pt2(1:n) = x(1:n)
k=n
pt2_data % rpt2(1:n) = x(k+1:k+n)
k=k+n
pt2_data % variance(1:n) = x(k+1:k+n)
k=k+n
pt2_data % overlap(1:n,1:n) = reshape(x(k+1:k+n2), (/ n, n /))
end

View File

@ -1,8 +1,8 @@
use omp_lib use omp_lib
use selection_types use selection_types
use f77_zmq use f77_zmq
BEGIN_PROVIDER [ integer(omp_lock_kind), global_selection_buffer_lock ] BEGIN_PROVIDER [ integer(omp_lock_kind), global_selection_buffer_lock ]
use omp_lib use omp_lib
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Global buffer for the OpenMP selection ! Global buffer for the OpenMP selection
@ -11,7 +11,7 @@ BEGIN_PROVIDER [ integer(omp_lock_kind), global_selection_buffer_lock ]
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ type(selection_buffer), global_selection_buffer ] BEGIN_PROVIDER [ type(selection_buffer), global_selection_buffer ]
use omp_lib use omp_lib
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Global buffer for the OpenMP selection ! Global buffer for the OpenMP selection
@ -61,7 +61,7 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
type(selection_buffer) :: b type(selection_buffer) :: b
logical :: done, buffer_ready logical :: done, buffer_ready
double precision,allocatable :: pt2(:,:), variance(:,:), norm(:,:) type(pt2_type), allocatable :: pt2_data(:)
integer :: n_tasks, k, N integer :: n_tasks, k, N
integer, allocatable :: i_generator(:), subset(:) integer, allocatable :: i_generator(:), subset(:)
@ -70,10 +70,7 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
! logical :: sending ! logical :: sending
allocate(task_id(pt2_n_tasks_max), task(pt2_n_tasks_max)) allocate(task_id(pt2_n_tasks_max), task(pt2_n_tasks_max))
allocate(pt2(N_states,pt2_n_tasks_max), i_generator(pt2_n_tasks_max), subset(pt2_n_tasks_max)) allocate(pt2_data(pt2_n_tasks_max), i_generator(pt2_n_tasks_max), subset(pt2_n_tasks_max))
allocate(variance(N_states,pt2_n_tasks_max))
allocate(norm(N_states,pt2_n_tasks_max))
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket() zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
integer, external :: connect_to_taskserver integer, external :: connect_to_taskserver
@ -120,13 +117,11 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
double precision :: time0, time1 double precision :: time0, time1
call wall_time(time0) call wall_time(time0)
do k=1,n_tasks do k=1,n_tasks
pt2(:,k) = 0.d0 call pt2_alloc(pt2_data(k),N_states)
variance(:,k) = 0.d0 b%cur = 0
norm(:,k) = 0.d0
b%cur = 0
!double precision :: time2 !double precision :: time2
!call wall_time(time2) !call wall_time(time2)
call select_connected(i_generator(k),energy,pt2(1,k),variance(1,k),norm(1,k),b,subset(k),pt2_F(i_generator(k))) call select_connected(i_generator(k),energy,pt2_data(k),b,subset(k),pt2_F(i_generator(k)))
!call wall_time(time1) !call wall_time(time1)
!print *, i_generator(1), time1-time2, n_tasks, pt2_F(i_generator(1)) !print *, i_generator(1), time1-time2, n_tasks, pt2_F(i_generator(1))
enddo enddo
@ -138,11 +133,15 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
done = .true. done = .true.
endif endif
call sort_selection_buffer(b) call sort_selection_buffer(b)
call push_pt2_results(zmq_socket_push, i_generator, pt2, variance, norm, b, task_id, n_tasks) call push_pt2_results(zmq_socket_push, i_generator, pt2_data, b, task_id, n_tasks)
do k=1,n_tasks
call pt2_dealloc(pt2_data(k))
enddo
b%cur=0 b%cur=0
! ! Try to adjust n_tasks around nproc/2 seconds per job ! ! Try to adjust n_tasks around nproc/2 seconds per job
n_tasks = min(2*n_tasks,int( dble(n_tasks * nproc/2) / (time1 - time0 + 1.d0))) n_tasks = min(2*n_tasks,int( dble(n_tasks * nproc/2) / (time1 - time0 + 1.d0)))
n_tasks = min(n_tasks, pt2_n_tasks_max)
! n_tasks = 1 ! n_tasks = 1
end do end do
@ -158,6 +157,7 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
if (buffer_ready) then if (buffer_ready) then
call delete_selection_buffer(b) call delete_selection_buffer(b)
endif endif
deallocate(pt2_data)
end subroutine end subroutine
@ -171,8 +171,8 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
integer :: rc, i integer :: rc, i
integer :: worker_id, ctask, ltask integer :: worker_id, ctask, ltask
character*(512), allocatable :: task(:) character*(512) :: task
integer, allocatable :: task_id(:) integer :: task_id(1)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket integer(ZMQ_PTR) :: zmq_to_qp_run_socket
@ -183,20 +183,15 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
type(selection_buffer) :: b type(selection_buffer) :: b
logical :: done, buffer_ready logical :: done, buffer_ready
double precision,allocatable :: pt2(:,:), variance(:,:), norm(:,:) type(pt2_type) :: pt2_data(1)
integer :: n_tasks, k, N integer :: n_tasks, k, N
integer, allocatable :: i_generator(:), subset(:) integer :: i_generator(1), subset
integer :: bsize ! Size of selection buffers integer :: bsize ! Size of selection buffers
logical :: sending logical :: sending
PROVIDE global_selection_buffer global_selection_buffer_lock PROVIDE global_selection_buffer global_selection_buffer_lock
allocate(task_id(pt2_n_tasks_max), task(pt2_n_tasks_max))
allocate(pt2(N_states,pt2_n_tasks_max), i_generator(pt2_n_tasks_max), subset(pt2_n_tasks_max))
allocate(variance(N_states,pt2_n_tasks_max))
allocate(norm(N_states,pt2_n_tasks_max))
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket() zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
integer, external :: connect_to_taskserver integer, external :: connect_to_taskserver
@ -215,22 +210,17 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
done = .False. done = .False.
do while (.not.done) do while (.not.done)
n_tasks = max(1,n_tasks)
n_tasks = min(pt2_n_tasks_max,n_tasks)
integer, external :: get_tasks_from_taskserver integer, external :: get_tasks_from_taskserver
if (get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task, n_tasks) == -1) then if (get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task, n_tasks) == -1) then
exit exit
endif endif
done = task_id(n_tasks) == 0 done = task_id(1) == 0
if (done) then if (done) then
n_tasks = n_tasks-1 n_tasks = n_tasks-1
endif endif
if (n_tasks == 0) exit if (n_tasks == 0) exit
do k=1,n_tasks read (task,*) subset, i_generator(1), N
read (task(k),*) subset(k), i_generator(k), N
enddo
if (b%N == 0) then if (b%N == 0) then
! Only first time ! Only first time
bsize = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2) bsize = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2)
@ -242,17 +232,13 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
double precision :: time0, time1 double precision :: time0, time1
call wall_time(time0) call wall_time(time0)
do k=1,n_tasks call pt2_alloc(pt2_data(1),N_states)
pt2(:,k) = 0.d0 b%cur = 0
variance(:,k) = 0.d0
norm(:,k) = 0.d0
b%cur = 0
!double precision :: time2 !double precision :: time2
!call wall_time(time2) !call wall_time(time2)
call select_connected(i_generator(k),energy,pt2(1,k),variance(1,k),norm(1,k),b,subset(k),pt2_F(i_generator(k))) call select_connected(i_generator(1),energy,pt2_data(1),b,subset,pt2_F(i_generator(1)))
!call wall_time(time1) !call wall_time(time1)
!print *, i_generator(1), time1-time2, n_tasks, pt2_F(i_generator(1)) !print *, i_generator(1), time1-time2, n_tasks, pt2_F(i_generator(1))
enddo
call wall_time(time1) call wall_time(time1)
!print *, '-->', i_generator(1), time1-time0, n_tasks !print *, '-->', i_generator(1), time1-time0, n_tasks
@ -269,16 +255,14 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
call omp_unset_lock(global_selection_buffer_lock) call omp_unset_lock(global_selection_buffer_lock)
if ( iproc == 1 ) then if ( iproc == 1 ) then
call omp_set_lock(global_selection_buffer_lock) call omp_set_lock(global_selection_buffer_lock)
call push_pt2_results_async_send(zmq_socket_push, i_generator, pt2, variance, norm, global_selection_buffer, task_id, n_tasks,sending) call push_pt2_results_async_send(zmq_socket_push, i_generator, pt2_data, global_selection_buffer, task_id, n_tasks,sending)
global_selection_buffer%cur = 0 global_selection_buffer%cur = 0
call omp_unset_lock(global_selection_buffer_lock) call omp_unset_lock(global_selection_buffer_lock)
else else
call push_pt2_results_async_send(zmq_socket_push, i_generator, pt2, variance, norm, b, task_id, n_tasks,sending) call push_pt2_results_async_send(zmq_socket_push, i_generator, pt2_data, b, task_id, n_tasks,sending)
endif endif
! ! Try to adjust n_tasks around nproc/2 seconds per job call pt2_dealloc(pt2_data(1))
! n_tasks = min(2*n_tasks,int( dble(n_tasks * nproc/2) / (time1 - time0 + 1.d0)))
n_tasks = 1
end do end do
call push_pt2_results_async_recv(zmq_socket_push,b%mini,sending) call push_pt2_results_async_recv(zmq_socket_push,b%mini,sending)
@ -298,39 +282,36 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
end subroutine end subroutine
subroutine push_pt2_results(zmq_socket_push, index, pt2, variance, norm, b, task_id, n_tasks) subroutine push_pt2_results(zmq_socket_push, index, pt2_data, b, task_id, n_tasks)
use selection_types use selection_types
use f77_zmq use f77_zmq
implicit none implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push integer(ZMQ_PTR), intent(in) :: zmq_socket_push
double precision, intent(in) :: pt2(N_states,n_tasks) type(pt2_type), intent(in) :: pt2_data(n_tasks)
double precision, intent(in) :: variance(N_states,n_tasks)
double precision, intent(in) :: norm(N_states,n_tasks)
integer, intent(in) :: n_tasks, index(n_tasks), task_id(n_tasks) integer, intent(in) :: n_tasks, index(n_tasks), task_id(n_tasks)
type(selection_buffer), intent(inout) :: b type(selection_buffer), intent(inout) :: b
logical :: sending logical :: sending
sending = .False. sending = .False.
call push_pt2_results_async_send(zmq_socket_push, index, pt2, variance, norm, b, task_id, n_tasks, sending) call push_pt2_results_async_send(zmq_socket_push, index, pt2_data, b, task_id, n_tasks, sending)
call push_pt2_results_async_recv(zmq_socket_push, b%mini, sending) call push_pt2_results_async_recv(zmq_socket_push, b%mini, sending)
end subroutine end subroutine
subroutine push_pt2_results_async_send(zmq_socket_push, index, pt2, variance, norm, b, task_id, n_tasks, sending) subroutine push_pt2_results_async_send(zmq_socket_push, index, pt2_data, b, task_id, n_tasks, sending)
use selection_types use selection_types
use f77_zmq use f77_zmq
implicit none implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push integer(ZMQ_PTR), intent(in) :: zmq_socket_push
double precision, intent(in) :: pt2(N_states,n_tasks) type(pt2_type), intent(in) :: pt2_data(n_tasks)
double precision, intent(in) :: variance(N_states,n_tasks)
double precision, intent(in) :: norm(N_states,n_tasks)
integer, intent(in) :: n_tasks, index(n_tasks), task_id(n_tasks) integer, intent(in) :: n_tasks, index(n_tasks), task_id(n_tasks)
type(selection_buffer), intent(inout) :: b type(selection_buffer), intent(inout) :: b
logical, intent(inout) :: sending logical, intent(inout) :: sending
integer :: rc integer :: rc, i
integer*8 :: rc8 integer*8 :: rc8
double precision, allocatable :: pt2_serialized(:,:)
if (sending) then if (sending) then
print *, irp_here, ': sending is true' print *, irp_here, ': sending is true'
@ -358,32 +339,18 @@ subroutine push_pt2_results_async_send(zmq_socket_push, index, pt2, variance, no
endif endif
rc = f77_zmq_send( zmq_socket_push, pt2, 8*N_states*n_tasks, ZMQ_SNDMORE) allocate(pt2_serialized (pt2_type_size(N_states),n_tasks) )
do i=1,n_tasks
call pt2_serialize(pt2_data(i),N_states,pt2_serialized(1,i))
enddo
rc = f77_zmq_send( zmq_socket_push, pt2_serialized, size(pt2_serialized)*8, ZMQ_SNDMORE)
deallocate(pt2_serialized)
if (rc == -1) then if (rc == -1) then
print *, irp_here, ': error sending result' print *, irp_here, ': error sending result'
stop 3 stop 3
return return
else if(rc /= 8*N_states*n_tasks) then else if(rc /= size(pt2_serialized)*8) then
stop 'push'
endif
rc = f77_zmq_send( zmq_socket_push, variance, 8*N_states*n_tasks, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 4
return
else if(rc /= 8*N_states*n_tasks) then
stop 'push'
endif
rc = f77_zmq_send( zmq_socket_push, norm, 8*N_states*n_tasks, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 5
return
else if(rc /= 8*N_states*n_tasks) then
stop 'push' stop 'push'
endif endif
@ -475,7 +442,7 @@ IRP_ELSE
stop 11 stop 11
return return
else if (rc /= 8) then else if (rc /= 8) then
print *, irp_here//': error in receiving mini' print *, irp_here//': error in receiving mini'
stop 12 stop 12
endif endif
IRP_ENDIF IRP_ENDIF
@ -484,19 +451,18 @@ end subroutine
subroutine pull_pt2_results(zmq_socket_pull, index, pt2, variance, norm, task_id, n_tasks, b) subroutine pull_pt2_results(zmq_socket_pull, index, pt2_data, task_id, n_tasks, b)
use selection_types use selection_types
use f77_zmq use f77_zmq
implicit none implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(inout) :: pt2(N_states,*) type(pt2_type), intent(inout) :: pt2_data(*)
double precision, intent(inout) :: variance(N_states,*)
double precision, intent(inout) :: norm(N_states,*)
type(selection_buffer), intent(inout) :: b type(selection_buffer), intent(inout) :: b
integer, intent(out) :: index(*) integer, intent(out) :: index(*)
integer, intent(out) :: n_tasks, task_id(*) integer, intent(out) :: n_tasks, task_id(*)
integer :: rc, rn, i integer :: rc, rn, i
integer*8 :: rc8 integer*8 :: rc8
double precision, allocatable :: pt2_serialized(:,:)
rc = f77_zmq_recv( zmq_socket_pull, n_tasks, 4, 0) rc = f77_zmq_recv( zmq_socket_pull, n_tasks, 4, 0)
if (rc == -1) then if (rc == -1) then
@ -514,29 +480,19 @@ subroutine pull_pt2_results(zmq_socket_pull, index, pt2, variance, norm, task_id
stop 'pull' stop 'pull'
endif endif
rc = f77_zmq_recv( zmq_socket_pull, pt2, N_states*8*n_tasks, 0) allocate(pt2_serialized (pt2_type_size(N_states),n_tasks) )
rc = f77_zmq_recv( zmq_socket_pull, pt2_serialized, 8*size(pt2_serialized)*n_tasks, 0)
if (rc == -1) then if (rc == -1) then
n_tasks = 1 n_tasks = 1
task_id(1) = 0 task_id(1) = 0
else if(rc /= 8*N_states*n_tasks) then else if(rc /= 8*size(pt2_serialized)) then
stop 'pull' stop 'pull'
endif endif
rc = f77_zmq_recv( zmq_socket_pull, variance, N_states*8*n_tasks, 0) do i=1,n_tasks
if (rc == -1) then call pt2_deserialize(pt2_data(i),N_states,pt2_serialized(1,i))
n_tasks = 1 enddo
task_id(1) = 0 deallocate(pt2_serialized)
else if(rc /= 8*N_states*n_tasks) then
stop 'pull'
endif
rc = f77_zmq_recv( zmq_socket_pull, norm, N_states*8*n_tasks, 0)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if(rc /= 8*N_states*n_tasks) then
stop 'pull'
endif
rc = f77_zmq_recv( zmq_socket_pull, task_id, n_tasks*4, 0) rc = f77_zmq_recv( zmq_socket_pull, task_id, n_tasks*4, 0)
if (rc == -1) then if (rc == -1) then

View File

@ -18,9 +18,7 @@ subroutine run_selection_slave(thread,iproc,energy)
type(selection_buffer) :: buf, buf2 type(selection_buffer) :: buf, buf2
logical :: done, buffer_ready logical :: done, buffer_ready
double precision :: pt2(N_states) type(pt2_type) :: pt2_data
double precision :: variance(N_states)
double precision :: norm(N_states)
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
@ -28,6 +26,7 @@ subroutine run_selection_slave(thread,iproc,energy)
PROVIDE psi_bilinear_matrix_transp_order N_int pt2_F pseudo_sym PROVIDE psi_bilinear_matrix_transp_order N_int pt2_F pseudo_sym
PROVIDE psi_selectors_coef_transp psi_det_sorted weight_selection PROVIDE psi_selectors_coef_transp psi_det_sorted weight_selection
call pt2_alloc(pt2_data,N_states)
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket() zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
@ -42,9 +41,6 @@ subroutine run_selection_slave(thread,iproc,energy)
buf%N = 0 buf%N = 0
buffer_ready = .False. buffer_ready = .False.
ctask = 1 ctask = 1
pt2(:) = 0d0
variance(:) = 0d0
norm(:) = 0.d0
do do
integer, external :: get_task_from_taskserver integer, external :: get_task_from_taskserver
@ -59,13 +55,17 @@ subroutine run_selection_slave(thread,iproc,energy)
read(task,*) subset, i_generator, N read(task,*) subset, i_generator, N
if(buf%N == 0) then if(buf%N == 0) then
! Only first time ! Only first time
bsize = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2) call create_selection_buffer(N, N*2, buf)
call create_selection_buffer(bsize, bsize*2, buf)
buffer_ready = .True. buffer_ready = .True.
else else
ASSERT (N == buf%N) if (N /= buf%N) then
print *, 'N=', N
print *, 'buf%N=', buf%N
print *, 'bug in ', irp_here
stop '-1'
end if
end if end if
call select_connected(i_generator,energy,pt2,variance,norm,buf,subset,pt2_F(i_generator)) call select_connected(i_generator,energy,pt2_data,buf,subset,pt2_F(i_generator))
endif endif
integer, external :: task_done_to_taskserver integer, external :: task_done_to_taskserver
@ -84,12 +84,10 @@ subroutine run_selection_slave(thread,iproc,energy)
if(ctask > 0) then if(ctask > 0) then
call sort_selection_buffer(buf) call sort_selection_buffer(buf)
! call merge_selection_buffers(buf,buf2) ! call merge_selection_buffers(buf,buf2)
!print *, task_id(1), pt2(1), buf%cur, ctask call push_selection_results(zmq_socket_push, pt2_data, buf, task_id(1), ctask)
call push_selection_results(zmq_socket_push, pt2, variance, norm, buf, task_id(1), ctask) call pt2_dealloc(pt2_data)
call pt2_alloc(pt2_data,N_states)
! buf%mini = buf2%mini ! buf%mini = buf2%mini
pt2(:) = 0d0
variance(:) = 0d0
norm(:) = 0d0
buf%cur = 0 buf%cur = 0
end if end if
ctask = 0 ctask = 0
@ -102,14 +100,12 @@ subroutine run_selection_slave(thread,iproc,energy)
if(ctask > 0) then if(ctask > 0) then
call sort_selection_buffer(buf) call sort_selection_buffer(buf)
! call merge_selection_buffers(buf,buf2) ! call merge_selection_buffers(buf,buf2)
call push_selection_results(zmq_socket_push, pt2, variance, norm, buf, task_id(1), ctask) call push_selection_results(zmq_socket_push, pt2_data, buf, task_id(1), ctask)
! buf%mini = buf2%mini ! buf%mini = buf2%mini
pt2(:) = 0d0
variance(:) = 0d0
norm(:) = 0d0
buf%cur = 0 buf%cur = 0
end if end if
ctask = 0 ctask = 0
call pt2_dealloc(pt2_data)
integer, external :: disconnect_from_taskserver integer, external :: disconnect_from_taskserver
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) == -1) then if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) == -1) then
@ -125,18 +121,17 @@ subroutine run_selection_slave(thread,iproc,energy)
end subroutine end subroutine
subroutine push_selection_results(zmq_socket_push, pt2, variance, norm, b, task_id, ntask) subroutine push_selection_results(zmq_socket_push, pt2_data, b, task_id, ntasks)
use f77_zmq use f77_zmq
use selection_types use selection_types
implicit none implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push integer(ZMQ_PTR), intent(in) :: zmq_socket_push
double precision, intent(in) :: pt2(N_states) type(pt2_type), intent(in) :: pt2_data
double precision, intent(in) :: variance(N_states)
double precision, intent(in) :: norm(N_states)
type(selection_buffer), intent(inout) :: b type(selection_buffer), intent(inout) :: b
integer, intent(in) :: ntask, task_id(*) integer, intent(in) :: ntasks, task_id(*)
integer :: rc integer :: rc
double precision, allocatable :: pt2_serialized(:)
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE) rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
if(rc /= 4) then if(rc /= 4) then
@ -144,20 +139,18 @@ subroutine push_selection_results(zmq_socket_push, pt2, variance, norm, b, task_
endif endif
rc = f77_zmq_send( zmq_socket_push, pt2, 8*N_states, ZMQ_SNDMORE) allocate(pt2_serialized (pt2_type_size(N_states)) )
if(rc /= 8*N_states) then call pt2_serialize(pt2_data,N_states,pt2_serialized)
print *, 'f77_zmq_send( zmq_socket_push, pt2, 8*N_states, ZMQ_SNDMORE)'
endif
rc = f77_zmq_send( zmq_socket_push, variance, 8*N_states, ZMQ_SNDMORE) rc = f77_zmq_send( zmq_socket_push, pt2_serialized, size(pt2_serialized)*8, ZMQ_SNDMORE)
if(rc /= 8*N_states) then if (rc == -1) then
print *, 'f77_zmq_send( zmq_socket_push, variance, 8*N_states, ZMQ_SNDMORE)' print *, irp_here, ': error sending result'
endif stop 3
return
rc = f77_zmq_send( zmq_socket_push, norm, 8*N_states, ZMQ_SNDMORE) else if(rc /= size(pt2_serialized)*8) then
if(rc /= 8*N_states) then stop 'push'
print *, 'f77_zmq_send( zmq_socket_push, norm, 8*N_states, ZMQ_SNDMORE)'
endif endif
deallocate(pt2_serialized)
if (b%cur > 0) then if (b%cur > 0) then
@ -173,14 +166,14 @@ subroutine push_selection_results(zmq_socket_push, pt2, variance, norm, b, task_
endif endif
rc = f77_zmq_send( zmq_socket_push, ntask, 4, ZMQ_SNDMORE) rc = f77_zmq_send( zmq_socket_push, ntasks, 4, ZMQ_SNDMORE)
if(rc /= 4) then if(rc /= 4) then
print *, 'f77_zmq_send( zmq_socket_push, ntask, 4, ZMQ_SNDMORE)' print *, 'f77_zmq_send( zmq_socket_push, ntasks, 4, ZMQ_SNDMORE)'
endif endif
rc = f77_zmq_send( zmq_socket_push, task_id(1), ntask*4, 0) rc = f77_zmq_send( zmq_socket_push, task_id(1), ntasks*4, 0)
if(rc /= 4*ntask) then if(rc /= 4*ntasks) then
print *, 'f77_zmq_send( zmq_socket_push, task_id(1), ntask*4, 0)' print *, 'f77_zmq_send( zmq_socket_push, task_id(1), ntasks*4, 0)'
endif endif
! Activate is zmq_socket_push is a REQ ! Activate is zmq_socket_push is a REQ
@ -197,42 +190,34 @@ IRP_ENDIF
end subroutine end subroutine
subroutine pull_selection_results(zmq_socket_pull, pt2, variance, norm, val, det, N, task_id, ntask) subroutine pull_selection_results(zmq_socket_pull, pt2_data, val, det, N, task_id, ntasks)
use f77_zmq use f77_zmq
use selection_types use selection_types
implicit none implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(inout) :: pt2(N_states) type(pt2_type), intent(inout) :: pt2_data
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
double precision, intent(out) :: val(*) double precision, intent(out) :: val(*)
integer(bit_kind), intent(out) :: det(N_int, 2, *) integer(bit_kind), intent(out) :: det(N_int, 2, *)
integer, intent(out) :: N, ntask, task_id(*) integer, intent(out) :: N, ntasks, task_id(*)
integer :: rc, rn, i integer :: rc, rn, i
double precision, allocatable :: pt2_serialized(:)
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0) rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
if(rc /= 4) then if(rc /= 4) then
print *, 'f77_zmq_recv( zmq_socket_pull, N, 4, 0)' print *, 'f77_zmq_recv( zmq_socket_pull, N, 4, 0)'
endif endif
pt2(:) = 0.d0 allocate(pt2_serialized (pt2_type_size(N_states)) )
variance(:) = 0.d0 rc = f77_zmq_recv( zmq_socket_pull, pt2_serialized, 8*size(pt2_serialized), 0)
norm(:) = 0.d0 if (rc == -1) then
ntasks = 1
rc = f77_zmq_recv( zmq_socket_pull, pt2, N_states*8, 0) task_id(1) = 0
if(rc /= 8*N_states) then else if(rc /= 8*size(pt2_serialized)) then
print *, 'f77_zmq_recv( zmq_socket_pull, pt2, N_states*8, 0)' stop 'pull'
endif endif
rc = f77_zmq_recv( zmq_socket_pull, variance, N_states*8, 0) call pt2_deserialize(pt2_data,N_states,pt2_serialized)
if(rc /= 8*N_states) then deallocate(pt2_serialized)
print *, 'f77_zmq_recv( zmq_socket_pull, variance, N_states*8, 0)'
endif
rc = f77_zmq_recv( zmq_socket_pull, norm, N_states*8, 0)
if(rc /= 8*N_states) then
print *, 'f77_zmq_recv( zmq_socket_pull, norm, N_states*8, 0)'
endif
if (N>0) then if (N>0) then
rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0) rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)
@ -246,14 +231,14 @@ subroutine pull_selection_results(zmq_socket_pull, pt2, variance, norm, val, det
endif endif
endif endif
rc = f77_zmq_recv( zmq_socket_pull, ntask, 4, 0) rc = f77_zmq_recv( zmq_socket_pull, ntasks, 4, 0)
if(rc /= 4) then if(rc /= 4) then
print *, 'f77_zmq_recv( zmq_socket_pull, ntask, 4, 0)' print *, 'f77_zmq_recv( zmq_socket_pull, ntasks, 4, 0)'
endif endif
rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntask*4, 0) rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntasks*4, 0)
if(rc /= 4*ntask) then if(rc /= 4*ntasks) then
print *, 'f77_zmq_recv( zmq_socket_pull, task_id(1), ntask*4, 0)' print *, 'f77_zmq_recv( zmq_socket_pull, task_id(1), ntasks*4, 0)'
endif endif
! Activate is zmq_socket_pull is a REP ! Activate is zmq_socket_pull is a REP

View File

@ -19,22 +19,26 @@ BEGIN_PROVIDER [ double precision, variance_match_weight, (N_states) ]
variance_match_weight(:) = 1.d0 variance_match_weight(:) = 1.d0
END_PROVIDER END_PROVIDER
subroutine update_pt2_and_variance_weights(pt2, variance, norm, N_st) subroutine update_pt2_and_variance_weights(pt2_data, N_st)
implicit none implicit none
use selection_types
BEGIN_DOC BEGIN_DOC
! Updates the PT2- and Variance- matching weights. ! Updates the PT2- and Variance- matching weights.
END_DOC END_DOC
integer, intent(in) :: N_st integer, intent(in) :: N_st
double precision, intent(in) :: pt2(N_st) type(pt2_type), intent(in) :: pt2_data
double precision, intent(in) :: variance(N_st) double precision :: pt2(N_st)
double precision, intent(in) :: norm(N_st) double precision :: variance(N_st)
double precision :: avg, rpt2(N_st), element, dt, x double precision :: avg, element, dt, x
integer :: k integer :: k
integer, save :: i_iter=0 integer, save :: i_iter=0
integer, parameter :: i_itermax = 1 integer, parameter :: i_itermax = 1
double precision, allocatable, save :: memo_variance(:,:), memo_pt2(:,:) double precision, allocatable, save :: memo_variance(:,:), memo_pt2(:,:)
pt2(:) = pt2_data % pt2(:)
variance(:) = pt2_data % variance(:)
if (i_iter == 0) then if (i_iter == 0) then
allocate(memo_variance(N_st,i_itermax), memo_pt2(N_st,i_itermax)) allocate(memo_variance(N_st,i_itermax), memo_pt2(N_st,i_itermax))
memo_pt2(:,:) = 1.d0 memo_pt2(:,:) = 1.d0
@ -48,11 +52,6 @@ subroutine update_pt2_and_variance_weights(pt2, variance, norm, N_st)
dt = 2.0d0 dt = 2.0d0
do k=1,N_st
! rPT2
rpt2(k) = pt2(k)/(1.d0 + norm(k))
enddo
avg = sum(pt2(1:N_st)) / dble(N_st) - 1.d-32 ! Avoid future division by zero avg = sum(pt2(1:N_st)) / dble(N_st) - 1.d-32 ! Avoid future division by zero
do k=1,N_st do k=1,N_st
element = exp(dt*(pt2(k)/avg -1.d0)) element = exp(dt*(pt2(k)/avg -1.d0))
@ -179,15 +178,13 @@ subroutine get_mask_phase(det1, pm, Nint)
end subroutine end subroutine
subroutine select_connected(i_generator,E0,pt2,variance,norm,b,subset,csubset) subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
use bitmasks use bitmasks
use selection_types use selection_types
implicit none implicit none
integer, intent(in) :: i_generator, subset, csubset integer, intent(in) :: i_generator, subset, csubset
type(selection_buffer), intent(inout) :: b type(selection_buffer), intent(inout) :: b
double precision, intent(inout) :: pt2(N_states) type(pt2_type), intent(inout) :: pt2_data
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
integer :: k,l integer :: k,l
double precision, intent(in) :: E0(N_states) double precision, intent(in) :: E0(N_states)
@ -205,7 +202,7 @@ subroutine select_connected(i_generator,E0,pt2,variance,norm,b,subset,csubset)
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) ) particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) )
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) ) particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) )
enddo enddo
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,variance,norm,b,subset,csubset) call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b,subset,csubset)
deallocate(fock_diag_tmp) deallocate(fock_diag_tmp)
end subroutine end subroutine
@ -254,7 +251,7 @@ double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint)
end end
subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,variance,norm,buf,subset,csubset) subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,buf,subset,csubset)
use bitmasks use bitmasks
use selection_types use selection_types
implicit none implicit none
@ -266,9 +263,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2) integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision, intent(in) :: fock_diag_tmp(mo_num) double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states) double precision, intent(in) :: E0(N_states)
double precision, intent(inout) :: pt2(N_states) type(pt2_type), intent(inout) :: pt2_data
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
type(selection_buffer), intent(inout) :: buf type(selection_buffer), intent(inout) :: buf
integer :: h1,h2,s1,s2,s3,i1,i2,ib,sp,k,i,j,nt,ii,sze integer :: h1,h2,s1,s2,s3,i1,i2,ib,sp,k,i,j,nt,ii,sze
@ -644,9 +639,9 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting) call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
if(.not.pert_2rdm)then if(.not.pert_2rdm)then
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf) call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
else else
call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0)) call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
endif endif
end if end if
enddo enddo
@ -664,7 +659,7 @@ end subroutine
subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf) subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
use bitmasks use bitmasks
use selection_types use selection_types
implicit none implicit none
@ -672,16 +667,15 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
integer, intent(in) :: i_generator, sp, h1, h2 integer, intent(in) :: i_generator, sp, h1, h2
double precision, intent(in) :: mat(N_states, mo_num, mo_num) double precision, intent(in) :: mat(N_states, mo_num, mo_num)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num) logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
double precision, intent(in) :: fock_diag_tmp(mo_num) double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states) double precision, intent(in) :: E0(N_states)
double precision, intent(inout) :: pt2(N_states) type(pt2_type), intent(inout) :: pt2_data
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
type(selection_buffer), intent(inout) :: buf type(selection_buffer), intent(inout) :: buf
logical :: ok logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate integer :: s1, s2, p1, p2, ib, j, istate, jstate
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2) integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
double precision :: e_pert, delta_E, val, Hii, w, tmp, alpha_h_psi, coef double precision :: e_pert(N_states), coef(N_states), X(N_states)
double precision :: delta_E, val, Hii, w, tmp, alpha_h_psi
double precision, external :: diag_H_mat_elem_fock double precision, external :: diag_H_mat_elem_fock
double precision :: E_shift double precision :: E_shift
@ -689,7 +683,12 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
double precision, allocatable :: values(:) double precision, allocatable :: values(:)
integer, allocatable :: keys(:,:) integer, allocatable :: keys(:,:)
integer :: nkeys integer :: nkeys
double precision :: s_weight(N_states,N_states)
do jstate=1,N_states
do istate=1,N_states
s_weight(istate,jstate) = dsqrt(selection_weight(istate)*selection_weight(jstate))
enddo
enddo
if(sp == 3) then if(sp == 3) then
s1 = 1 s1 = 1
@ -779,18 +778,42 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
if (delta_E < 0.d0) then if (delta_E < 0.d0) then
tmp = -tmp tmp = -tmp
endif endif
e_pert = 0.5d0 * (tmp - delta_E) e_pert(istate) = 0.5d0 * (tmp - delta_E)
if (dabs(alpha_h_psi) > 1.d-4) then if (dabs(alpha_h_psi) > 1.d-4) then
coef = e_pert / alpha_h_psi coef(istate) = e_pert(istate) / alpha_h_psi
else else
coef = alpha_h_psi / delta_E coef(istate) = alpha_h_psi / delta_E
endif endif
pt2(istate) = pt2(istate) + e_pert if (e_pert(istate) < 0.d0) then
variance(istate) = variance(istate) + alpha_h_psi * alpha_h_psi X(istate) = -dsqrt(-e_pert(istate))
norm(istate) = norm(istate) + coef * coef else
X(istate) = dsqrt(e_pert(istate))
endif
enddo
! ! Gram-Schmidt using input overlap matrix
! do istate=1,N_states
! do jstate=1,istate-1
! if ( (pt2_overlap(jstate,istate) == 0.d0).or.(pt2_overlap(jstate,jstate) == 0.d0) ) cycle
! coef(istate) = coef(istate) - pt2_overlap(jstate,istate)/pt2_overlap(jstate,jstate) * coef(jstate)
! enddo
! enddo
do istate=1, N_states
do jstate=1,N_states
pt2_data % overlap(jstate,istate) += coef(jstate) * coef(istate)
enddo
enddo
do istate=1,N_states
alpha_h_psi = mat(istate, p1, p2)
pt2_data % variance(istate) += alpha_h_psi * alpha_h_psi
pt2_data % pt2(istate) += e_pert(istate)
!!!DEBUG !!!DEBUG
! pt2(istate) = pt2(istate) - e_pert + alpha_h_psi**2/delta_E ! delta_E = E0(istate) - Hii + E_shift
! pt2_data % pt2(istate) = pt2_data % pt2(istate) + alpha_h_psi**2/delta_E
! !
! integer :: k ! integer :: k
! double precision :: alpha_h_psi_2,hij ! double precision :: alpha_h_psi_2,hij
@ -811,14 +834,26 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
case(5) case(5)
! Variance selection ! Variance selection
w = w - alpha_h_psi * alpha_h_psi * selection_weight(istate) w = w - alpha_h_psi * alpha_h_psi * s_weight(istate,istate)
do jstate=1,N_states
if (istate == jstate) cycle
w = w + alpha_h_psi*mat(jstate,p1,p2) * s_weight(istate,jstate)
enddo
case(6) case(6)
w = w - coef * coef * selection_weight(istate) w = w - coef(istate) * coef(istate) * s_weight(istate,istate)
do jstate=1,N_states
if (istate == jstate) cycle
w = w + coef(istate)*coef(jstate) * s_weight(istate,jstate)
enddo
case default case default
! Energy selection ! Energy selection
w = w + e_pert * selection_weight(istate) w = w + e_pert(istate) * s_weight(istate,istate)
do jstate=1,N_states
if (istate == jstate) cycle
w = w - dabs(X(istate))*X(jstate) * s_weight(istate,jstate)
enddo
end select end select
end do end do

View File

@ -5,5 +5,21 @@ module selection_types
double precision, pointer :: val(:) double precision, pointer :: val(:)
double precision :: mini double precision :: mini
endtype endtype
type pt2_type
double precision, allocatable :: pt2(:)
double precision, allocatable :: rpt2(:)
double precision, allocatable :: variance(:)
double precision, allocatable :: overlap(:,:)
endtype
contains
integer function pt2_type_size(N)
implicit none
integer, intent(in) :: N
pt2_type_size = (3*n + n*n)
end function
end module end module

View File

@ -1,16 +1,19 @@
subroutine run_stochastic_cipsi subroutine run_stochastic_cipsi
use selection_types
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Selected Full Configuration Interaction with Stochastic selection and PT2. ! Selected Full Configuration Interaction with Stochastic selection and PT2.
END_DOC END_DOC
integer :: i,j,k integer :: i,j,k
double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:), zeros(:) double precision, allocatable :: zeros(:)
integer :: to_select integer :: to_select
logical, external :: qp_stop type(pt2_type) :: pt2_data, pt2_data_err
logical, external :: qp_stop
double precision :: rss double precision :: rss
double precision, external :: memory_of_double double precision, external :: memory_of_double
PROVIDE H_apply_buffer_allocated PROVIDE H_apply_buffer_allocated
N_iter = 1 N_iter = 1
threshold_generators = 1.d0 threshold_generators = 1.d0
@ -19,7 +22,9 @@ subroutine run_stochastic_cipsi
rss = memory_of_double(N_states)*4.d0 rss = memory_of_double(N_states)*4.d0
call check_mem(rss,irp_here) call check_mem(rss,irp_here)
allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states)) allocate (zeros(N_states))
call pt2_alloc(pt2_data, N_states)
call pt2_alloc(pt2_data_err, N_states)
double precision :: hf_energy_ref double precision :: hf_energy_ref
logical :: has logical :: has
@ -28,10 +33,10 @@ subroutine run_stochastic_cipsi
relative_error=PT2_relative_error relative_error=PT2_relative_error
zeros = 0.d0 zeros = 0.d0
pt2 = -huge(1.e0) pt2_data % pt2 = -huge(1.e0)
rpt2 = -huge(1.e0) pt2_data % rpt2 = -huge(1.e0)
norm = 0.d0 pt2_data % overlap= 0.d0
variance = huge(1.e0) pt2_data % variance = huge(1.e0)
if (s2_eig) then if (s2_eig) then
call make_s2_eigenfunction call make_s2_eigenfunction
@ -59,14 +64,13 @@ subroutine run_stochastic_cipsi
endif endif
double precision :: correlation_energy_ratio double precision :: correlation_energy_ratio
double precision :: error(N_states)
correlation_energy_ratio = 0.d0 correlation_energy_ratio = 0.d0
do while ( & do while ( &
(N_det < N_det_max) .and. & (N_det < N_det_max) .and. &
(maxval(abs(rpt2(1:N_states))) > pt2_max) .and. & (maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) .and. &
(maxval(abs(variance(1:N_states))) > variance_max) .and. & (maxval(abs(pt2_data % variance(1:N_states))) > variance_max) .and. &
(correlation_energy_ratio <= correlation_energy_ratio_max) & (correlation_energy_ratio <= correlation_energy_ratio_max) &
) )
write(*,'(A)') '--------------------------------------------------------------------------------' write(*,'(A)') '--------------------------------------------------------------------------------'
@ -75,30 +79,28 @@ subroutine run_stochastic_cipsi
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor) to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
to_select = max(N_states_diag, to_select) to_select = max(N_states_diag, to_select)
pt2 = 0.d0
variance = 0.d0
norm = 0.d0
call ZMQ_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, &
norm, to_select) ! Stochastic PT2 and selection
do k=1,N_states call pt2_dealloc(pt2_data)
rpt2(k) = pt2(k)/(1.d0 + norm(k)) call pt2_dealloc(pt2_data_err)
enddo call pt2_alloc(pt2_data, N_states)
call pt2_alloc(pt2_data_err, N_states)
call ZMQ_pt2(psi_energy_with_nucl_rep,pt2_data,pt2_data_err,relative_error,to_select) ! Stochastic PT2 and selection
correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / & correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / &
(psi_energy_with_nucl_rep(1) + rpt2(1) - hf_energy_ref) (psi_energy_with_nucl_rep(1) + pt2_data % rpt2(1) - hf_energy_ref)
correlation_energy_ratio = min(1.d0,correlation_energy_ratio) correlation_energy_ratio = min(1.d0,correlation_energy_ratio)
call write_double(6,correlation_energy_ratio, 'Correlation ratio') call write_double(6,correlation_energy_ratio, 'Correlation ratio')
call print_summary(psi_energy_with_nucl_rep,pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2) call print_summary(psi_energy_with_nucl_rep, &
pt2_data, pt2_data_err, N_det,N_occ_pattern,N_states,psi_s2)
call save_energy(psi_energy_with_nucl_rep, rpt2) call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det) call save_iterations(psi_energy_with_nucl_rep(1:N_states),pt2_data % rpt2,N_det)
call print_extrapolated_energy() call print_extrapolated_energy()
N_iter += 1 N_iter += 1
if (qp_stop()) exit if (qp_stop()) exit
! Add selected determinants ! Add selected determinants
call copy_H_apply_buffer_to_wf() call copy_H_apply_buffer_to_wf()
@ -111,7 +113,7 @@ subroutine run_stochastic_cipsi
call diagonalize_CI call diagonalize_CI
call save_wavefunction call save_wavefunction
call save_energy(psi_energy_with_nucl_rep, zeros) call save_energy(psi_energy_with_nucl_rep, zeros)
if (qp_stop()) exit if (qp_stop()) exit
enddo enddo
if (.not.qp_stop()) then if (.not.qp_stop()) then
@ -121,20 +123,19 @@ subroutine run_stochastic_cipsi
call save_energy(psi_energy_with_nucl_rep, zeros) call save_energy(psi_energy_with_nucl_rep, zeros)
endif endif
pt2(:) = 0.d0 call pt2_dealloc(pt2_data)
variance(:) = 0.d0 call pt2_dealloc(pt2_data_err)
norm(:) = 0.d0 call pt2_alloc(pt2_data, N_states)
call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, & call pt2_alloc(pt2_data_err, N_states)
norm,0) ! Stochastic PT2 call ZMQ_pt2(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, relative_error, 0) ! Stochastic PT2
do k=1,N_states call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2)
rpt2(k) = pt2(k)/(1.d0 + norm(k)) call print_summary(psi_energy_with_nucl_rep, &
enddo pt2_data , pt2_data_err, N_det, N_occ_pattern, N_states, psi_s2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),pt2_data % rpt2,N_det)
call save_energy(psi_energy_with_nucl_rep, rpt2)
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det)
call print_extrapolated_energy() call print_extrapolated_energy()
endif endif
call pt2_dealloc(pt2_data)
call pt2_dealloc(pt2_data_err)
end end

View File

@ -1,4 +1,4 @@
subroutine ZMQ_selection(N_in, pt2, variance, norm) subroutine ZMQ_selection(N_in, pt2_data)
use f77_zmq use f77_zmq
use selection_types use selection_types
@ -7,15 +7,14 @@ subroutine ZMQ_selection(N_in, pt2, variance, norm)
integer(ZMQ_PTR) :: zmq_to_qp_run_socket , zmq_socket_pull integer(ZMQ_PTR) :: zmq_to_qp_run_socket , zmq_socket_pull
integer, intent(in) :: N_in integer, intent(in) :: N_in
type(selection_buffer) :: b type(selection_buffer) :: b
integer :: i, N integer :: i, l, N
integer, external :: omp_get_thread_num integer, external :: omp_get_thread_num
double precision, intent(out) :: pt2(N_states) type(pt2_type), intent(inout) :: pt2_data
double precision, intent(out) :: variance(N_states)
double precision, intent(out) :: norm(N_states)
! PROVIDE psi_det psi_coef N_det qp_max_mem N_states pt2_F s2_eig N_det_generators ! PROVIDE psi_det psi_coef N_det qp_max_mem N_states pt2_F s2_eig N_det_generators
N = max(N_in,1) N = max(N_in,1)
N = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2)
if (.True.) then if (.True.) then
PROVIDE pt2_e0_denominator nproc PROVIDE pt2_e0_denominator nproc
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
@ -78,6 +77,7 @@ subroutine ZMQ_selection(N_in, pt2, variance, norm)
stop 'Unable to add task to task server' stop 'Unable to add task to task server'
endif endif
endif endif
N = max(N_in,1)
ASSERT (associated(b%det)) ASSERT (associated(b%det))
@ -104,42 +104,51 @@ subroutine ZMQ_selection(N_in, pt2, variance, norm)
f(:) = 1.d0 f(:) = 1.d0
if (.not.do_pt2) then if (.not.do_pt2) then
double precision :: f(N_states), u_dot_u double precision :: f(N_states), u_dot_u
do k=1,min(N_det,N_states) do k=1,min(N_det,N_states)
f(k) = 1.d0 / u_dot_u(psi_selectors_coef(1,k), N_det_selectors) f(k) = 1.d0 / u_dot_u(psi_selectors_coef(1,k), N_det_selectors)
enddo enddo
endif endif
!$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2, variance, norm) PRIVATE(i) NUM_THREADS(nproc_target+1) !$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2_data) PRIVATE(i) NUM_THREADS(nproc_target+1)
i = omp_get_thread_num() i = omp_get_thread_num()
if (i==0) then if (i==0) then
call selection_collector(zmq_socket_pull, b, N, pt2, variance, norm) call selection_collector(zmq_socket_pull, b, N, pt2_data)
else else
call selection_slave_inproc(i) call selection_slave_inproc(i)
endif endif
!$OMP END PARALLEL !$OMP END PARALLEL
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'selection') call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'selection')
do i=N_det+1,N_states
pt2(i) = 0.d0
variance(i) = 0.d0
norm(i) = 0.d0
enddo
if (N_in > 0) then if (N_in > 0) then
if (s2_eig) then if (s2_eig) then
call make_selection_buffer_s2(b) call make_selection_buffer_s2(b)
endif endif
call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0) call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0)
call copy_H_apply_buffer_to_wf()
call save_wavefunction
endif endif
call delete_selection_buffer(b) call delete_selection_buffer(b)
do k=1,N_states do k=1,N_states
pt2(k) = pt2(k) * f(k) pt2_data % pt2(k) = pt2_data % pt2(k) * f(k)
variance(k) = variance(k) * f(k) pt2_data % variance(k) = pt2_data % variance(k) * f(k)
norm(k) = norm(k) * f(k) do l=1,N_states
pt2_data % overlap(k,l) = pt2_data % overlap(k,l) * dsqrt(f(k)*f(l))
pt2_data % overlap(l,k) = pt2_data % overlap(l,k) * dsqrt(f(k)*f(l))
enddo
pt2_data % rpt2(k) = &
pt2_data % pt2(k)/(1.d0 + pt2_data % overlap(k,k))
enddo enddo
call update_pt2_and_variance_weights(pt2, variance, norm, N_states) pt2_overlap(:,:) = pt2_data % overlap(:,:)
print *, 'Overlap of perturbed states:'
do l=1,N_states
print *, pt2_overlap(l,:)
enddo
print *, '-------'
SOFT_TOUCH pt2_overlap
call update_pt2_and_variance_weights(pt2_data, N_states)
end subroutine end subroutine
@ -151,7 +160,7 @@ subroutine selection_slave_inproc(i)
call run_selection_slave(1,i,pt2_e0_denominator) call run_selection_slave(1,i,pt2_e0_denominator)
end end
subroutine selection_collector(zmq_socket_pull, b, N, pt2, variance, norm) subroutine selection_collector(zmq_socket_pull, b, N, pt2_data)
use f77_zmq use f77_zmq
use selection_types use selection_types
use bitmasks use bitmasks
@ -161,12 +170,12 @@ subroutine selection_collector(zmq_socket_pull, b, N, pt2, variance, norm)
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
type(selection_buffer), intent(inout) :: b type(selection_buffer), intent(inout) :: b
integer, intent(in) :: N integer, intent(in) :: N
double precision, intent(out) :: pt2(N_states) type(pt2_type), intent(inout) :: pt2_data
double precision, intent(out) :: variance(N_states) type(pt2_type) :: pt2_data_tmp
double precision, intent(out) :: norm(N_states)
double precision :: pt2_mwen(N_states) double precision :: pt2_mwen(N_states)
double precision :: variance_mwen(N_states) double precision :: variance_mwen(N_states)
double precision :: norm_mwen(N_states) double precision :: norm2_mwen(N_states)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket integer(ZMQ_PTR) :: zmq_to_qp_run_socket
@ -184,24 +193,21 @@ subroutine selection_collector(zmq_socket_pull, b, N, pt2, variance, norm)
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket() zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
call create_selection_buffer(N, N*2, b2) call create_selection_buffer(N, N*2, b2)
integer :: k
double precision :: rss double precision :: rss
double precision, external :: memory_of_int double precision, external :: memory_of_int
rss = memory_of_int(N_det_generators) rss = memory_of_int(N_det_generators)
call check_mem(rss,irp_here) call check_mem(rss,irp_here)
allocate(task_id(N_det_generators)) allocate(task_id(N_det_generators))
more = 1 more = 1
pt2(:) = 0d0 pt2_data % pt2(:) = 0d0
variance(:) = 0.d0 pt2_data % variance(:) = 0.d0
norm(:) = 0.d0 pt2_data % overlap(:,:) = 0.d0
pt2_mwen(:) = 0.d0 call pt2_alloc(pt2_data_tmp,N_states)
variance_mwen(:) = 0.d0
norm_mwen(:) = 0.d0
do while (more == 1) do while (more == 1)
call pull_selection_results(zmq_socket_pull, pt2_mwen, variance_mwen, norm_mwen, b2%val(1), b2%det(1,1,1), b2%cur, task_id, ntask) call pull_selection_results(zmq_socket_pull, pt2_data_tmp, b2%val(1), b2%det(1,1,1), b2%cur, task_id, ntask)
pt2(:) += pt2_mwen(:) call pt2_add(pt2_data, 1.d0, pt2_data_tmp)
variance(:) += variance_mwen(:)
norm(:) += norm_mwen(:)
do i=1, b2%cur do i=1, b2%cur
call add_to_selection_buffer(b, b2%det(1,1,i), b2%val(i)) call add_to_selection_buffer(b, b2%det(1,1,i), b2%val(i))
if (b2%val(i) > b%mini) exit if (b2%val(i) > b%mini) exit
@ -217,6 +223,7 @@ subroutine selection_collector(zmq_socket_pull, b, N, pt2, variance, norm)
endif endif
end do end do
end do end do
call pt2_dealloc(pt2_data_tmp)
call delete_selection_buffer(b2) call delete_selection_buffer(b2)

View File

@ -450,7 +450,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
if (s2_eig) then if (s2_eig) then
h_p = s_ h_p = s_
do k=1,shift2 do k=1,shift2
h_p(k,k) = h_p(k,k) + S_z2_Sz - expected_s2 h_p(k,k) = h_p(k,k) - expected_s2
enddo enddo
if (only_expected_s2) then if (only_expected_s2) then
alpha = 0.1d0 alpha = 0.1d0
@ -496,7 +496,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
0.d0, s_, size(s_,1)) 0.d0, s_, size(s_,1))
do k=1,shift2 do k=1,shift2
s2(k) = s_(k,k) + S_z2_Sz s2(k) = s_(k,k)
enddo enddo
if (only_expected_s2) then if (only_expected_s2) then

View File

@ -107,7 +107,7 @@ END_PROVIDER
H_prime(1:N_det,1:N_det) = H_matrix_all_dets(1:N_det,1:N_det) + & H_prime(1:N_det,1:N_det) = H_matrix_all_dets(1:N_det,1:N_det) + &
alpha * S2_matrix_all_dets(1:N_det,1:N_det) alpha * S2_matrix_all_dets(1:N_det,1:N_det)
do j=1,N_det do j=1,N_det
H_prime(j,j) = H_prime(j,j) + alpha*(S_z2_Sz - expected_s2) H_prime(j,j) = H_prime(j,j) - alpha*expected_s2
enddo enddo
call lapack_diag(eigenvalues,eigenvectors,H_prime,size(H_prime,1),N_det) call lapack_diag(eigenvalues,eigenvectors,H_prime,size(H_prime,1),N_det)
CI_electronic_energy(:) = 0.d0 CI_electronic_energy(:) = 0.d0

View File

@ -44,7 +44,7 @@ default: 2
type: integer type: integer
doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: rPT2 matching, 3: variance matching, 4: variance and rPT2 matching, 5: variance minimization and matching, 6: CI coefficients 7: input state-average multiplied by variance and rPT2 matching 8: input state-average multiplied by rPT2 matching 9: input state-average multiplied by variance matching doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: rPT2 matching, 3: variance matching, 4: variance and rPT2 matching, 5: variance minimization and matching, 6: CI coefficients 7: input state-average multiplied by variance and rPT2 matching 8: input state-average multiplied by rPT2 matching 9: input state-average multiplied by variance matching
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: 2 default: 1
[threshold_generators] [threshold_generators]
type: Threshold type: Threshold

View File

@ -8,24 +8,35 @@ double precision function diag_S_mat_elem(key_i,Nint)
BEGIN_DOC BEGIN_DOC
! Returns <i|S^2|i> ! Returns <i|S^2|i>
END_DOC END_DOC
integer :: nup, i integer :: nup, ntot, i
integer(bit_kind) :: xorvec(N_int_max) integer(bit_kind) :: xorvec(N_int_max), upvec(N_int_max)
do i=1,Nint do i=1,Nint
xorvec(i) = xor(key_i(i,1),key_i(i,2)) xorvec(i) = xor(key_i(i,1),key_i(i,2))
enddo enddo
do i=1,Nint do i=1,Nint
xorvec(i) = iand(xorvec(i),key_i(i,1)) upvec(i) = iand(xorvec(i),key_i(i,1))
enddo enddo
! nup is number of alpha unpaired
! ntot is total number of unpaired
nup = 0 nup = 0
ntot = 0
do i=1,Nint do i=1,Nint
if (xorvec(i) /= 0_bit_kind) then if (xorvec(i) /= 0_bit_kind) then
nup += popcnt(xorvec(i)) ntot += popcnt(xorvec(i))
if (upvec(i) /= 0_bit_kind) then
nup += popcnt(upvec(i))
endif
endif endif
enddo enddo
diag_S_mat_elem = dble(nup)
double precision :: sz
sz = nup - 0.5d0*ntot
!<S^2> = <S+ S-> + Sz(Sz-1)
diag_S_mat_elem = nup + sz*(sz-1)
end end
@ -125,7 +136,7 @@ subroutine u_0_S2_u_0(e_0,u_0,n,keys_tmp,Nint,N_st,sze_8)
call S2_u_0_nstates(v_0,u_0,n,keys_tmp,Nint,N_st,sze_8) call S2_u_0_nstates(v_0,u_0,n,keys_tmp,Nint,N_st,sze_8)
do i=1,N_st do i=1,N_st
e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n)/u_dot_u(u_0(1,i),n) + S_z2_Sz e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n)/u_dot_u(u_0(1,i),n)
enddo enddo
end end

View File

@ -1776,12 +1776,12 @@ subroutine ac_operator(iorb,ispin,key,hjj,Nint,na,nb)
integer :: k,l,i integer :: k,l,i
if (iorb < 1) then if (iorb < 1) then
print *, irp_here, 'iorb < 1' print *, irp_here, ': iorb < 1'
print *, iorb, mo_num print *, iorb, mo_num
stop -1 stop -1
endif endif
if (iorb > mo_num) then if (iorb > mo_num) then
print *, irp_here, 'iorb > mo_num' print *, irp_here, ': iorb > mo_num'
print *, iorb, mo_num print *, iorb, mo_num
stop -1 stop -1
endif endif

View File

@ -354,6 +354,31 @@ subroutine write_spindeterminants
call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows) call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns) call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
end
subroutine read_spindeterminants
use bitmasks
implicit none
integer :: k
call ezfio_get_spindeterminants_n_det(N_det)
call ezfio_get_spindeterminants_n_states(N_states)
TOUCH N_det N_states
call ezfio_get_spindeterminants_n_det_alpha(N_det_alpha_unique)
call ezfio_get_spindeterminants_n_det_beta(N_det_beta_unique)
call ezfio_get_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
call ezfio_get_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
call ezfio_get_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
call ezfio_get_spindeterminants_psi_det_alpha(psi_det_alpha_unique)
call ezfio_get_spindeterminants_psi_det_beta(psi_det_beta_unique)
do k=1,N_det
psi_bilinear_matrix_order(k) = k
enddo
TOUCH psi_bilinear_matrix_values psi_bilinear_matrix_rows psi_bilinear_matrix_columns N_det_alpha_unique N_det_beta_unique psi_det_alpha_unique psi_det_beta_unique psi_bilinear_matrix_order
call wf_of_psi_bilinear_matrix(.True.)
end end
BEGIN_PROVIDER [ double precision, det_alpha_norm, (N_det_alpha_unique) ] BEGIN_PROVIDER [ double precision, det_alpha_norm, (N_det_alpha_unique) ]

View File

@ -28,35 +28,38 @@ end
subroutine run subroutine run
implicit none implicit none
use selection_types
integer :: i,j,k integer :: i,j,k
logical, external :: detEq logical, external :: detEq
double precision :: pt2(N_states) type(pt2_type) :: pt2_data, pt2_data_err
integer :: degree integer :: degree
integer :: n_det_before, to_select integer :: n_det_before, to_select
double precision :: threshold_davidson_in double precision :: threshold_davidson_in
double precision :: E_CI_before(N_states), relative_error, error(N_states), variance(N_states), norm(N_states), rpt2(N_states) double precision :: relative_error
double precision, allocatable :: E_CI_before(:)
pt2(:) = 0.d0 allocate ( E_CI_before(N_states))
call pt2_alloc(pt2_data, N_states)
call pt2_alloc(pt2_data_err, N_states)
E_CI_before(:) = psi_energy(:) + nuclear_repulsion E_CI_before(:) = psi_energy(:) + nuclear_repulsion
relative_error=PT2_relative_error relative_error=PT2_relative_error
if (do_pt2) then if (do_pt2) then
call ZMQ_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, & call ZMQ_pt2(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, relative_error, 0) ! Stochastic PT2
norm,0) ! Stochastic PT2
else else
call ZMQ_selection(0, pt2, variance, norm) call ZMQ_selection(0, pt2_data)
endif endif
do k=1,N_states call print_summary(psi_energy_with_nucl_rep(1:N_states), &
rpt2(k) = pt2(k)/(1.d0 + norm(k)) pt2_data, pt2_data_err, N_det,N_occ_pattern,N_states,psi_s2)
enddo
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2) call save_energy(E_CI_before, pt2_data % pt2)
call pt2_dealloc(pt2_data)
call save_energy(E_CI_before,pt2) call pt2_dealloc(pt2_data_err)
deallocate(E_CI_before)
end end

View File

@ -11,6 +11,7 @@ function run() {
qp edit --check qp edit --check
qp reset --mos qp reset --mos
qp set scf_utils n_it_scf_max 50 qp set scf_utils n_it_scf_max 50
qp set ao_one_e_ints lin_dep_cutoff 1.e-50
qp run scf qp run scf
# qp set_frozen_core # qp set_frozen_core
energy="$(ezfio get hartree_fock energy)" energy="$(ezfio get hartree_fock energy)"

View File

@ -1,16 +1,17 @@
subroutine print_summary(e_,pt2_,error_,variance_,norm_,n_det_,n_occ_pattern_,n_st,s2_) subroutine print_summary(e_,pt2_data,pt2_data_err,n_det_,n_occ_pattern_,n_st,s2_)
use selection_types
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Print the extrapolated energy in the output ! Print the extrapolated energy in the output
END_DOC END_DOC
integer, intent(in) :: n_det_, n_occ_pattern_, n_st integer, intent(in) :: n_det_, n_occ_pattern_, n_st
double precision, intent(in) :: e_(n_st), pt2_(n_st), variance_(n_st), norm_(n_st), error_(n_st), s2_(n_st) double precision, intent(in) :: e_(n_st), s2_(n_st)
type(pt2_type) , intent(in) :: pt2_data, pt2_data_err
integer :: i, k integer :: i, k
integer :: N_states_p integer :: N_states_p
character*(9) :: pt2_string character*(9) :: pt2_string
character*(512) :: fmt character*(512) :: fmt
double precision :: f(n_st)
if (do_pt2) then if (do_pt2) then
pt2_string = ' ' pt2_string = ' '
@ -20,10 +21,6 @@ subroutine print_summary(e_,pt2_,error_,variance_,norm_,n_det_,n_occ_pattern_,n_
N_states_p = min(N_det_,n_st) N_states_p = min(N_det_,n_st)
do i=1,N_states_p
f(i) = 1.d0/(1.d0+norm_(i))
enddo
print *, '' print *, ''
print '(A,I12)', 'Summary at N_det = ', N_det_ print '(A,I12)', 'Summary at N_det = ', N_det_
print '(A)', '-----------------------------------' print '(A)', '-----------------------------------'
@ -42,16 +39,16 @@ subroutine print_summary(e_,pt2_,error_,variance_,norm_,n_det_,n_occ_pattern_,n_
write(*,fmt) '# Excit. (eV)', (e_(1:N_states_p)-e_(1))*27.211396641308d0 write(*,fmt) '# Excit. (eV)', (e_(1:N_states_p)-e_(1))*27.211396641308d0
endif endif
write(fmt,*) '(A13,', 2*N_states_p, '(1X,F14.8))' write(fmt,*) '(A13,', 2*N_states_p, '(1X,F14.8))'
write(*,fmt) '# PT2 '//pt2_string, (pt2_(k), error_(k), k=1,N_states_p) write(*,fmt) '# PT2 '//pt2_string, (pt2_data % pt2(k), pt2_data_err % pt2(k), k=1,N_states_p)
write(*,fmt) '# rPT2'//pt2_string, (pt2_(k)*f(k), error_(k)*f(k), k=1,N_states_p) write(*,fmt) '# rPT2'//pt2_string, (pt2_data % rpt2(k), pt2_data_err % rpt2(k), k=1,N_states_p)
write(*,'(A)') '#' write(*,'(A)') '#'
write(*,fmt) '# E+PT2 ', (e_(k)+pt2_(k),error_(k), k=1,N_states_p) write(*,fmt) '# E+PT2 ', (e_(k)+pt2_data % pt2(k),pt2_data_err % pt2(k), k=1,N_states_p)
write(*,fmt) '# E+rPT2 ', (e_(k)+pt2_(k)*f(k),error_(k)*f(k), k=1,N_states_p) write(*,fmt) '# E+rPT2 ', (e_(k)+pt2_data % rpt2(k),pt2_data_err % rpt2(k), k=1,N_states_p)
if (N_states_p > 1) then if (N_states_p > 1) then
write(*,fmt) '# Excit. (au)', ( (e_(k)+pt2_(k)-e_(1)-pt2_(1)), & write(*,fmt) '# Excit. (au)', ( (e_(k)+pt2_data % pt2(k)-e_(1)-pt2_data % pt2(1)), &
dsqrt(error_(k)*error_(k)+error_(1)*error_(1)), k=1,N_states_p) dsqrt(pt2_data_err % pt2(k)*pt2_data_err % pt2(k)+pt2_data_err % pt2(1)*pt2_data_err % pt2(1)), k=1,N_states_p)
write(*,fmt) '# Excit. (eV)', ( (e_(k)+pt2_(k)-e_(1)-pt2_(1))*27.211396641308d0, & write(*,fmt) '# Excit. (eV)', ( (e_(k)+pt2_data % pt2(k)-e_(1)-pt2_data % pt2(1))*27.211396641308d0, &
dsqrt(error_(k)*error_(k)+error_(1)*error_(1))*27.211396641308d0, k=1,N_states_p) dsqrt(pt2_data_err % pt2(k)*pt2_data_err % pt2(k)+pt2_data_err % pt2(1)*pt2_data_err % pt2(1))*27.211396641308d0, k=1,N_states_p)
endif endif
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))' write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
write(*,fmt) write(*,fmt)
@ -68,12 +65,12 @@ subroutine print_summary(e_,pt2_,error_,variance_,norm_,n_det_,n_occ_pattern_,n_
print*,'* State ',k print*,'* State ',k
print *, '< S^2 > = ', s2_(k) print *, '< S^2 > = ', s2_(k)
print *, 'E = ', e_(k) print *, 'E = ', e_(k)
print *, 'Variance = ', variance_(k) print *, 'Variance = ', pt2_data % variance(k), ' +/- ', pt2_data_err % variance(k)
print *, 'PT norm = ', dsqrt(norm_(k)) print *, 'PT norm = ', dsqrt(pt2_data % overlap(k,k)), ' +/- ', 0.5d0*dsqrt(pt2_data % overlap(k,k)) * pt2_data_err % overlap(k,k) / (pt2_data % overlap(k,k))
print *, 'PT2 = ', pt2_(k) print *, 'PT2 = ', pt2_data % pt2(k), ' +/- ', pt2_data_err % pt2(k)
print *, 'rPT2 = ', pt2_(k)*f(k) print *, 'rPT2 = ', pt2_data % rpt2(k), ' +/- ', pt2_data_err % rpt2(k)
print *, 'E+PT2 '//pt2_string//' = ', e_(k)+pt2_(k), ' +/- ', error_(k) print *, 'E+PT2 '//pt2_string//' = ', e_(k)+pt2_data % pt2(k), ' +/- ', pt2_data_err % pt2(k)
print *, 'E+rPT2'//pt2_string//' = ', e_(k)+pt2_(k)*f(k), ' +/- ', error_(k)*f(k) print *, 'E+rPT2'//pt2_string//' = ', e_(k)+pt2_data % rpt2(k), ' +/- ', pt2_data_err % rpt2(k)
print *, '' print *, ''
enddo enddo
@ -87,14 +84,14 @@ subroutine print_summary(e_,pt2_,error_,variance_,norm_,n_det_,n_occ_pattern_,n_
print *, '-----' print *, '-----'
print*, 'Variational + perturbative Energy difference (au | eV)' print*, 'Variational + perturbative Energy difference (au | eV)'
do i=2, N_states_p do i=2, N_states_p
print*,'Delta E = ', (e_(i)+ pt2_(i) - (e_(1) + pt2_(1))), & print*,'Delta E = ', (e_(i)+ pt2_data % pt2(i) - (e_(1) + pt2_data % pt2(1))), &
(e_(i)+ pt2_(i) - (e_(1) + pt2_(1))) * 27.211396641308d0 (e_(i)+ pt2_data % pt2(i) - (e_(1) + pt2_data % pt2(1))) * 27.211396641308d0
enddo enddo
print *, '-----' print *, '-----'
print*, 'Variational + renormalized perturbative Energy difference (au | eV)' print*, 'Variational + renormalized perturbative Energy difference (au | eV)'
do i=2, N_states_p do i=2, N_states_p
print*,'Delta E = ', (e_(i)+ pt2_(i)*f(i) - (e_(1) + pt2_(1)*f(1))), & print*,'Delta E = ', (e_(i)+ pt2_data % rpt2(i) - (e_(1) + pt2_data % rpt2(1))), &
(e_(i)+ pt2_(i)*f(i) - (e_(1) + pt2_(1)*f(1))) * 27.211396641308d0 (e_(i)+ pt2_data % rpt2(i) - (e_(1) + pt2_data % rpt2(1))) * 27.211396641308d0
enddo enddo
endif endif

View File

@ -186,10 +186,10 @@ END_DOC
implicit none implicit none
double precision,intent(in) :: Fock_matrix_DIIS(ao_num,ao_num,*),error_matrix_DIIS(ao_num,ao_num,*) integer,intent(inout) :: dim_DIIS
double precision,intent(in) :: Fock_matrix_DIIS(ao_num,ao_num,dim_DIIS),error_matrix_DIIS(ao_num,ao_num,dim_DIIS)
integer,intent(in) :: iteration_SCF, size_Fock_matrix_AO integer,intent(in) :: iteration_SCF, size_Fock_matrix_AO
double precision,intent(inout):: Fock_matrix_AO_(size_Fock_matrix_AO,ao_num) double precision,intent(inout):: Fock_matrix_AO_(size_Fock_matrix_AO,ao_num)
integer,intent(inout) :: dim_DIIS
double precision,allocatable :: B_matrix_DIIS(:,:),X_vector_DIIS(:) double precision,allocatable :: B_matrix_DIIS(:,:),X_vector_DIIS(:)
double precision,allocatable :: C_vector_DIIS(:) double precision,allocatable :: C_vector_DIIS(:)
@ -212,11 +212,12 @@ END_DOC
) )
! Compute the matrices B and X ! Compute the matrices B and X
B_matrix_DIIS(:,:) = 0.d0
do j=1,dim_DIIS do j=1,dim_DIIS
j_DIIS = min(dim_DIIS,mod(iteration_SCF-j,max_dim_DIIS)+1)
do i=1,dim_DIIS do i=1,dim_DIIS
j_DIIS = mod(iteration_SCF-j,max_dim_DIIS)+1 i_DIIS = min(dim_DIIS,mod(iteration_SCF-i,max_dim_DIIS)+1)
i_DIIS = mod(iteration_SCF-i,max_dim_DIIS)+1
! Compute product of two errors vectors ! Compute product of two errors vectors
@ -229,7 +230,6 @@ END_DOC
! Compute Trace ! Compute Trace
B_matrix_DIIS(i,j) = 0.d0
do k=1,ao_num do k=1,ao_num
B_matrix_DIIS(i,j) = B_matrix_DIIS(i,j) + scratch(k,k) B_matrix_DIIS(i,j) = B_matrix_DIIS(i,j) + scratch(k,k)
enddo enddo
@ -238,12 +238,11 @@ END_DOC
! Pad B matrix and build the X matrix ! Pad B matrix and build the X matrix
C_vector_DIIS(:) = 0.d0
do i=1,dim_DIIS do i=1,dim_DIIS
B_matrix_DIIS(i,dim_DIIS+1) = -1.d0 B_matrix_DIIS(i,dim_DIIS+1) = -1.d0
B_matrix_DIIS(dim_DIIS+1,i) = -1.d0 B_matrix_DIIS(dim_DIIS+1,i) = -1.d0
C_vector_DIIS(i) = 0.d0
enddo enddo
B_matrix_DIIS(dim_DIIS+1,dim_DIIS+1) = 0.d0
C_vector_DIIS(dim_DIIS+1) = -1.d0 C_vector_DIIS(dim_DIIS+1) = -1.d0
deallocate(scratch) deallocate(scratch)
@ -259,9 +258,10 @@ END_DOC
allocate(AF(dim_DIIS+1,dim_DIIS+1)) allocate(AF(dim_DIIS+1,dim_DIIS+1))
allocate(ipiv(2*(dim_DIIS+1)), iwork(2*(dim_DIIS+1)) ) allocate(ipiv(2*(dim_DIIS+1)), iwork(2*(dim_DIIS+1)) )
allocate(scratch(lwork,1)) allocate(scratch(lwork,1))
scratch(:,1) = 0.d0
anorm = dlange('1', dim_DIIS+1, dim_DIIS+1, B_matrix_DIIS, & anorm = dlange('1', dim_DIIS+1, dim_DIIS+1, B_matrix_DIIS, &
size(B_matrix_DIIS,1), scratch) size(B_matrix_DIIS,1), scratch(1,1))
AF(:,:) = B_matrix_DIIS(:,:) AF(:,:) = B_matrix_DIIS(:,:)
call dgetrf(dim_DIIS+1,dim_DIIS+1,AF,size(AF,1),ipiv,info) call dgetrf(dim_DIIS+1,dim_DIIS+1,AF,size(AF,1),ipiv,info)

View File

@ -17,7 +17,7 @@ program molden
write(i_unit_output,'(A)') '[Molden Format]' write(i_unit_output,'(A)') '[Molden Format]'
write(i_unit_output,'(A)') '[Atoms] ANGSTROM' write(i_unit_output,'(A)') '[Atoms] Angs'
do i = 1, nucl_num do i = 1, nucl_num
write(i_unit_output,'(A2,2X,I4,2X,I4,3(2X,F15.10))') & write(i_unit_output,'(A2,2X,I4,2X,I4,3(2X,F15.10))') &
trim(element_name(int(nucl_charge(i)))), & trim(element_name(int(nucl_charge(i)))), &

View File

@ -8,23 +8,26 @@ program print_energy
! psi_coef_sorted are the wave function stored in the |EZFIO| directory. ! psi_coef_sorted are the wave function stored in the |EZFIO| directory.
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
PROVIDE N_states
call run call run
end end
subroutine run subroutine run
implicit none implicit none
integer :: i integer :: i,j
double precision :: i_H_psi_array(N_states) double precision :: i_H_psi_array(N_states)
double precision :: E(N_states) double precision :: E(N_states)
double precision :: norm(N_states) double precision :: norm(N_states)
E(:) = nuclear_repulsion E(1:N_states) = nuclear_repulsion
norm(:) = 0.d0 norm(1:N_states) = 0.d0
do i=1,N_det do i=1,N_det
call i_H_psi(psi_det(1,1,i), psi_det, psi_coef, N_int, N_det, & call i_H_psi(psi_det(1,1,i), psi_det, psi_coef, N_int, N_det, &
size(psi_coef,1), N_states, i_H_psi_array) size(psi_coef,1), N_states, i_H_psi_array)
norm(:) += psi_coef(i,:)**2 do j=1,N_states
E(:) += i_H_psi_array(:) * psi_coef(i,:) norm(j) += psi_coef(i,j)*psi_coef(i,j)
E(j) += i_H_psi_array(j) * psi_coef(i,j)
enddo
enddo enddo
print *, 'Energy:' print *, 'Energy:'

View File

@ -585,6 +585,7 @@ subroutine end_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,name_in)
stop 'Wrong end of job' stop 'Wrong end of job'
endif endif
message = repeat(' ',512)
do i=360,1,-1 do i=360,1,-1
rc = f77_zmq_send(zmq_to_qp_run_socket, 'end_job '//trim(zmq_state),8+len(trim(zmq_state)),0) rc = f77_zmq_send(zmq_to_qp_run_socket, 'end_job '//trim(zmq_state),8+len(trim(zmq_state)),0)
rc = f77_zmq_recv(zmq_to_qp_run_socket, message, 512, 0) rc = f77_zmq_recv(zmq_to_qp_run_socket, message, 512, 0)
@ -645,6 +646,7 @@ integer function connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
endif endif
endif endif
message = repeat(' ',512)
rc = f77_zmq_recv(zmq_to_qp_run_socket, message, 510, 0) rc = f77_zmq_recv(zmq_to_qp_run_socket, message, 510, 0)
message = trim(message(1:rc)) message = trim(message(1:rc))
if(message(1:5) == "error") then if(message(1:5) == "error") then

16
travis/compilation.sh Executable file
View File

@ -0,0 +1,16 @@
#!/bin/bash
# Stage 2
# Extract cache from config stage
cd ../
tar -zxf $HOME/cache/config.tgz
# Configure QP2
cd qp2
source ./quantum_package.rc
ninja -j 1 -v
# Create cache
cd ..
tar -zcf $HOME/cache/compil.tgz qp2 && rm $HOME/cache/config.tgz

10
travis/configuration.sh Executable file
View File

@ -0,0 +1,10 @@
#!/bin/bash
# Stage 1
# Configure QP2
./configure --install all --config ./config/travis.cfg
# Create cache
cd ../
tar -zcf $HOME/cache/config.tgz qp2

16
travis/testing.sh Executable file
View File

@ -0,0 +1,16 @@
#!/bin/bash
# Stage 3
# Extract cache from compile stage
cd ../
tar -zxf $HOME/cache/compil.tgz
# Configure QP2
cd qp2
source ./quantum_package.rc
qp_test -a && rm $HOME/cache/compil.tgz