10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-15 02:23:51 +01:00

Merge pull request #303 from AbdAmmar/dev-stable-tc-scf

Dev stable tc scf
This commit is contained in:
AbdAmmar 2023-07-03 01:49:00 +02:00 committed by GitHub
commit 923b0703bb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
74 changed files with 5197 additions and 1458 deletions

View File

@ -65,46 +65,60 @@ double precision function primitive_value(i,j,r)
end
! ---
subroutine give_all_aos_at_r(r,aos_array)
implicit none
BEGIN_dOC
! input : r == r(1) = x and so on
!
! output : aos_array(i) = aos(i) evaluated in $\textbf{r}$
END_DOC
double precision, intent(in) :: r(3)
double precision, intent(out):: aos_array(ao_num)
subroutine give_all_aos_at_r(r, tmp_array)
integer :: power_ao(3)
integer :: i,j,k,l,m
double precision :: dx,dy,dz,r2
double precision :: dx2,dy2,dz2
double precision :: center_ao(3)
double precision :: beta
do i = 1, nucl_num
center_ao(1:3) = nucl_coord(i,1:3)
dx = (r(1) - center_ao(1))
dy = (r(2) - center_ao(2))
dz = (r(3) - center_ao(3))
r2 = dx*dx + dy*dy + dz*dz
do j = 1,Nucl_N_Aos(i)
k = Nucl_Aos_transposed(j,i) ! index of the ao in the ordered format
aos_array(k) = 0.d0
power_ao(1:3)= ao_power_ordered_transp_per_nucl(1:3,j,i)
dx2 = dx**power_ao(1)
dy2 = dy**power_ao(2)
dz2 = dz**power_ao(3)
do l = 1,ao_prim_num(k)
beta = ao_expo_ordered_transp_per_nucl(l,j,i)
if(dabs(beta*r2).gt.40.d0)cycle
aos_array(k)+= ao_coef_normalized_ordered_transp_per_nucl(l,j,i) * dexp(-beta*r2)
enddo
aos_array(k) = aos_array(k) * dx2 * dy2 * dz2
BEGIN_dOC
!
! input : r == r(1) = x and so on
!
! output : tmp_array(i) = aos(i) evaluated in $\textbf{r}$
!
END_DOC
implicit none
double precision, intent(in) :: r(3)
double precision, intent(out) :: tmp_array(ao_num)
integer :: p_ao(3)
integer :: i, j, k, l, m
double precision :: dx, dy, dz, r2
double precision :: dx2, dy2, dz2
double precision :: c_ao(3)
double precision :: beta
do i = 1, nucl_num
c_ao(1:3) = nucl_coord(i,1:3)
dx = r(1) - c_ao(1)
dy = r(2) - c_ao(2)
dz = r(3) - c_ao(3)
r2 = dx*dx + dy*dy + dz*dz
do j = 1, Nucl_N_Aos(i)
k = Nucl_Aos_transposed(j,i) ! index of the ao in the ordered format
p_ao(1:3) = ao_power_ordered_transp_per_nucl(1:3,j,i)
dx2 = dx**p_ao(1)
dy2 = dy**p_ao(2)
dz2 = dz**p_ao(3)
tmp_array(k) = 0.d0
do l = 1,ao_prim_num(k)
beta = ao_expo_ordered_transp_per_nucl(l,j,i)
if(dabs(beta*r2).gt.40.d0) cycle
tmp_array(k) += ao_coef_normalized_ordered_transp_per_nucl(l,j,i) * dexp(-beta*r2)
enddo
tmp_array(k) = tmp_array(k) * dx2 * dy2 * dz2
enddo
enddo
enddo
return
end
! ---
subroutine give_all_aos_and_grad_at_r(r,aos_array,aos_grad_array)
implicit none

View File

@ -1,20 +1,28 @@
BEGIN_PROVIDER [ integer, Nucl_Aos_transposed, (N_AOs_max,nucl_num)]
implicit none
BEGIN_DOC
! List of AOs attached on each atom
END_DOC
integer :: i
integer, allocatable :: nucl_tmp(:)
allocate(nucl_tmp(nucl_num))
nucl_tmp = 0
Nucl_Aos = 0
do i = 1, ao_num
nucl_tmp(ao_nucl(i))+=1
Nucl_Aos_transposed(nucl_tmp(ao_nucl(i)),ao_nucl(i)) = i
enddo
deallocate(nucl_tmp)
! ---
BEGIN_PROVIDER [ integer, Nucl_Aos_transposed, (N_AOs_max,nucl_num)]
BEGIN_DOC
! List of AOs attached on each atom
END_DOC
implicit none
integer :: i
integer, allocatable :: nucl_tmp(:)
allocate(nucl_tmp(nucl_num))
nucl_tmp = 0
do i = 1, ao_num
nucl_tmp(ao_nucl(i)) += 1
Nucl_Aos_transposed(nucl_tmp(ao_nucl(i)),ao_nucl(i)) = i
enddo
deallocate(nucl_tmp)
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, ao_expo_ordered_transp_per_nucl, (ao_prim_num_max,N_AOs_max,nucl_num) ]
implicit none
integer :: i,j,k,l

View File

@ -212,9 +212,7 @@ subroutine NAI_pol_x_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
@ -279,9 +277,7 @@ subroutine NAI_pol_x_mult_erf_ao_v0(i_ao, j_ao, mu_in, C_center, LD_C, ints, LD_
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
@ -1111,3 +1107,141 @@ end
! ---
subroutine NAI_pol_x2_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: beta, B_center(3), mu_in, C_center(3)
double precision, intent(out) :: ints(3)
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, m
integer :: power_A1(3), power_A2(3)
double precision :: Ai_center(3), Aj_center(3), alphai, alphaj, coef, coefi
double precision :: integral0, integral1, integral2
double precision, external :: NAI_pol_mult_erf_with1s
ASSERT(beta .ge. 0.d0)
if(beta .lt. 1d-10) then
call NAI_pol_x2_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
return
endif
ints = 0.d0
power_Ai(1:3) = ao_power(i_ao,1:3)
power_Aj(1:3) = ao_power(j_ao,1:3)
Ai_center(1:3) = nucl_coord(ao_nucl(i_ao),1:3)
Aj_center(1:3) = nucl_coord(ao_nucl(j_ao),1:3)
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alphai = ao_expo_ordered_transp (i,i_ao)
coefi = ao_coef_normalized_ordered_transp(i,i_ao)
do m = 1, 3
power_A1 = power_Ai
power_A1(m) += 1
power_A2 = power_Ai
power_A2(m) += 2
do j = 1, ao_prim_num(j_ao)
alphaj = ao_expo_ordered_transp (j,j_ao)
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
integral0 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
integral1 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A1, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
integral2 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A2, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
ints(m) += coef * (integral2 + Ai_center(m) * (2.d0*integral1 + Ai_center(m)*integral0))
enddo
enddo
enddo
end subroutine NAI_pol_x2_mult_erf_ao_with1s
! ---
subroutine NAI_pol_x2_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: mu_in, C_center(3)
double precision, intent(out) :: ints(3)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in, m
integer :: power_A1(3), power_A2(3)
double precision :: A_center(3), B_center(3), alpha, beta, coef
double precision :: integral0, integral1, integral2
double precision :: NAI_pol_mult_erf
ints = 0.d0
num_A = ao_nucl(i_ao)
power_A(1:3) = ao_power(i_ao,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(j_ao)
power_B(1:3) = ao_power(j_ao,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alpha = ao_expo_ordered_transp(i,i_ao)
do m = 1, 3
power_A1 = power_A
power_A1(m) += 1
power_A2 = power_A
power_A2(m) += 2
do j = 1, ao_prim_num(j_ao)
beta = ao_expo_ordered_transp(j,j_ao)
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
integral0 = NAI_pol_mult_erf(A_center, B_center, power_A , power_B, alpha, beta, C_center, n_pt_in, mu_in)
integral1 = NAI_pol_mult_erf(A_center, B_center, power_A1, power_B, alpha, beta, C_center, n_pt_in, mu_in)
integral2 = NAI_pol_mult_erf(A_center, B_center, power_A2, power_B, alpha, beta, C_center, n_pt_in, mu_in)
ints(m) += coef * (integral2 + A_center(m) * (2.d0*integral1 + A_center(m)*integral0))
enddo
enddo
enddo
end subroutine NAI_pol_x2_mult_erf_ao
! ---

View File

@ -128,6 +128,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
@ -222,6 +223,7 @@ BEGIN_PROVIDER [double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
@ -322,6 +324,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (ao_num, ao_num, n_poin
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
@ -436,6 +439,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)

View File

@ -60,6 +60,7 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
@ -154,6 +155,7 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
@ -195,8 +197,7 @@ END_PROVIDER
! ---
! TODO analytically
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_fit, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
@ -213,12 +214,14 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
double precision, external :: overlap_gauss_r12_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b ...'
print*, ' providing v_ij_u_cst_mu_j1b_fit ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
PROVIDE ng_fit_jast expo_gauss_j_mu_x coef_gauss_j_mu_x
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
v_ij_u_cst_mu_j1b = 0.d0
v_ij_u_cst_mu_j1b_fit = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
@ -227,9 +230,8 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b)
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_fit)
!$OMP DO
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
@ -240,7 +242,6 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
tmp = 0.d0
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_j_mu_x(i_fit)
coef_fit = coef_gauss_j_mu_x(i_fit)
@ -253,7 +254,6 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
B_center(3) = List_all_comb_b2_cent(3,1)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
! if(dabs(int_fit*coef) .lt. 1d-12) cycle
tmp += coef * coef_fit * int_fit
@ -262,6 +262,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
@ -276,7 +277,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
enddo
v_ij_u_cst_mu_j1b(j,i,ipoint) = tmp
v_ij_u_cst_mu_j1b_fit(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -286,13 +287,149 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b(j,i,ipoint) = v_ij_u_cst_mu_j1b(i,j,ipoint)
v_ij_u_cst_mu_j1b_fit(j,i,ipoint) = v_ij_u_cst_mu_j1b_fit(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b', wall1 - wall0
print*, ' wall time for v_ij_u_cst_mu_j1b_fit', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
!
! TODO
! one subroutine for all integrals
!
END_DOC
include 'constants.include.F'
implicit none
integer :: i, j, ipoint, i_1s
double precision :: r(3), r1_2
double precision :: int_c1, int_e1, int_o
double precision :: int_c2(3), int_e2(3)
double precision :: int_c3(3), int_e3(3)
double precision :: coef, beta, B_center(3)
double precision :: tmp, ct
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao_with1s
double precision, external :: NAI_pol_mult_erf_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b_an ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
ct = inv_sq_pi_2 / mu_erf
v_ij_u_cst_mu_j1b_an = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
!$OMP r1_2, tmp, int_c1, int_e1, int_o, int_c2, &
!$OMP int_e2, int_c3, int_e3) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP final_grid_points, mu_erf, ct, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
r1_2 = 0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
do i = 1, ao_num
do j = i, ao_num
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
int_c1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
int_e1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c2)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e2)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c3)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e3)
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
tmp = coef &
* ( r1_2 * (int_c1 - int_e1) &
- r(1) * (int_c2(1) - int_e2(1)) - r(2) * (int_c2(2) - int_e2(2)) - r(3) * (int_c2(3) - int_e2(3)) &
+ 0.5d0 * (int_c3(1) + int_c3(2) + int_c3(3) - int_e3(1) - int_e3(2) - int_e3(3)) &
- ct * int_o &
)
! ---
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
int_c1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
int_e1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c2)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e2)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c3)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e3)
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
tmp = tmp + coef &
* ( r1_2 * (int_c1 - int_e1) &
- r(1) * (int_c2(1) - int_e2(1)) - r(2) * (int_c2(2) - int_e2(2)) - r(3) * (int_c2(3) - int_e2(3)) &
+ 0.5d0 * (int_c3(1) + int_c3(2) + int_c3(3) - int_e3(1) - int_e3(2) - int_e3(3)) &
- ct * int_o &
)
enddo
! ---
v_ij_u_cst_mu_j1b_an(j,i,ipoint) = tmp
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b_an(j,i,ipoint) = v_ij_u_cst_mu_j1b_an(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b_an', wall1 - wall0
END_PROVIDER

View File

@ -62,6 +62,7 @@ END_PROVIDER
double precision :: tmp_cent_x, tmp_cent_y, tmp_cent_z
provide j1b_pen
provide j1b_pen_coef
List_all_comb_b2_coef = 0.d0
List_all_comb_b2_expo = 0.d0
@ -127,8 +128,8 @@ END_PROVIDER
List_all_comb_b2_expo( 1) = 0.d0
List_all_comb_b2_cent(1:3,1) = 0.d0
do i = 1, nucl_num
List_all_comb_b2_coef( i+1) = -1.d0
List_all_comb_b2_expo( i+1) = j1b_pen( i)
List_all_comb_b2_coef( i+1) = -1.d0 * j1b_pen_coef(i)
List_all_comb_b2_expo( i+1) = j1b_pen(i)
List_all_comb_b2_cent(1,i+1) = nucl_coord(i,1)
List_all_comb_b2_cent(2,i+1) = nucl_coord(i,2)
List_all_comb_b2_cent(3,i+1) = nucl_coord(i,3)
@ -225,6 +226,7 @@ END_PROVIDER
double precision :: dx, dy, dz, r2
provide j1b_pen
provide j1b_pen_coef
List_all_comb_b3_coef = 0.d0
List_all_comb_b3_expo = 0.d0
@ -296,8 +298,8 @@ END_PROVIDER
do i = 1, nucl_num
ii = ii + 1
List_all_comb_b3_coef( ii) = -2.d0
List_all_comb_b3_expo( ii) = j1b_pen( i)
List_all_comb_b3_coef( ii) = -2.d0 * j1b_pen_coef(i)
List_all_comb_b3_expo( ii) = j1b_pen(i)
List_all_comb_b3_cent(1,ii) = nucl_coord(i,1)
List_all_comb_b3_cent(2,ii) = nucl_coord(i,2)
List_all_comb_b3_cent(3,ii) = nucl_coord(i,3)
@ -305,7 +307,7 @@ END_PROVIDER
do i = 1, nucl_num
ii = ii + 1
List_all_comb_b3_coef( ii) = 1.d0
List_all_comb_b3_coef( ii) = 1.d0 * j1b_pen_coef(i) * j1b_pen_coef(i)
List_all_comb_b3_expo( ii) = 2.d0 * j1b_pen(i)
List_all_comb_b3_cent(1,ii) = nucl_coord(i,1)
List_all_comb_b3_cent(2,ii) = nucl_coord(i,2)
@ -337,7 +339,7 @@ END_PROVIDER
ii = ii + 1
! x 2 to avoid doing integrals twice
List_all_comb_b3_coef( ii) = 2.d0 * dexp(-tmp1*tmp2*tmp4*r2)
List_all_comb_b3_coef( ii) = 2.d0 * dexp(-tmp1*tmp2*tmp4*r2) * j1b_pen_coef(i) * j1b_pen_coef(j)
List_all_comb_b3_expo( ii) = tmp3
List_all_comb_b3_cent(1,ii) = tmp4 * (tmp1 * xi + tmp2 * xj)
List_all_comb_b3_cent(2,ii) = tmp4 * (tmp1 * yi + tmp2 * yj)

View File

@ -36,16 +36,25 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [ double precision, expo_j_xmu, (n_fit_1_erf_x) ]
implicit none
BEGIN_DOC
! F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2) is fitted with a gaussian and a Slater
!
! \approx - 1/sqrt(pi) * exp(-alpha * x ) exp(-beta * x**2)
!
! where alpha = expo_j_xmu(1) and beta = expo_j_xmu(2)
END_DOC
expo_j_xmu(1) = 1.7477d0
expo_j_xmu(2) = 0.668662d0
BEGIN_DOC
! F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2) is fitted with a gaussian and a Slater
!
! \approx - 1/sqrt(pi) * exp(-alpha * x ) exp(-beta * x**2)
!
! where alpha = expo_j_xmu(1) and beta = expo_j_xmu(2)
END_DOC
implicit none
!expo_j_xmu(1) = 1.7477d0
!expo_j_xmu(2) = 0.668662d0
!expo_j_xmu(1) = 1.74766377595541d0
!expo_j_xmu(2) = 0.668719925486403d0
expo_j_xmu(1) = 1.74770446934522d0
expo_j_xmu(2) = 0.668659706559979d0
END_PROVIDER

View File

@ -9,19 +9,19 @@ program bi_ort_ints
implicit none
my_grid_becke = .True.
!my_n_pt_r_grid = 10
!my_n_pt_a_grid = 14
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
! call test_3e
! call test_5idx
! call test_5idx2
!call test_4idx
call test_4idx2()
call test_5idx2
call test_5idx
call test_4idx()
call test_4idx_n4()
!call test_4idx2()
!call test_5idx2
!call test_5idx
end
subroutine test_5idx2
@ -211,13 +211,138 @@ end
! ---
subroutine test_4idx_n4()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr
thr = 1d-10
PROVIDE three_e_4_idx_direct_bi_ort_old
PROVIDE three_e_4_idx_direct_bi_ort_n4
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_direct_bi_ort_n4 (l,k,j,i)
ref = three_e_4_idx_direct_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_direct_bi_ort_n4'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_direct_bi_ort_n4 = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_exch13_bi_ort_old
PROVIDE three_e_4_idx_exch13_bi_ort_n4
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_exch13_bi_ort_n4 (l,k,j,i)
ref = three_e_4_idx_exch13_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_exch13_bi_ort_n4'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_exch13_bi_ort_n4 = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_cycle_1_bi_ort_old
PROVIDE three_e_4_idx_cycle_1_bi_ort_n4
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_cycle_1_bi_ort_n4 (l,k,j,i)
ref = three_e_4_idx_cycle_1_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_cycle_1_bi_ort_n4'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_cycle_1_bi_ort_n4 = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_exch23_bi_ort_old
PROVIDE three_e_4_idx_exch23_bi_ort_n4
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_exch23_bi_ort_n4 (l,k,j,i)
ref = three_e_4_idx_exch23_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_exch23_bi_ort_n4'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_exch23_bi_ort_n4 = ', accu / dble(mo_num)**4
! ---
return
end
! ---
subroutine test_4idx()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr
thr = 1d-5
thr = 1d-10
PROVIDE three_e_4_idx_direct_bi_ort_old
PROVIDE three_e_4_idx_direct_bi_ort
@ -275,34 +400,6 @@ subroutine test_4idx()
! ---
! PROVIDE three_e_4_idx_exch12_bi_ort_old
! PROVIDE three_e_4_idx_exch12_bi_ort
!
! accu = 0.d0
! do i = 1, mo_num
! do j = 1, mo_num
! do k = 1, mo_num
! do l = 1, mo_num
!
! new = three_e_4_idx_exch12_bi_ort (l,k,j,i)
! ref = three_e_4_idx_exch12_bi_ort_old(l,k,j,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. thr) then
! print*, ' problem in three_e_4_idx_exch12_bi_ort'
! print*, l, k, j, i
! print*, ref, new, contrib
! stop
! endif
!
! enddo
! enddo
! enddo
! enddo
! print*, ' accu on three_e_4_idx_exch12_bi_ort = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_cycle_1_bi_ort_old
PROVIDE three_e_4_idx_cycle_1_bi_ort
@ -331,34 +428,6 @@ subroutine test_4idx()
! ---
! PROVIDE three_e_4_idx_cycle_2_bi_ort_old
! PROVIDE three_e_4_idx_cycle_2_bi_ort
!
! accu = 0.d0
! do i = 1, mo_num
! do j = 1, mo_num
! do k = 1, mo_num
! do l = 1, mo_num
!
! new = three_e_4_idx_cycle_2_bi_ort (l,k,j,i)
! ref = three_e_4_idx_cycle_2_bi_ort_old(l,k,j,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. thr) then
! print*, ' problem in three_e_4_idx_cycle_2_bi_ort'
! print*, l, k, j, i
! print*, ref, new, contrib
! stop
! endif
!
! enddo
! enddo
! enddo
! enddo
! print*, ' accu on three_e_4_idx_cycle_2_bi_ort = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_exch23_bi_ort_old
PROVIDE three_e_4_idx_exch23_bi_ort

View File

@ -6,7 +6,7 @@ BEGIN_PROVIDER [double precision, ao_one_e_integrals_tc_tot, (ao_num,ao_num)]
implicit none
integer :: i, j
ao_one_e_integrals_tc_tot = ao_one_e_integrals
ao_one_e_integrals_tc_tot = ao_one_e_integrals
!provide j1b_type

View File

@ -140,8 +140,6 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3,
enddo
enddo
FREE int2_grad1_u12_ao
endif
call wall_time(wall1)
@ -225,6 +223,8 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_t, (n_points_final_grid, 3,
implicit none
integer :: i, j, ipoint
PROVIDE int2_grad1_u12_ao
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, ao_num

View File

@ -17,6 +17,8 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_direct_bi_ort, (mo_num, mo_num,
integer :: i, j, m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_direct_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_direct_bi_ort ...'
call wall_time(wall0)
@ -125,6 +127,8 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_2_bi_ort, (mo_num, mo_num
integer :: i, j, m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_cycle_2_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_cycle_2_bi_ort ...'
call wall_time(wall0)
@ -179,6 +183,8 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch23_bi_ort, (mo_num, mo_num,
integer :: i, j, m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_exch23_bi_ort = 0.d0
print*,'Providing the three_e_3_idx_exch23_bi_ort ...'
call wall_time(wall0)
@ -233,6 +239,8 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch13_bi_ort, (mo_num, mo_num,
integer :: i,j,m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_exch13_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_exch13_bi_ort ...'
call wall_time(wall0)
@ -287,6 +295,8 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort, (mo_num, mo_num,
integer :: i, j, m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_exch12_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_exch12_bi_ort ...'
call wall_time(wall0)

View File

@ -3,9 +3,8 @@
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
!&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
!&BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
@ -13,28 +12,25 @@
!
! three_e_4_idx_direct_bi_ort (m,j,k,i) = < m j k | -L | m j i > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch13_bi_ort (m,j,k,i) = < m j k | -L | i j m > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch12_bi_ort (m,j,k,i) = < m j k | -L | m i j > ::: notice that i is the RIGHT MO and k is the LEFT MO
! = three_e_4_idx_exch13_bi_ort (j,m,k,i)
! three_e_4_idx_exch23_bi_ort (m,j,k,i) = < m j k | -L | j m i > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = < m j k | -L | j i m > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_cycle_2_bi_ort(m,j,k,i) = < m j k | -L | i m j > ::: notice that i is the RIGHT MO and k is the LEFT MO
! = three_e_4_idx_cycle_1_bi_ort(j,m,k,i)
!
! notice the -1 sign: in this way three_e_4_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
! three_e_4_idx_direct_bi_ort (m,j,k,i) : Lk Ri Imm Ijj + Lj Rj Imm Iki + Lm Rm Ijj Iki
! three_e_4_idx_exch13_bi_ort (m,j,k,i) : Lk Rm Imi Ijj + Lj Rj Imi Ikm + Lm Ri Ijj Ikm
! three_e_4_idx_exch23_bi_ort (m,j,k,i) : Lk Ri Imj Ijm + Lj Rm Imj Iki + Lm Rj Ijm Iki
! three_e_4_idx_cycle_1_bi_ort(m,j,k,i) : Lk Rm Imj Iji + Lj Ri Imj Ikm + Lm Rj Iji Ikm
!
END_DOC
implicit none
integer :: ipoint, i, j, k, l, m
integer :: ipoint, i, j, k, m, n
double precision :: wall1, wall0
double precision, allocatable :: tmp1(:,:,:,:), tmp2(:,:,:,:), tmp3(:,:,:,:)
double precision, allocatable :: tmp_4d(:,:,:,:)
double precision, allocatable :: tmp4(:,:,:)
double precision, allocatable :: tmp5(:,:)
double precision, allocatable :: tmp_3d(:,:,:)
double precision :: tmp_loc_1, tmp_loc_2
double precision, allocatable :: tmp1(:,:,:), tmp2(:,:,:)
double precision, allocatable :: tmp_2d(:,:)
double precision, allocatable :: tmp_aux_1(:,:,:), tmp_aux_2(:,:)
print *, ' Providing the three_e_4_idx_bi_ort ...'
call wall_time(wall0)
@ -42,324 +38,188 @@
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
allocate(tmp_4d(mo_num,mo_num,mo_num,mo_num))
allocate(tmp1(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp2(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp3(n_points_final_grid,3,mo_num,mo_num))
! to reduce the number of operations
allocate(tmp_aux_1(n_points_final_grid,4,mo_num))
allocate(tmp_aux_2(n_points_final_grid,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP PRIVATE (n, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1, tmp2, tmp3)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
tmp2(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_r_in_r_array_transp(ipoint,i)
tmp2(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_r_in_r_array_transp(ipoint,i)
tmp2(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_r_in_r_array_transp(ipoint,i)
tmp3(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,i) * mos_r_in_r_array_transp(ipoint,l)
tmp3(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,i) * mos_r_in_r_array_transp(ipoint,l)
tmp3(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,i) * mos_r_in_r_array_transp(ipoint,l)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1, 3*n_points_final_grid, tmp2, 3*n_points_final_grid &
, 0.d0, tmp_4d, mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_direct_bi_ort(m,j,k,i) = -tmp_4d(m,k,j,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp3, 3*n_points_final_grid, tmp1, 3*n_points_final_grid &
, 0.d0, tmp_4d, mo_num*mo_num)
deallocate(tmp1)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch13_bi_ort(m,j,k,i) = -tmp_4d(m,i,j,k)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1, 3*n_points_final_grid, tmp2, 3*n_points_final_grid &
, 0.d0, tmp_4d, mo_num*mo_num)
deallocate(tmp2)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch13_bi_ort(m,j,k,i) = three_e_4_idx_exch13_bi_ort(m,j,k,i) - tmp_4d(m,k,j,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1, 3*n_points_final_grid, tmp3, 3*n_points_final_grid &
, 0.d0, tmp_4d, mo_num*mo_num)
deallocate(tmp3)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = -tmp_4d(m,k,j,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
tmp1(ipoint,2,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
tmp1(ipoint,3,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1, 3*n_points_final_grid, int2_grad1_u12_bimo_t, 3*n_points_final_grid &
, 0.d0, tmp_4d, mo_num*mo_num)
deallocate(tmp1)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_direct_bi_ort(m,j,k,i) = three_e_4_idx_direct_bi_ort(m,j,k,i) - tmp_4d(m,j,k,i) - tmp_4d(j,m,k,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
deallocate(tmp_4d)
allocate(tmp_3d(mo_num,mo_num,mo_num))
allocate(tmp5(n_points_final_grid,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP final_weight_at_r_vector, &
!$OMP tmp5)
!$OMP tmp_aux_1, tmp_aux_2)
!$OMP DO
do i = 1, mo_num
do n = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp5(ipoint,i) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
tmp_aux_1(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,n,n) * final_weight_at_r_vector(ipoint)
tmp_aux_1(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,n,n) * final_weight_at_r_vector(ipoint)
tmp_aux_1(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,n,n) * final_weight_at_r_vector(ipoint)
tmp_aux_1(ipoint,4,n) = mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,n) * final_weight_at_r_vector(ipoint)
tmp_aux_2(ipoint,n) = mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,n)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
allocate(tmp_2d(mo_num,mo_num))
allocate(tmp1(n_points_final_grid,4,mo_num))
allocate(tmp2(n_points_final_grid,4,mo_num))
allocate(tmp4(n_points_final_grid,mo_num,mo_num))
do m = 1, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, m, &
!$OMP int2_grad1_u12_bimo_t, &
!$OMP tmp4)
!$OMP DO COLLAPSE(2)
! loops approach to break the O(N^4) scaling in memory
do k = 1, mo_num
do i = 1, mo_num
do k = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp4(ipoint,k,i) = int2_grad1_u12_bimo_t(ipoint,1,k,m) * int2_grad1_u12_bimo_t(ipoint,1,m,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,k,m) * int2_grad1_u12_bimo_t(ipoint,2,m,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,k,m) * int2_grad1_u12_bimo_t(ipoint,3,m,i)
enddo
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (n, ipoint, tmp_loc_1, tmp_loc_2) &
!$OMP SHARED (mo_num, n_points_final_grid, i, k, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp_aux_2, tmp1)
!$OMP DO
do n = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp_loc_1 = mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i)
tmp_loc_2 = tmp_aux_2(ipoint,n)
tmp1(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,n,n) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,1,k,i) * tmp_loc_2
tmp1(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,n,n) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,2,k,i) * tmp_loc_2
tmp1(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,n,n) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,3,k,i) * tmp_loc_2
tmp1(ipoint,4,n) = int2_grad1_u12_bimo_t(ipoint,1,n,n) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,n) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,n) * int2_grad1_u12_bimo_t(ipoint,3,k,i)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num, mo_num*mo_num, n_points_final_grid, 1.d0 &
, tmp5, n_points_final_grid, tmp4, n_points_final_grid &
, 0.d0, tmp_3d, mo_num)
call dgemm( 'T', 'N', mo_num, mo_num, 4*n_points_final_grid, 1.d0 &
, tmp_aux_1(1,1,1), 4*n_points_final_grid, tmp1(1,1,1), 4*n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
three_e_4_idx_exch13_bi_ort(m,j,k,i) = three_e_4_idx_exch13_bi_ort(m,j,k,i) - tmp_3d(j,k,i)
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, k, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, m, &
!$OMP mos_l_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp4)
!$OMP DO COLLAPSE(2)
do k = 1, mo_num
do j = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp4(ipoint,j,k) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,j) &
* ( int2_grad1_u12_bimo_t(ipoint,1,m,j) * int2_grad1_u12_bimo_t(ipoint,1,k,m) &
+ int2_grad1_u12_bimo_t(ipoint,2,m,j) * int2_grad1_u12_bimo_t(ipoint,2,k,m) &
+ int2_grad1_u12_bimo_t(ipoint,3,m,j) * int2_grad1_u12_bimo_t(ipoint,3,k,m) )
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, n_points_final_grid, 1.d0 &
, tmp4, n_points_final_grid, mos_r_in_r_array_transp, n_points_final_grid &
, 0.d0, tmp_3d, mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = three_e_4_idx_cycle_1_bi_ort(m,j,k,i) - tmp_3d(j,k,i)
enddo
enddo
enddo
!$OMP END PARALLEL DO
enddo
deallocate(tmp5)
deallocate(tmp_3d)
do i = 1, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (m, j, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, i, &
!$OMP mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp4)
!$OMP DO COLLAPSE(2)
!$OMP PARALLEL DO PRIVATE(j,m)
do j = 1, mo_num
do m = 1, mo_num
do ipoint = 1, n_points_final_grid
three_e_4_idx_direct_bi_ort(m,j,k,i) = -tmp_2d(m,j)
enddo
enddo
!$OMP END PARALLEL DO
tmp4(ipoint,m,j) = final_weight_at_r_vector(ipoint) * mos_r_in_r_array_transp(ipoint,m) &
* ( int2_grad1_u12_bimo_t(ipoint,1,m,j) * int2_grad1_u12_bimo_t(ipoint,1,j,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,m,j) * int2_grad1_u12_bimo_t(ipoint,2,j,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,m,j) * int2_grad1_u12_bimo_t(ipoint,3,j,i) )
enddo
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (n, ipoint, tmp_loc_1, tmp_loc_2) &
!$OMP SHARED (mo_num, n_points_final_grid, i, k, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1, tmp2)
!$OMP DO
do n = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp_loc_1 = mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,n)
tmp_loc_2 = mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,i)
tmp1(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,n,i) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,1,k,n) * tmp_loc_2
tmp1(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,n,i) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,2,k,n) * tmp_loc_2
tmp1(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,n,i) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,3,k,n) * tmp_loc_2
tmp1(ipoint,4,n) = int2_grad1_u12_bimo_t(ipoint,1,n,i) * int2_grad1_u12_bimo_t(ipoint,1,k,n) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,i) * int2_grad1_u12_bimo_t(ipoint,2,k,n) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,i) * int2_grad1_u12_bimo_t(ipoint,3,k,n)
tmp2(ipoint,1,n) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,n)
tmp2(ipoint,2,n) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,n)
tmp2(ipoint,3,n) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,n)
tmp2(ipoint,4,n) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,n)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, n_points_final_grid, -1.d0 &
, tmp4, n_points_final_grid, mos_l_in_r_array_transp, n_points_final_grid &
, 1.d0, three_e_4_idx_cycle_1_bi_ort(1,1,1,i), mo_num*mo_num)
call dgemm( 'T', 'N', mo_num, mo_num, 4*n_points_final_grid, 1.d0 &
, tmp1(1,1,1), 4*n_points_final_grid, tmp_aux_1(1,1,1), 4*n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
enddo
!$OMP PARALLEL DO PRIVATE(j,m)
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch13_bi_ort(m,j,k,i) = -tmp_2d(m,j)
enddo
enddo
!$OMP END PARALLEL DO
deallocate(tmp4)
call dgemm( 'T', 'N', mo_num, mo_num, 4*n_points_final_grid, 1.d0 &
, tmp1(1,1,1), 4*n_points_final_grid, tmp2(1,1,1), 4*n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
!$OMP PARALLEL DO PRIVATE(j,m)
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_cycle_1_bi_ort(m,i,k,j) = -tmp_2d(m,j)
enddo
enddo
!$OMP END PARALLEL DO
! !$OMP PARALLEL DO PRIVATE(i,j,k,m)
! do i = 1, mo_num
! do k = 1, mo_num
! do j = 1, mo_num
! do m = 1, mo_num
! three_e_4_idx_exch12_bi_ort (m,j,k,i) = three_e_4_idx_exch13_bi_ort (j,m,k,i)
! three_e_4_idx_cycle_2_bi_ort(m,j,k,i) = three_e_4_idx_cycle_1_bi_ort(j,m,k,i)
! enddo
! enddo
! enddo
! enddo
! !$OMP END PARALLEL DO
enddo ! i
do j = 1, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (n, ipoint, tmp_loc_1, tmp_loc_2) &
!$OMP SHARED (mo_num, n_points_final_grid, j, k, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1, tmp2)
!$OMP DO
do n = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp_loc_1 = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,j) * mos_r_in_r_array_transp(ipoint,n)
tmp_loc_2 = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,j)
tmp1(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,n,j) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,1,j,n) * tmp_loc_2
tmp1(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,n,j) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,2,j,n) * tmp_loc_2
tmp1(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,n,j) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,3,j,n) * tmp_loc_2
tmp1(ipoint,4,n) = int2_grad1_u12_bimo_t(ipoint,1,n,j) * int2_grad1_u12_bimo_t(ipoint,1,j,n) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,j) * int2_grad1_u12_bimo_t(ipoint,2,j,n) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,j) * int2_grad1_u12_bimo_t(ipoint,3,j,n)
tmp2(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,k,n)
tmp2(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,k,n)
tmp2(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,k,n)
tmp2(ipoint,4,n) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,n)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num, mo_num, 4*n_points_final_grid, 1.d0 &
, tmp1(1,1,1), 4*n_points_final_grid, tmp2(1,1,1), 4*n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
!$OMP PARALLEL DO PRIVATE(i,m)
do i = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch23_bi_ort(m,j,k,i) = -tmp_2d(m,i)
enddo
enddo
!$OMP END PARALLEL DO
enddo ! j
enddo !k
deallocate(tmp_2d)
deallocate(tmp1)
deallocate(tmp2)
deallocate(tmp_aux_1)
deallocate(tmp_aux_2)
call wall_time(wall1)
@ -370,115 +230,3 @@ END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch23_bi_ort (m,j,k,i) = < m j k | -L | j m i > ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_4_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
! three_e_4_idx_exch23_bi_ort (m,j,k,i) : Lk Ri Imj Ijm + Lj Rm Imj Iki + Lm Rj Ijm Iki
!
END_DOC
implicit none
integer :: i, j, k, l, m, ipoint
double precision :: wall1, wall0
double precision, allocatable :: tmp1(:,:,:,:), tmp_4d(:,:,:,:)
double precision, allocatable :: tmp5(:,:,:), tmp6(:,:,:)
print *, ' Providing the three_e_4_idx_exch23_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
allocate(tmp5(n_points_final_grid,mo_num,mo_num))
allocate(tmp6(n_points_final_grid,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp5, tmp6)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp5(ipoint,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,i) * int2_grad1_u12_bimo_t(ipoint,1,i,l) &
+ int2_grad1_u12_bimo_t(ipoint,2,l,i) * int2_grad1_u12_bimo_t(ipoint,2,i,l) &
+ int2_grad1_u12_bimo_t(ipoint,3,l,i) * int2_grad1_u12_bimo_t(ipoint,3,i,l)
tmp6(ipoint,l,i) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, n_points_final_grid, -1.d0 &
, tmp5, n_points_final_grid, tmp6, n_points_final_grid &
, 0.d0, three_e_4_idx_exch23_bi_ort, mo_num*mo_num)
deallocate(tmp5)
deallocate(tmp6)
allocate(tmp_4d(mo_num,mo_num,mo_num,mo_num))
allocate(tmp1(n_points_final_grid,3,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
tmp1(ipoint,2,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
tmp1(ipoint,3,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1, 3*n_points_final_grid, int2_grad1_u12_bimo_t, 3*n_points_final_grid &
, 0.d0, tmp_4d, mo_num*mo_num)
deallocate(tmp1)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch23_bi_ort(m,j,k,i) = three_e_4_idx_exch23_bi_ort(m,j,k,i) - tmp_4d(m,j,k,i) - tmp_4d(j,m,k,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
deallocate(tmp_4d)
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_exch23_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---

View File

@ -0,0 +1,486 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort_n4 , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort_n4 , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort_n4, (mo_num, mo_num, mo_num, mo_num)]
!&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort_n4, (mo_num, mo_num, mo_num, mo_num)]
!&BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort_n4, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_direct_bi_ort_n4 (m,j,k,i) = < m j k | -L | m j i > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch13_bi_ort_n4 (m,j,k,i) = < m j k | -L | i j m > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch12_bi_ort_n4 (m,j,k,i) = < m j k | -L | m i j > ::: notice that i is the RIGHT MO and k is the LEFT MO
! = three_e_4_idx_exch13_bi_ort_n4 (j,m,k,i)
! three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) = < m j k | -L | j i m > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_cycle_2_bi_ort_n4(m,j,k,i) = < m j k | -L | i m j > ::: notice that i is the RIGHT MO and k is the LEFT MO
! = three_e_4_idx_cycle_1_bi_ort_n4(j,m,k,i)
!
! notice the -1 sign: in this way three_e_4_idx_direct_bi_ort_n4 can be directly used to compute Slater rules with a + sign
!
! three_e_4_idx_direct_bi_ort_n4 (m,j,k,i) : Lk Ri Imm Ijj + Lj Rj Imm Iki + Lm Rm Ijj Iki
! three_e_4_idx_exch13_bi_ort_n4 (m,j,k,i) : Lk Rm Imi Ijj + Lj Rj Imi Ikm + Lm Ri Ijj Ikm
! three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) : Lk Rm Imj Iji + Lj Ri Imj Ikm + Lm Rj Iji Ikm
!
END_DOC
implicit none
integer :: ipoint, i, j, k, l, m
double precision :: wall1, wall0
double precision, allocatable :: tmp1(:,:,:,:), tmp2(:,:,:,:), tmp3(:,:,:,:)
double precision, allocatable :: tmp_4d(:,:,:,:)
double precision, allocatable :: tmp4(:,:,:)
double precision, allocatable :: tmp5(:,:)
double precision, allocatable :: tmp_3d(:,:,:)
print *, ' Providing the O(N^4) three_e_4_idx_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
allocate(tmp_4d(mo_num,mo_num,mo_num,mo_num))
allocate(tmp1(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp2(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp3(n_points_final_grid,3,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1, tmp2, tmp3)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
tmp2(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_r_in_r_array_transp(ipoint,i)
tmp2(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_r_in_r_array_transp(ipoint,i)
tmp2(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_r_in_r_array_transp(ipoint,i)
tmp3(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,i) * mos_r_in_r_array_transp(ipoint,l)
tmp3(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,i) * mos_r_in_r_array_transp(ipoint,l)
tmp3(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,i) * mos_r_in_r_array_transp(ipoint,l)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, tmp2(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_direct_bi_ort_n4(m,j,k,i) = -tmp_4d(m,k,j,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp3(1,1,1,1), 3*n_points_final_grid, tmp1(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) = -tmp_4d(m,i,j,k)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, tmp2(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
deallocate(tmp2)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) = three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) - tmp_4d(m,k,j,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, tmp3(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
deallocate(tmp3)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) = -tmp_4d(m,k,j,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
tmp1(ipoint,2,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
tmp1(ipoint,3,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
deallocate(tmp1)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_direct_bi_ort_n4(m,j,k,i) = three_e_4_idx_direct_bi_ort_n4(m,j,k,i) - tmp_4d(m,j,k,i) - tmp_4d(j,m,k,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
deallocate(tmp_4d)
allocate(tmp_3d(mo_num,mo_num,mo_num))
allocate(tmp5(n_points_final_grid,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP final_weight_at_r_vector, &
!$OMP tmp5)
!$OMP DO
do i = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp5(ipoint,i) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
allocate(tmp4(n_points_final_grid,mo_num,mo_num))
do m = 1, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, m, &
!$OMP int2_grad1_u12_bimo_t, &
!$OMP tmp4)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp4(ipoint,k,i) = int2_grad1_u12_bimo_t(ipoint,1,k,m) * int2_grad1_u12_bimo_t(ipoint,1,m,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,k,m) * int2_grad1_u12_bimo_t(ipoint,2,m,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,k,m) * int2_grad1_u12_bimo_t(ipoint,3,m,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num, mo_num*mo_num, n_points_final_grid, 1.d0 &
, tmp5(1,1), n_points_final_grid, tmp4(1,1,1), n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) = three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) - tmp_3d(j,k,i)
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, k, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, m, &
!$OMP mos_l_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp4)
!$OMP DO COLLAPSE(2)
do k = 1, mo_num
do j = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp4(ipoint,j,k) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,j) &
* ( int2_grad1_u12_bimo_t(ipoint,1,m,j) * int2_grad1_u12_bimo_t(ipoint,1,k,m) &
+ int2_grad1_u12_bimo_t(ipoint,2,m,j) * int2_grad1_u12_bimo_t(ipoint,2,k,m) &
+ int2_grad1_u12_bimo_t(ipoint,3,m,j) * int2_grad1_u12_bimo_t(ipoint,3,k,m) )
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, n_points_final_grid, 1.d0 &
, tmp4(1,1,1), n_points_final_grid, mos_r_in_r_array_transp(1,1), n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) = three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) - tmp_3d(j,k,i)
enddo
enddo
enddo
!$OMP END PARALLEL DO
enddo
deallocate(tmp5)
deallocate(tmp_3d)
do i = 1, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (m, j, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, i, &
!$OMP mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp4)
!$OMP DO COLLAPSE(2)
do j = 1, mo_num
do m = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp4(ipoint,m,j) = final_weight_at_r_vector(ipoint) * mos_r_in_r_array_transp(ipoint,m) &
* ( int2_grad1_u12_bimo_t(ipoint,1,m,j) * int2_grad1_u12_bimo_t(ipoint,1,j,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,m,j) * int2_grad1_u12_bimo_t(ipoint,2,j,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,m,j) * int2_grad1_u12_bimo_t(ipoint,3,j,i) )
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, n_points_final_grid, -1.d0 &
, tmp4(1,1,1), n_points_final_grid, mos_l_in_r_array_transp(1,1), n_points_final_grid &
, 1.d0, three_e_4_idx_cycle_1_bi_ort_n4(1,1,1,i), mo_num*mo_num)
enddo
deallocate(tmp4)
! !$OMP PARALLEL DO PRIVATE(i,j,k,m)
! do i = 1, mo_num
! do k = 1, mo_num
! do j = 1, mo_num
! do m = 1, mo_num
! three_e_4_idx_exch12_bi_ort_n4 (m,j,k,i) = three_e_4_idx_exch13_bi_ort_n4 (j,m,k,i)
! three_e_4_idx_cycle_2_bi_ort_n4(m,j,k,i) = three_e_4_idx_cycle_1_bi_ort_n4(j,m,k,i)
! enddo
! enddo
! enddo
! enddo
! !$OMP END PARALLEL DO
call wall_time(wall1)
print *, ' wall time for O(N^4) three_e_4_idx_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort_n4 , (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch23_bi_ort_n4 (m,j,k,i) = < m j k | -L | j m i > ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_4_idx_direct_bi_ort_n4 can be directly used to compute Slater rules with a + sign
!
! three_e_4_idx_exch23_bi_ort_n4 (m,j,k,i) : Lk Ri Imj Ijm + Lj Rm Imj Iki + Lm Rj Ijm Iki
!
END_DOC
implicit none
integer :: i, j, k, l, m, ipoint
double precision :: wall1, wall0
double precision, allocatable :: tmp1(:,:,:,:), tmp_4d(:,:,:,:)
double precision, allocatable :: tmp5(:,:,:), tmp6(:,:,:)
print *, ' Providing the O(N^4) three_e_4_idx_exch23_bi_ort_n4 ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
allocate(tmp5(n_points_final_grid,mo_num,mo_num))
allocate(tmp6(n_points_final_grid,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp5, tmp6)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp5(ipoint,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,i) * int2_grad1_u12_bimo_t(ipoint,1,i,l) &
+ int2_grad1_u12_bimo_t(ipoint,2,l,i) * int2_grad1_u12_bimo_t(ipoint,2,i,l) &
+ int2_grad1_u12_bimo_t(ipoint,3,l,i) * int2_grad1_u12_bimo_t(ipoint,3,i,l)
tmp6(ipoint,l,i) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, n_points_final_grid, -1.d0 &
, tmp5(1,1,1), n_points_final_grid, tmp6(1,1,1), n_points_final_grid &
, 0.d0, three_e_4_idx_exch23_bi_ort_n4(1,1,1,1), mo_num*mo_num)
deallocate(tmp5)
deallocate(tmp6)
allocate(tmp_4d(mo_num,mo_num,mo_num,mo_num))
allocate(tmp1(n_points_final_grid,3,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
tmp1(ipoint,2,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
tmp1(ipoint,3,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
deallocate(tmp1)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch23_bi_ort_n4(m,j,k,i) = three_e_4_idx_exch23_bi_ort_n4(m,j,k,i) - tmp_4d(m,j,k,i) - tmp_4d(j,m,k,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
deallocate(tmp_4d)
call wall_time(wall1)
print *, ' wall time for O(N^4) three_e_4_idx_exch23_bi_ort_n4', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---

View File

@ -80,6 +80,8 @@ BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_n
enddo
enddo
FREE ao_tc_int_chemist
endif
END_PROVIDER
@ -128,69 +130,99 @@ BEGIN_PROVIDER [double precision, mo_bi_ortho_tc_two_e_chemist, (mo_num, mo_num,
implicit none
integer :: i, j, k, l, m, n, p, q
double precision, allocatable :: mo_tmp_1(:,:,:,:), mo_tmp_2(:,:,:,:)
double precision, allocatable :: a1(:,:,:,:), a2(:,:,:,:)
allocate(mo_tmp_1(mo_num,ao_num,ao_num,ao_num))
mo_tmp_1 = 0.d0
PROVIDE mo_r_coef mo_l_coef
do m = 1, ao_num
do p = 1, ao_num
do n = 1, ao_num
do q = 1, ao_num
do k = 1, mo_num
! (k n|p m) = sum_q c_qk * (q n|p m)
mo_tmp_1(k,n,p,m) += mo_l_coef_transp(k,q) * ao_two_e_tc_tot(q,n,p,m)
enddo
enddo
enddo
enddo
enddo
allocate(a2(ao_num,ao_num,ao_num,mo_num))
allocate(mo_tmp_2(mo_num,mo_num,ao_num,ao_num))
mo_tmp_2 = 0.d0
call dgemm( 'T', 'N', ao_num*ao_num*ao_num, mo_num, ao_num, 1.d0 &
, ao_two_e_tc_tot(1,1,1,1), ao_num, mo_l_coef(1,1), ao_num &
, 0.d0 , a2(1,1,1,1), ao_num*ao_num*ao_num)
do m = 1, ao_num
do p = 1, ao_num
do n = 1, ao_num
do i = 1, mo_num
do k = 1, mo_num
! (k i|p m) = sum_n c_ni * (k n|p m)
mo_tmp_2(k,i,p,m) += mo_r_coef_transp(i,n) * mo_tmp_1(k,n,p,m)
enddo
enddo
enddo
enddo
enddo
deallocate(mo_tmp_1)
allocate(a1(ao_num,ao_num,mo_num,mo_num))
allocate(mo_tmp_1(mo_num,mo_num,mo_num,ao_num))
mo_tmp_1 = 0.d0
do m = 1, ao_num
do p = 1, ao_num
do l = 1, mo_num
do i = 1, mo_num
do k = 1, mo_num
mo_tmp_1(k,i,l,m) += mo_l_coef_transp(l,p) * mo_tmp_2(k,i,p,m)
enddo
enddo
enddo
enddo
enddo
deallocate(mo_tmp_2)
call dgemm( 'T', 'N', ao_num*ao_num*mo_num, mo_num, ao_num, 1.d0 &
, a2(1,1,1,1), ao_num, mo_r_coef(1,1), ao_num &
, 0.d0, a1(1,1,1,1), ao_num*ao_num*mo_num)
mo_bi_ortho_tc_two_e_chemist = 0.d0
do m = 1, ao_num
do j = 1, mo_num
do l = 1, mo_num
do i = 1, mo_num
do k = 1, mo_num
mo_bi_ortho_tc_two_e_chemist(k,i,l,j) += mo_r_coef_transp(j,m) * mo_tmp_1(k,i,l,m)
enddo
enddo
enddo
enddo
enddo
deallocate(mo_tmp_1)
deallocate(a2)
allocate(a2(ao_num,mo_num,mo_num,mo_num))
call dgemm( 'T', 'N', ao_num*mo_num*mo_num, mo_num, ao_num, 1.d0 &
, a1(1,1,1,1), ao_num, mo_l_coef(1,1), ao_num &
, 0.d0, a2(1,1,1,1), ao_num*mo_num*mo_num)
deallocate(a1)
call dgemm( 'T', 'N', mo_num*mo_num*mo_num, mo_num, ao_num, 1.d0 &
, a2(1,1,1,1), ao_num, mo_r_coef(1,1), ao_num &
, 0.d0, mo_bi_ortho_tc_two_e_chemist(1,1,1,1), mo_num*mo_num*mo_num)
deallocate(a2)
!allocate(a1(mo_num,ao_num,ao_num,ao_num))
!a1 = 0.d0
!do m = 1, ao_num
! do p = 1, ao_num
! do n = 1, ao_num
! do q = 1, ao_num
! do k = 1, mo_num
! ! (k n|p m) = sum_q c_qk * (q n|p m)
! a1(k,n,p,m) += mo_l_coef_transp(k,q) * ao_two_e_tc_tot(q,n,p,m)
! enddo
! enddo
! enddo
! enddo
!enddo
!allocate(a2(mo_num,mo_num,ao_num,ao_num))
!a2 = 0.d0
!do m = 1, ao_num
! do p = 1, ao_num
! do n = 1, ao_num
! do i = 1, mo_num
! do k = 1, mo_num
! ! (k i|p m) = sum_n c_ni * (k n|p m)
! a2(k,i,p,m) += mo_r_coef_transp(i,n) * a1(k,n,p,m)
! enddo
! enddo
! enddo
! enddo
!enddo
!deallocate(a1)
!allocate(a1(mo_num,mo_num,mo_num,ao_num))
!a1 = 0.d0
!do m = 1, ao_num
! do p = 1, ao_num
! do l = 1, mo_num
! do i = 1, mo_num
! do k = 1, mo_num
! a1(k,i,l,m) += mo_l_coef_transp(l,p) * a2(k,i,p,m)
! enddo
! enddo
! enddo
! enddo
!enddo
!deallocate(a2)
!mo_bi_ortho_tc_two_e_chemist = 0.d0
!do m = 1, ao_num
! do j = 1, mo_num
! do l = 1, mo_num
! do i = 1, mo_num
! do k = 1, mo_num
! mo_bi_ortho_tc_two_e_chemist(k,i,l,j) += mo_r_coef_transp(j,m) * a1(k,i,l,m)
! enddo
! enddo
! enddo
! enddo
!enddo
!deallocate(a1)
END_PROVIDER
@ -209,6 +241,8 @@ BEGIN_PROVIDER [double precision, mo_bi_ortho_tc_two_e, (mo_num, mo_num, mo_num,
implicit none
integer :: i, j, k, l
PROVIDE mo_bi_ortho_tc_two_e_chemist
do j = 1, mo_num
do i = 1, mo_num
do l = 1, mo_num
@ -220,56 +254,62 @@ BEGIN_PROVIDER [double precision, mo_bi_ortho_tc_two_e, (mo_num, mo_num, mo_num,
enddo
enddo
FREE mo_bi_ortho_tc_two_e_chemist
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj, (mo_num,mo_num) ]
&BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj_exchange, (mo_num,mo_num) ]
&BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj_anti, (mo_num,mo_num) ]
implicit none
BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj, (mo_num,mo_num)]
&BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj_exchange, (mo_num,mo_num)]
&BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj_anti, (mo_num,mo_num)]
BEGIN_DOC
! mo_bi_ortho_tc_two_e_jj(i,j) = J_ij = <ji|W-K|ji>
! mo_bi_ortho_tc_two_e_jj_exchange(i,j) = K_ij = <ij|W-K|ji>
! mo_bi_ortho_tc_two_e_jj_anti(i,j) = J_ij - K_ij
END_DOC
integer :: i,j
double precision :: get_two_e_integral
implicit none
integer :: i, j
mo_bi_ortho_tc_two_e_jj = 0.d0
mo_bi_ortho_tc_two_e_jj = 0.d0
mo_bi_ortho_tc_two_e_jj_exchange = 0.d0
do i=1,mo_num
do j=1,mo_num
mo_bi_ortho_tc_two_e_jj(i,j) = mo_bi_ortho_tc_two_e(j,i,j,i)
do i = 1, mo_num
do j = 1, mo_num
mo_bi_ortho_tc_two_e_jj(i,j) = mo_bi_ortho_tc_two_e(j,i,j,i)
mo_bi_ortho_tc_two_e_jj_exchange(i,j) = mo_bi_ortho_tc_two_e(i,j,j,i)
mo_bi_ortho_tc_two_e_jj_anti(i,j) = mo_bi_ortho_tc_two_e_jj(i,j) - mo_bi_ortho_tc_two_e_jj_exchange(i,j)
mo_bi_ortho_tc_two_e_jj_anti(i,j) = mo_bi_ortho_tc_two_e_jj(i,j) - mo_bi_ortho_tc_two_e_jj_exchange(i,j)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_2e_3idx_coulomb_integrals, (mo_num,mo_num, mo_num)]
&BEGIN_PROVIDER [double precision, tc_2e_3idx_exchange_integrals,(mo_num,mo_num, mo_num)]
implicit none
BEGIN_DOC
! tc_2e_3idx_coulomb_integrals(j,k,i) = <jk|ji>
!
! tc_2e_3idx_exchange_integrals(j,k,i) = <kj|ji>
END_DOC
integer :: i,j,k,l
double precision :: get_two_e_integral
double precision :: integral
! ---
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
tc_2e_3idx_coulomb_integrals(j, k,i) = mo_bi_ortho_tc_two_e(j ,k ,j ,i )
tc_2e_3idx_exchange_integrals(j,k,i) = mo_bi_ortho_tc_two_e(k ,j ,j ,i )
enddo
BEGIN_PROVIDER [double precision, tc_2e_3idx_coulomb_integrals , (mo_num,mo_num,mo_num)]
&BEGIN_PROVIDER [double precision, tc_2e_3idx_exchange_integrals, (mo_num,mo_num,mo_num)]
BEGIN_DOC
! tc_2e_3idx_coulomb_integrals (j,k,i) = <jk|ji>
! tc_2e_3idx_exchange_integrals(j,k,i) = <kj|ji>
END_DOC
implicit none
integer :: i, j, k
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
tc_2e_3idx_coulomb_integrals(j, k,i) = mo_bi_ortho_tc_two_e(j ,k ,j ,i )
tc_2e_3idx_exchange_integrals(j,k,i) = mo_bi_ortho_tc_two_e(k ,j ,j ,i )
enddo
enddo
enddo
enddo
END_PROVIDER
! ---

View File

@ -136,6 +136,7 @@ BEGIN_PROVIDER [ double precision, mo_r_coef, (ao_num, mo_num) ]
mo_r_coef(j,i) = mo_coef(j,i)
enddo
enddo
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
endif
END_PROVIDER
@ -191,6 +192,7 @@ BEGIN_PROVIDER [ double precision, mo_l_coef, (ao_num, mo_num) ]
mo_l_coef(j,i) = mo_coef(j,i)
enddo
enddo
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
endif
END_PROVIDER

View File

@ -1,47 +1,54 @@
! ---
subroutine run_stochastic_cipsi
BEGIN_DOC
! Selected Full Configuration Interaction with Stochastic selection and PT2.
END_DOC
use selection_types
implicit none
BEGIN_DOC
! Selected Full Configuration Interaction with Stochastic selection and PT2.
END_DOC
integer :: i,j,k,ndet
double precision, allocatable :: zeros(:)
integer :: to_select
type(pt2_type) :: pt2_data, pt2_data_err
logical, external :: qp_stop
logical :: print_pt2
integer :: i, j, k, ndet
integer :: to_select
logical :: print_pt2
logical :: has
type(pt2_type) :: pt2_data, pt2_data_err
double precision :: rss
double precision :: correlation_energy_ratio, E_denom, E_tc, norm
double precision :: hf_energy_ref
double precision :: relative_error
double precision, allocatable :: ept2(:), pt1(:), extrap_energy(:)
double precision, allocatable :: zeros(:)
double precision :: rss
double precision, external :: memory_of_double
double precision :: correlation_energy_ratio,E_denom,E_tc,norm
double precision, allocatable :: ept2(:), pt1(:),extrap_energy(:)
logical, external :: qp_stop
double precision, external :: memory_of_double
PROVIDE mo_l_coef mo_r_coef
PROVIDE H_apply_buffer_allocated distributed_davidson
print*,'Diagonal elements of the Fock matrix '
print*, ' Diagonal elements of the Fock matrix '
do i = 1, mo_num
write(*,*)i,Fock_matrix_tc_mo_tot(i,i)
write(*,*) i, Fock_matrix_tc_mo_tot(i,i)
enddo
N_iter = 1
threshold_generators = 1.d0
SOFT_TOUCH threshold_generators
rss = memory_of_double(N_states)*4.d0
call check_mem(rss,irp_here)
call check_mem(rss, irp_here)
allocate (zeros(N_states))
allocate(zeros(N_states))
call pt2_alloc(pt2_data, N_states)
call pt2_alloc(pt2_data_err, N_states)
double precision :: hf_energy_ref
logical :: has
double precision :: relative_error
relative_error = PT2_relative_error
relative_error=PT2_relative_error
zeros = 0.d0
pt2_data % pt2 = -huge(1.e0)
pt2_data % rpt2 = -huge(1.e0)
pt2_data % overlap= 0.d0
zeros = 0.d0
pt2_data % pt2 = -huge(1.e0)
pt2_data % rpt2 = -huge(1.e0)
pt2_data % overlap = 0.d0
pt2_data % variance = huge(1.e0)
!!!! WARNING !!!! SEEMS TO BE PROBLEM WTH make_s2_eigenfunction !!!! THE DETERMINANTS CAN APPEAR TWICE IN THE WFT DURING SELECTION
@ -49,7 +56,7 @@ subroutine run_stochastic_cipsi
! call make_s2_eigenfunction
! endif
print_pt2 = .False.
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
call diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
! call routine_save_right
@ -74,14 +81,12 @@ subroutine run_stochastic_cipsi
! soft_touch thresh_it_dav
print_pt2 = .True.
do while ( &
(N_det < N_det_max) .and. &
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) &
)
print*,'maxval(abs(pt2_data % pt2(1:N_states)))',maxval(abs(pt2_data % pt2(1:N_states)))
print*,pt2_max
write(*,'(A)') '--------------------------------------------------------------------------------'
do while( (N_det < N_det_max) .and. &
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max))
print*,'maxval(abs(pt2_data % pt2(1:N_states)))',maxval(abs(pt2_data % pt2(1:N_states)))
print*,pt2_max
write(*,'(A)') '--------------------------------------------------------------------------------'
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
to_select = max(N_states_diag, to_select)
@ -94,8 +99,7 @@ subroutine run_stochastic_cipsi
call ZMQ_pt2(E_denom, pt2_data, pt2_data_err, relative_error,to_select) ! Stochastic PT2 and selection
! stop
call print_summary(psi_energy_with_nucl_rep, &
pt2_data, pt2_data_err, N_det,N_configuration,N_states,psi_s2)
call print_summary(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, N_det, N_configuration, N_states, psi_s2)
call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2)
@ -109,13 +113,13 @@ subroutine run_stochastic_cipsi
! Add selected determinants
call copy_H_apply_buffer_to_wf_tc()
PROVIDE psi_l_coef_bi_ortho psi_r_coef_bi_ortho
PROVIDE psi_det
PROVIDE psi_det_sorted_tc
PROVIDE psi_l_coef_bi_ortho psi_r_coef_bi_ortho
PROVIDE psi_det
PROVIDE psi_det_sorted_tc
ept2(N_iter-1) = E_tc + nuclear_repulsion + (pt2_data % pt2(1))/norm
pt1(N_iter-1) = dsqrt(pt2_data % overlap(1,1))
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
pt1(N_iter-1) = dsqrt(pt2_data % overlap(1,1))
call diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
! stop
if (qp_stop()) exit
enddo

View File

@ -343,7 +343,7 @@ subroutine davidson_general_diag_dressed_ext_rout_nonsym_b1space(u_in, H_jj, Dre
if(lambda_tmp .lt. 0.7d0) then
print *, ' very small overlap ...', l, i_omax(l)
print *, ' max overlap = ', lambda_tmp
stop
!stop
endif
if(i_omax(l) .ne. l) then

View File

@ -342,7 +342,7 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
if(lambda_tmp .lt. 0.7d0) then
print *, ' very small overlap ...', l, i_omax(l)
print *, ' max overlap = ', lambda_tmp
stop
!stop
endif
if(i_omax(l) .ne. l) then

View File

@ -1,53 +1,64 @@
BEGIN_PROVIDER[double precision, aos_in_r_array, (ao_num,n_points_final_grid)]
implicit none
BEGIN_DOC
! aos_in_r_array(i,j) = value of the ith ao on the jth grid point
END_DOC
integer :: i,j
double precision :: aos_array(ao_num), r(3)
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,r,aos_array,j) &
!$OMP SHARED(aos_in_r_array,n_points_final_grid,ao_num,final_grid_points)
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
call give_all_aos_at_r(r,aos_array)
do j = 1, ao_num
aos_in_r_array(j,i) = aos_array(j)
! ---
BEGIN_PROVIDER[double precision, aos_in_r_array, (ao_num,n_points_final_grid)]
BEGIN_DOC
! aos_in_r_array(i,j) = value of the ith ao on the jth grid point
END_DOC
implicit none
integer :: i, j
double precision :: tmp_array(ao_num), r(3)
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,r,tmp_array,j) &
!$OMP SHARED(aos_in_r_array,n_points_final_grid,ao_num,final_grid_points)
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
call give_all_aos_at_r(r, tmp_array)
do j = 1, ao_num
aos_in_r_array(j,i) = tmp_array(j)
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP END PARALLEL DO
END_PROVIDER
END_PROVIDER
! ---
BEGIN_PROVIDER[double precision, aos_in_r_array_transp, (n_points_final_grid,ao_num)]
implicit none
BEGIN_DOC
! aos_in_r_array_transp(i,j) = value of the jth ao on the ith grid point
END_DOC
integer :: i,j
double precision :: aos_array(ao_num), r(3)
do i = 1, n_points_final_grid
do j = 1, ao_num
aos_in_r_array_transp(i,j) = aos_in_r_array(j,i)
BEGIN_PROVIDER[double precision, aos_in_r_array_transp, (n_points_final_grid,ao_num)]
BEGIN_DOC
! aos_in_r_array_transp(i,j) = value of the jth ao on the ith grid point
END_DOC
implicit none
integer :: i, j
double precision :: aos_array(ao_num), r(3)
do i = 1, n_points_final_grid
do j = 1, ao_num
aos_in_r_array_transp(i,j) = aos_in_r_array(j,i)
enddo
enddo
enddo
END_PROVIDER
END_PROVIDER
! ---
BEGIN_PROVIDER[double precision, aos_grad_in_r_array, (ao_num,n_points_final_grid,3)]
BEGIN_PROVIDER[double precision, aos_grad_in_r_array, (ao_num,n_points_final_grid,3)]
implicit none
BEGIN_DOC
! aos_grad_in_r_array(i,j,k) = value of the kth component of the gradient of ith ao on the jth grid point
!
! k = 1 : x, k= 2, y, k 3, z
END_DOC
implicit none
integer :: i,j,m
double precision :: aos_array(ao_num), r(3)
double precision :: aos_grad_array(3,ao_num)

View File

@ -1,21 +1,29 @@
subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
! ---
subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
use selection_types
implicit none
integer, intent(inout) :: ndet ! number of determinants from before
double precision, intent(inout) :: E_tc,norm ! E and norm from previous wave function
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
logical, intent(in) :: print_pt2
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
integer :: i,j
double precision :: pt2_tmp,pt1_norm,rpt2_tmp,abs_pt2
pt2_tmp = pt2_data % pt2(1)
abs_pt2 = pt2_data % variance(1)
pt1_norm = pt2_data % overlap(1,1)
rpt2_tmp = pt2_tmp/(1.d0 + pt1_norm)
integer, intent(inout) :: ndet ! number of determinants from before
double precision, intent(inout) :: E_tc, norm ! E and norm from previous wave function
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
logical, intent(in) :: print_pt2
integer :: i, j
double precision :: pt2_tmp, pt1_norm, rpt2_tmp, abs_pt2
PROVIDE mo_l_coef mo_r_coef
pt2_tmp = pt2_data % pt2(1)
abs_pt2 = pt2_data % variance(1)
pt1_norm = pt2_data % overlap(1,1)
rpt2_tmp = pt2_tmp/(1.d0 + pt1_norm)
print*,'*****'
print*,'New wave function information'
print*,'N_det tc = ',N_det
@ -23,53 +31,61 @@ subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1)
print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1)
print*,'*****'
if(print_pt2)then
print*,'*****'
print*,'previous wave function info'
print*,'norm(before) = ',norm
print*,'E(before) = ',E_tc
print*,'PT1 norm = ',dsqrt(pt1_norm)
print*,'PT2 = ',pt2_tmp
print*,'rPT2 = ',rpt2_tmp
print*,'|PT2| = ',abs_pt2
print*,'Positive PT2 = ',(pt2_tmp + abs_pt2)*0.5d0
print*,'Negative PT2 = ',(pt2_tmp - abs_pt2)*0.5d0
print*,'E(before) + PT2 = ',E_tc + pt2_tmp/norm
print*,'E(before) +rPT2 = ',E_tc + rpt2_tmp/norm
write(*,'(A28,X,I10,X,100(F16.8,X))')'Ndet,E,E+PT2,E+RPT2,|PT2|=',ndet,E_tc ,E_tc + pt2_tmp/norm,E_tc + rpt2_tmp/norm,abs_pt2
print*,'*****'
if(print_pt2) then
print*,'*****'
print*,'previous wave function info'
print*,'norm(before) = ',norm
print*,'E(before) = ',E_tc
print*,'PT1 norm = ',dsqrt(pt1_norm)
print*,'PT2 = ',pt2_tmp
print*,'rPT2 = ',rpt2_tmp
print*,'|PT2| = ',abs_pt2
print*,'Positive PT2 = ',(pt2_tmp + abs_pt2)*0.5d0
print*,'Negative PT2 = ',(pt2_tmp - abs_pt2)*0.5d0
print*,'E(before) + PT2 = ',E_tc + pt2_tmp/norm
print*,'E(before) +rPT2 = ',E_tc + rpt2_tmp/norm
write(*,'(A28,X,I10,X,100(F16.8,X))')'Ndet,E,E+PT2,E+RPT2,|PT2|=',ndet,E_tc ,E_tc + pt2_tmp/norm,E_tc + rpt2_tmp/norm,abs_pt2
print*,'*****'
endif
psi_energy(1:N_states) = eigval_right_tc_bi_orth(1:N_states) - nuclear_repulsion
psi_s2(1:N_states) = s2_eigvec_tc_bi_orth(1:N_states)
E_tc = eigval_right_tc_bi_orth(1)
norm = norm_ground_left_right_bi_orth
ndet = N_det
do j=1,N_states
do i=1,N_det
E_tc = eigval_right_tc_bi_orth(1)
norm = norm_ground_left_right_bi_orth
ndet = N_det
do j = 1, N_states
do i = 1, N_det
psi_l_coef_bi_ortho(i,j) = leigvec_tc_bi_orth(i,j)
psi_r_coef_bi_ortho(i,j) = reigvec_tc_bi_orth(i,j)
psi_coef(i,j) = dabs(psi_l_coef_bi_ortho(i,j) * psi_r_coef_bi_ortho(i,j))
psi_coef(i,j) = dabs(psi_l_coef_bi_ortho(i,j) * psi_r_coef_bi_ortho(i,j))
enddo
enddo
SOFT_TOUCH eigval_left_tc_bi_orth eigval_right_tc_bi_orth leigvec_tc_bi_orth reigvec_tc_bi_orth norm_ground_left_right_bi_orth
SOFT_TOUCH eigval_left_tc_bi_orth eigval_right_tc_bi_orth leigvec_tc_bi_orth reigvec_tc_bi_orth norm_ground_left_right_bi_orth
SOFT_TOUCH psi_l_coef_bi_ortho psi_r_coef_bi_ortho psi_coef psi_energy psi_s2
call save_tc_bi_ortho_wavefunction
call save_tc_bi_ortho_wavefunction()
end
subroutine print_CI_dressed(ndet, E_tc,norm,pt2_data,print_pt2)
! ---
subroutine print_CI_dressed(ndet, E_tc, norm, pt2_data, print_pt2)
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
use selection_types
implicit none
integer, intent(inout) :: ndet ! number of determinants from before
double precision, intent(inout) :: E_tc,norm ! E and norm from previous wave function
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
logical, intent(in) :: print_pt2
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
integer :: i,j
integer, intent(inout) :: ndet ! number of determinants from before
double precision, intent(inout) :: E_tc,norm ! E and norm from previous wave function
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
logical, intent(in) :: print_pt2
integer :: i, j
print*,'*****'
print*,'New wave function information'
print*,'N_det tc = ',N_det
@ -77,22 +93,25 @@ subroutine print_CI_dressed(ndet, E_tc,norm,pt2_data,print_pt2)
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1)
print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1)
print*,'*****'
if(print_pt2)then
print*,'*****'
print*,'previous wave function info'
print*,'norm(before) = ',norm
print*,'E(before) = ',E_tc
print*,'PT1 norm = ',dsqrt(pt2_data % overlap(1,1))
print*,'E(before) + PT2 = ',E_tc + (pt2_data % pt2(1))/norm
print*,'PT2 = ',pt2_data % pt2(1)
print*,'Ndet, E_tc, E+PT2 = ',ndet,E_tc,E_tc + (pt2_data % pt2(1))/norm,dsqrt(pt2_data % overlap(1,1))
print*,'*****'
if(print_pt2) then
print*,'*****'
print*,'previous wave function info'
print*,'norm(before) = ',norm
print*,'E(before) = ',E_tc
print*,'PT1 norm = ',dsqrt(pt2_data % overlap(1,1))
print*,'E(before) + PT2 = ',E_tc + (pt2_data % pt2(1))/norm
print*,'PT2 = ',pt2_data % pt2(1)
print*,'Ndet, E_tc, E+PT2 = ',ndet,E_tc,E_tc + (pt2_data % pt2(1))/norm,dsqrt(pt2_data % overlap(1,1))
print*,'*****'
endif
E_tc = eigval_right_tc_bi_orth(1)
norm = norm_ground_left_right_bi_orth
ndet = N_det
do j=1,N_states
do i=1,N_det
do j = 1, N_states
do i = 1, N_det
psi_coef(i,j) = reigvec_tc_bi_orth(i,j)
enddo
enddo
@ -100,3 +119,5 @@ subroutine print_CI_dressed(ndet, E_tc,norm,pt2_data,print_pt2)
end
! ---

View File

@ -1,5 +1,8 @@
program fci
implicit none
! ---
program fci_tc_bi
BEGIN_DOC
! Selected Full Configuration Interaction with stochastic selection
! and PT2.
@ -36,21 +39,27 @@ program fci
!
END_DOC
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
pruning = -1.d0
touch pruning
! pt2_relative_error = 0.01d0
! touch pt2_relative_error
call run_cipsi_tc
call run_cipsi_tc()
end
! ---
subroutine run_cipsi_tc
subroutine run_cipsi_tc()
implicit none
@ -58,20 +67,21 @@ subroutine run_cipsi_tc
PROVIDE psi_det psi_coef mo_bi_ortho_tc_two_e mo_bi_ortho_tc_one_e
if(elec_alpha_num+elec_beta_num .ge. 3) then
if(three_body_h_tc)then
if((elec_alpha_num+elec_beta_num) .ge. 3) then
if(three_body_h_tc) then
call provide_all_three_ints_bi_ortho()
endif
endif
FREE int2_grad1_u12_bimo_transp int2_grad1_u12_ao_transp
FREE int2_grad1_u12_ao int2_grad1_u12_ao_t int2_grad1_u12_ao_transp
FREE int2_grad1_u12_bimo_transp
write(json_unit,json_array_open_fmt) 'fci_tc'
if (do_pt2) then
call run_stochastic_cipsi
if(do_pt2) then
call run_stochastic_cipsi()
else
call run_cipsi
call run_cipsi()
endif
write(json_unit,json_dict_uopen_fmt)
@ -83,13 +93,14 @@ subroutine run_cipsi_tc
PROVIDE mo_bi_ortho_tc_one_e mo_bi_ortho_tc_two_e pt2_min_parallel_tasks
if(elec_alpha_num+elec_beta_num.ge.3)then
if(three_body_h_tc)then
call provide_all_three_ints_bi_ortho
if((elec_alpha_num+elec_beta_num) .ge. 3) then
if(three_body_h_tc) then
call provide_all_three_ints_bi_ortho()
endif
endif
FREE int2_grad1_u12_bimo_transp int2_grad1_u12_ao_transp
FREE int2_grad1_u12_ao int2_grad1_u12_ao_t int2_grad1_u12_ao_transp
FREE int2_grad1_u12_bimo_transp
call run_slave_cipsi

View File

@ -1,31 +1,42 @@
! ---
program tc_pt2_prog
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
pruning = -1.d0
touch pruning
! pt2_relative_error = 0.01d0
! touch pt2_relative_error
call run_pt2_tc
call run_pt2_tc()
end
! ---
subroutine run_pt2_tc
subroutine run_pt2_tc()
implicit none
implicit none
PROVIDE psi_det psi_coef mo_bi_ortho_tc_two_e mo_bi_ortho_tc_one_e
if(elec_alpha_num+elec_beta_num.ge.3)then
if(elec_alpha_num+elec_beta_num.ge.3) then
if(three_body_h_tc)then
call provide_all_three_ints_bi_ortho
call provide_all_three_ints_bi_ortho()
endif
endif
! ---
call tc_pt2
call tc_pt2()
end
! ---

View File

@ -6,13 +6,9 @@ program debug_fit
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
!my_n_pt_r_grid = 100
!my_n_pt_a_grid = 170
!my_n_pt_r_grid = 150
!my_n_pt_a_grid = 194
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf j1b_pen

View File

@ -6,13 +6,9 @@ program debug_integ_jmu_modif
implicit none
my_grid_becke = .True.
!my_n_pt_r_grid = 30
!my_n_pt_a_grid = 50
!my_n_pt_r_grid = 100
!my_n_pt_a_grid = 170
my_n_pt_r_grid = 150
my_n_pt_a_grid = 194
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf j1b_pen
@ -27,12 +23,13 @@ program debug_integ_jmu_modif
! call test_int2_grad1_u12_ao()
!
! call test_grad12_j12()
call test_tchint_rsdft()
! call test_u12sq_j1bsq()
! call test_u12_grad1_u12_j1b_grad1_j1b()
! !call test_gradu_squared_u_ij_mu()
!call test_vect_overlap_gauss_r12_ao()
call test_vect_overlap_gauss_r12_ao_with1s()
!call test_vect_overlap_gauss_r12_ao_with1s()
end
@ -47,22 +44,21 @@ subroutine test_v_ij_u_cst_mu_j1b()
print*, ' test_v_ij_u_cst_mu_j1b ...'
PROVIDE v_ij_u_cst_mu_j1b
PROVIDE v_ij_u_cst_mu_j1b_fit
eps_ij = 1d-3
acc_tot = 0.d0
normalz = 0.d0
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
i_exc = v_ij_u_cst_mu_j1b(i,j,ipoint)
i_num = num_v_ij_u_cst_mu_j1b(i,j,ipoint)
i_exc = v_ij_u_cst_mu_j1b_fit(i,j,ipoint)
i_num = num_v_ij_u_cst_mu_j1b (i,j,ipoint)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in v_ij_u_cst_mu_j1b on', i, j, ipoint
print *, ' problem in v_ij_u_cst_mu_j1b_fit on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -473,6 +469,65 @@ end subroutine test_gradu_squared_u_ij_mu
! ---
subroutine test_tchint_rsdft()
implicit none
integer :: i, j, m, ipoint, jpoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision :: x(3), y(3), dj_1(3), dj_2(3), dj_3(3)
print*, ' test rsdft_jastrow ...'
PROVIDE grad1_u12_num
eps_ij = 1d-4
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
x(1) = final_grid_points(1,ipoint)
x(2) = final_grid_points(2,ipoint)
x(3) = final_grid_points(3,ipoint)
do jpoint = 1, n_points_extra_final_grid
y(1) = final_grid_points_extra(1,jpoint)
y(2) = final_grid_points_extra(2,jpoint)
y(3) = final_grid_points_extra(3,jpoint)
dj_1(1) = grad1_u12_num(jpoint,ipoint,1)
dj_1(2) = grad1_u12_num(jpoint,ipoint,2)
dj_1(3) = grad1_u12_num(jpoint,ipoint,3)
call get_tchint_rsdft_jastrow(x, y, dj_2)
do m = 1, 3
i_exc = dj_1(m)
i_num = dj_2(m)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem on', ipoint, jpoint, m
print *, ' x = ', x
print *, ' y = ', y
print *, ' exc, num, diff = ', i_exc, i_num, acc_ij
call grad1_jmu_modif_num(x, y, dj_3)
print *, ' check = ', dj_3(m)
stop
endif
acc_tot += acc_ij
normalz += dabs(i_exc)
enddo
enddo
enddo
print*, ' acc_tot = ', acc_tot
print*, ' normalz = ', normalz
return
end subroutine test_tchint_rsdft
! ---
subroutine test_grad12_j12()
implicit none
@ -484,7 +539,7 @@ subroutine test_grad12_j12()
PROVIDE grad12_j12
eps_ij = 1d-3
eps_ij = 1d-6
acc_tot = 0.d0
normalz = 0.d0

View File

@ -35,7 +35,7 @@ BEGIN_PROVIDER [ double precision, v_1b, (n_points_final_grid)]
elseif(j1b_type .eq. 4) then
! v(r) = 1 - \sum_{a} \exp(-\alpha_a (r - r_a)^2)
! v(r) = 1 - \sum_{a} \beta_a \exp(-\alpha_a (r - r_a)^2)
do ipoint = 1, n_points_final_grid
@ -51,7 +51,7 @@ BEGIN_PROVIDER [ double precision, v_1b, (n_points_final_grid)]
dz = z - nucl_coord(j,3)
d = dx*dx + dy*dy + dz*dz
fact_r = fact_r - dexp(-a*d)
fact_r = fact_r - j1b_pen_coef(j) * dexp(-a*d)
enddo
v_1b(ipoint) = fact_r
@ -125,7 +125,7 @@ BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
elseif(j1b_type .eq. 4) then
! v(r) = 1 - \sum_{a} \exp(-\alpha_a (r - r_a)^2)
! v(r) = 1 - \sum_{a} \beta_a \exp(-\alpha_a (r - r_a)^2)
do ipoint = 1, n_points_final_grid
@ -144,7 +144,7 @@ BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
r2 = dx*dx + dy*dy + dz*dz
a = j1b_pen(j)
e = a * dexp(-a * r2)
e = a * j1b_pen_coef(j) * dexp(-a * r2)
ax_der += e * dx
ay_der += e * dy
@ -668,7 +668,7 @@ subroutine grad1_jmu_modif_num(r1, r2, grad)
double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out) :: grad(3)
double precision :: tmp0, tmp1, tmp2, tmp3, tmp4, grad_u12(3)
double precision :: tmp0, tmp1, tmp2, grad_u12(3)
double precision, external :: j12_mu
double precision, external :: j1b_nucl
@ -681,18 +681,93 @@ subroutine grad1_jmu_modif_num(r1, r2, grad)
tmp0 = j1b_nucl(r1)
tmp1 = j1b_nucl(r2)
tmp2 = j12_mu(r1, r2)
tmp3 = tmp0 * tmp1
tmp4 = tmp2 * tmp1
grad(1) = tmp3 * grad_u12(1) + tmp4 * grad_x_j1b_nucl_num(r1)
grad(2) = tmp3 * grad_u12(2) + tmp4 * grad_y_j1b_nucl_num(r1)
grad(3) = tmp3 * grad_u12(3) + tmp4 * grad_z_j1b_nucl_num(r1)
grad(1) = (tmp0 * grad_u12(1) + tmp2 * grad_x_j1b_nucl_num(r1)) * tmp1
grad(2) = (tmp0 * grad_u12(2) + tmp2 * grad_y_j1b_nucl_num(r1)) * tmp1
grad(3) = (tmp0 * grad_u12(3) + tmp2 * grad_z_j1b_nucl_num(r1)) * tmp1
return
end subroutine grad1_jmu_modif_num
! ---
subroutine get_tchint_rsdft_jastrow(x, y, dj)
implicit none
double precision, intent(in) :: x(3), y(3)
double precision, intent(out) :: dj(3)
integer :: at
double precision :: a, mu_tmp, inv_sq_pi_2
double precision :: tmp_x, tmp_y, tmp_z, tmp
double precision :: dx2, dy2, pos(3), dxy, dxy2
double precision :: v1b_x, v1b_y
double precision :: u2b, grad1_u2b(3), grad1_v1b(3)
PROVIDE mu_erf
inv_sq_pi_2 = 0.5d0 / dsqrt(dacos(-1.d0))
dj = 0.d0
! double precision, external :: j12_mu, j1b_nucl
! v1b_x = j1b_nucl(x)
! v1b_y = j1b_nucl(y)
! call grad1_j1b_nucl(x, grad1_v1b)
! u2b = j12_mu(x, y)
! call grad1_j12_mu(x, y, grad1_u2b)
! 1b terms
v1b_x = 1.d0
v1b_y = 1.d0
tmp_x = 0.d0
tmp_y = 0.d0
tmp_z = 0.d0
do at = 1, nucl_num
a = j1b_pen(at)
pos(1) = nucl_coord(at,1)
pos(2) = nucl_coord(at,2)
pos(3) = nucl_coord(at,3)
dx2 = sum((x-pos)**2)
dy2 = sum((y-pos)**2)
tmp = dexp(-a*dx2) * a
v1b_x = v1b_x - dexp(-a*dx2)
v1b_y = v1b_y - dexp(-a*dy2)
tmp_x = tmp_x + tmp * (x(1) - pos(1))
tmp_y = tmp_y + tmp * (x(2) - pos(2))
tmp_z = tmp_z + tmp * (x(3) - pos(3))
end do
grad1_v1b(1) = 2.d0 * tmp_x
grad1_v1b(2) = 2.d0 * tmp_y
grad1_v1b(3) = 2.d0 * tmp_z
! 2b terms
dxy2 = sum((x-y)**2)
dxy = dsqrt(dxy2)
mu_tmp = mu_erf * dxy
u2b = 0.5d0 * dxy * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf
if(dxy .lt. 1d-8) then
grad1_u2b(1) = 0.d0
grad1_u2b(2) = 0.d0
grad1_u2b(3) = 0.d0
else
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / dxy
grad1_u2b(1) = tmp * (x(1) - y(1))
grad1_u2b(2) = tmp * (x(2) - y(2))
grad1_u2b(3) = tmp * (x(3) - y(3))
endif
dj(1) = (grad1_u2b(1) * v1b_x + u2b * grad1_v1b(1)) * v1b_y
dj(2) = (grad1_u2b(2) * v1b_x + u2b * grad1_v1b(2)) * v1b_y
dj(3) = (grad1_u2b(3) * v1b_x + u2b * grad1_v1b(3)) * v1b_y
return
end subroutine get_tchint_rsdft_jastrow
! ---

View File

@ -70,6 +70,8 @@
elseif((j1b_type .gt. 100) .and. (j1b_type .lt. 200)) then
PROVIDE final_grid_points
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, jpoint, r1, r2, v1b_r1, v1b_r2, u2b_r12, grad1_v1b, grad1_u2b, dx, dy, dz) &
@ -296,7 +298,7 @@ double precision function j1b_nucl(r)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
j1b_nucl = j1b_nucl - dexp(-a*d)
j1b_nucl = j1b_nucl - j1b_pen_coef(i) * dexp(-a*d)
enddo
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
@ -363,7 +365,7 @@ double precision function j1b_nucl_square(r)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
j1b_nucl_square = j1b_nucl_square - dexp(-a*d)
j1b_nucl_square = j1b_nucl_square - j1b_pen_coef(i) * dexp(-a*d)
enddo
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
@ -475,7 +477,7 @@ subroutine grad1_j1b_nucl(r, grad)
y = r(2) - nucl_coord(i,2)
z = r(3) - nucl_coord(i,3)
d = x*x + y*y + z*z
e = a * dexp(-a*d)
e = a * j1b_pen_coef(i) * dexp(-a*d)
fact_x += e * x
fact_y += e * y

View File

@ -1,68 +1,3 @@
! ---
!BEGIN_PROVIDER [ double precision, int1_grad2_u12_ao, (3, ao_num, ao_num, n_points_final_grid)]
!
! BEGIN_DOC
! !
! ! int1_grad2_u12_ao(:,i,j,ipoint) = \int dr1 [-1 * \grad_r2 J(r1,r2)] \phi_i(r1) \phi_j(r1)
! !
! ! where r1 = r(ipoint)
! !
! ! if J(r1,r2) = u12:
! !
! ! int1_grad2_u12_ao(:,i,j,ipoint) = +0.5 x \int dr1 [-(r1 - r2) (erf(mu * r12)-1)r_12] \phi_i(r1) \phi_j(r1)
! ! = -0.5 * [ v_ij_erf_rk_cst_mu(i,j,ipoint) * r(:) - x_v_ij_erf_rk_cst_mu(i,j,ipoint,:) ]
! ! = -int2_grad1_u12_ao(i,j,ipoint,:)
! !
! ! if J(r1,r2) = u12 x v1 x v2
! !
! ! int1_grad2_u12_ao(:,i,j,ipoint) = v2 x [ 0.5 x \int dr1 [-(r1 - r2) (erf(mu * r12)-1)r_12] v1 \phi_i(r1) \phi_j(r1) ]
! ! - \grad_2 v2 x [ \int dr1 u12 v1 \phi_i(r1) \phi_j(r1) ]
! ! = -0.5 v_1b(ipoint) * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint) * r(:)
! ! + 0.5 v_1b(ipoint) * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,:)
! ! - v_1b_grad[:,ipoint] * v_ij_u_cst_mu_j1b(i,j,ipoint)
! !
! !
! END_DOC
!
! implicit none
! integer :: ipoint, i, j
! double precision :: x, y, z, tmp_x, tmp_y, tmp_z, tmp0, tmp1, tmp2
!
! PROVIDE j1b_type
!
! if(j1b_type .eq. 3) then
!
! do ipoint = 1, n_points_final_grid
! x = final_grid_points(1,ipoint)
! y = final_grid_points(2,ipoint)
! z = final_grid_points(3,ipoint)
!
! tmp0 = 0.5d0 * v_1b(ipoint)
! tmp_x = v_1b_grad(1,ipoint)
! tmp_y = v_1b_grad(2,ipoint)
! tmp_z = v_1b_grad(3,ipoint)
!
! do j = 1, ao_num
! do i = 1, ao_num
!
! tmp1 = tmp0 * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint)
! tmp2 = v_ij_u_cst_mu_j1b(i,j,ipoint)
!
! int1_grad2_u12_ao(1,i,j,ipoint) = -tmp1 * x + tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1) - tmp2 * tmp_x
! int1_grad2_u12_ao(2,i,j,ipoint) = -tmp1 * y + tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2) - tmp2 * tmp_y
! int1_grad2_u12_ao(3,i,j,ipoint) = -tmp1 * z + tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3) - tmp2 * tmp_z
! enddo
! enddo
! enddo
!
! else
!
! int1_grad2_u12_ao = -1.d0 * int2_grad1_u12_ao
!
! endif
!
!END_PROVIDER
! ---
@ -98,22 +33,14 @@ BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao_loop, (ao_num, ao_num, ao_
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
do i = 1, ao_num
!ao_i_r = weight1 * aos_in_r_array_transp (ipoint,i)
!ao_i_dx = weight1 * aos_grad_in_r_array_transp_bis(ipoint,i,1)
!ao_i_dy = weight1 * aos_grad_in_r_array_transp_bis(ipoint,i,2)
!ao_i_dz = weight1 * aos_grad_in_r_array_transp_bis(ipoint,i,3)
ao_i_r = weight1 * aos_in_r_array (i,ipoint)
ao_i_dx = weight1 * aos_grad_in_r_array(i,ipoint,1)
ao_i_dy = weight1 * aos_grad_in_r_array(i,ipoint,2)
ao_i_dz = weight1 * aos_grad_in_r_array(i,ipoint,3)
do k = 1, ao_num
!ao_k_r = aos_in_r_array_transp(ipoint,k)
ao_k_r = aos_in_r_array(k,ipoint)
!tmp_x = ao_k_r * ao_i_dx - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,1)
!tmp_y = ao_k_r * ao_i_dy - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,2)
!tmp_z = ao_k_r * ao_i_dz - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,3)
tmp_x = ao_k_r * ao_i_dx - ao_i_r * aos_grad_in_r_array(k,ipoint,1)
tmp_y = ao_k_r * ao_i_dy - ao_i_r * aos_grad_in_r_array(k,ipoint,2)
tmp_z = ao_k_r * ao_i_dz - ao_i_r * aos_grad_in_r_array(k,ipoint,3)
@ -134,44 +61,11 @@ BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao_loop, (ao_num, ao_num, ao_
! ---
!do ipoint = 1, n_points_final_grid
! weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
! do l = 1, ao_num
! ao_l_r = weight1 * aos_in_r_array_transp (ipoint,l)
! ao_l_dx = weight1 * aos_grad_in_r_array_transp_bis(ipoint,l,1)
! ao_l_dy = weight1 * aos_grad_in_r_array_transp_bis(ipoint,l,2)
! ao_l_dz = weight1 * aos_grad_in_r_array_transp_bis(ipoint,l,3)
! do j = 1, ao_num
! ao_j_r = aos_in_r_array_transp(ipoint,j)
! tmp_x = ao_j_r * ao_l_dx - ao_l_r * aos_grad_in_r_array_transp_bis(ipoint,j,1)
! tmp_y = ao_j_r * ao_l_dy - ao_l_r * aos_grad_in_r_array_transp_bis(ipoint,j,2)
! tmp_z = ao_j_r * ao_l_dz - ao_l_r * aos_grad_in_r_array_transp_bis(ipoint,j,3)
! do i = 1, ao_num
! do k = 1, ao_num
! contrib_x = int2_grad1_u12_ao(k,i,ipoint,1) * tmp_x
! contrib_y = int2_grad1_u12_ao(k,i,ipoint,2) * tmp_y
! contrib_z = int2_grad1_u12_ao(k,i,ipoint,3) * tmp_z
! ac_mat(k,i,l,j) += contrib_x + contrib_y + contrib_z
! enddo
! enddo
! enddo
! enddo
!enddo
! ---
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
tc_grad_and_lapl_ao_loop(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
!tc_grad_and_lapl_ao_loop(k,i,l,j) = ac_mat(k,i,l,j)
enddo
enddo
enddo

View File

@ -70,14 +70,15 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) then
PROVIDE v_1b_grad v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b x_v_ij_erf_rk_cst_mu_j1b
PROVIDE v_1b_grad
PROVIDE v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b_an x_v_ij_erf_rk_cst_mu_j1b
int2_grad1_u12_ao = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, x, y, z, tmp0, tmp1, tmp2, tmp_x, tmp_y, tmp_z) &
!$OMP SHARED ( ao_num, n_points_final_grid, final_grid_points, v_1b, v_1b_grad &
!$OMP , v_ij_erf_rk_cst_mu_j1b, v_ij_u_cst_mu_j1b, x_v_ij_erf_rk_cst_mu_j1b, int2_grad1_u12_ao)
!$OMP , v_ij_erf_rk_cst_mu_j1b, v_ij_u_cst_mu_j1b_an, x_v_ij_erf_rk_cst_mu_j1b, int2_grad1_u12_ao)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
@ -90,7 +91,7 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
do j = 1, ao_num
do i = 1, ao_num
tmp1 = tmp0 * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint)
tmp2 = v_ij_u_cst_mu_j1b(i,j,ipoint)
tmp2 = v_ij_u_cst_mu_j1b_an(i,j,ipoint)
int2_grad1_u12_ao(i,j,ipoint,1) = tmp1 * x - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1) - tmp2 * tmp_x
int2_grad1_u12_ao(i,j,ipoint,2) = tmp1 * y - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2) - tmp2 * tmp_y
int2_grad1_u12_ao(i,j,ipoint,3) = tmp1 * z - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3) - tmp2 * tmp_z
@ -100,7 +101,7 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
!$OMP END DO
!$OMP END PARALLEL
FREE v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b x_v_ij_erf_rk_cst_mu_j1b
FREE v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b_an x_v_ij_erf_rk_cst_mu_j1b
elseif(j1b_type .ge. 100) then

View File

@ -1,19 +1,18 @@
! ---
program test_non_h
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 50
my_n_pt_a_grid = 74
!my_n_pt_r_grid = 400
!my_n_pt_a_grid = 974
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!call routine_grad_squared
!call routine_fit
!call routine_grad_squared()
!call routine_fit()
call test_ipp()
end

View File

@ -1,4 +1,7 @@
! TODO
! remove ao_two_e_coul and use map directly
! ---
BEGIN_PROVIDER [double precision, ao_vartc_int_chemist, (ao_num, ao_num, ao_num, ao_num)]
@ -116,6 +119,7 @@ BEGIN_PROVIDER [double precision, ao_tc_int_chemist_no_cycle, (ao_num, ao_num, a
call wall_time(wall1)
print *, ' wall time for ao_tc_int_chemist_no_cycle ', wall1 - wall0
END_PROVIDER
! ---

View File

@ -3,8 +3,9 @@ program compute_deltamu_right
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.

View File

@ -425,7 +425,7 @@ subroutine davidson_hs2_nonsym_b1space(u_in, H_jj, s2_out,energies, sze, N_st, N
if(lambda_tmp .lt. 0.7d0) then
print *, ' very small overlap ...', l, i_omax(l)
print *, ' max overlap = ', lambda_tmp
stop
!stop
endif
if(i_omax(l) .ne. l) then

View File

@ -1,7 +1,7 @@
! ---
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_v0, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
! Normal ordering of the three body interaction on the HF density
@ -18,13 +18,13 @@ BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth, (mo_num, mo_num, mo_
integer, allocatable :: occ(:,:)
integer(bit_kind), allocatable :: key_i_core(:,:)
print*,' Providing normal_two_body_bi_orth ...'
print*,' Providing normal_two_body_bi_orth_v0 ...'
call wall_time(walli)
if(read_tc_norm_ord) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/normal_two_body_bi_orth', action="read")
read(11) normal_two_body_bi_orth
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/normal_two_body_bi_orth_v0', action="read")
read(11) normal_two_body_bi_orth_v0
close(11)
else
@ -318,7 +318,7 @@ BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth, (mo_num, mo_num, mo_
call wall_time(wall1)
print*,' Wall time for aba_contraction', wall1-wall0
normal_two_body_bi_orth = tmp
normal_two_body_bi_orth_v0 = tmp
! ---
! aab contraction
@ -491,12 +491,13 @@ BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth, (mo_num, mo_num, mo_
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print*,' Wall time for aab_contraction', wall1-wall0
normal_two_body_bi_orth += tmp
normal_two_body_bi_orth_v0 += tmp
! ---
! aaa contraction
@ -1002,9 +1003,948 @@ BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth, (mo_num, mo_num, mo_
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wallf)
call wall_time(wall1)
print*,' Wall time for aaa_contraction', wall1-wall0
normal_two_body_bi_orth_v0 += tmp
endif ! Ne(2) .ge. 3
deallocate(tmp)
endif ! read_tc_norm_ord
if(write_tc_norm_ord.and.mpi_master) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/normal_two_body_bi_orth_v0', action="write")
call ezfio_set_work_empty(.False.)
write(11) normal_two_body_bi_orth_v0
close(11)
call ezfio_set_tc_keywords_io_tc_integ('Read')
endif
call wall_time(wallf)
print*,' Wall time for normal_two_body_bi_orth_v0 ', wallf-walli
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
! Normal ordering of the three body interaction on the HF density
END_DOC
use bitmasks ! you need to include the bitmasks_module.f90 features
implicit none
integer :: i, ii, h1, p1, h2, p2, ipoint
integer :: hh1, hh2, pp1, pp2
integer :: Ne(2)
double precision :: wall0, wall1, walli, wallf
integer, allocatable :: occ(:,:)
integer(bit_kind), allocatable :: key_i_core(:,:)
print*,' Providing normal_two_body_bi_orth ...'
call wall_time(walli)
if(read_tc_norm_ord) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/normal_two_body_bi_orth', action="read")
read(11) normal_two_body_bi_orth
close(11)
else
double precision, allocatable :: tmp_2d(:,:), tmp_3d(:,:,:)
double precision, allocatable :: tmp1(:,:,:), tmp2(:,:), tmp3(:,:,:)
double precision, allocatable :: tmpval_1(:), tmpval_2(:), tmpvec_1(:,:), tmpvec_2(:,:), tmpvec_3(:,:)
double precision, allocatable :: tmp(:,:,:,:)
PROVIDE N_int
allocate( occ(N_int*bit_kind_size,2) )
allocate( key_i_core(N_int,2) )
if(core_tc_op) then
do i = 1, N_int
key_i_core(i,1) = xor(ref_bitmask(i,1), core_bitmask(i,1))
key_i_core(i,2) = xor(ref_bitmask(i,2), core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, N_int)
else
call bitstring_to_list_ab(ref_bitmask, occ, Ne, N_int)
endif
allocate(tmp(mo_num,mo_num,mo_num,mo_num))
! ---
! aba contraction
print*,' Providing aba_contraction ...'
call wall_time(wall0)
tmp = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, h1, p1, h2, p2, i, ii, &
!$OMP tmp_3d, tmp_2d, tmp1, tmp2, &
!$OMP tmpval_1, tmpval_2, tmpvec_1, tmpvec_2) &
!$OMP SHARED (n_points_final_grid, Ne, occ, mo_num, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp)
allocate(tmp_3d(mo_num,mo_num,mo_num), tmp_2d(mo_num,mo_num))
allocate(tmp1(n_points_final_grid,3,mo_num), tmp2(n_points_final_grid,mo_num))
allocate(tmpval_1(n_points_final_grid), tmpval_2(n_points_final_grid))
allocate(tmpvec_1(n_points_final_grid,3), tmpvec_2(n_points_final_grid,3))
tmp_3d = 0.d0
tmp_2d = 0.d0
tmp1 = 0.d0
tmp2 = 0.d0
tmpval_1 = 0.d0
tmpval_2 = 0.d0
tmpvec_1 = 0.d0
tmpvec_2 = 0.d0
!$OMP DO
do ii = 1, Ne(2)
i = occ(ii,2)
do h1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmpval_1(ipoint) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint, i)
tmpval_2(ipoint) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i, i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i, i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i, i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_2(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,h1) * mos_r_in_r_array_transp(ipoint, i)
tmpvec_2(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,h1) * mos_r_in_r_array_transp(ipoint, i)
tmpvec_2(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,h1) * mos_r_in_r_array_transp(ipoint, i)
enddo
do p1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,p1) = mos_l_in_r_array_transp(ipoint,p1) * (tmpvec_1(ipoint,1) - tmpvec_2(ipoint,1)) &
+ tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p1,h1) - tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p1,i)
tmp1(ipoint,2,p1) = mos_l_in_r_array_transp(ipoint,p1) * (tmpvec_1(ipoint,2) - tmpvec_2(ipoint,2)) &
+ tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p1,h1) - tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p1,i)
tmp1(ipoint,3,p1) = mos_l_in_r_array_transp(ipoint,p1) * (tmpvec_1(ipoint,3) - tmpvec_2(ipoint,3)) &
+ tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p1,h1) - tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p1,i)
enddo
enddo
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0 &
, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, tmp1(1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num*mo_num)
do p1 = 1, mo_num
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_3d(p2,h2,p1)
!$OMP END CRITICAL
enddo
enddo
enddo
do p1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmpval_1(ipoint) = final_weight_at_r_vector(ipoint) * &
( int2_grad1_u12_bimo_t(ipoint,1, i,i) * int2_grad1_u12_bimo_t(ipoint,1,p1,h1) &
+ int2_grad1_u12_bimo_t(ipoint,2, i,i) * int2_grad1_u12_bimo_t(ipoint,2,p1,h1) &
+ int2_grad1_u12_bimo_t(ipoint,3, i,i) * int2_grad1_u12_bimo_t(ipoint,3,p1,h1) &
- int2_grad1_u12_bimo_t(ipoint,1,p1,i) * int2_grad1_u12_bimo_t(ipoint,1, i,h1) &
- int2_grad1_u12_bimo_t(ipoint,2,p1,i) * int2_grad1_u12_bimo_t(ipoint,2, i,h1) &
- int2_grad1_u12_bimo_t(ipoint,3,p1,i) * int2_grad1_u12_bimo_t(ipoint,3, i,h1) )
enddo
do h2 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp2(ipoint,h2) = mos_r_in_r_array_transp(ipoint,h2) * tmpval_1(ipoint)
enddo
enddo
call dgemm( 'T', 'N', mo_num, mo_num, n_points_final_grid, 1.d0 &
, mos_l_in_r_array_transp(1,1), n_points_final_grid &
, tmp2(1,1), n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_2d(p2,h2)
!$OMP END CRITICAL
enddo
enddo
enddo ! p1
enddo ! h1
enddo ! i
!$OMP END DO
deallocate(tmp_3d, tmp_2d)
deallocate(tmp1, tmp2)
deallocate(tmpval_1, tmpval_2)
deallocate(tmpvec_1, tmpvec_2)
!$OMP END PARALLEL
! purely open-shell part
if(Ne(2) < Ne(1)) then
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, h1, p1, h2, p2, i, ii, &
!$OMP tmp_3d, tmp_2d, tmp1, tmp2, &
!$OMP tmpval_1, tmpval_2, tmpvec_1, tmpvec_2) &
!$OMP SHARED (n_points_final_grid, Ne, occ, mo_num, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp)
Allocate(tmp_3d(mo_num,mo_num,mo_num), tmp_2d(mo_num,mo_num))
Allocate(tmp1(n_points_final_grid,3,mo_num), tmp2(n_points_final_grid,mo_num))
Allocate(tmpval_1(n_points_final_grid), tmpval_2(n_points_final_grid))
Allocate(tmpvec_1(n_points_final_grid,3), tmpvec_2(n_points_final_grid,3))
Tmp_3d = 0.d0
Tmp_2d = 0.d0
Tmp1 = 0.d0
Tmp2 = 0.d0
Tmpval_1 = 0.d0
Tmpval_2 = 0.d0
Tmpvec_1 = 0.d0
Tmpvec_2 = 0.d0
!$OMP DO
do ii = Ne(2) + 1, Ne(1)
i = occ(ii,1)
do h1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmpval_1(ipoint) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint, i)
tmpval_2(ipoint) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i, i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i, i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i, i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_2(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,h1) * mos_r_in_r_array_transp(ipoint, i)
tmpvec_2(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,h1) * mos_r_in_r_array_transp(ipoint, i)
tmpvec_2(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,h1) * mos_r_in_r_array_transp(ipoint, i)
enddo
do p1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,p1) = mos_l_in_r_array_transp(ipoint,p1) * (tmpvec_1(ipoint,1) - tmpvec_2(ipoint,1)) &
+ tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p1,h1) - tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p1,i)
tmp1(ipoint,2,p1) = mos_l_in_r_array_transp(ipoint,p1) * (tmpvec_1(ipoint,2) - tmpvec_2(ipoint,2)) &
+ tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p1,h1) - tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p1,i)
tmp1(ipoint,3,p1) = mos_l_in_r_array_transp(ipoint,p1) * (tmpvec_1(ipoint,3) - tmpvec_2(ipoint,3)) &
+ tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p1,h1) - tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p1,i)
enddo
enddo
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 0.5d0 &
, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, tmp1(1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num*mo_num)
do p1 = 1, mo_num
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_3d(p2,h2,p1)
!$OMP END CRITICAL
enddo
enddo
enddo
do p1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmpval_1(ipoint) = final_weight_at_r_vector(ipoint) * &
( int2_grad1_u12_bimo_t(ipoint,1, i,i) * int2_grad1_u12_bimo_t(ipoint,1,p1,h1) &
+ int2_grad1_u12_bimo_t(ipoint,2, i,i) * int2_grad1_u12_bimo_t(ipoint,2,p1,h1) &
+ int2_grad1_u12_bimo_t(ipoint,3, i,i) * int2_grad1_u12_bimo_t(ipoint,3,p1,h1) &
- int2_grad1_u12_bimo_t(ipoint,1,p1,i) * int2_grad1_u12_bimo_t(ipoint,1, i,h1) &
- int2_grad1_u12_bimo_t(ipoint,2,p1,i) * int2_grad1_u12_bimo_t(ipoint,2, i,h1) &
- int2_grad1_u12_bimo_t(ipoint,3,p1,i) * int2_grad1_u12_bimo_t(ipoint,3, i,h1) )
enddo
do h2 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp2(ipoint,h2) = mos_r_in_r_array_transp(ipoint,h2) * tmpval_1(ipoint)
enddo
enddo
call dgemm( 'T', 'N', mo_num, mo_num, n_points_final_grid, 0.5d0 &
, mos_l_in_r_array_transp(1,1), n_points_final_grid &
, tmp2(1,1), n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_2d(p2,h2)
!$OMP END CRITICAL
enddo
enddo
enddo ! p1
enddo ! h1
enddo !i
!$OMP END DO
deallocate(tmp_3d, tmp_2d)
deallocate(tmp1, tmp2)
deallocate(tmpval_1, tmpval_2)
deallocate(tmpvec_1, tmpvec_2)
!$OMP END PARALLEL
endif
tmp = -0.5d0 * tmp
call sum_A_At(tmp(1,1,1,1), mo_num*mo_num)
call wall_time(wall1)
print*,' Wall time for aba_contraction', wall1-wall0
normal_two_body_bi_orth = tmp
! ---
! aab contraction
print*,' Providing aab_contraction ...'
call wall_time(wall0)
tmp = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, ii, i, h1, p1, h2, p2, &
!$OMP tmp_2d, tmp_3d, tmp1, tmp2, &
!$OMP tmpval_1, tmpvec_1) &
!$OMP SHARED (n_points_final_grid, mo_num, Ne, occ, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp)
allocate(tmp_2d(mo_num,mo_num))
allocate(tmp_3d(mo_num,mo_num,mo_num))
allocate(tmp1(n_points_final_grid,3,mo_num))
allocate(tmp2(n_points_final_grid,mo_num))
allocate(tmpval_1(n_points_final_grid))
allocate(tmpvec_1(n_points_final_grid,3))
tmp_2d = 0.d0
tmp_3d = 0.d0
tmp1 = 0.d0
tmp2 = 0.d0
tmpval_1 = 0.d0
tmpvec_1 = 0.d0
!$OMP DO
do ii = 1, Ne(2)
i = occ(ii,2)
do h1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmpval_1(ipoint) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
tmpvec_1(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,i) * mos_r_in_r_array_transp(ipoint,h1)
enddo
do p1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,p1) = mos_l_in_r_array_transp(ipoint,p1) * tmpvec_1(ipoint,1) + tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p1,h1)
tmp1(ipoint,2,p1) = mos_l_in_r_array_transp(ipoint,p1) * tmpvec_1(ipoint,2) + tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p1,h1)
tmp1(ipoint,3,p1) = mos_l_in_r_array_transp(ipoint,p1) * tmpvec_1(ipoint,3) + tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p1,h1)
enddo
enddo
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0 &
, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, tmp1(1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num*mo_num)
do p1 = 1, mo_num
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_3d(p2,h2,p1)
!$OMP END CRITICAL
enddo
enddo
enddo
do p1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmpval_1(ipoint) = final_weight_at_r_vector(ipoint) * ( int2_grad1_u12_bimo_t(ipoint,1,i,i) * int2_grad1_u12_bimo_t(ipoint,1,p1,h1) &
+ int2_grad1_u12_bimo_t(ipoint,2,i,i) * int2_grad1_u12_bimo_t(ipoint,2,p1,h1) &
+ int2_grad1_u12_bimo_t(ipoint,3,i,i) * int2_grad1_u12_bimo_t(ipoint,3,p1,h1) )
enddo
do h2 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp2(ipoint,h2) = mos_r_in_r_array_transp(ipoint,h2) * tmpval_1(ipoint)
enddo
enddo
call dgemm( 'T', 'N', mo_num, mo_num, n_points_final_grid, 1.d0 &
, mos_l_in_r_array_transp(1,1), n_points_final_grid &
, tmp2(1,1), n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_2d(p2,h2)
!$OMP END CRITICAL
enddo
enddo
enddo ! p1
enddo ! h1
enddo ! i
!$OMP END DO
deallocate(tmp_3d)
deallocate(tmp1, tmp2)
deallocate(tmpval_1)
deallocate(tmpvec_1)
!$OMP END PARALLEL
tmp = -0.5d0 * tmp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (h1, h2, p1, p2) &
!$OMP SHARED (tmp, mo_num)
!$OMP DO
do h1 = 1, mo_num
do h2 = 1, mo_num
do p1 = 1, mo_num
do p2 = p1, mo_num
tmp(p2,h2,p1,h1) -= tmp(p1,h2,p2,h1)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP DO
do h1 = 1, mo_num
do h2 = 1, mo_num
do p1 = 2, mo_num
do p2 = 1, p1-1
tmp(p2,h2,p1,h1) = -tmp(p1,h2,p2,h1)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP DO
do h1 = 1, mo_num-1
do h2 = h1+1, mo_num
do p1 = 2, mo_num
do p2 = 1, p1-1
tmp(p2,h2,p1,h1) *= -1.d0
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print*,' Wall time for aab_contraction', wall1-wall0
normal_two_body_bi_orth += tmp
! ---
! aaa contraction
if(Ne(2) .ge. 3) then
print*,' Providing aaa_contraction ...'
call wall_time(wall0)
tmp = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, ii, h1, h2, p1, p2, &
!$OMP tmp_2d, tmp_3d, tmp1, tmp2, tmp3, &
!$OMP tmpval_1, tmpval_2, &
!$OMP tmpvec_1, tmpvec_2, tmpvec_3) &
!$OMP SHARED (n_points_final_grid, Ne, occ, mo_num, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp)
allocate(tmp_2d(mo_num,mo_num))
allocate(tmp_3d(mo_num,mo_num,mo_num))
allocate(tmp1(n_points_final_grid,3,mo_num))
allocate(tmp2(n_points_final_grid,mo_num))
allocate(tmp3(n_points_final_grid,3,mo_num))
allocate(tmpval_1(n_points_final_grid))
allocate(tmpval_2(n_points_final_grid))
allocate(tmpvec_1(n_points_final_grid,3))
allocate(tmpvec_2(n_points_final_grid,3))
allocate(tmpvec_3(n_points_final_grid,3))
tmp_2d = 0.d0
tmp_3d = 0.d0
tmp1 = 0.d0
tmp2 = 0.d0
tmp3 = 0.d0
tmpval_1 = 0.d0
tmpval_2 = 0.d0
tmpvec_1 = 0.d0
tmpvec_2 = 0.d0
tmpvec_3 = 0.d0
!$OMP DO
do ii = 1, Ne(2)
i = occ(ii,2)
do h1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmpval_1(ipoint) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
tmpval_2(ipoint) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_2(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,h1) * mos_r_in_r_array_transp(ipoint,i)
tmpvec_2(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,h1) * mos_r_in_r_array_transp(ipoint,i)
tmpvec_2(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,h1) * mos_r_in_r_array_transp(ipoint,i)
enddo
do p1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,p1) = mos_l_in_r_array_transp(ipoint,p1) * tmpvec_1(ipoint,1) + tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p1,h1)
tmp1(ipoint,2,p1) = mos_l_in_r_array_transp(ipoint,p1) * tmpvec_1(ipoint,2) + tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p1,h1)
tmp1(ipoint,3,p1) = mos_l_in_r_array_transp(ipoint,p1) * tmpvec_1(ipoint,3) + tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p1,h1)
enddo
enddo
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0 &
, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, tmp1(1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num*mo_num)
do p1 = 1, mo_num
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_3d(p2,h2,p1)
!$OMP END CRITICAL
enddo
enddo
enddo
do p2 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,p2) = tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p2,i) + mos_l_in_r_array_transp(ipoint,p2) * tmpvec_2(ipoint,1)
tmp1(ipoint,2,p2) = tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p2,i) + mos_l_in_r_array_transp(ipoint,p2) * tmpvec_2(ipoint,2)
tmp1(ipoint,3,p2) = tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p2,i) + mos_l_in_r_array_transp(ipoint,p2) * tmpvec_2(ipoint,3)
enddo
enddo
call dgemm( 'T', 'N', mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1), 3*n_points_final_grid &
, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num)
do p1 = 1, mo_num
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_3d(p2,p1,h2)
!$OMP END CRITICAL
enddo
enddo
enddo
do p1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmpval_1(ipoint) = final_weight_at_r_vector(ipoint) * &
( int2_grad1_u12_bimo_t(ipoint,1,i,i) * int2_grad1_u12_bimo_t(ipoint,1,p1,h1) &
+ int2_grad1_u12_bimo_t(ipoint,2,i,i) * int2_grad1_u12_bimo_t(ipoint,2,p1,h1) &
+ int2_grad1_u12_bimo_t(ipoint,3,i,i) * int2_grad1_u12_bimo_t(ipoint,3,p1,h1) )
tmpval_2(ipoint) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,p1) * mos_r_in_r_array_transp(ipoint,i)
tmpvec_1(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p1,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p1,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p1,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_2(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,h1) * mos_l_in_r_array_transp(ipoint,p1)
tmpvec_2(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,h1) * mos_l_in_r_array_transp(ipoint,p1)
tmpvec_2(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,h1) * mos_l_in_r_array_transp(ipoint,p1)
tmpvec_3(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p1,i) * mos_l_in_r_array_transp(ipoint,i)
tmpvec_3(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p1,i) * mos_l_in_r_array_transp(ipoint,i)
tmpvec_3(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p1,i) * mos_l_in_r_array_transp(ipoint,i)
enddo
do h2 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp2(ipoint,h2) = mos_r_in_r_array_transp(ipoint,h2) * tmpval_1(ipoint) &
+ int2_grad1_u12_bimo_t(ipoint,1,i,h2) * tmpvec_1(ipoint,1) &
+ int2_grad1_u12_bimo_t(ipoint,2,i,h2) * tmpvec_1(ipoint,2) &
+ int2_grad1_u12_bimo_t(ipoint,3,i,h2) * tmpvec_1(ipoint,3)
tmp1(ipoint,1,h2) = tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,h2)
tmp1(ipoint,2,h2) = tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,h2)
tmp1(ipoint,3,h2) = tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,h2)
enddo
enddo
call dgemm( 'T', 'N', mo_num, mo_num, n_points_final_grid, 1.d0 &
, mos_l_in_r_array_transp(1,1), n_points_final_grid &
, tmp2(1,1), n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_2d(p2,h2)
!$OMP END CRITICAL
enddo
enddo
do p2 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp2(ipoint,p2) = int2_grad1_u12_bimo_t(ipoint,1,p2,i) * tmpvec_2(ipoint,1) + int2_grad1_u12_bimo_t(ipoint,1,p2,h1) * tmpvec_3(ipoint,1) &
+ int2_grad1_u12_bimo_t(ipoint,2,p2,i) * tmpvec_2(ipoint,2) + int2_grad1_u12_bimo_t(ipoint,2,p2,h1) * tmpvec_3(ipoint,2) &
+ int2_grad1_u12_bimo_t(ipoint,3,p2,i) * tmpvec_2(ipoint,3) + int2_grad1_u12_bimo_t(ipoint,3,p2,h1) * tmpvec_3(ipoint,3)
tmp3(ipoint,1,p2) = int2_grad1_u12_bimo_t(ipoint,1,p2,h1)
tmp3(ipoint,2,p2) = int2_grad1_u12_bimo_t(ipoint,2,p2,h1)
tmp3(ipoint,3,p2) = int2_grad1_u12_bimo_t(ipoint,3,p2,h1)
enddo
enddo
call dgemm( 'T', 'N', mo_num, mo_num, n_points_final_grid, 1.d0 &
, tmp2(1,1), n_points_final_grid &
, mos_r_in_r_array_transp(1,1), n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
call dgemm( 'T', 'N', mo_num, mo_num, 3*n_points_final_grid, 1.d0 &
, tmp3(1,1,1), 3*n_points_final_grid &
, tmp1(1,1,1), 3*n_points_final_grid &
, 1.d0, tmp_2d(1,1), mo_num)
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_2d(p2,h2)
!$OMP END CRITICAL
enddo
enddo
enddo ! p1
enddo ! h1
enddo ! i
!$OMP END DO
deallocate(tmp_2d)
deallocate(tmp_3d)
deallocate(tmp1)
deallocate(tmp2)
deallocate(tmp3)
deallocate(tmpval_1)
deallocate(tmpval_2)
deallocate(tmpvec_1)
deallocate(tmpvec_2)
deallocate(tmpvec_3)
!$OMP END PARALLEL
! purely open-shell part
if(Ne(2) < Ne(1)) then
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, ii, h1, h2, p1, p2, &
!$OMP tmp_2d, tmp_3d, tmp1, tmp2, tmp3, &
!$OMP tmpval_1, tmpval_2, &
!$OMP tmpvec_1, tmpvec_2, tmpvec_3) &
!$OMP SHARED (n_points_final_grid, Ne, occ, mo_num, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp)
allocate(tmp_2d(mo_num,mo_num))
allocate(tmp_3d(mo_num,mo_num,mo_num))
allocate(tmp1(n_points_final_grid,3,mo_num))
allocate(tmp2(n_points_final_grid,mo_num))
allocate(tmp3(n_points_final_grid,3,mo_num))
allocate(tmpval_1(n_points_final_grid))
allocate(tmpval_2(n_points_final_grid))
allocate(tmpvec_1(n_points_final_grid,3))
allocate(tmpvec_2(n_points_final_grid,3))
allocate(tmpvec_3(n_points_final_grid,3))
tmp_2d = 0.d0
tmp_3d = 0.d0
tmp1 = 0.d0
tmp2 = 0.d0
tmp3 = 0.d0
tmpval_1 = 0.d0
tmpval_2 = 0.d0
tmpvec_1 = 0.d0
tmpvec_2 = 0.d0
tmpvec_3 = 0.d0
!$OMP DO
do ii = Ne(2) + 1, Ne(1)
i = occ(ii,1)
do h1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmpval_1(ipoint) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
tmpval_2(ipoint) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_2(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,h1) * mos_r_in_r_array_transp(ipoint,i)
tmpvec_2(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,h1) * mos_r_in_r_array_transp(ipoint,i)
tmpvec_2(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,h1) * mos_r_in_r_array_transp(ipoint,i)
enddo
do p1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,p1) = mos_l_in_r_array_transp(ipoint,p1) * tmpvec_1(ipoint,1) + tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p1,h1)
tmp1(ipoint,2,p1) = mos_l_in_r_array_transp(ipoint,p1) * tmpvec_1(ipoint,2) + tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p1,h1)
tmp1(ipoint,3,p1) = mos_l_in_r_array_transp(ipoint,p1) * tmpvec_1(ipoint,3) + tmpval_1(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p1,h1)
enddo
enddo
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 0.5d0 &
, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, tmp1(1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num*mo_num)
do p1 = 1, mo_num
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_3d(p2,h2,p1)
!$OMP END CRITICAL
enddo
enddo
enddo
do p2 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,p2) = tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p2,i) + mos_l_in_r_array_transp(ipoint,p2) * tmpvec_2(ipoint,1)
tmp1(ipoint,2,p2) = tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p2,i) + mos_l_in_r_array_transp(ipoint,p2) * tmpvec_2(ipoint,2)
tmp1(ipoint,3,p2) = tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p2,i) + mos_l_in_r_array_transp(ipoint,p2) * tmpvec_2(ipoint,3)
enddo
enddo
call dgemm( 'T', 'N', mo_num, mo_num*mo_num, 3*n_points_final_grid, 0.5d0 &
, tmp1(1,1,1), 3*n_points_final_grid &
, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num)
do p1 = 1, mo_num
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_3d(p2,p1,h2)
!$OMP END CRITICAL
enddo
enddo
enddo
do p1 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmpval_1(ipoint) = final_weight_at_r_vector(ipoint) * &
( int2_grad1_u12_bimo_t(ipoint,1,i,i) * int2_grad1_u12_bimo_t(ipoint,1,p1,h1) &
+ int2_grad1_u12_bimo_t(ipoint,2,i,i) * int2_grad1_u12_bimo_t(ipoint,2,p1,h1) &
+ int2_grad1_u12_bimo_t(ipoint,3,i,i) * int2_grad1_u12_bimo_t(ipoint,3,p1,h1) )
tmpval_2(ipoint) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,p1) * mos_r_in_r_array_transp(ipoint,i)
tmpvec_1(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p1,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p1,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_1(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p1,i) * mos_r_in_r_array_transp(ipoint,h1)
tmpvec_2(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,h1) * mos_l_in_r_array_transp(ipoint,p1)
tmpvec_2(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,h1) * mos_l_in_r_array_transp(ipoint,p1)
tmpvec_2(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,h1) * mos_l_in_r_array_transp(ipoint,p1)
tmpvec_3(ipoint,1) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,p1,i) * mos_l_in_r_array_transp(ipoint,i)
tmpvec_3(ipoint,2) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,p1,i) * mos_l_in_r_array_transp(ipoint,i)
tmpvec_3(ipoint,3) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,p1,i) * mos_l_in_r_array_transp(ipoint,i)
enddo
do h2 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp2(ipoint,h2) = mos_r_in_r_array_transp(ipoint,h2) * tmpval_1(ipoint) &
+ int2_grad1_u12_bimo_t(ipoint,1,i,h2) * tmpvec_1(ipoint,1) &
+ int2_grad1_u12_bimo_t(ipoint,2,i,h2) * tmpvec_1(ipoint,2) &
+ int2_grad1_u12_bimo_t(ipoint,3,i,h2) * tmpvec_1(ipoint,3)
tmp1(ipoint,1,h2) = tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,h2)
tmp1(ipoint,2,h2) = tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,h2)
tmp1(ipoint,3,h2) = tmpval_2(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,h2)
enddo
enddo
call dgemm( 'T', 'N', mo_num, mo_num, n_points_final_grid, 0.5d0 &
, mos_l_in_r_array_transp(1,1), n_points_final_grid &
, tmp2(1,1), n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_2d(p2,h2)
!$OMP END CRITICAL
enddo
enddo
do p2 = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp2(ipoint,p2) = int2_grad1_u12_bimo_t(ipoint,1,p2,i) * tmpvec_2(ipoint,1) + int2_grad1_u12_bimo_t(ipoint,1,p2,h1) * tmpvec_3(ipoint,1) &
+ int2_grad1_u12_bimo_t(ipoint,2,p2,i) * tmpvec_2(ipoint,2) + int2_grad1_u12_bimo_t(ipoint,2,p2,h1) * tmpvec_3(ipoint,2) &
+ int2_grad1_u12_bimo_t(ipoint,3,p2,i) * tmpvec_2(ipoint,3) + int2_grad1_u12_bimo_t(ipoint,3,p2,h1) * tmpvec_3(ipoint,3)
tmp3(ipoint,1,p2) = int2_grad1_u12_bimo_t(ipoint,1,p2,h1)
tmp3(ipoint,2,p2) = int2_grad1_u12_bimo_t(ipoint,2,p2,h1)
tmp3(ipoint,3,p2) = int2_grad1_u12_bimo_t(ipoint,3,p2,h1)
enddo
enddo
call dgemm( 'T', 'N', mo_num, mo_num, n_points_final_grid, 0.5d0 &
, tmp2(1,1), n_points_final_grid &
, mos_r_in_r_array_transp(1,1), n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
call dgemm( 'T', 'N', mo_num, mo_num, 3*n_points_final_grid, 0.5d0 &
, tmp3(1,1,1), 3*n_points_final_grid &
, tmp1(1,1,1), 3*n_points_final_grid &
, 1.d0, tmp_2d(1,1), mo_num)
do h2 = 1, mo_num
do p2 = 1, mo_num
!$OMP CRITICAL
tmp(p2,h2,p1,h1) = tmp(p2,h2,p1,h1) + tmp_2d(p2,h2)
!$OMP END CRITICAL
enddo
enddo
enddo ! p1
enddo ! h1
enddo !i
!$OMP END DO
deallocate(tmp_2d)
deallocate(tmp_3d)
deallocate(tmp1)
deallocate(tmp2)
deallocate(tmp3)
deallocate(tmpval_1)
deallocate(tmpval_2)
deallocate(tmpvec_1)
deallocate(tmpvec_2)
deallocate(tmpvec_3)
!$OMP END PARALLEL
endif
tmp = -0.5d0 * tmp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (h1, h2, p1, p2) &
!$OMP SHARED (tmp, mo_num)
!$OMP DO
do h1 = 1, mo_num
do h2 = 1, mo_num
do p1 = 1, mo_num
do p2 = p1, mo_num
tmp(p2,h2,p1,h1) -= tmp(p1,h2,p2,h1)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP DO
do h1 = 1, mo_num
do h2 = 1, mo_num
do p1 = 2, mo_num
do p2 = 1, p1-1
tmp(p2,h2,p1,h1) = -tmp(p1,h2,p2,h1)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP DO
do h1 = 1, mo_num-1
do h2 = h1+1, mo_num
do p1 = 2, mo_num
do p2 = 1, p1-1
tmp(p2,h2,p1,h1) *= -1.d0
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print*,' Wall time for aaa_contraction', wall1-wall0
normal_two_body_bi_orth += tmp

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,187 @@
program tc_bi_ortho
BEGIN_DOC
! TODO
END_DOC
implicit none
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call ERI_dump()
call KMat_tilde_dump()
call LMat_tilde_dump()
end
! ---
subroutine KMat_tilde_dump()
implicit none
integer :: i, j, k, l
integer :: isym, ms2, st, iii
character(16) :: corb
double precision :: t1, t2
integer, allocatable :: orbsym(:)
print *, ' generating FCIDUMP'
call wall_time(t1)
PROVIDE mo_bi_ortho_tc_two_e_chemist
PROVIDE mo_bi_ortho_tc_one_e
isym = 1
ms2 = elec_alpha_num - elec_beta_num
st = 0
iii = 0
allocate(orbsym(mo_num))
orbsym(1:mo_num) = 1
open(33, file='FCIDUMP', action='write')
write(33,'("&",a)') 'FCI'
write(33,'(1x,a,"=",i0,",")') 'NORB', mo_num
write(33,'(1x,a,"=",i0,",")') 'NELEC', elec_num
write(33,'(1x,a,"=",i0,",")') 'MS2', ms2
write(33,'(1x,a,"=",i0,",")') 'ISYM', isym
write(corb,'(i0)') mo_num
write(33,'(1x,a,"=",'//corb//'(i0,","))') 'ORBSYM', orbsym
write(33,'(1x,a,"=",i0,",")') 'ST', st
write(33,'(1x,a,"=",i0,",")') 'III', iii
write(33,'(1x,a,"=",i0,",")') 'OCC', (elec_num-ms2)/2+ms2
write(33,'(1x,a,"=",i0,",")') 'CLOSED', 2*elec_alpha_num
write(33,'(1x,"/")')
do l = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do i = 1, mo_num
! TCHint convention
write(33, '(E15.7, 4X, 4(I4, 2X))') mo_bi_ortho_tc_two_e_chemist(j,i,l,k), i, j, k, l
enddo
enddo
enddo
enddo
do j = 1, mo_num
do i = 1, mo_num
! TCHint convention
write(33, '(E15.7, 4X, 4(I4, 2X))') mo_bi_ortho_tc_one_e(i,j), i, j, 0, 0
enddo
enddo
close(33)
deallocate(orbsym)
call wall_time(t2)
print *, ' end after (min)', (t2-t1)/60.d0
return
end subroutine KMat_tilde_dump
! ---
subroutine ERI_dump()
implicit none
integer :: i, j, k, l
double precision, allocatable :: a1(:,:,:,:), a2(:,:,:,:)
PROVIDE mo_r_coef mo_l_coef
allocate(a2(ao_num,ao_num,ao_num,mo_num))
call dgemm( 'T', 'N', ao_num*ao_num*ao_num, mo_num, ao_num, 1.d0 &
, ao_two_e_coul(1,1,1,1), ao_num, mo_l_coef(1,1), ao_num &
, 0.d0 , a2(1,1,1,1), ao_num*ao_num*ao_num)
allocate(a1(ao_num,ao_num,mo_num,mo_num))
call dgemm( 'T', 'N', ao_num*ao_num*mo_num, mo_num, ao_num, 1.d0 &
, a2(1,1,1,1), ao_num, mo_r_coef(1,1), ao_num &
, 0.d0, a1(1,1,1,1), ao_num*ao_num*mo_num)
deallocate(a2)
allocate(a2(ao_num,mo_num,mo_num,mo_num))
call dgemm( 'T', 'N', ao_num*mo_num*mo_num, mo_num, ao_num, 1.d0 &
, a1(1,1,1,1), ao_num, mo_l_coef(1,1), ao_num &
, 0.d0, a2(1,1,1,1), ao_num*mo_num*mo_num)
deallocate(a1)
allocate(a1(mo_num,mo_num,mo_num,mo_num))
call dgemm( 'T', 'N', mo_num*mo_num*mo_num, mo_num, ao_num, 1.d0 &
, a2(1,1,1,1), ao_num, mo_r_coef(1,1), ao_num &
, 0.d0, a1(1,1,1,1), mo_num*mo_num*mo_num)
deallocate(a2)
open(33, file='ERI.dat', action='write')
do l = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do i = 1, mo_num
write(33, '(4(I4, 2X), 4X, E15.7)') i, j, k, l, a1(i,j,k,l)
enddo
enddo
enddo
enddo
close(33)
deallocate(a1)
return
end subroutine ERI_dump
! ---
subroutine LMat_tilde_dump()
implicit none
integer :: i, j, k, l, m, n
double precision :: integral
double precision :: t1, t2
print *, ' generating TCDUMP'
call wall_time(t1)
PROVIDE mo_l_coef mo_r_coef
open(33, file='TCDUMP', action='write')
write(33, '(4X, I4)') mo_num
do n = 1, mo_num
do m = 1, mo_num
do l = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do i = 1, mo_num
! < i j k | -L | l m n > with a BI-ORTHONORMAL MOLECULAR ORBITALS
call give_integrals_3_body_bi_ort(i, j, k, l, m, n, integral)
!write(33, '(6(I4, 2X), 4X, E15.7)') i, j, k, l, m, n, integral
! TCHint convention
if(dabs(integral).gt.1d-10) then
write(33, '(E15.7, 4X, 6(I4, 2X))') -integral/3.d0, i, j, k, l, m, n
!write(33, '(E15.7, 4X, 6(I4, 2X))') -integral/3.d0, l, m, n, i, j, k
endif
enddo
enddo
enddo
enddo
enddo
enddo
close(33)
call wall_time(t2)
print *, ' end after (min)', (t2-t1)/60.d0
return
end subroutine LMat_tilde_dump
! ---

View File

@ -1,19 +1,26 @@
program print_tc_energy
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
PROVIDE j1b_type
print*, 'j1b_type = ', j1b_type
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call write_tc_energy
call write_tc_energy()
end

View File

@ -1,16 +1,26 @@
! ---
program test_spin_dens
implicit none
BEGIN_DOC
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end.
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end.
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call tc_print_mulliken_sd
! call test
call tc_print_mulliken_sd()
!call test
end

View File

@ -7,12 +7,15 @@ program print_tc_var
implicit none
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call write_tc_var()

View File

@ -1,20 +1,31 @@
! ---
program print_tc_bi_ortho
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
! if(three_body_h_tc)then
! call provide_all_three_ints_bi_ortho
! endif
! call routine
call write_l_r_wf
call write_l_r_wf
end
subroutine write_l_r_wf

View File

@ -7,12 +7,16 @@ program pt2_tc_cisd
!
END_DOC
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
print*, ' nb of states = ', N_states
print*, ' nb of det = ', N_det

View File

@ -1,35 +1,59 @@
program tc_natorb_bi_ortho
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call print_energy_and_mos
call save_tc_natorb
! call minimize_tc_orb_angles
end
subroutine save_tc_natorb
! ---
program tc_natorb_bi_ortho
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
call print_energy_and_mos()
call save_tc_natorb()
!call minimize_tc_orb_angles()
end
! ---
subroutine save_tc_natorb()
implicit none
print*,'Saving the natorbs '
provide natorb_tc_leigvec_ao natorb_tc_reigvec_ao
call ezfio_set_bi_ortho_mos_mo_l_coef(natorb_tc_leigvec_ao)
call ezfio_set_bi_ortho_mos_mo_r_coef(natorb_tc_reigvec_ao)
call save_ref_determinant_nstates_1
call save_ref_determinant_nstates_1()
call ezfio_set_determinants_read_wf(.False.)
end
end
! ---
subroutine save_ref_determinant_nstates_1
implicit none
subroutine save_ref_determinant_nstates_1()
use bitmasks
double precision :: buffer(1,N_states)
implicit none
double precision :: buffer(1,N_states)
buffer = 0.d0
buffer(1,1) = 1.d0
call save_wavefunction_general(1,1,ref_bitmask,1,buffer)
end
call save_wavefunction_general(1, 1, ref_bitmask, 1, buffer)
end

View File

@ -1,15 +1,24 @@
program tc_bi_ortho
implicit none
! ---
program select_dets_bi_ortho()
BEGIN_DOC
! TODO : Put the documentation of the program here
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!!!!!!!!!!!!!!! WARNING NO 3-BODY
!!!!!!!!!!!!!!! WARNING NO 3-BODY
@ -22,6 +31,8 @@ program tc_bi_ortho
! call test
end
! ---
subroutine routine_test
implicit none
use bitmasks ! you need to include the bitmasks_module.f90 features
@ -57,5 +68,7 @@ subroutine routine_test
enddo
call save_wavefunction_general(n_good,n_states,dets,n_good,coef_new)
end
! ---

View File

@ -1,4 +1,6 @@
! ---
subroutine diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
BEGIN_DOC
@ -14,81 +16,89 @@ subroutine diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm
integer(bit_kind) :: key_i_core(Nint,2)
double precision :: direct_int, exchange_int
double precision :: sym_3_e_int_from_6_idx_tensor
double precision :: three_e_diag_parrallel_spin
double precision :: direct_int, exchange_int, ref
double precision, external :: sym_3_e_int_from_6_idx_tensor
double precision, external :: three_e_diag_parrallel_spin
if(core_tc_op)then
do i = 1, Nint
key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core,occ,Ne,Nint)
PROVIDE mo_l_coef mo_r_coef
if(core_tc_op) then
do i = 1, Nint
key_i_core(i,1) = xor(key_i(i,1), core_bitmask(i,1))
key_i_core(i,2) = xor(key_i(i,2), core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
else
call bitstring_to_list_ab(key_i,occ,Ne,Nint)
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
endif
hthree = 0.d0
if(Ne(1)+Ne(2).ge.3)then
!! ! alpha/alpha/beta three-body
do i = 1, Ne(1)
ii = occ(i,1)
do j = i+1, Ne(1)
jj = occ(j,1)
do m = 1, Ne(2)
mm = occ(m,2)
! direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) USES THE 6-IDX TENSOR
! exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) USES THE 6-IDX TENSOR
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) ! USES 3-IDX TENSOR
hthree += direct_int - exchange_int
enddo
enddo
enddo
if((Ne(1)+Ne(2)) .ge. 3) then
! beta/beta/alpha three-body
do i = 1, Ne(2)
ii = occ(i,2)
do j = i+1, Ne(2)
jj = occ(j,2)
do m = 1, Ne(1)
mm = occ(m,1)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii)
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii)
hthree += direct_int - exchange_int
enddo
! alpha/alpha/beta three-body
do i = 1, Ne(1)
ii = occ(i,1)
do j = i+1, Ne(1)
jj = occ(j,1)
do m = 1, Ne(2)
mm = occ(m,2)
!direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor
!exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) !uses 3-idx tensor
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) !uses 3-idx tensor
hthree += direct_int - exchange_int
enddo
enddo
enddo
enddo
! alpha/alpha/alpha three-body
do i = 1, Ne(1)
ii = occ(i,1) ! 1
do j = i+1, Ne(1)
jj = occ(j,1) ! 2
do m = j+1, Ne(1)
mm = occ(m,1) ! 3
! ref = sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) USES THE 6 IDX TENSOR
hthree += three_e_diag_parrallel_spin(mm,jj,ii) ! USES ONLY 3-IDX TENSORS
enddo
! beta/beta/alpha three-body
do i = 1, Ne(2)
ii = occ(i,2)
do j = i+1, Ne(2)
jj = occ(j,2)
do m = 1, Ne(1)
mm = occ(m,1)
!direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor
!exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii)
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii)
hthree += direct_int - exchange_int
enddo
enddo
enddo
enddo
! beta/beta/beta three-body
do i = 1, Ne(2)
ii = occ(i,2) ! 1
do j = i+1, Ne(2)
jj = occ(j,2) ! 2
do m = j+1, Ne(2)
mm = occ(m,2) ! 3
! ref = sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) USES THE 6 IDX TENSOR
hthree += three_e_diag_parrallel_spin(mm,jj,ii) ! USES ONLY 3-IDX TENSORS
enddo
! alpha/alpha/alpha three-body
do i = 1, Ne(1)
ii = occ(i,1) ! 1
do j = i+1, Ne(1)
jj = occ(j,1) ! 2
do m = j+1, Ne(1)
mm = occ(m,1) ! 3
!hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor
hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors
enddo
enddo
enddo
enddo
! beta/beta/beta three-body
do i = 1, Ne(2)
ii = occ(i,2) ! 1
do j = i+1, Ne(2)
jj = occ(j,2) ! 2
do m = j+1, Ne(2)
mm = occ(m,2) ! 3
!hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor
hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors
enddo
enddo
enddo
endif
end
! ---
subroutine single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)

View File

@ -1,3 +1,4 @@
! ---
subroutine provide_all_three_ints_bi_ortho()
@ -25,9 +26,9 @@ subroutine provide_all_three_ints_bi_ortho()
PROVIDE normal_two_body_bi_orth
endif
endif
endif
return
return
end
! ---
@ -46,13 +47,19 @@ subroutine htilde_mu_mat_opt_bi_ortho_tot(key_j, key_i, Nint, htot)
END_DOC
use bitmasks
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: htot
double precision :: hmono, htwoe, hthree
call htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: htot
double precision :: hmono, htwoe, hthree
call htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
end
! ---
subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
BEGIN_DOC
!
! <key_j |H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
@ -80,11 +87,11 @@ subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree,
call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree.gt.2) return
if(degree == 0)then
if(degree == 0) then
call diag_htilde_mu_mat_fock_bi_ortho (Nint, key_i, hmono, htwoe, hthree, htot)
else if (degree == 1)then
call single_htilde_mu_mat_fock_bi_ortho(Nint,key_j, key_i , hmono, htwoe, hthree, htot)
else if(degree == 2)then
else if (degree == 1) then
call single_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i , hmono, htwoe, hthree, htot)
else if(degree == 2) then
call double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
endif

View File

@ -1,32 +1,48 @@
! ---
BEGIN_PROVIDER [ double precision, ref_tc_energy_tot]
&BEGIN_PROVIDER [ double precision, ref_tc_energy_1e]
&BEGIN_PROVIDER [ double precision, ref_tc_energy_2e]
&BEGIN_PROVIDER [ double precision, ref_tc_energy_3e]
implicit none
BEGIN_DOC
! Various component of the TC energy for the reference "HF" Slater determinant
END_DOC
double precision :: hmono, htwoe, htot, hthree
call diag_htilde_mu_mat_bi_ortho_slow(N_int,HF_bitmask , hmono, htwoe, htot)
ref_tc_energy_1e = hmono
ref_tc_energy_2e = htwoe
if(three_body_h_tc)then
call diag_htilde_three_body_ints_bi_ort_slow(N_int, HF_bitmask, hthree)
ref_tc_energy_3e = hthree
else
ref_tc_energy_3e = 0.d0
endif
ref_tc_energy_tot = ref_tc_energy_1e + ref_tc_energy_2e + ref_tc_energy_3e + nuclear_repulsion
END_PROVIDER
BEGIN_DOC
! Various component of the TC energy for the reference "HF" Slater determinant
END_DOC
implicit none
double precision :: hmono, htwoe, htot, hthree
PROVIDE mo_l_coef mo_r_coef
call diag_htilde_mu_mat_bi_ortho_slow(N_int, HF_bitmask, hmono, htwoe, htot)
ref_tc_energy_1e = hmono
ref_tc_energy_2e = htwoe
if(three_body_h_tc) then
call diag_htilde_three_body_ints_bi_ort_slow(N_int, HF_bitmask, hthree)
ref_tc_energy_3e = hthree
else
ref_tc_energy_3e = 0.d0
endif
ref_tc_energy_tot = ref_tc_energy_1e + ref_tc_energy_2e + ref_tc_energy_3e + nuclear_repulsion
END_PROVIDER
! ---
subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree, htot)
implicit none
BEGIN_DOC
! Computes $\langle i|H|i \rangle$.
END_DOC
integer,intent(in) :: Nint
integer(bit_kind),intent(in) :: det_in(Nint,2)
double precision, intent(out) :: hmono,htwoe,htot,hthree
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det_in(Nint,2)
double precision, intent(out) :: hmono, htwoe, htot, hthree
integer(bit_kind) :: hole(Nint,2)
integer(bit_kind) :: particle(Nint,2)
@ -40,7 +56,6 @@ subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree,
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
nexc(1) = 0
nexc(2) = 0
do i=1,Nint
@ -55,15 +70,15 @@ subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree,
enddo
if (nexc(1)+nexc(2) == 0) then
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
hthree= ref_tc_energy_3e
htot = ref_tc_energy_tot
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
hthree = ref_tc_energy_3e
htot = ref_tc_energy_tot
return
endif
!call debug_det(det_in,Nint)
integer :: tmp(2)
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(particle, occ_particle, tmp, Nint)
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
@ -73,27 +88,31 @@ subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree,
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
hthree = ref_tc_energy_3e
det_tmp = ref_bitmask
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
hthree= ref_tc_energy_3e
do ispin=1,2
do ispin = 1, 2
na = elec_num_tab(ispin)
nb = elec_num_tab(iand(ispin,1)+1)
do i=1,nexc(ispin)
do i = 1, nexc(ispin)
!DIR$ FORCEINLINE
call ac_tc_operator( occ_particle(i,ispin), ispin, det_tmp, hmono,htwoe,hthree, Nint,na,nb)
call ac_tc_operator(occ_particle(i,ispin), ispin, det_tmp, hmono, htwoe, hthree, Nint, na, nb)
!DIR$ FORCEINLINE
call a_tc_operator ( occ_hole (i,ispin), ispin, det_tmp, hmono,htwoe,hthree, Nint,na,nb)
call a_tc_operator (occ_hole (i,ispin), ispin, det_tmp, hmono, htwoe, hthree, Nint, na, nb)
enddo
enddo
htot = hmono+htwoe+hthree+nuclear_repulsion
htot = hmono + htwoe + hthree + nuclear_repulsion
end
subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
use bitmasks
implicit none
! ---
subroutine ac_tc_operator(iorb, ispin, key, hmono, htwoe, hthree, Nint, na, nb)
BEGIN_DOC
! Routine that computes one- and two-body energy corresponding
!
@ -105,17 +124,20 @@ subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
!
! and the quantities hmono,htwoe,hthree are INCREMENTED
END_DOC
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
use bitmasks
implicit none
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hmono,htwoe,hthree
double precision, intent(inout) :: hmono, htwoe, hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,mm,j,m
double precision :: direct_int, exchange_int
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k, l, i, jj, mm, j, m
integer :: tmp(2)
double precision :: direct_int, exchange_int
if (iorb < 1) then
print *, irp_here, ': iorb < 1'
print *, iorb, mo_num
@ -131,7 +153,6 @@ subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(key, occ, tmp, Nint)
ASSERT (tmp(1) == elec_alpha_num)
@ -147,50 +168,54 @@ subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb)
! Same spin
do i=1,na
do i = 1, na
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
enddo
! Opposite spin
do i=1,nb
do i = 1, nb
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo
if(three_body_h_tc.and.elec_num.gt.2.and.three_e_3_idx_term)then
!!!!! 3-e part
!! same-spin/same-spin
do j = 1, na
jj = occ(j,ispin)
do m = j+1, na
mm = occ(m,ispin)
hthree += three_e_diag_parrallel_spin_prov(mm,jj,iorb)
if(three_body_h_tc .and. (elec_num.gt.2) .and. three_e_3_idx_term) then
!!!!! 3-e part
!! same-spin/same-spin
do j = 1, na
jj = occ(j,ispin)
do m = j+1, na
mm = occ(m,ispin)
hthree += three_e_diag_parrallel_spin_prov(mm,jj,iorb)
enddo
enddo
enddo
!! same-spin/oposite-spin
do j = 1, na
jj = occ(j,ispin)
do m = 1, nb
mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree += direct_int - exchange_int
!! same-spin/oposite-spin
do j = 1, na
jj = occ(j,ispin)
do m = 1, nb
mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree += direct_int - exchange_int
enddo
enddo
enddo
!! oposite-spin/opposite-spin
!! oposite-spin/opposite-spin
do j = 1, nb
jj = occ(j,other_spin)
do m = j+1, nb
mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree += direct_int - exchange_int
enddo
jj = occ(j,other_spin)
do m = j+1, nb
mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree += direct_int - exchange_int
enddo
enddo
endif
na = na+1
end
! ---
subroutine a_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
use bitmasks
implicit none
@ -460,14 +485,16 @@ subroutine a_tc_operator_no_3e(iorb,ispin,key,hmono,htwoe,Nint,na,nb)
hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb)
! Same spin
do i=1,na
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
do i = 1, na
htwoe = htwoe- mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
enddo
! Opposite spin
do i=1,nb
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
do i = 1, nb
htwoe = htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo
end
! ---

View File

@ -21,7 +21,7 @@ subroutine htilde_mu_mat_bi_ortho_tot_slow(key_j, key_i, Nint, htot)
integer :: degree
call get_excitation_degree(key_j, key_i, degree, Nint)
if(degree.gt.2)then
if(degree.gt.2) then
htot = 0.d0
else
call htilde_mu_mat_bi_ortho_slow(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
@ -55,27 +55,27 @@ subroutine htilde_mu_mat_bi_ortho_slow(key_j, key_i, Nint, hmono, htwoe, hthree,
hmono = 0.d0
htwoe = 0.d0
htot = 0.d0
hthree = 0.D0
hthree = 0.d0
call get_excitation_degree(key_i, key_j, degree, Nint)
if(degree.gt.2) return
if(degree == 0)then
if(degree == 0) then
call diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot)
else if (degree == 1)then
else if (degree == 1) then
call single_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
else if(degree == 2)then
else if(degree == 2) then
call double_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
endif
if(three_body_h_tc) then
if(degree == 2) then
if(.not.double_normal_ord.and.elec_num.gt.2.and.three_e_5_idx_term) then
if((.not.double_normal_ord) .and. (elec_num .gt. 2) .and. three_e_5_idx_term) then
call double_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
endif
else if(degree == 1.and.elec_num.gt.2.and.three_e_4_idx_term) then
else if((degree == 1) .and. (elec_num .gt. 2) .and. three_e_4_idx_term) then
call single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
else if(degree == 0.and.elec_num.gt.2.and.three_e_3_idx_term) then
else if((degree == 0) .and. (elec_num .gt. 2) .and. three_e_3_idx_term) then
call diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
endif
endif
@ -106,6 +106,8 @@ subroutine diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot)
double precision :: get_mo_two_e_integral_tc_int
integer(bit_kind) :: key_i_core(Nint,2)
PROVIDE mo_bi_ortho_tc_two_e
! PROVIDE mo_two_e_integrals_tc_int_in_map mo_bi_ortho_tc_two_e
!
! PROVIDE mo_integrals_erf_map core_energy nuclear_repulsion core_bitmask
@ -135,15 +137,6 @@ subroutine diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot)
ii = occ(i,ispin)
hmono += mo_bi_ortho_tc_one_e(ii,ii)
! if(j1b_gauss .eq. 1) then
! print*,'j1b not implemented for bi ortho TC'
! print*,'stopping ....'
! stop
! !hmono += mo_j1b_gauss_hermI (ii,ii) &
! ! + mo_j1b_gauss_hermII (ii,ii) &
! ! + mo_j1b_gauss_nonherm(ii,ii)
! endif
! if(core_tc_op)then
! print*,'core_tc_op not already taken into account for bi ortho'
! print*,'stopping ...'

View File

@ -41,14 +41,21 @@ subroutine give_all_perm_for_three_e(n,l,k,m,j,i,idx_list,phase)
end
double precision function sym_3_e_int_from_6_idx_tensor(n,l,k,m,j,i)
implicit none
BEGIN_DOC
! returns all good combinations of permutations of integrals with the good signs
!
! for a given (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins
END_DOC
integer, intent(in) :: n,l,k,m,j,i
! ---
double precision function sym_3_e_int_from_6_idx_tensor(n, l, k, m, j, i)
BEGIN_DOC
! returns all good combinations of permutations of integrals with the good signs
!
! for a given (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins
END_DOC
implicit none
integer, intent(in) :: n, l, k, m, j, i
PROVIDE mo_l_coef mo_r_coef
sym_3_e_int_from_6_idx_tensor = three_body_ints_bi_ort(n,l,k,m,j,i) & ! direct
+ three_body_ints_bi_ort(n,l,k,j,i,m) & ! 1st cyclic permutation
+ three_body_ints_bi_ort(n,l,k,i,m,j) & ! 2nd cyclic permutation
@ -56,8 +63,11 @@ double precision function sym_3_e_int_from_6_idx_tensor(n,l,k,m,j,i)
- three_body_ints_bi_ort(n,l,k,i,j,m) & ! elec 2 is kept fixed
- three_body_ints_bi_ort(n,l,k,m,i,j) ! elec 3 is kept fixed
return
end
! ---
double precision function direct_sym_3_e_int(n,l,k,m,j,i)
implicit none
BEGIN_DOC
@ -83,15 +93,25 @@ double precision function direct_sym_3_e_int(n,l,k,m,j,i)
end
double precision function three_e_diag_parrallel_spin(m,j,i)
implicit none
integer, intent(in) :: i,j,m
! ---
double precision function three_e_diag_parrallel_spin(m, j, i)
implicit none
integer, intent(in) :: i, j, m
PROVIDE mo_l_coef mo_r_coef
three_e_diag_parrallel_spin = three_e_3_idx_direct_bi_ort(m,j,i) ! direct
three_e_diag_parrallel_spin += three_e_3_idx_cycle_1_bi_ort(m,j,i) + three_e_3_idx_cycle_2_bi_ort(m,j,i) & ! two cyclic permutations
- three_e_3_idx_exch23_bi_ort(m,j,i) - three_e_3_idx_exch13_bi_ort(m,j,i) & ! two first exchange
- three_e_3_idx_exch12_bi_ort(m,j,i) ! last exchange
- three_e_3_idx_exch23_bi_ort (m,j,i) - three_e_3_idx_exch13_bi_ort(m,j,i) & ! two first exchange
- three_e_3_idx_exch12_bi_ort (m,j,i) ! last exchange
return
end
! ---
double precision function three_e_single_parrallel_spin(m,j,k,i)
implicit none
integer, intent(in) :: i,k,j,m

View File

@ -8,11 +8,13 @@ program tc_bi_ortho
END_DOC
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
print*, ' nb of states = ', N_states
print*, ' nb of det = ', N_det
@ -20,22 +22,29 @@ program tc_bi_ortho
call routine_diag()
call write_tc_energy()
call save_tc_bi_ortho_wavefunction()
end
subroutine test
implicit none
integer :: i,j
double precision :: hmono,htwoe,hthree,htot
use bitmasks
print*,'reading the wave function '
do i = 1, N_det
call debug_det(psi_det(1,1,i),N_int)
print*,i,psi_l_coef_bi_ortho(i,1)*psi_r_coef_bi_ortho(i,1)
print*,i,psi_l_coef_bi_ortho(i,1),psi_r_coef_bi_ortho(i,1)
enddo
end
! ---
subroutine test()
use bitmasks
implicit none
integer :: i, j
double precision :: hmono, htwoe, hthree, htot
print*, 'reading the wave function '
do i = 1, N_det
call debug_det(psi_det(1,1,i), N_int)
print*, i, psi_l_coef_bi_ortho(i,1)*psi_r_coef_bi_ortho(i,1)
print*, i, psi_l_coef_bi_ortho(i,1),psi_r_coef_bi_ortho(i,1)
enddo
end
! ---
subroutine routine_diag()
implicit none

View File

@ -1,19 +1,32 @@
! ---
program tc_bi_ortho_prop
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
! call routine_diag
call test
!call routine_diag
call test
end
! ---
subroutine test
implicit none
integer :: i

View File

@ -1,20 +1,32 @@
program tc_bi_ortho
implicit none
! ---
program tc_cisd_sc2
BEGIN_DOC
! TODO : Put the documentation of the program here
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call test
end
subroutine test
! ---
subroutine test()
implicit none
! double precision, allocatable :: dressing_dets(:),e_corr_dets(:)
! allocate(dressing_dets(N_det),e_corr_dets(N_det))

View File

@ -1,42 +1,56 @@
! ---
use bitmasks
BEGIN_PROVIDER [ integer, index_HF_psi_det]
implicit none
integer :: i,degree
do i = 1, N_det
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
if(degree == 0)then
index_HF_psi_det = i
exit
endif
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [integer, index_HF_psi_det]
subroutine diagonalize_CI_tc
implicit none
integer :: i, degree
do i = 1, N_det
call get_excitation_degree(HF_bitmask, psi_det(1,1,i), degree, N_int)
if(degree == 0) then
index_HF_psi_det = i
exit
endif
enddo
END_PROVIDER
! ---
subroutine diagonalize_CI_tc()
BEGIN_DOC
! Replace the coefficients of the |CI| states by the coefficients of the
! eigenstates of the |CI| matrix.
! Replace the coefficients of the |CI| states by the coefficients of the
! eigenstates of the |CI| matrix.
END_DOC
integer :: i,j
do j=1,N_states
do i=1,N_det
implicit none
integer :: i, j
do j = 1, N_states
do i = 1, N_det
psi_l_coef_bi_ortho(i,j) = leigvec_tc_bi_orth(i,j)
psi_r_coef_bi_ortho(i,j) = reigvec_tc_bi_orth(i,j)
enddo
enddo
SOFT_TOUCH psi_l_coef_bi_ortho psi_r_coef_bi_ortho
end
! ---
BEGIN_PROVIDER [double precision, eigval_right_tc_bi_orth, (N_states)]
&BEGIN_PROVIDER [double precision, eigval_left_tc_bi_orth, (N_states)]
&BEGIN_PROVIDER [double precision, reigvec_tc_bi_orth, (N_det,N_states)]
&BEGIN_PROVIDER [double precision, leigvec_tc_bi_orth, (N_det,N_states)]
&BEGIN_PROVIDER [double precision, s2_eigvec_tc_bi_orth, (N_states)]
&BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth ]
BEGIN_PROVIDER [double precision, eigval_right_tc_bi_orth, (N_states) ]
&BEGIN_PROVIDER [double precision, eigval_left_tc_bi_orth , (N_states) ]
&BEGIN_PROVIDER [double precision, reigvec_tc_bi_orth , (N_det,N_states)]
&BEGIN_PROVIDER [double precision, leigvec_tc_bi_orth , (N_det,N_states)]
&BEGIN_PROVIDER [double precision, s2_eigvec_tc_bi_orth , (N_states) ]
&BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth ]
BEGIN_DOC
! eigenvalues, right and left eigenvectors of the transcorrelated Hamiltonian on the BI-ORTHO basis
@ -44,29 +58,29 @@ end
implicit none
integer :: i, idx_dress, j, istate, k
integer :: i_good_state, i_other_state, i_state
integer :: n_real_tc_bi_orth_eigval_right, igood_r, igood_l
logical :: converged, dagger
integer :: n_real_tc_bi_orth_eigval_right,igood_r,igood_l
double precision, allocatable :: reigvec_tc_bi_orth_tmp(:,:),leigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:)
double precision, parameter :: alpha = 0.1d0
integer, allocatable :: index_good_state_array(:)
integer, allocatable :: iorder(:)
logical, allocatable :: good_state_array(:)
double precision, allocatable :: reigvec_tc_bi_orth_tmp(:,:), leigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:)
double precision, allocatable :: s2_values_tmp(:), H_prime(:,:), expect_e(:)
double precision, parameter :: alpha = 0.1d0
integer :: i_good_state,i_other_state, i_state
integer, allocatable :: index_good_state_array(:)
logical, allocatable :: good_state_array(:)
double precision, allocatable :: coef_hf_r(:),coef_hf_l(:)
double precision, allocatable :: Stmp(:,:)
integer, allocatable :: iorder(:)
double precision, allocatable :: coef_hf_r(:),coef_hf_l(:)
double precision, allocatable :: Stmp(:,:)
PROVIDE N_det N_int
if(n_det .le. N_det_max_full) then
if(N_det .le. N_det_max_full) then
allocate(reigvec_tc_bi_orth_tmp(N_det,N_det),leigvec_tc_bi_orth_tmp(N_det,N_det),eigval_right_tmp(N_det),expect_e(N_det))
allocate (H_prime(N_det,N_det),s2_values_tmp(N_det))
allocate(reigvec_tc_bi_orth_tmp(N_det,N_det), leigvec_tc_bi_orth_tmp(N_det,N_det), eigval_right_tmp(N_det), expect_e(N_det))
allocate(H_prime(N_det,N_det), s2_values_tmp(N_det))
H_prime(1:N_det,1:N_det) = htilde_matrix_elmt_bi_ortho(1:N_det,1:N_det)
if(s2_eig) then
H_prime(1:N_det,1:N_det) += alpha * S2_matrix_all_dets(1:N_det,1:N_det)
do j=1,N_det
do j = 1, N_det
H_prime(j,j) = H_prime(j,j) - alpha*expected_s2
enddo
endif

View File

@ -31,7 +31,9 @@
END_PROVIDER
BEGIN_PROVIDER [double precision, htilde_matrix_elmt_bi_ortho_tranp, (N_det,N_det)]
! ---
BEGIN_PROVIDER [double precision, htilde_matrix_elmt_bi_ortho_tranp, (N_det,N_det)]
implicit none
integer ::i,j
do i = 1, N_det

View File

@ -12,10 +12,9 @@ program tc_som
print *, ' do not forget to do tc-scf first'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf

View File

@ -5,27 +5,34 @@ subroutine write_tc_energy()
integer :: i, j, k
double precision :: hmono, htwoe, hthree, htot
double precision :: E_TC, O_TC
double precision :: E_1e, E_2e, E_3e
do k = 1, n_states
E_TC = 0.d0
E_1e = 0.d0
E_2e = 0.d0
E_3e = 0.d0
do i = 1, N_det
do j = 1, N_det
!htot = htilde_matrix_elmt_bi_ortho(i,j)
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot)
E_TC = E_TC + psi_l_coef_bi_ortho(i,k) * psi_r_coef_bi_ortho(j,k) * htot
!E_TC = E_TC + leigvec_tc_bi_orth(i,k) * reigvec_tc_bi_orth(j,k) * htot
E_1e = E_1e + psi_l_coef_bi_ortho(i,k) * psi_r_coef_bi_ortho(j,k) * hmono
E_2e = E_2e + psi_l_coef_bi_ortho(i,k) * psi_r_coef_bi_ortho(j,k) * htwoe
E_3e = E_3e + psi_l_coef_bi_ortho(i,k) * psi_r_coef_bi_ortho(j,k) * hthree
enddo
enddo
O_TC = 0.d0
do i = 1, N_det
!O_TC = O_TC + leigvec_tc_bi_orth(i,k) * reigvec_tc_bi_orth(i,k)
O_TC = O_TC + psi_l_coef_bi_ortho(i,k) * psi_r_coef_bi_ortho(i,k)
enddo
print *, ' state :', k
print *, " E_TC = ", E_TC / O_TC
print *, " E_1e = ", E_1e / O_TC
print *, " E_2e = ", E_2e / O_TC
print *, " E_3e = ", E_3e / O_TC
print *, " O_TC = ", O_TC
enddo

View File

@ -1,21 +1,34 @@
! ---
program test_natorb
implicit none
BEGIN_DOC
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end.
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end.
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call routine
! call test
call routine()
! call test()
end
subroutine routine
! ---
subroutine routine()
implicit none
double precision, allocatable :: fock_diag(:),eigval(:),leigvec(:,:),reigvec(:,:),mat_ref(:,:)
allocate(eigval(mo_num),leigvec(mo_num,mo_num),reigvec(mo_num,mo_num),fock_diag(mo_num),mat_ref(mo_num, mo_num))

View File

@ -1,19 +1,32 @@
! ---
program test_normal_order
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call provide_all_three_ints_bi_ortho
call test
call provide_all_three_ints_bi_ortho()
call test()
end
! ---
subroutine test
implicit none
use bitmasks ! you need to include the bitmasks_module.f90 features

View File

@ -1,14 +1,22 @@
! ---
program test_tc
implicit none
read_wf = .True.
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call routine_test_s2
call routine_test_s2_davidson
implicit none
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
call routine_test_s2
call routine_test_s2_davidson
end
subroutine routine_test_s2

View File

@ -1,15 +1,24 @@
! ---
program tc_bi_ortho
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
! call test_h_u0
! call test_slater_tc_opt
@ -19,6 +28,9 @@ program tc_bi_ortho
! call timing_double
call test_no()
!call test_no_aba()
!call test_no_aab()
!call test_no_aaa()
end
subroutine test_h_u0
@ -297,4 +309,126 @@ end
! ---
subroutine test_no_aba()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr
print*, ' testing no_aba_contraction ...'
thr = 1d-8
PROVIDE no_aba_contraction_v0
PROVIDE no_aba_contraction
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = no_aba_contraction (l,k,j,i)
ref = no_aba_contraction_v0(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem on no_aba_contraction'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on no_aba_contraction = ', accu / dble(mo_num)**4
return
end
! ---
subroutine test_no_aab()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr
print*, ' testing no_aab_contraction ...'
thr = 1d-8
PROVIDE no_aab_contraction_v0
PROVIDE no_aab_contraction
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = no_aab_contraction (l,k,j,i)
ref = no_aab_contraction_v0(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem on no_aab_contraction'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on no_aab_contraction = ', accu / dble(mo_num)**4
return
end
! ---
subroutine test_no_aaa()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr
print*, ' testing no_aaa_contraction ...'
thr = 1d-8
PROVIDE no_aaa_contraction_v0
PROVIDE no_aaa_contraction
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = no_aaa_contraction (l,k,j,i)
ref = no_aaa_contraction_v0(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem on no_aaa_contraction'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on no_aaa_contraction = ', accu / dble(mo_num)**4
return
end
! ---

View File

@ -1,22 +1,32 @@
! ---
program test_tc_fock
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
read_wf = .True.
touch read_wf
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!call routine_1
!call routine_2
! call routine_3()
! call test_3e
call routine_tot
call routine_tot
end
! ---

View File

@ -130,6 +130,12 @@ doc: exponents of the 1-body Jastrow
interface: ezfio
size: (nuclei.nucl_num)
[j1b_pen_coef]
type: double precision
doc: coefficients of the 1-body Jastrow
interface: ezfio
size: (nuclei.nucl_num)
[j1b_coeff]
type: double precision
doc: coeff of the 1-body Jastrow
@ -256,3 +262,16 @@ doc: If |true|, use Manu IPP
interface: ezfio,provider,ocaml
default: True
[tc_grid1_a]
type: integer
doc: size of angular grid over r1
interface: ezfio,provider,ocaml
default: 50
[tc_grid1_r]
type: integer
doc: size of radial grid over r1
interface: ezfio,provider,ocaml
default: 30

View File

@ -1,17 +1,22 @@
! ---
BEGIN_PROVIDER [ double precision, j1b_pen, (nucl_num) ]
BEGIN_PROVIDER [ double precision, j1b_pen , (nucl_num) ]
&BEGIN_PROVIDER [ double precision, j1b_pen_coef, (nucl_num) ]
BEGIN_DOC
! exponents of the 1-body Jastrow
! parameters of the 1-body Jastrow
END_DOC
implicit none
logical :: exists
integer :: i
integer :: ierr
PROVIDE ezfio_filename
! ---
if (mpi_master) then
call ezfio_has_tc_keywords_j1b_pen(exists)
endif
@ -23,7 +28,6 @@ BEGIN_PROVIDER [ double precision, j1b_pen, (nucl_num) ]
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(j1b_pen, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1b_pen with MPI'
@ -31,7 +35,6 @@ BEGIN_PROVIDER [ double precision, j1b_pen, (nucl_num) ]
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1b_pen ] <<<<< ..'
call ezfio_get_tc_keywords_j1b_pen(j1b_pen)
@ -42,19 +45,54 @@ BEGIN_PROVIDER [ double precision, j1b_pen, (nucl_num) ]
endif
IRP_ENDIF
endif
else
integer :: i
do i = 1, nucl_num
j1b_pen(i) = 1d5
enddo
endif
print*,'parameters for nuclei jastrow'
do i = 1, nucl_num
print*,'i,Z,j1b_pen(i)',i,nucl_charge(i),j1b_pen(i)
enddo
! ---
if (mpi_master) then
call ezfio_has_tc_keywords_j1b_pen_coef(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST(j1b_pen_coef, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1b_pen_coef with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1b_pen_coef ] <<<<< ..'
call ezfio_get_tc_keywords_j1b_pen_coef(j1b_pen_coef)
IRP_IF MPI
call MPI_BCAST(j1b_pen_coef, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1b_pen_coef with MPI'
endif
IRP_ENDIF
endif
else
do i = 1, nucl_num
j1b_pen_coef(i) = 1d0
enddo
endif
! ---
print *, ' parameters for nuclei jastrow'
print *, ' i, Z, j1b_pen, j1b_pen_coef'
do i = 1, nucl_num
write(*,"(I4, 2x, 3(E15.7, 2X))"), i, nucl_charge(i), j1b_pen(i), j1b_pen_coef(i)
enddo
END_PROVIDER
@ -114,3 +152,4 @@ BEGIN_PROVIDER [ double precision, j1b_coeff, (nucl_num) ]
END_PROVIDER
! ---

View File

@ -10,8 +10,9 @@ program combine_lr_tcscf
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
bi_ortho = .True.

View File

@ -1,30 +1,36 @@
! ---
BEGIN_PROVIDER [ double precision, fock_3_mat, (mo_num, mo_num)]
implicit none
implicit none
integer :: i,j
double precision :: contrib
fock_3_mat = 0.d0
if(.not.bi_ortho.and.three_body_h_tc)then
call give_fock_ia_three_e_total(1,1,contrib)
!! !$OMP PARALLEL &
!! !$OMP DEFAULT (NONE) &
!! !$OMP PRIVATE (i,j,m,integral) &
!! !$OMP SHARED (mo_num,three_body_3_index)
!! !$OMP DO SCHEDULE (guided) COLLAPSE(3)
do i = 1, mo_num
do j = 1, mo_num
call give_fock_ia_three_e_total(j,i,contrib)
fock_3_mat(j,i) = -contrib
enddo
enddo
else if(bi_ortho.and.three_body_h_tc)then
!! !$OMP END DO
!! !$OMP END PARALLEL
!! do i = 1, mo_num
!! do j = 1, i-1
!! mat_three(j,i) = mat_three(i,j)
!! enddo
!! enddo
endif
if(.not.bi_ortho .and. three_body_h_tc) then
call give_fock_ia_three_e_total(1, 1, contrib)
!! !$OMP PARALLEL &
!! !$OMP DEFAULT (NONE) &
!! !$OMP PRIVATE (i,j,m,integral) &
!! !$OMP SHARED (mo_num,three_body_3_index)
!! !$OMP DO SCHEDULE (guided) COLLAPSE(3)
do i = 1, mo_num
do j = 1, mo_num
call give_fock_ia_three_e_total(j,i,contrib)
fock_3_mat(j,i) = -contrib
enddo
enddo
!else if(bi_ortho.and.three_body_h_tc) then
!! !$OMP END DO
!! !$OMP END PARALLEL
!! do i = 1, mo_num
!! do j = 1, i-1
!! mat_three(j,i) = mat_three(i,j)
!! enddo
!! enddo
endif
END_PROVIDER
@ -72,6 +78,7 @@ end
! ---
! TODO DGEMM
BEGIN_PROVIDER [double precision, diag_three_elem_hf]
implicit none
@ -100,7 +107,7 @@ BEGIN_PROVIDER [double precision, diag_three_elem_hf]
do i = 1, elec_beta_num
do j = 1, elec_beta_num
do k = 1, elec_beta_num
call give_integrals_3_body(k, j, i, j, i, k,exchange_int_231)
call give_integrals_3_body(k, j, i, j, i, k, exchange_int_231)
diag_three_elem_hf += two_third * exchange_int_231
enddo
enddo

View File

@ -1,17 +1,26 @@
program print_angles
implicit none
BEGIN_DOC
! program that minimizes the angle between left- and right-orbitals when degeneracies are found in the TC-Fock matrix
END_DOC
! ---
program minimize_tc_angles
BEGIN_DOC
! program that minimizes the angle between left- and right-orbitals when degeneracies are found in the TC-Fock matrix
END_DOC
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_n_pt_r_grid my_n_pt_a_grid
! call sort_by_tc_fock
! call sort_by_tc_fock
! TODO
! check if rotations of orbitals affect the TC energy
! and refuse the step
call minimize_tc_orb_angles
end

View File

@ -1,6 +1,9 @@
program molden
! ---
program molden_lr_mos
BEGIN_DOC
! TODO : Put the documentation of the program here
! TODO : Put the documentation of the program here
END_DOC
implicit none
@ -8,19 +11,26 @@ program molden
print *, 'starting ...'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call molden_lr
!call molden_lr
call molden_l()
call molden_r()
end
! ---
subroutine molden_lr
implicit none
BEGIN_DOC
! Produces a Molden file
END_DOC
implicit none
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
integer :: i,j,k,l
@ -37,7 +47,7 @@ subroutine molden_lr
write(i_unit_output,'(A)') '[Atoms] Angs'
do i = 1, nucl_num
write(i_unit_output,'(A2,2X,I4,2X,I4,3(2X,F15.10))') &
write(i_unit_output,'(A2,2X,I4,2X,I4,3(2X,F15.10))') &
trim(element_name(int(nucl_charge(i)))), &
i, &
int(nucl_charge(i)), &
@ -174,3 +184,314 @@ subroutine molden_lr
close(i_unit_output)
end
! ---
subroutine molden_l()
BEGIN_DOC
! Produces a Molden file
END_DOC
implicit none
character*(128) :: output
integer :: i_unit_output, getUnitAndOpen
integer :: i, j, k, l
double precision, parameter :: a0 = 0.529177249d0
PROVIDE ezfio_filename
PROVIDE mo_l_coef
output=trim(ezfio_filename)//'_left.mol'
print*,'output = ',trim(output)
i_unit_output = getUnitAndOpen(output,'w')
write(i_unit_output,'(A)') '[Molden Format]'
write(i_unit_output,'(A)') '[Atoms] Angs'
do i = 1, nucl_num
write(i_unit_output,'(A2,2X,I4,2X,I4,3(2X,F15.10))') &
trim(element_name(int(nucl_charge(i)))), &
i, &
int(nucl_charge(i)), &
nucl_coord(i,1)*a0, nucl_coord(i,2)*a0, nucl_coord(i,3)*a0
enddo
write(i_unit_output,'(A)') '[GTO]'
character*(1) :: character_shell
integer :: i_shell,i_prim,i_ao
integer :: iorder(ao_num)
integer :: nsort(ao_num)
i_shell = 0
i_prim = 0
do i=1,nucl_num
write(i_unit_output,*) i, 0
do j=1,nucl_num_shell_aos(i)
i_shell +=1
i_ao = nucl_list_shell_aos(i,j)
character_shell = trim(ao_l_char(i_ao))
write(i_unit_output,*) character_shell, ao_prim_num(i_ao), '1.00'
do k = 1, ao_prim_num(i_ao)
i_prim +=1
write(i_unit_output,'(E20.10,2X,E20.10)') ao_expo(i_ao,k), ao_coef(i_ao,k)
enddo
l = i_ao
do while ( ao_l(l) == ao_l(i_ao) )
nsort(l) = i*10000 + j*100
l += 1
if (l > ao_num) exit
enddo
enddo
write(i_unit_output,*)''
enddo
do i=1,ao_num
iorder(i) = i
! p
if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 1
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 2
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 3
! d
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 1
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 2
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 3
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 4
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 5
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 6
! f
else if ((ao_power(i,1) == 3 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 1
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 3 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 2
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 3 )) then
nsort(i) += 3
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 4
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 5
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 6
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 7
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 8
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 9
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 10
! g
else if ((ao_power(i,1) == 4 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 1
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 4 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 2
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 4 )) then
nsort(i) += 3
else if ((ao_power(i,1) == 3 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 4
else if ((ao_power(i,1) == 3 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 5
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 3 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 6
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 3 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 7
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 3 )) then
nsort(i) += 8
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 3 )) then
nsort(i) += 9
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 10
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 11
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 12
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 13
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 14
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 15
endif
enddo
call isort(nsort,iorder,ao_num)
write(i_unit_output,'(A)') '[MO]'
do i=1,mo_num
write (i_unit_output,*) 'Sym= 1'
write (i_unit_output,*) 'Ene=', Fock_matrix_tc_mo_tot(i,i)
write (i_unit_output,*) 'Spin= Alpha'
write (i_unit_output,*) 'Occup=', mo_occ(i)
do j=1,ao_num
write(i_unit_output, '(I6,2X,E20.10)') j, mo_l_coef(iorder(j),i)
enddo
enddo
close(i_unit_output)
end
! ---
subroutine molden_r()
BEGIN_DOC
! Produces a Molden file
END_DOC
implicit none
character*(128) :: output
integer :: i_unit_output, getUnitAndOpen
integer :: i, j, k, l
double precision, parameter :: a0 = 0.529177249d0
PROVIDE ezfio_filename
output=trim(ezfio_filename)//'_right.mol'
print*,'output = ',trim(output)
i_unit_output = getUnitAndOpen(output,'w')
write(i_unit_output,'(A)') '[Molden Format]'
write(i_unit_output,'(A)') '[Atoms] Angs'
do i = 1, nucl_num
write(i_unit_output,'(A2,2X,I4,2X,I4,3(2X,F15.10))') &
trim(element_name(int(nucl_charge(i)))), &
i, &
int(nucl_charge(i)), &
nucl_coord(i,1)*a0, nucl_coord(i,2)*a0, nucl_coord(i,3)*a0
enddo
write(i_unit_output,'(A)') '[GTO]'
character*(1) :: character_shell
integer :: i_shell,i_prim,i_ao
integer :: iorder(ao_num)
integer :: nsort(ao_num)
i_shell = 0
i_prim = 0
do i=1,nucl_num
write(i_unit_output,*) i, 0
do j=1,nucl_num_shell_aos(i)
i_shell +=1
i_ao = nucl_list_shell_aos(i,j)
character_shell = trim(ao_l_char(i_ao))
write(i_unit_output,*) character_shell, ao_prim_num(i_ao), '1.00'
do k = 1, ao_prim_num(i_ao)
i_prim +=1
write(i_unit_output,'(E20.10,2X,E20.10)') ao_expo(i_ao,k), ao_coef(i_ao,k)
enddo
l = i_ao
do while ( ao_l(l) == ao_l(i_ao) )
nsort(l) = i*10000 + j*100
l += 1
if (l > ao_num) exit
enddo
enddo
write(i_unit_output,*)''
enddo
do i=1,ao_num
iorder(i) = i
! p
if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 1
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 2
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 3
! d
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 1
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 2
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 3
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 4
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 5
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 6
! f
else if ((ao_power(i,1) == 3 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 1
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 3 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 2
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 3 )) then
nsort(i) += 3
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 4
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 5
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 6
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 7
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 8
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 9
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 10
! g
else if ((ao_power(i,1) == 4 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 1
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 4 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 2
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 4 )) then
nsort(i) += 3
else if ((ao_power(i,1) == 3 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 4
else if ((ao_power(i,1) == 3 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 5
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 3 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 6
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 3 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 7
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 3 )) then
nsort(i) += 8
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 3 )) then
nsort(i) += 9
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 10
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 11
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 12
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 13
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 14
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 15
endif
enddo
call isort(nsort, iorder, ao_num)
write(i_unit_output,'(A)') '[MO]'
do i=1,mo_num
write (i_unit_output,*) 'Sym= 1'
write (i_unit_output,*) 'Ene=', Fock_matrix_tc_mo_tot(i,i)
write (i_unit_output,*) 'Spin= Alpha'
write (i_unit_output,*) 'Occup=', mo_occ(i)
do j=1,ao_num
write(i_unit_output, '(I6,2X,E20.10)') j, mo_r_coef(iorder(j),i)
enddo
enddo
close(i_unit_output)
end

View File

@ -7,10 +7,9 @@ program print_fit_param
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!call create_guess

View File

@ -0,0 +1,51 @@
program print_tcscf_energy
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'Hello world'
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call main()
end
! ---
subroutine main()
implicit none
double precision :: etc_tot, etc_1e, etc_2e, etc_3e
PROVIDE mu_erf
PROVIDE j1b_type
print*, ' mu_erf = ', mu_erf
print*, ' j1b_type = ', j1b_type
etc_tot = TC_HF_energy
etc_1e = TC_HF_one_e_energy
etc_2e = TC_HF_two_e_energy
etc_3e = 0.d0
if(three_body_h_tc) then
!etc_3e = diag_three_elem_hf
etc_3e = tcscf_energy_3e_naive
endif
print *, " E_TC = ", etc_tot
print *, " E_1e = ", etc_1e
print *, " E_2e = ", etc_2e
print *, " E_3e = ", etc_3e
return
end subroutine main
! ---

View File

@ -10,8 +10,9 @@ program rotate_tcscf_orbitals
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
bi_ortho = .True.

View File

@ -10,10 +10,9 @@ program tc_petermann_factor
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call main()

View File

@ -13,10 +13,11 @@ program tc_scf
print *, ' starting ...'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf

View File

@ -0,0 +1,80 @@
! ---
BEGIN_PROVIDER [double precision, tcscf_energy_3e_naive]
implicit none
integer :: i, j, k
integer :: neu, ned, D(elec_num)
integer :: ii, jj, kk
integer :: si, sj, sk
double precision :: I_ijk, I_jki, I_kij, I_jik, I_ikj, I_kji
double precision :: I_tot
PROVIDE mo_l_coef mo_r_coef
neu = elec_alpha_num
ned = elec_beta_num
if (neu > 0) D(1:neu) = [(2*i-1, i = 1, neu)]
if (ned > 0) D(neu+1:neu+ned) = [(2*i, i = 1, ned)]
!print*, "D = "
!do i = 1, elec_num
! ii = (D(i) - 1) / 2 + 1
! si = mod(D(i), 2)
! print*, i, D(i), ii, si
!enddo
tcscf_energy_3e_naive = 0.d0
do i = 1, elec_num - 2
ii = (D(i) - 1) / 2 + 1
si = mod(D(i), 2)
do j = i + 1, elec_num - 1
jj = (D(j) - 1) / 2 + 1
sj = mod(D(j), 2)
do k = j + 1, elec_num
kk = (D(k) - 1) / 2 + 1
sk = mod(D(k), 2)
call give_integrals_3_body_bi_ort(ii, jj, kk, ii, jj, kk, I_ijk)
I_tot = I_ijk
if(sj==si .and. sk==sj) then
call give_integrals_3_body_bi_ort(ii, jj, kk, jj, kk, ii, I_jki)
I_tot += I_jki
endif
if(sk==si .and. si==sj) then
call give_integrals_3_body_bi_ort(ii, jj, kk, kk, ii, jj, I_kij)
I_tot += I_kij
endif
if(sj==si) then
call give_integrals_3_body_bi_ort(ii, jj, kk, jj, ii, kk, I_jik)
I_tot -= I_jik
endif
if(sk==sj) then
call give_integrals_3_body_bi_ort(ii, jj, kk, ii, kk, jj, I_ikj)
I_tot -= I_ikj
endif
if(sk==si) then
call give_integrals_3_body_bi_ort(ii, jj, kk, kk, jj, ii, I_kji)
I_tot -= I_kji
endif
tcscf_energy_3e_naive += I_tot
enddo
enddo
enddo
tcscf_energy_3e_naive = -tcscf_energy_3e_naive
END_PROVIDER
! ---

View File

@ -9,10 +9,9 @@ program test_ints
print *, ' starting test_ints ...'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 15 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
my_extra_grid_becke = .True.
@ -280,7 +279,7 @@ subroutine routine_v_ij_u_cst_mu_j1b_test
do i = 1, ao_num
do j = 1, ao_num
array(j,i,l,k) += v_ij_u_cst_mu_j1b_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += v_ij_u_cst_mu_j1b(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += v_ij_u_cst_mu_j1b_fit (j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
enddo
enddo
enddo
@ -506,7 +505,7 @@ subroutine routine_v_ij_u_cst_mu_j1b
do i = 1, ao_num
do j = 1, ao_num
array(j,i,l,k) += v_ij_u_cst_mu_j1b_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += v_ij_u_cst_mu_j1b(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += v_ij_u_cst_mu_j1b_fit (j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
enddo
enddo
enddo

View File

@ -1,24 +1,32 @@
subroutine contrib_3e_diag_sss(i,j,k,integral)
implicit none
integer, intent(in) :: i,j,k
BEGIN_DOC
! returns the pure same spin contribution to diagonal matrix element of 3e term
END_DOC
double precision, intent(out) :: integral
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
call give_integrals_3_body_bi_ort(i, k, j, i, k, j, direct_int )!!! < i k j | i k j >
call give_integrals_3_body_bi_ort(i, k, j, j, i, k, c_3_int) ! < i k j | j i k >
call give_integrals_3_body_bi_ort(i, k, j, k, j, i, c_minus_3_int)! < i k j | k j i >
integral = direct_int + c_3_int + c_minus_3_int
! negative terms :: exchange contrib
call give_integrals_3_body_bi_ort(i, k, j, j, k, i, exch_13_int)!!! < i k j | j k i > : E_13
call give_integrals_3_body_bi_ort(i, k, j, i, j, k, exch_23_int)!!! < i k j | i j k > : E_23
call give_integrals_3_body_bi_ort(i, k, j, k, i, j, exch_12_int)!!! < i k j | k i j > : E_12
integral += - exch_13_int - exch_23_int - exch_12_int
integral = -integral
subroutine contrib_3e_diag_sss(i, j, k, integral)
BEGIN_DOC
! returns the pure same spin contribution to diagonal matrix element of 3e term
END_DOC
implicit none
integer, intent(in) :: i, j, k
double precision, intent(out) :: integral
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
call give_integrals_3_body_bi_ort(i, k, j, i, k, j, direct_int )!!! < i k j | i k j >
call give_integrals_3_body_bi_ort(i, k, j, j, i, k, c_3_int) ! < i k j | j i k >
call give_integrals_3_body_bi_ort(i, k, j, k, j, i, c_minus_3_int)! < i k j | k j i >
integral = direct_int + c_3_int + c_minus_3_int
! negative terms :: exchange contrib
call give_integrals_3_body_bi_ort(i, k, j, j, k, i, exch_13_int)!!! < i k j | j k i > : E_13
call give_integrals_3_body_bi_ort(i, k, j, i, j, k, exch_23_int)!!! < i k j | i j k > : E_23
call give_integrals_3_body_bi_ort(i, k, j, k, i, j, exch_12_int)!!! < i k j | k i j > : E_12
integral += - exch_13_int - exch_23_int - exch_12_int
integral = -integral
end
! ---
subroutine contrib_3e_diag_soo(i,j,k,integral)
implicit none
integer, intent(in) :: i,j,k
@ -51,23 +59,30 @@ subroutine give_aaa_contrib_bis(integral_aaa)
end
! ---
subroutine give_aaa_contrib(integral_aaa)
implicit none
double precision, intent(out) :: integral_aaa
double precision :: integral
integer :: i,j,k
integral_aaa = 0.d0
do i = 1, elec_alpha_num
do j = 1, elec_alpha_num
do k = 1, elec_alpha_num
call contrib_3e_diag_sss(i,j,k,integral)
integral_aaa += integral
enddo
implicit none
integer :: i, j, k
double precision :: integral
double precision, intent(out) :: integral_aaa
integral_aaa = 0.d0
do i = 1, elec_alpha_num
do j = 1, elec_alpha_num
do k = 1, elec_alpha_num
call contrib_3e_diag_sss(i, j, k, integral)
integral_aaa += integral
enddo
enddo
enddo
enddo
integral_aaa *= 1.d0/6.d0
integral_aaa *= 1.d0/6.d0
return
end
! ---
subroutine give_aab_contrib(integral_aab)
implicit none

View File

@ -418,7 +418,7 @@ subroutine gaussian_product_x(a,xa,b,xb,k,p,xp)
xab = xa-xb
ab = ab*p_inv
k = ab*xab*xab
if (k > 40.d0) then
if (k > 400.d0) then
k=0.d0
return
endif