10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-19 04:22:32 +01:00

Merge pull request #35 from QuantumPackage/dev-stable

Dev stable
This commit is contained in:
AbdAmmar 2024-05-01 18:54:22 +02:00 committed by GitHub
commit 920573e175
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
138 changed files with 5474 additions and 5075 deletions

32
.readthedocs.yaml Normal file
View File

@ -0,0 +1,32 @@
# .readthedocs.yaml
# Read the Docs configuration file
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
# Required
version: 2
# Set the OS, Python version and other tools you might need
build:
os: ubuntu-22.04
tools:
python: "3.12"
# You can also specify other tool versions:
# nodejs: "19"
# rust: "1.64"
# golang: "1.19"
# Build documentation in the "docs/" directory with Sphinx
sphinx:
configuration: docs/source/conf.py
# Optionally build your docs in additional formats such as PDF and ePub
# formats:
# - pdf
# - epub
# Optional but recommended, declare the Python requirements required
# to build your documentation
# See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html
python:
install:
- requirements: docs/requirements.txt

View File

@ -2,4 +2,4 @@ default: build.ninja
bash -c "source quantum_package.rc ; ninja" bash -c "source quantum_package.rc ; ninja"
build.ninja: build.ninja:
@bash -c ' echo '' ; echo xxxxxxxxxxxxxxxxxx ; echo "The QP is not configured yet. Please run the ./configure command" ; echo xxxxxxxxxxxxxxxxxx ; echo '' ; ./configure --help' | more @bash -c ' echo '' ; echo xxxxxxxxxxxxxxxxxx ; echo "QP is not configured yet. Please run the ./configure command" ; echo xxxxxxxxxxxxxxxxxx ; echo '' ; ./configure --help' | more

View File

@ -2,6 +2,9 @@
executables for Quantum Package. Please use ifort as long as you can, and executables for Quantum Package. Please use ifort as long as you can, and
consider switching to gfortran in the long term. consider switching to gfortran in the long term.
---
# Quantum Package 2.2 # Quantum Package 2.2
<!--- img src="https://raw.githubusercontent.com/QuantumPackage/qp2/master/data/qp2.png" width="250" ---> <!--- img src="https://raw.githubusercontent.com/QuantumPackage/qp2/master/data/qp2.png" width="250" --->

View File

@ -97,7 +97,7 @@ end
def get_repositories(): def get_repositories():
l_result = [f for f in os.listdir(QP_PLUGINS) \ l_result = [f for f in os.listdir(QP_PLUGINS) \
if f not in [".gitignore", "local"] ] if f not in [".gitignore", "local", "README.rst"] ]
return sorted(l_result) return sorted(l_result)

View File

@ -83,6 +83,7 @@ def main(arguments):
elif charge <= 118: n_frozen += 43 elif charge <= 118: n_frozen += 43
elif arguments["--small"]: elif arguments["--small"]:
for charge in ezfio.nuclei_nucl_charge:
if charge <= 4: pass if charge <= 4: pass
elif charge <= 18: n_frozen += 1 elif charge <= 18: n_frozen += 1
elif charge <= 36: n_frozen += 5 elif charge <= 36: n_frozen += 5

10
configure vendored
View File

@ -9,7 +9,7 @@ echo "QP_ROOT="$QP_ROOT
unset CC unset CC
unset CCXX unset CCXX
TREXIO_VERSION=2.3.2 TREXIO_VERSION=2.4.2
# Force GCC instead of ICC for dependencies # Force GCC instead of ICC for dependencies
export CC=gcc export CC=gcc
@ -219,7 +219,7 @@ EOF
tar -zxf trexio-${VERSION}.tar.gz && rm trexio-${VERSION}.tar.gz tar -zxf trexio-${VERSION}.tar.gz && rm trexio-${VERSION}.tar.gz
cd trexio-${VERSION} cd trexio-${VERSION}
./configure --prefix=\${QP_ROOT} --without-hdf5 CFLAGS='-g' ./configure --prefix=\${QP_ROOT} --without-hdf5 CFLAGS='-g'
make -j 8 && make -j 8 check && make -j 8 install (make -j 8 || make) && make check && make -j 8 install
tar -zxvf "\${QP_ROOT}"/external/qp2-dependencies/${ARCHITECTURE}/ninja.tar.gz tar -zxvf "\${QP_ROOT}"/external/qp2-dependencies/${ARCHITECTURE}/ninja.tar.gz
mv ninja "\${QP_ROOT}"/bin/ mv ninja "\${QP_ROOT}"/bin/
EOF EOF
@ -233,7 +233,7 @@ EOF
tar -zxf trexio-${VERSION}.tar.gz && rm trexio-${VERSION}.tar.gz tar -zxf trexio-${VERSION}.tar.gz && rm trexio-${VERSION}.tar.gz
cd trexio-${VERSION} cd trexio-${VERSION}
./configure --prefix=\${QP_ROOT} CFLAGS="-g" ./configure --prefix=\${QP_ROOT} CFLAGS="-g"
make -j 8 && make -j 8 check && make -j 8 install (make -j 8 || make) && make check && make -j 8 install
EOF EOF
elif [[ ${PACKAGE} = qmckl ]] ; then elif [[ ${PACKAGE} = qmckl ]] ; then
@ -245,7 +245,7 @@ EOF
tar -zxf qmckl-${VERSION}.tar.gz && rm qmckl-${VERSION}.tar.gz tar -zxf qmckl-${VERSION}.tar.gz && rm qmckl-${VERSION}.tar.gz
cd qmckl-${VERSION} cd qmckl-${VERSION}
./configure --prefix=\${QP_ROOT} --enable-hpc --disable-doc CFLAGS='-g' ./configure --prefix=\${QP_ROOT} --enable-hpc --disable-doc CFLAGS='-g'
make && make -j 4 check && make install (make -j 8 || make) && make check && make install
EOF EOF
elif [[ ${PACKAGE} = qmckl-intel ]] ; then elif [[ ${PACKAGE} = qmckl-intel ]] ; then
@ -257,7 +257,7 @@ EOF
tar -zxf qmckl-${VERSION}.tar.gz && rm qmckl-${VERSION}.tar.gz tar -zxf qmckl-${VERSION}.tar.gz && rm qmckl-${VERSION}.tar.gz
cd qmckl-${VERSION} cd qmckl-${VERSION}
./configure --prefix=\${QP_ROOT} --enable-hpc --disable-doc --with-icc --with-ifort CFLAGS='-g' ./configure --prefix=\${QP_ROOT} --enable-hpc --disable-doc --with-icc --with-ifort CFLAGS='-g'
make && make -j 4 check && make install (make -j 8 || make) && make check && make install
EOF EOF

View File

@ -20,5 +20,5 @@ Then, to reference for "myref" just type :ref:`myref`
or use `IRPF90`_ and define or use `IRPF90`_ and define
_IRPF90: http://irpf90.ups-tlse.fr _IRPF90: http://irpf90.ups-tlse.fr
somewhere somewhere
* References of published results with QP should be added into docs/source/research.bib in bibtex * References of published results with QP should be added into docs/source/references.bib in bibtex
format format

View File

@ -1,2 +1,2 @@
sphinxcontrib-bibtex==0.4.0 sphinxcontrib-bibtex
sphinx-rtd-theme==0.4.2 sphinx-rtd-theme

View File

@ -18,27 +18,27 @@ Emmanuel Giner
| emmanuel.giner@lct.jussieu.fr | emmanuel.giner@lct.jussieu.fr
Thomas Applencourt
| `Argonne Leadership Computing Facility <http://www.alcf.anl.gov/>`_
| Argonne, USA
| tapplencourt@anl.gov
The following people have contributed to this project (by alphabetical order): The following people have contributed to this project (by alphabetical order):
* Abdallah Ammar
* Thomas Applencourt
* Roland Assaraf * Roland Assaraf
* Pierrette Barbaresco * Pierrette Barbaresco
* Anouar Benali * Anouar Benali
* Chandler Bennet * Chandler Bennet
* Michel Caffarel * Michel Caffarel
* Vijay Gopal Chilkuri
* Yann Damour
* Grégoire David * Grégoire David
* Amanda Dumi
* Anthony Ferté * Anthony Ferté
* Madeline Galbraith * Madeline Galbraith
* Yann Garniron * Yann Garniron
* Kevin Gasperich * Kevin Gasperich
* Fabris Kossoski
* Pierre-François Loos * Pierre-François Loos
* Jean-Paul Malrieu * Jean-Paul Malrieu
* Antoine Marie
* Barry Moore * Barry Moore
* Julien Paquier * Julien Paquier
* Barthélémy Pradines * Barthélémy Pradines
@ -46,9 +46,11 @@ The following people have contributed to this project (by alphabetical order):
* Nicolas Renon * Nicolas Renon
* Lorenzo Tenti * Lorenzo Tenti
* Julien Toulouse * Julien Toulouse
* Diata Traoré
* Mikaël Véril * Mikaël Véril
If you have contributed and don't appear in this list, please modify this file If you have contributed and don't appear in this list, please modify the file
`$QP_ROOT/docs/source/appendix/contributors.rst`
and submit a pull request. and submit a pull request.

View File

@ -0,0 +1,8 @@
References
==========
.. bibliography:: /references.bib
:style: unsrt
:all:

View File

@ -1,8 +0,0 @@
Some research made with the |qp|
================================
.. bibliography:: /research.bib
:style: unsrt
:all:

View File

@ -29,7 +29,8 @@ def generate_modules(abs_module, entities):
rst += ["", "EZFIO parameters", "----------------", ""] rst += ["", "EZFIO parameters", "----------------", ""]
config_file = configparser.ConfigParser() config_file = configparser.ConfigParser()
with open(EZFIO, 'r') as f: with open(EZFIO, 'r') as f:
config_file.readfp(f) # config_file.readfp(f)
config_file.read_file(f)
for section in config_file.sections(): for section in config_file.sections():
doc = config_file.get(section, "doc") doc = config_file.get(section, "doc")
doc = " " + doc.replace("\n", "\n\n ")+"\n" doc = " " + doc.replace("\n", "\n\n ")+"\n"

View File

@ -70,7 +70,7 @@ master_doc = 'index'
# #
# This is also used if you do content translation via gettext catalogs. # This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases. # Usually you set "language" from the command line for these cases.
language = None language = "en"
# List of patterns, relative to source directory, that match files and # List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files. # directories to ignore when looking for source files.
@ -208,3 +208,5 @@ epub_exclude_files = ['search.html']
# -- Extension configuration ------------------------------------------------- # -- Extension configuration -------------------------------------------------
bibtex_bibfiles = [ "references.bib" ]

View File

@ -39,9 +39,10 @@
programmers_guide/programming programmers_guide/programming
programmers_guide/ezfio programmers_guide/ezfio
programmers_guide/plugins programmers_guide/plugins
programmers_guide/plugins_tuto_intro
programmers_guide/plugins_tuto_I
programmers_guide/new_ks programmers_guide/new_ks
programmers_guide/index programmers_guide/index
programmers_guide/plugins
.. toctree:: .. toctree::
@ -52,5 +53,6 @@
appendix/benchmarks appendix/benchmarks
appendix/license appendix/license
appendix/contributors appendix/contributors
appendix/references

View File

@ -19,7 +19,7 @@ especially for `wave function theory <https://en.wikipedia.org/wiki/Ab_initio_qu
From the **user** point of view, the |qp| proposes a stand-alone path From the **user** point of view, the |qp| proposes a stand-alone path
to use optimized selected configuration interaction |sCI| based on the to use optimized selected configuration interaction |sCI| based on the
|CIPSI| algorithm that can efficiently reach near-full configuration interaction |CIPSI| algorithm that can efficiently reach near-full configuration interaction
|FCI| quality for relatively large systems (see for instance :cite:`Caffarel_2016,Caffarel_2016.2,Loos_2018,Scemama_2018,Dash_2018,Garniron_2017.2,Loos_2018,Garniron_2018,Giner2018Oct`). |FCI| quality for relatively large systems.
To have a simple example of how to use the |CIPSI| program, go to the `users_guide/quickstart`. To have a simple example of how to use the |CIPSI| program, go to the `users_guide/quickstart`.

View File

@ -1,182 +0,0 @@
@article{Bytautas_2009,
doi = {10.1016/j.chemphys.2008.11.021},
url = {https://doi.org/10.1016%2Fj.chemphys.2008.11.021},
year = 2009,
month = {feb},
publisher = {Elsevier {BV}},
volume = {356},
number = {1-3},
pages = {64--75},
author = {Laimutis Bytautas and Klaus Ruedenberg},
title = {A priori identification of configurational deadwood},
journal = {Chemical Physics}
}
@article{Anderson_2018,
doi = {10.1016/j.comptc.2018.08.017},
url = {https://doi.org/10.1016%2Fj.comptc.2018.08.017},
year = 2018,
month = {oct},
publisher = {Elsevier {BV}},
volume = {1142},
pages = {66--77},
author = {James S.M. Anderson and Farnaz Heidar-Zadeh and Paul W. Ayers},
title = {Breaking the curse of dimension for the electronic Schrodinger equation with functional analysis},
journal = {Computational and Theoretical Chemistry}
}
@article{Bender_1969,
doi = {10.1103/physrev.183.23},
url = {http://dx.doi.org/10.1103/PhysRev.183.23},
year = 1969,
month = {jul},
publisher = {American Physical Society ({APS})},
volume = {183},
number = {1},
pages = {23--30},
author = {Charles F. Bender and Ernest R. Davidson},
title = {Studies in Configuration Interaction: The First-Row Diatomic Hydrides},
journal = {Phys. Rev.}
}
@article{Whitten_1969,
doi = {10.1063/1.1671985},
url = {https://doi.org/10.1063%2F1.1671985},
year = 1969,
month = {dec},
publisher = {{AIP} Publishing},
volume = {51},
number = {12},
pages = {5584--5596},
author = {J. L. Whitten and Melvyn Hackmeyer},
title = {Configuration Interaction Studies of Ground and Excited States of Polyatomic Molecules. I. The {CI} Formulation and Studies of Formaldehyde},
journal = {The Journal of Chemical Physics}
}
@article{Huron_1973,
doi = {10.1063/1.1679199},
url = {https://doi.org/10.1063%2F1.1679199},
year = 1973,
month = {jun},
publisher = {{AIP} Publishing},
volume = {58},
number = {12},
pages = {5745--5759},
author = {B. Huron and J. P. Malrieu and P. Rancurel},
title = {Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions},
journal = {The Journal of Chemical Physics}
}
@article{Knowles_1984,
author="Peter J. Knowles and Nicholas C Handy",
year=1984,
journal={Chem. Phys. Letters},
volume=111,
pages="315--321",
title="A New Determinant-based Full Configuration Interaction Method"
}
@article{Scemama_2013,
author = {{Scemama}, A. and {Giner}, E.},
title = "{An efficient implementation of Slater-Condon rules}",
journal = {ArXiv [physics.comp-ph]},
pages = {1311.6244},
year = 2013,
month = nov,
url = {https://arxiv.org/abs/1311.6244}
}
@article{Sharma_2017,
doi = {10.1021/acs.jctc.6b01028},
url = {https://doi.org/10.1021%2Facs.jctc.6b01028},
year = 2017,
month = {mar},
publisher = {American Chemical Society ({ACS})},
volume = {13},
number = {4},
pages = {1595--1604},
author = {Sandeep Sharma and Adam A. Holmes and Guillaume Jeanmairet and Ali Alavi and C. J. Umrigar},
title = {Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory},
journal = {Journal of Chemical Theory and Computation}
}
@article{Holmes_2016,
doi = {10.1021/acs.jctc.6b00407},
url = {https://doi.org/10.1021%2Facs.jctc.6b00407},
year = 2016,
month = {aug},
publisher = {American Chemical Society ({ACS})},
volume = {12},
number = {8},
pages = {3674--3680},
author = {Adam A. Holmes and Norm M. Tubman and C. J. Umrigar},
title = {Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling},
journal = {Journal of Chemical Theory and Computation}
}
@article{Evangelisti_1983,
doi = {10.1016/0301-0104(83)85011-3},
url = {https://doi.org/10.1016%2F0301-0104%2883%2985011-3},
year = 1983,
month = {feb},
publisher = {Elsevier {BV}},
volume = {75},
number = {1},
pages = {91--102},
author = {Stefano Evangelisti and Jean-Pierre Daudey and Jean-Paul Malrieu},
title = {Convergence of an improved {CIPSI} algorithm},
journal = {Chemical Physics}
}
@article{Booth_2009,
doi = {10.1063/1.3193710},
url = {https://doi.org/10.1063%2F1.3193710},
year = 2009,
publisher = {{AIP} Publishing},
volume = {131},
number = {5},
pages = {054106},
author = {George H. Booth and Alex J. W. Thom and Ali Alavi},
title = {Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space},
journal = {The Journal of Chemical Physics}
}
@article{Booth_2010,
doi = {10.1063/1.3407895},
url = {https://doi.org/10.1063%2F1.3407895},
year = 2010,
month = {may},
publisher = {{AIP} Publishing},
volume = {132},
number = {17},
pages = {174104},
author = {George H. Booth and Ali Alavi},
title = {Approaching chemical accuracy using full configuration-interaction quantum Monte Carlo: A study of ionization potentials},
journal = {The Journal of Chemical Physics}
}
@article{Cleland_2010,
doi = {10.1063/1.3302277},
url = {https://doi.org/10.1063%2F1.3302277},
year = 2010,
month = {jan},
publisher = {{AIP} Publishing},
volume = {132},
number = {4},
pages = {041103},
author = {Deidre Cleland and George H. Booth and Ali Alavi},
title = {Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo},
journal = {The Journal of Chemical Physics}
}
@article{Garniron_2017b,
doi = {10.1063/1.4992127},
url = {https://doi.org/10.1063%2F1.4992127},
year = 2017,
month = {jul},
publisher = {{AIP} Publishing},
volume = {147},
number = {3},
pages = {034101},
author = {Yann Garniron and Anthony Scemama and Pierre-Fran{\c{c}}ois Loos and Michel Caffarel},
title = {Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory},
journal = {The Journal of Chemical Physics}
}

View File

@ -99,6 +99,71 @@ EZFIO parameters
Default: 1.e-20 Default: 1.e-20
.. option:: my_grid_becke
if True, the number of angular and radial grid points are read from EZFIO
Default: False
.. option:: my_n_pt_r_grid
Number of radial grid points given from input
Default: 300
.. option:: my_n_pt_a_grid
Number of angular grid points given from input. Warning, this number cannot be any integer. See file list_angular_grid
Default: 1202
.. option:: n_points_extra_final_grid
Total number of extra_grid points
.. option:: extra_grid_type_sgn
Type of extra_grid used for the Becke's numerical extra_grid. Can be, by increasing accuracy: [ 0 | 1 | 2 | 3 ]
Default: 0
.. option:: thresh_extra_grid
threshold on the weight of a given extra_grid point
Default: 1.e-20
.. option:: my_extra_grid_becke
if True, the number of angular and radial extra_grid points are read from EZFIO
Default: False
.. option:: my_n_pt_r_extra_grid
Number of radial extra_grid points given from input
Default: 300
.. option:: my_n_pt_a_extra_grid
Number of angular extra_grid points given from input. Warning, this number cannot be any integer. See file list_angular_extra_grid
Default: 1202
.. option:: rad_grid_type
method used to sample the radial space. Possible choices are [KNOWLES | GILL]
Default: KNOWLES
.. option:: extra_rad_grid_type
method used to sample the radial space. Possible choices are [KNOWLES | GILL]
Default: KNOWLES
Providers Providers
--------- ---------
@ -122,6 +187,8 @@ Providers
:columns: 3 :columns: 3
* :c:data:`final_weight_at_r` * :c:data:`final_weight_at_r`
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`grid_points_per_atom` * :c:data:`grid_points_per_atom`
@ -156,6 +223,66 @@ Providers
* :c:data:`grid_points_per_atom` * :c:data:`grid_points_per_atom`
.. c:var:: angular_quadrature_points_extra
File : :file:`becke_numerical_grid/angular_extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: angular_quadrature_points_extra (n_points_extra_integration_angular,3)
double precision, allocatable :: weights_angular_points_extra (n_points_extra_integration_angular)
weights and grid points_extra for the integration on the angular variables on
the unit sphere centered on (0,0,0)
According to the LEBEDEV scheme
Needs:
.. hlist::
:columns: 3
* :c:data:`n_points_extra_radial_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
.. c:var:: dr_radial_extra_integral
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: grid_points_extra_radial (n_points_extra_radial_grid)
double precision :: dr_radial_extra_integral
points_extra in [0,1] to map the radial integral [0,\infty]
Needs:
.. hlist::
:columns: 3
* :c:data:`n_points_extra_radial_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
.. c:var:: dr_radial_integral .. c:var:: dr_radial_integral
@ -223,6 +350,11 @@ Providers
.. hlist:: .. hlist::
:columns: 3 :columns: 3
* :c:data:`ao_abs_int_grid`
* :c:data:`ao_overlap_abs_grid`
* :c:data:`ao_prod_abs_r`
* :c:data:`ao_prod_center`
* :c:data:`ao_prod_dist_grid`
* :c:data:`aos_grad_in_r_array` * :c:data:`aos_grad_in_r_array`
* :c:data:`aos_in_r_array` * :c:data:`aos_in_r_array`
* :c:data:`aos_lapl_in_r_array` * :c:data:`aos_lapl_in_r_array`
@ -241,11 +373,60 @@ Providers
* :c:data:`energy_x_pbe` * :c:data:`energy_x_pbe`
* :c:data:`energy_x_sr_lda` * :c:data:`energy_x_sr_lda`
* :c:data:`energy_x_sr_pbe` * :c:data:`energy_x_sr_pbe`
* :c:data:`f_psi_cas_ab`
* :c:data:`f_psi_hf_ab`
* :c:data:`final_grid_points_transp`
* :c:data:`mo_grad_ints`
* :c:data:`mos_in_r_array` * :c:data:`mos_in_r_array`
* :c:data:`mos_in_r_array_omp` * :c:data:`mos_in_r_array_omp`
* :c:data:`mu_average_prov`
* :c:data:`mu_grad_rho`
* :c:data:`mu_of_r_dft_average`
* :c:data:`mu_rsc_of_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r` * :c:data:`one_e_dm_and_grad_alpha_in_r`
.. c:var:: final_grid_points_extra
File : :file:`becke_numerical_grid/extra_grid_vector.irp.f`
.. code:: fortran
double precision, allocatable :: final_grid_points_extra (3,n_points_extra_final_grid)
double precision, allocatable :: final_weight_at_r_vector_extra (n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra (3,n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra_reverse (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
final_grid_points_extra(1:3,j) = (/ x, y, z /) of the jth grid point
final_weight_at_r_vector_extra(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
index_final_points_extra(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
index_final_points_extra_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
Needs:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`n_points_extra_final_grid`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_num`
* :c:data:`thresh_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_extra`
.. c:var:: final_grid_points_per_atom .. c:var:: final_grid_points_per_atom
@ -272,12 +453,28 @@ Providers
* :c:data:`nucl_num` * :c:data:`nucl_num`
* :c:data:`thresh_grid` * :c:data:`thresh_grid`
Needed by:
.. c:var:: final_grid_points_transp
File : :file:`becke_numerical_grid/grid_becke_vector.irp.f`
.. code:: fortran
double precision, allocatable :: final_grid_points_transp (n_points_final_grid,3)
Transposed final_grid_points
Needs:
.. hlist:: .. hlist::
:columns: 3 :columns: 3
* :c:data:`aos_in_r_array_per_atom` * :c:data:`final_grid_points`
* :c:data:`n_points_final_grid`
.. c:var:: final_weight_at_r .. c:var:: final_weight_at_r
@ -304,6 +501,8 @@ Providers
* :c:data:`m_knowles` * :c:data:`m_knowles`
* :c:data:`n_points_radial_grid` * :c:data:`n_points_radial_grid`
* :c:data:`nucl_num` * :c:data:`nucl_num`
* :c:data:`r_gill`
* :c:data:`rad_grid_type`
* :c:data:`weight_at_r` * :c:data:`weight_at_r`
Needed by: Needed by:
@ -317,6 +516,43 @@ Providers
* :c:data:`n_pts_per_atom` * :c:data:`n_pts_per_atom`
.. c:var:: final_weight_at_r_extra
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: final_weight_at_r_extra (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
Total weight on each grid point which takes into account all Lebedev, Voronoi and radial weights.
Needs:
.. hlist::
:columns: 3
* :c:data:`alpha_knowles`
* :c:data:`angular_quadrature_points_extra`
* :c:data:`extra_rad_grid_type`
* :c:data:`grid_atomic_number`
* :c:data:`grid_points_extra_radial`
* :c:data:`m_knowles`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_num`
* :c:data:`r_gill`
* :c:data:`weight_at_r_extra`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_grid_points_extra`
* :c:data:`n_points_extra_final_grid`
.. c:var:: final_weight_at_r_vector .. c:var:: final_weight_at_r_vector
@ -355,6 +591,11 @@ Providers
.. hlist:: .. hlist::
:columns: 3 :columns: 3
* :c:data:`ao_abs_int_grid`
* :c:data:`ao_overlap_abs_grid`
* :c:data:`ao_prod_abs_r`
* :c:data:`ao_prod_center`
* :c:data:`ao_prod_dist_grid`
* :c:data:`aos_grad_in_r_array` * :c:data:`aos_grad_in_r_array`
* :c:data:`aos_in_r_array` * :c:data:`aos_in_r_array`
* :c:data:`aos_lapl_in_r_array` * :c:data:`aos_lapl_in_r_array`
@ -373,11 +614,60 @@ Providers
* :c:data:`energy_x_pbe` * :c:data:`energy_x_pbe`
* :c:data:`energy_x_sr_lda` * :c:data:`energy_x_sr_lda`
* :c:data:`energy_x_sr_pbe` * :c:data:`energy_x_sr_pbe`
* :c:data:`f_psi_cas_ab`
* :c:data:`f_psi_hf_ab`
* :c:data:`final_grid_points_transp`
* :c:data:`mo_grad_ints`
* :c:data:`mos_in_r_array` * :c:data:`mos_in_r_array`
* :c:data:`mos_in_r_array_omp` * :c:data:`mos_in_r_array_omp`
* :c:data:`mu_average_prov`
* :c:data:`mu_grad_rho`
* :c:data:`mu_of_r_dft_average`
* :c:data:`mu_rsc_of_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r` * :c:data:`one_e_dm_and_grad_alpha_in_r`
.. c:var:: final_weight_at_r_vector_extra
File : :file:`becke_numerical_grid/extra_grid_vector.irp.f`
.. code:: fortran
double precision, allocatable :: final_grid_points_extra (3,n_points_extra_final_grid)
double precision, allocatable :: final_weight_at_r_vector_extra (n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra (3,n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra_reverse (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
final_grid_points_extra(1:3,j) = (/ x, y, z /) of the jth grid point
final_weight_at_r_vector_extra(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
index_final_points_extra(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
index_final_points_extra_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
Needs:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`n_points_extra_final_grid`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_num`
* :c:data:`thresh_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_extra`
.. c:var:: final_weight_at_r_vector_per_atom .. c:var:: final_weight_at_r_vector_per_atom
@ -404,12 +694,6 @@ Providers
* :c:data:`nucl_num` * :c:data:`nucl_num`
* :c:data:`thresh_grid` * :c:data:`thresh_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_per_atom`
.. c:var:: grid_atomic_number .. c:var:: grid_atomic_number
@ -438,9 +722,77 @@ Providers
:columns: 3 :columns: 3
* :c:data:`final_weight_at_r` * :c:data:`final_weight_at_r`
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`grid_points_per_atom` * :c:data:`grid_points_per_atom`
.. c:var:: grid_points_extra_per_atom
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: grid_points_extra_per_atom (3,n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
x,y,z coordinates of grid points_extra used for integration in 3d space
Needs:
.. hlist::
:columns: 3
* :c:data:`alpha_knowles`
* :c:data:`angular_quadrature_points_extra`
* :c:data:`extra_rad_grid_type`
* :c:data:`grid_atomic_number`
* :c:data:`grid_points_extra_radial`
* :c:data:`m_knowles`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_coord`
* :c:data:`nucl_num`
* :c:data:`r_gill`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_grid_points_extra`
* :c:data:`weight_at_r_extra`
.. c:var:: grid_points_extra_radial
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: grid_points_extra_radial (n_points_extra_radial_grid)
double precision :: dr_radial_extra_integral
points_extra in [0,1] to map the radial integral [0,\infty]
Needs:
.. hlist::
:columns: 3
* :c:data:`n_points_extra_radial_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
.. c:var:: grid_points_per_atom .. c:var:: grid_points_per_atom
@ -466,6 +818,8 @@ Providers
* :c:data:`n_points_radial_grid` * :c:data:`n_points_radial_grid`
* :c:data:`nucl_coord` * :c:data:`nucl_coord`
* :c:data:`nucl_num` * :c:data:`nucl_num`
* :c:data:`r_gill`
* :c:data:`rad_grid_type`
Needed by: Needed by:
@ -544,6 +898,11 @@ Providers
.. hlist:: .. hlist::
:columns: 3 :columns: 3
* :c:data:`ao_abs_int_grid`
* :c:data:`ao_overlap_abs_grid`
* :c:data:`ao_prod_abs_r`
* :c:data:`ao_prod_center`
* :c:data:`ao_prod_dist_grid`
* :c:data:`aos_grad_in_r_array` * :c:data:`aos_grad_in_r_array`
* :c:data:`aos_in_r_array` * :c:data:`aos_in_r_array`
* :c:data:`aos_lapl_in_r_array` * :c:data:`aos_lapl_in_r_array`
@ -562,11 +921,101 @@ Providers
* :c:data:`energy_x_pbe` * :c:data:`energy_x_pbe`
* :c:data:`energy_x_sr_lda` * :c:data:`energy_x_sr_lda`
* :c:data:`energy_x_sr_pbe` * :c:data:`energy_x_sr_pbe`
* :c:data:`f_psi_cas_ab`
* :c:data:`f_psi_hf_ab`
* :c:data:`final_grid_points_transp`
* :c:data:`mo_grad_ints`
* :c:data:`mos_in_r_array` * :c:data:`mos_in_r_array`
* :c:data:`mos_in_r_array_omp` * :c:data:`mos_in_r_array_omp`
* :c:data:`mu_average_prov`
* :c:data:`mu_grad_rho`
* :c:data:`mu_of_r_dft_average`
* :c:data:`mu_rsc_of_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r` * :c:data:`one_e_dm_and_grad_alpha_in_r`
.. c:var:: index_final_points_extra
File : :file:`becke_numerical_grid/extra_grid_vector.irp.f`
.. code:: fortran
double precision, allocatable :: final_grid_points_extra (3,n_points_extra_final_grid)
double precision, allocatable :: final_weight_at_r_vector_extra (n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra (3,n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra_reverse (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
final_grid_points_extra(1:3,j) = (/ x, y, z /) of the jth grid point
final_weight_at_r_vector_extra(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
index_final_points_extra(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
index_final_points_extra_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
Needs:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`n_points_extra_final_grid`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_num`
* :c:data:`thresh_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_extra`
.. c:var:: index_final_points_extra_reverse
File : :file:`becke_numerical_grid/extra_grid_vector.irp.f`
.. code:: fortran
double precision, allocatable :: final_grid_points_extra (3,n_points_extra_final_grid)
double precision, allocatable :: final_weight_at_r_vector_extra (n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra (3,n_points_extra_final_grid)
integer, allocatable :: index_final_points_extra_reverse (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
final_grid_points_extra(1:3,j) = (/ x, y, z /) of the jth grid point
final_weight_at_r_vector_extra(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
index_final_points_extra(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
index_final_points_extra_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
Needs:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`n_points_extra_final_grid`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_num`
* :c:data:`thresh_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_extra`
.. c:var:: index_final_points_per_atom .. c:var:: index_final_points_per_atom
@ -593,12 +1042,6 @@ Providers
* :c:data:`nucl_num` * :c:data:`nucl_num`
* :c:data:`thresh_grid` * :c:data:`thresh_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_per_atom`
.. c:var:: index_final_points_per_atom_reverse .. c:var:: index_final_points_per_atom_reverse
@ -627,12 +1070,6 @@ Providers
* :c:data:`nucl_num` * :c:data:`nucl_num`
* :c:data:`thresh_grid` * :c:data:`thresh_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_per_atom`
.. c:var:: index_final_points_reverse .. c:var:: index_final_points_reverse
@ -673,6 +1110,11 @@ Providers
.. hlist:: .. hlist::
:columns: 3 :columns: 3
* :c:data:`ao_abs_int_grid`
* :c:data:`ao_overlap_abs_grid`
* :c:data:`ao_prod_abs_r`
* :c:data:`ao_prod_center`
* :c:data:`ao_prod_dist_grid`
* :c:data:`aos_grad_in_r_array` * :c:data:`aos_grad_in_r_array`
* :c:data:`aos_in_r_array` * :c:data:`aos_in_r_array`
* :c:data:`aos_lapl_in_r_array` * :c:data:`aos_lapl_in_r_array`
@ -691,8 +1133,16 @@ Providers
* :c:data:`energy_x_pbe` * :c:data:`energy_x_pbe`
* :c:data:`energy_x_sr_lda` * :c:data:`energy_x_sr_lda`
* :c:data:`energy_x_sr_pbe` * :c:data:`energy_x_sr_pbe`
* :c:data:`f_psi_cas_ab`
* :c:data:`f_psi_hf_ab`
* :c:data:`final_grid_points_transp`
* :c:data:`mo_grad_ints`
* :c:data:`mos_in_r_array` * :c:data:`mos_in_r_array`
* :c:data:`mos_in_r_array_omp` * :c:data:`mos_in_r_array_omp`
* :c:data:`mu_average_prov`
* :c:data:`mu_grad_rho`
* :c:data:`mu_of_r_dft_average`
* :c:data:`mu_rsc_of_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r` * :c:data:`one_e_dm_and_grad_alpha_in_r`
@ -714,9 +1164,148 @@ Providers
:columns: 3 :columns: 3
* :c:data:`final_weight_at_r` * :c:data:`final_weight_at_r`
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`grid_points_per_atom` * :c:data:`grid_points_per_atom`
.. c:var:: n_points_extra_final_grid
File : :file:`becke_numerical_grid/extra_grid_vector.irp.f`
.. code:: fortran
integer :: n_points_extra_final_grid
Number of points_extra which are non zero
Needs:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_num`
* :c:data:`thresh_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_in_r_array_extra`
* :c:data:`aos_in_r_array_extra_transp`
* :c:data:`final_grid_points_extra`
.. c:var:: n_points_extra_grid_per_atom
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
integer :: n_points_extra_grid_per_atom
Number of grid points_extra per atom
Needs:
.. hlist::
:columns: 3
* :c:data:`n_points_extra_radial_grid`
.. c:var:: n_points_extra_integration_angular
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
integer :: n_points_extra_radial_grid
integer :: n_points_extra_integration_angular
n_points_extra_radial_grid = number of radial grid points_extra per atom
n_points_extra_integration_angular = number of angular grid points_extra per atom
These numbers are automatically set by setting the grid_type_sgn parameter
Needs:
.. hlist::
:columns: 3
* :c:data:`extra_grid_type_sgn`
* :c:data:`my_extra_grid_becke`
* :c:data:`my_n_pt_a_extra_grid`
* :c:data:`my_n_pt_r_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`angular_quadrature_points_extra`
* :c:data:`final_grid_points_extra`
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`grid_points_extra_radial`
* :c:data:`n_points_extra_final_grid`
* :c:data:`n_points_extra_grid_per_atom`
* :c:data:`weight_at_r_extra`
.. c:var:: n_points_extra_radial_grid
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
integer :: n_points_extra_radial_grid
integer :: n_points_extra_integration_angular
n_points_extra_radial_grid = number of radial grid points_extra per atom
n_points_extra_integration_angular = number of angular grid points_extra per atom
These numbers are automatically set by setting the grid_type_sgn parameter
Needs:
.. hlist::
:columns: 3
* :c:data:`extra_grid_type_sgn`
* :c:data:`my_extra_grid_becke`
* :c:data:`my_n_pt_a_extra_grid`
* :c:data:`my_n_pt_r_extra_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`angular_quadrature_points_extra`
* :c:data:`final_grid_points_extra`
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`grid_points_extra_radial`
* :c:data:`n_points_extra_final_grid`
* :c:data:`n_points_extra_grid_per_atom`
* :c:data:`weight_at_r_extra`
.. c:var:: n_points_final_grid .. c:var:: n_points_final_grid
@ -744,9 +1333,17 @@ Providers
.. hlist:: .. hlist::
:columns: 3 :columns: 3
* :c:data:`act_mos_in_r_array`
* :c:data:`alpha_dens_kin_in_r` * :c:data:`alpha_dens_kin_in_r`
* :c:data:`ao_abs_int_grid`
* :c:data:`ao_overlap_abs_grid`
* :c:data:`ao_prod_abs_r`
* :c:data:`ao_prod_center`
* :c:data:`ao_prod_dist_grid`
* :c:data:`aos_grad_in_r_array` * :c:data:`aos_grad_in_r_array`
* :c:data:`aos_grad_in_r_array_transp` * :c:data:`aos_grad_in_r_array_transp`
* :c:data:`aos_grad_in_r_array_transp_3`
* :c:data:`aos_grad_in_r_array_transp_bis`
* :c:data:`aos_in_r_array` * :c:data:`aos_in_r_array`
* :c:data:`aos_in_r_array_transp` * :c:data:`aos_in_r_array_transp`
* :c:data:`aos_lapl_in_r_array` * :c:data:`aos_lapl_in_r_array`
@ -759,6 +1356,14 @@ Providers
* :c:data:`aos_vxc_alpha_lda_w` * :c:data:`aos_vxc_alpha_lda_w`
* :c:data:`aos_vxc_alpha_pbe_w` * :c:data:`aos_vxc_alpha_pbe_w`
* :c:data:`aos_vxc_alpha_sr_pbe_w` * :c:data:`aos_vxc_alpha_sr_pbe_w`
* :c:data:`basis_mos_in_r_array`
* :c:data:`core_density`
* :c:data:`core_inact_act_mos_grad_in_r_array`
* :c:data:`core_inact_act_mos_in_r_array`
* :c:data:`core_inact_act_v_kl_contracted`
* :c:data:`core_mos_in_r_array`
* :c:data:`effective_alpha_dm`
* :c:data:`effective_spin_dm`
* :c:data:`elec_beta_num_grid_becke` * :c:data:`elec_beta_num_grid_becke`
* :c:data:`energy_c_lda` * :c:data:`energy_c_lda`
* :c:data:`energy_c_sr_lda` * :c:data:`energy_c_sr_lda`
@ -766,14 +1371,39 @@ Providers
* :c:data:`energy_x_pbe` * :c:data:`energy_x_pbe`
* :c:data:`energy_x_sr_lda` * :c:data:`energy_x_sr_lda`
* :c:data:`energy_x_sr_pbe` * :c:data:`energy_x_sr_pbe`
* :c:data:`f_psi_cas_ab`
* :c:data:`f_psi_cas_ab_old`
* :c:data:`f_psi_hf_ab`
* :c:data:`final_grid_points` * :c:data:`final_grid_points`
* :c:data:`final_grid_points_transp`
* :c:data:`full_occ_2_rdm_cntrctd`
* :c:data:`full_occ_2_rdm_cntrctd_trans`
* :c:data:`full_occ_v_kl_cntrctd`
* :c:data:`grad_total_cas_on_top_density`
* :c:data:`inact_density`
* :c:data:`inact_mos_in_r_array`
* :c:data:`kinetic_density_generalized` * :c:data:`kinetic_density_generalized`
* :c:data:`mo_grad_ints`
* :c:data:`mos_grad_in_r_array` * :c:data:`mos_grad_in_r_array`
* :c:data:`mos_grad_in_r_array_tranp` * :c:data:`mos_grad_in_r_array_tranp`
* :c:data:`mos_grad_in_r_array_transp_3`
* :c:data:`mos_grad_in_r_array_transp_bis`
* :c:data:`mos_in_r_array` * :c:data:`mos_in_r_array`
* :c:data:`mos_in_r_array_omp` * :c:data:`mos_in_r_array_omp`
* :c:data:`mos_in_r_array_transp` * :c:data:`mos_in_r_array_transp`
* :c:data:`mos_lapl_in_r_array` * :c:data:`mos_lapl_in_r_array`
* :c:data:`mos_lapl_in_r_array_tranp`
* :c:data:`mu_average_prov`
* :c:data:`mu_grad_rho`
* :c:data:`mu_of_r_dft`
* :c:data:`mu_of_r_dft_average`
* :c:data:`mu_of_r_hf`
* :c:data:`mu_of_r_prov`
* :c:data:`mu_of_r_psi_cas`
* :c:data:`mu_rsc_of_r`
* :c:data:`one_e_act_density_alpha`
* :c:data:`one_e_act_density_beta`
* :c:data:`one_e_cas_total_density`
* :c:data:`one_e_dm_and_grad_alpha_in_r` * :c:data:`one_e_dm_and_grad_alpha_in_r`
* :c:data:`pot_grad_x_alpha_ao_pbe` * :c:data:`pot_grad_x_alpha_ao_pbe`
* :c:data:`pot_grad_x_alpha_ao_sr_pbe` * :c:data:`pot_grad_x_alpha_ao_sr_pbe`
@ -789,6 +1419,8 @@ Providers
* :c:data:`potential_x_alpha_ao_sr_lda` * :c:data:`potential_x_alpha_ao_sr_lda`
* :c:data:`potential_xc_alpha_ao_lda` * :c:data:`potential_xc_alpha_ao_lda`
* :c:data:`potential_xc_alpha_ao_sr_lda` * :c:data:`potential_xc_alpha_ao_sr_lda`
* :c:data:`total_cas_on_top_density`
* :c:data:`virt_mos_in_r_array`
.. c:var:: n_points_grid_per_atom .. c:var:: n_points_grid_per_atom
@ -928,7 +1560,6 @@ Providers
.. hlist:: .. hlist::
:columns: 3 :columns: 3
* :c:data:`aos_in_r_array_per_atom`
* :c:data:`final_grid_points_per_atom` * :c:data:`final_grid_points_per_atom`
@ -960,10 +1591,31 @@ Providers
.. hlist:: .. hlist::
:columns: 3 :columns: 3
* :c:data:`aos_in_r_array_per_atom`
* :c:data:`final_grid_points_per_atom` * :c:data:`final_grid_points_per_atom`
.. c:var:: r_gill
File : :file:`becke_numerical_grid/grid_becke.irp.f`
.. code:: fortran
double precision :: r_gill
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r`
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
* :c:data:`grid_points_per_atom`
.. c:var:: weight_at_r .. c:var:: weight_at_r
@ -1001,6 +1653,43 @@ Providers
* :c:data:`final_weight_at_r` * :c:data:`final_weight_at_r`
.. c:var:: weight_at_r_extra
File : :file:`becke_numerical_grid/extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: weight_at_r_extra (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)
Weight function at grid points_extra : w_n(r) according to the equation (22)
of Becke original paper (JCP, 88, 1988)
The "n" discrete variable represents the nucleis which in this array is
represented by the last dimension and the points_extra are labelled by the
other dimensions.
Needs:
.. hlist::
:columns: 3
* :c:data:`grid_points_extra_per_atom`
* :c:data:`n_points_extra_radial_grid`
* :c:data:`nucl_coord_transp`
* :c:data:`nucl_dist_inv`
* :c:data:`nucl_num`
* :c:data:`slater_bragg_type_inter_distance_ua`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
.. c:var:: weights_angular_points .. c:var:: weights_angular_points
@ -1032,6 +1721,37 @@ Providers
* :c:data:`grid_points_per_atom` * :c:data:`grid_points_per_atom`
.. c:var:: weights_angular_points_extra
File : :file:`becke_numerical_grid/angular_extra_grid.irp.f`
.. code:: fortran
double precision, allocatable :: angular_quadrature_points_extra (n_points_extra_integration_angular,3)
double precision, allocatable :: weights_angular_points_extra (n_points_extra_integration_angular)
weights and grid points_extra for the integration on the angular variables on
the unit sphere centered on (0,0,0)
According to the LEBEDEV scheme
Needs:
.. hlist::
:columns: 3
* :c:data:`n_points_extra_radial_grid`
Needed by:
.. hlist::
:columns: 3
* :c:data:`final_weight_at_r_extra`
* :c:data:`grid_points_extra_per_atom`
Subroutines / functions Subroutines / functions
----------------------- -----------------------
@ -1043,7 +1763,7 @@ Subroutines / functions
.. code:: fortran .. code:: fortran
double precision function cell_function_becke(r,atom_number) double precision function cell_function_becke(r, atom_number)
atom_number :: atom on which the cell function of Becke (1988, JCP,88(4)) atom_number :: atom on which the cell function of Becke (1988, JCP,88(4))
@ -1067,7 +1787,7 @@ Subroutines / functions
.. code:: fortran .. code:: fortran
double precision function derivative_knowles_function(alpha,m,x) double precision function derivative_knowles_function(alpha, m, x)
Derivative of the function proposed by Knowles (JCP, 104, 1996) for distributing the radial points Derivative of the function proposed by Knowles (JCP, 104, 1996) for distributing the radial points
@ -1118,7 +1838,7 @@ Subroutines / functions
.. code:: fortran .. code:: fortran
double precision function knowles_function(alpha,m,x) double precision function knowles_function(alpha, m, x)
Function proposed by Knowles (JCP, 104, 1996) for distributing the radial points : Function proposed by Knowles (JCP, 104, 1996) for distributing the radial points :

View File

@ -21,7 +21,7 @@ The :c:func:`run_cipsi` subroutine iteratively:
* If :option:`determinants s2_eig` is |true|, it adds all the necessary * If :option:`determinants s2_eig` is |true|, it adds all the necessary
determinants to allow the eigenstates of |H| to be eigenstates of |S^2| determinants to allow the eigenstates of |H| to be eigenstates of |S^2|
* Diagonalizes |H| in the enlarged internal space * Diagonalizes |H| in the enlarged internal space
* Computes the |PT2| contribution to the energy stochastically :cite:`Garniron_2017.2` * Computes the |PT2| contribution to the energy stochastically :cite:`Garniron_2017b`
or deterministically, depending on :option:`perturbation do_pt2` or deterministically, depending on :option:`perturbation do_pt2`
* Extrapolates the variational energy by fitting * Extrapolates the variational energy by fitting
:math:`E=E_\text{FCI} - \alpha\, E_\text{PT2}` :math:`E=E_\text{FCI} - \alpha\, E_\text{PT2}`

View File

@ -0,0 +1 @@
.. include:: ../../../plugins/local/tuto_plugins/tuto_I/tuto_I.rst

View File

@ -0,0 +1 @@
.. include:: ../../../plugins/README.rst

847
docs/source/references.bib Normal file
View File

@ -0,0 +1,847 @@
@article{Ammar_2023,
author = {Ammar, Abdallah and Scemama, Anthony and Giner, Emmanuel},
title = {{Transcorrelated selected configuration interaction in a bi-orthonormal basis and with a cheap three-body correlation factor}},
journal = {J. Chem. Phys.},
volume = {159},
number = {11},
year = {2023},
month = sep,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0163831}
}
@article{Ammar_2023.2,
author = {Ammar, Abdallah and Scemama, Anthony and Giner, Emmanuel},
title = {{Biorthonormal Orbital Optimization with a Cheap Core-Electron-Free Three-Body Correlation Factor for Quantum Monte Carlo and Transcorrelation}},
journal = {J. Chem. Theory Comput.},
volume = {19},
number = {15},
pages = {4883--4896},
year = {2023},
month = aug,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.3c00257}
}
@article{Damour_2023,
author = {Damour, Yann and Quintero-Monsebaiz, Ra{\'{u}}l and Caffarel, Michel and Jacquemin, Denis and Kossoski, F{\'{a}}bris and Scemama, Anthony and Loos, Pierre-Fran{\c{c}}ois},
title = {{Ground- and Excited-State Dipole Moments and Oscillator Strengths of Full Configuration Interaction Quality}},
journal = {J. Chem. Theory Comput.},
volume = {19},
number = {1},
pages = {221--234},
year = {2023},
month = jan,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.2c01111}
}
@article{Ammar_2022,
author = {Ammar, Abdallah and Scemama, Anthony and Giner, Emmanuel},
title = {{Extension of selected configuration interaction for transcorrelated methods}},
journal = {J. Chem. Phys.},
volume = {157},
number = {13},
year = {2022},
month = oct,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0115524}
}
@article{Ammar_2022.2,
author = {Ammar, Abdallah and Giner, Emmanuel and Scemama, Anthony},
title = {{Optimization of Large Determinant Expansions in Quantum Monte Carlo}},
journal = {J. Chem. Theory Comput.},
volume = {18},
number = {9},
pages = {5325--5336},
year = {2022},
month = sep,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.2c00556}
}
@article{Monino_2022,
author = {Monino, Enzo and Boggio-Pasqua, Martial and Scemama, Anthony and Jacquemin, Denis and Loos, Pierre-Fran{\c{c}}ois},
title = {{Reference Energies for Cyclobutadiene: Automerization and Excited States}},
journal = {J. Phys. Chem. A},
volume = {126},
number = {28},
pages = {4664--4679},
year = {2022},
month = jul,
issn = {1089-5639},
publisher = {American Chemical Society},
doi = {10.1021/acs.jpca.2c02480}
}
@article{Cuzzocrea_2022,
author = {Cuzzocrea, Alice and Moroni, Saverio and Scemama, Anthony and Filippi, Claudia},
title = {{Reference Excitation Energies of Increasingly Large Molecules: A QMC Study of Cyanine Dyes}},
journal = {J. Chem. Theory Comput.},
volume = {18},
number = {2},
pages = {1089--1095},
year = {2022},
month = feb,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.1c01162}
}
@article{Damour_2021,
author = {Damour, Yann and V{\'{e}}ril, Micka{\"{e}}l and Kossoski, F{\'{a}}bris and Caffarel, Michel and Jacquemin, Denis and Scemama, Anthony and Loos, Pierre-Fran{\c{c}}ois},
title = {{Accurate full configuration interaction correlation energy estimates for five- and six-membered rings}},
journal = {J. Chem. Phys.},
volume = {155},
number = {13},
year = {2021},
month = oct,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0065314}
}
@article{Veril_2021,
author = {V{\'{e}}ril, Micka{\"{e}}l and Scemama, Anthony and Caffarel, Michel and Lipparini, Filippo and Boggio-Pasqua, Martial and Jacquemin, Denis and Loos, Pierre-Fran{\c{c}}ois},
title = {{QUESTDB: A database of highly accurate excitation energies for the electronic structure community}},
journal = {WIREs Comput. Mol. Sci.},
volume = {11},
number = {5},
pages = {e1517},
year = {2021},
month = sep,
issn = {1759-0876},
publisher = {John Wiley {\&} Sons, Ltd},
doi = {10.1002/wcms.1517}
}
@article{Kossoski_2021,
author = {Kossoski, F{\'{a}}bris and Marie, Antoine and Scemama, Anthony and Caffarel, Michel and Loos, Pierre-Fran{\c{c}}ois},
title = {{Excited States from State-Specific Orbital-Optimized Pair Coupled Cluster}},
journal = {J. Chem. Theory Comput.},
volume = {17},
number = {8},
pages = {4756--4768},
year = {2021},
month = aug,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.1c00348}
}
@article{Dash_2021,
author = {Dash, Monika and Moroni, Saverio and Filippi, Claudia and Scemama, Anthony},
title = {{Tailoring CIPSI Expansions for QMC Calculations of Electronic Excitations: The Case Study of Thiophene}},
journal = {J. Chem. Theory Comput.},
volume = {17},
number = {6},
pages = {3426--3434},
year = {2021},
month = jun,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.1c00212}
}
@article{Loos_2020,
author = {Loos, Pierre-Fran{\c{c}}ois and Lipparini, Filippo and Boggio-Pasqua, Martial and Scemama, Anthony and Jacquemin, Denis},
title = {{A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules}},
journal = {J. Chem. Theory Comput.},
volume = {16},
number = {3},
pages = {1711--1741},
year = {2020},
month = mar,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.9b01216}
}
@article{Loos_2020.2,
author = {Loos, Pierre-Fran{\c{c}}ois and Pradines, Barth{\'{e}}l{\'{e}}my and Scemama, Anthony and Giner, Emmanuel and Toulouse, Julien},
title = {{Density-Based Basis-Set Incompleteness Correction for GW Methods}},
journal = {J. Chem. Theory Comput.},
volume = {16},
number = {2},
pages = {1018--1028},
year = {2020},
month = feb,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.9b01067}
}
@article{Loos_2020.3,
author = {Loos, Pierre-Fran{\c{c}}ois and Scemama, Anthony and Jacquemin, Denis},
title = {{The Quest for Highly Accurate Excitation Energies: A Computational Perspective}},
journal = {J. Phys. Chem. Lett.},
volume = {11},
number = {6},
pages = {2374--2383},
year = {2020},
month = mar,
publisher = {American Chemical Society},
doi = {10.1021/acs.jpclett.0c00014}
}
@article{Giner_2020,
author = {Giner, Emmanuel and Scemama, Anthony and Loos, Pierre-Fran{\c{c}}ois and Toulouse, Julien},
title = {{A basis-set error correction based on density-functional theory for strongly correlated molecular systems}},
journal = {J. Chem. Phys.},
volume = {152},
number = {17},
year = {2020},
month = may,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0002892}
}
@article{Loos_2020.4,
author = {Loos, Pierre-Fran{\c{c}}ois and Scemama, Anthony and Boggio-Pasqua, Martial and Jacquemin, Denis},
title = {{Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Exotic Molecules and Radicals}},
journal = {J. Chem. Theory Comput.},
volume = {16},
number = {6},
pages = {3720--3736},
year = {2020},
month = jun,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.0c00227}
}
@article{Benali_2020,
author = {Benali, Anouar and Gasperich, Kevin and Jordan, Kenneth D. and Applencourt, Thomas and Luo, Ye and Bennett, M. Chandler and Krogel, Jaron T. and Shulenburger, Luke and Kent, Paul R. C. and Loos, Pierre-Fran{\c{c}}ois and Scemama, Anthony and Caffarel, Michel},
title = {{Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solids{\textemdash}A case study in diamond}},
journal = {J. Chem. Phys.},
volume = {153},
number = {18},
year = {2020},
month = nov,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0021036}
}
@article{Scemama_2020,
author = {Scemama, Anthony and Giner, Emmanuel and Benali, Anouar and Loos, Pierre-Fran{\c{c}}ois},
title = {{Taming the fixed-node error in diffusion Monte Carlo via range separation}},
journal = {J. Chem. Phys.},
volume = {153},
number = {17},
year = {2020},
month = nov,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0026324}
}
@article{Loos_2020.5,
author = {Loos, Pierre-Fran{\c{c}}ois and Damour, Yann and Scemama, Anthony},
title = {{The performance of CIPSI on the ground state electronic energy of benzene}},
journal = {J. Chem. Phys.},
volume = {153},
number = {17},
year = {2020},
month = nov,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/5.0027617}
}
@article{Loos_2019,
author = {Loos, Pierre-Fran{\c{c}}ois and Pradines, Barth{\'{e}}l{\'{e}}my and Scemama, Anthony and Toulouse, Julien and Giner, Emmanuel},
title = {{A Density-Based Basis-Set Correction for Wave Function Theory}},
journal = {J. Phys. Chem. Lett.},
volume = {10},
number = {11},
pages = {2931--2937},
year = {2019},
month = jun,
publisher = {American Chemical Society},
doi = {10.1021/acs.jpclett.9b01176}
}
@article{Dash_2019,
author = {Dash, Monika and Feldt, Jonas and Moroni, Saverio and Scemama, Anthony and Filippi, Claudia},
title = {{Excited States with Selected Configuration Interaction-Quantum Monte Carlo: Chemically Accurate Excitation Energies and Geometries}},
journal = {J. Chem. Theory Comput.},
volume = {15},
number = {9},
pages = {4896--4906},
year = {2019},
month = sep,
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.9b00476}
}
@article{Burton2019May,
author = {Burton, Hugh G. A. and Thom, Alex J. W.},
title = {{A General Approach for Multireference Ground and Excited States using Non-Orthogonal Configuration Interaction}},
journal = {arXiv},
year = {2019},
month = {May},
eprint = {1905.02626},
url = {https://arxiv.org/abs/1905.02626}
}
@article{Giner_2019,
author = {Giner, Emmanuel and Scemama, Anthony and Toulouse, Julien and Loos, Pierre-Fran{\c{c}}ois},
title = {{Chemically accurate excitation energies with small basis sets}},
journal = {J. Chem. Phys.},
volume = {151},
number = {14},
year = {2019},
month = oct,
issn = {0021-9606},
publisher = {AIP Publishing},
doi = {10.1063/1.5122976}
}
@article{Garniron_2019,
doi = {10.1021/acs.jctc.9b00176},
url = {https://doi.org/10.1021%2Facs.jctc.9b00176},
year = 2019,
month = {may},
publisher = {American Chemical Society ({ACS})},
author = {Yann Garniron and Thomas Applencourt and Kevin Gasperich and Anouar Benali and Anthony Ferte and Julien Paquier and Bartélémy Pradines and Roland Assaraf and Peter Reinhardt and Julien Toulouse and Pierrette Barbaresco and Nicolas Renon and Gregoire David and Jean-Paul Malrieu and Mickael Veril and Michel Caffarel and Pierre-Francois Loos and Emmanuel Giner and Anthony Scemama},
title = {Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs},
journal = {Journal of Chemical Theory and Computation}
}
@article{Scemama_2019,
doi = {10.1016/j.rechem.2019.100002},
url = {https://doi.org/10.1016%2Fj.rechem.2019.100002},
year = 2019,
month = {may},
publisher = {Elsevier {BV}},
pages = {100002},
author = {Anthony Scemama and Michel Caffarel and Anouar Benali and Denis Jacquemin and Pierre-Fran{\c{c}}ois Loos},
title = {Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion Monte Carlo},
journal = {Results in Chemistry}
}
@article{Applencourt2018Dec,
author = {Applencourt, Thomas and Gasperich, Kevin and Scemama, Anthony},
title = {{Spin adaptation with determinant-based selected configuration interaction}},
journal = {arXiv},
year = {2018},
month = {Dec},
eprint = {1812.06902},
url = {https://arxiv.org/abs/1812.06902}
}
@article{Loos2019Mar,
author = {Loos, Pierre-Fran\c{c}ois and Boggio-Pasqua, Martial and Scemama, Anthony and Caffarel, Michel and Jacquemin, Denis},
title = {{Reference Energies for Double Excitations}},
journal = {J. Chem. Theory Comput.},
volume = {15},
number = {3},
pages = {1939--1956},
year = {2019},
month = {Mar},
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.8b01205}
}
@article{PinedaFlores2019Feb,
author = {Pineda Flores, Sergio and Neuscamman, Eric},
title = {{Excited State Specific Multi-Slater Jastrow Wave Functions}},
journal = {J. Phys. Chem. A},
volume = {123},
number = {8},
pages = {1487--1497},
year = {2019},
month = {Feb},
issn = {1089-5639},
publisher = {American Chemical Society},
doi = {10.1021/acs.jpca.8b10671}
}
@phdthesis{yann_garniron_2019_2558127,
author = {Yann Garniron},
title = {{Development and parallel implementation of
selected configuration interaction methods}},
school = {Université de Toulouse},
year = 2019,
month = feb,
doi = {10.5281/zenodo.2558127},
url = {https://doi.org/10.5281/zenodo.2558127}
}
@article{Giner_2018,
doi = {10.1063/1.5052714},
url = {https://doi.org/10.1063%2F1.5052714},
year = 2018,
month = {nov},
publisher = {{AIP} Publishing},
volume = {149},
number = {19},
pages = {194301},
author = {Emmanuel Giner and Barth{\'{e}}lemy Pradines and Anthony Fert{\'{e}} and Roland Assaraf and Andreas Savin and Julien Toulouse},
title = {Curing basis-set convergence of wave-function theory using density-functional theory: A systematically improvable approach},
journal = {The Journal of Chemical Physics}
}
@article{Giner2018Oct,
author = {Giner, Emmanuel and Tew, David and Garniron, Yann and Alavi, Ali},
title = {{Interplay between electronic correlation and metal-ligand delocalization in the spectroscopy of transition metal compounds: case study on a series of planar Cu2+complexes.}},
journal = {J. Chem. Theory Comput.},
year = {2018},
month = {Oct},
issn = {1549-9618},
publisher = {American Chemical Society},
doi = {10.1021/acs.jctc.8b00591}
}
@article{Loos_2018,
doi = {10.1021/acs.jctc.8b00406},
url = {https://doi.org/10.1021%2Facs.jctc.8b00406},
year = 2018,
month = {jul},
publisher = {American Chemical Society ({ACS})},
volume = {14},
number = {8},
pages = {4360--4379},
author = {Pierre-Fran{\c{c}}ois Loos and Anthony Scemama and Aymeric Blondel and Yann Garniron and Michel Caffarel and Denis Jacquemin},
title = {A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks},
journal = {Journal of Chemical Theory and Computation}
}
@article{Scemama_2018,
doi = {10.1021/acs.jctc.7b01250},
url = {https://doi.org/10.1021%2Facs.jctc.7b01250},
year = 2018,
month = {jan},
publisher = {American Chemical Society ({ACS})},
volume = {14},
number = {3},
pages = {1395--1402},
author = {Anthony Scemama and Yann Garniron and Michel Caffarel and Pierre-Fran{\c{c}}ois Loos},
title = {Deterministic Construction of Nodal Surfaces within Quantum Monte Carlo: The Case of {FeS}},
journal = {Journal of Chemical Theory and Computation}
}
@article{Scemama_2018.2,
doi = {10.1063/1.5041327},
url = {https://doi.org/10.1063%2F1.5041327},
year = 2018,
month = {jul},
publisher = {{AIP} Publishing},
volume = {149},
number = {3},
pages = {034108},
author = {Anthony Scemama and Anouar Benali and Denis Jacquemin and Michel Caffarel and Pierre-Fran{\c{c}}ois Loos},
title = {Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes},
journal = {The Journal of Chemical Physics}
}
@article{Dash_2018,
doi = {10.1021/acs.jctc.8b00393},
url = {https://doi.org/10.1021%2Facs.jctc.8b00393},
year = 2018,
month = {jun},
publisher = {American Chemical Society ({ACS})},
volume = {14},
number = {8},
pages = {4176--4182},
author = {Monika Dash and Saverio Moroni and Anthony Scemama and Claudia Filippi},
title = {Perturbatively Selected Configuration-Interaction Wave Functions for Efficient Geometry Optimization in Quantum Monte Carlo},
journal = {Journal of Chemical Theory and Computation}
}
@article{Garniron_2018,
doi = {10.1063/1.5044503},
url = {https://doi.org/10.1063%2F1.5044503},
year = 2018,
month = {aug},
publisher = {{AIP} Publishing},
volume = {149},
number = {6},
pages = {064103},
author = {Yann Garniron and Anthony Scemama and Emmanuel Giner and Michel Caffarel and Pierre-Fran{\c{c}}ois Loos},
title = {Selected configuration interaction dressed by perturbation},
journal = {The Journal of Chemical Physics}
}
@article{Giner_2017,
doi = {10.1063/1.4984616},
url = {https://doi.org/10.1063%2F1.4984616},
year = 2017,
month = {jun},
publisher = {{AIP} Publishing},
volume = {146},
number = {22},
pages = {224108},
author = {Emmanuel Giner and Celestino Angeli and Yann Garniron and Anthony Scemama and Jean-Paul Malrieu},
title = {A Jeziorski-Monkhorst fully uncontracted multi-reference perturbative treatment. I. Principles, second-order versions, and tests on ground state potential energy curves},
journal = {The Journal of Chemical Physics}
}
@article{Garniron_2017,
doi = {10.1063/1.4980034},
url = {https://doi.org/10.1063%2F1.4980034},
year = 2017,
month = {apr},
publisher = {{AIP} Publishing},
volume = {146},
number = {15},
pages = {154107},
author = {Yann Garniron and Emmanuel Giner and Jean-Paul Malrieu and Anthony Scemama},
title = {Alternative definition of excitation amplitudes in multi-reference state-specific coupled cluster},
journal = {The Journal of Chemical Physics}
}
@article{Garniron_2017.2,
doi = {10.1063/1.4992127},
url = {https://doi.org/10.1063%2F1.4992127},
year = 2017,
month = {jul},
publisher = {{AIP} Publishing},
volume = {147},
number = {3},
pages = {034101},
author = {Yann Garniron and Anthony Scemama and Pierre-Fran{\c{c}}ois Loos and Michel Caffarel},
title = {Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory},
journal = {The Journal of Chemical Physics}
}
@article{Giner_2017.2,
doi = {10.1016/j.comptc.2017.03.001},
url = {https://doi.org/10.1016%2Fj.comptc.2017.03.001},
year = 2017,
month = {sep},
publisher = {Elsevier {BV}},
volume = {1116},
pages = {134--140},
author = {E. Giner and C. Angeli and A. Scemama and J.-P. Malrieu},
title = {Orthogonal Valence Bond Hamiltonians incorporating dynamical correlation effects},
journal = {Computational and Theoretical Chemistry}
}
@article{Giner_2017.3,
author = {Giner, Emmanuel and Tenti, Lorenzo and Angeli, Celestino and Ferré, Nicolas},
title = {Computation of the Isotropic Hyperfine Coupling Constant: Efficiency and Insights from a New Approach Based on Wave Function Theory},
journal = {Journal of Chemical Theory and Computation},
volume = {13},
number = {2},
pages = {475-487},
year = {2017},
doi = {10.1021/acs.jctc.6b00827},
note ={PMID: 28094936},
URL = {https://doi.org/10.1021/acs.jctc.6b00827},
eprint = {https://doi.org/10.1021/acs.jctc.6b00827}
}
@article{Giner2016Mar,
author = {Giner, Emmanuel and Angeli, Celestino},
title = {{Spin density and orbital optimization in open shell systems: A rational and computationally efficient proposal}},
journal = {J. Chem. Phys.},
volume = {144},
number = {10},
pages = {104104},
year = {2016},
month = {Mar},
issn = {0021-9606},
publisher = {American Institute of Physics},
doi = {10.1063/1.4943187}
}
@article{Giner_2016,
doi = {10.1063/1.4940781},
url = {https://doi.org/10.1063%2F1.4940781},
year = 2016,
month = {feb},
publisher = {{AIP} Publishing},
volume = {144},
number = {6},
pages = {064101},
author = {E. Giner and G. David and A. Scemama and J. P. Malrieu},
title = {A simple approach to the state-specific {MR}-{CC} using the intermediate Hamiltonian formalism},
journal = {The Journal of Chemical Physics}
}
@article{Caffarel_2016,
doi = {10.1063/1.4947093},
url = {https://doi.org/10.1063%2F1.4947093},
year = 2016,
month = {apr},
publisher = {{AIP} Publishing},
volume = {144},
number = {15},
pages = {151103},
author = {Michel Caffarel and Thomas Applencourt and Emmanuel Giner and Anthony Scemama},
title = {Communication: Toward an improved control of the fixed-node error in quantum Monte Carlo: The case of the water molecule},
journal = {The Journal of Chemical Physics}
}
@incollection{Caffarel_2016.2,
doi = {10.1021/bk-2016-1234.ch002},
url = {https://doi.org/10.1021%2Fbk-2016-1234.ch002},
year = 2016,
month = {jan},
publisher = {American Chemical Society},
pages = {15--46},
author = {Michel Caffarel and Thomas Applencourt and Emmanuel Giner and Anthony Scemama},
title = {Using CIPSI Nodes in Diffusion Monte Carlo},
booktitle = {{ACS} Symposium Series}
}
@article{Giner_2015,
doi = {10.1063/1.4905528},
url = {https://doi.org/10.1063%2F1.4905528},
year = 2015,
month = {jan},
publisher = {{AIP} Publishing},
volume = {142},
number = {4},
pages = {044115},
author = {Emmanuel Giner and Anthony Scemama and Michel Caffarel},
title = {Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F2 using selected configuration interaction trial wavefunctions},
journal = {The Journal of Chemical Physics}
}
@article{Giner2015Sep,
author = {Giner, Emmanuel and Angeli, Celestino},
title = {{Metal-ligand delocalization and spin density in the CuCl2 and [CuCl4]2{-} molecules: Some insights from wave function theory}},
journal = {J. Chem. Phys.},
volume = {143},
number = {12},
pages = {124305},
year = {2015},
month = {Sep},
issn = {0021-9606},
publisher = {American Institute of Physics},
doi = {10.1063/1.4931639}
}
@article{Scemama_2014,
doi = {10.1063/1.4903985},
url = {https://doi.org/10.1063%2F1.4903985},
year = 2014,
month = {dec},
publisher = {{AIP} Publishing},
volume = {141},
number = {24},
pages = {244110},
author = {A. Scemama and T. Applencourt and E. Giner and M. Caffarel},
title = {Accurate nonrelativistic ground-state energies of 3d transition metal atoms},
journal = {The Journal of Chemical Physics}
}
@article{Caffarel_2014,
doi = {10.1021/ct5004252},
url = {https://doi.org/10.1021%2Fct5004252},
year = 2014,
month = {nov},
publisher = {American Chemical Society ({ACS})},
volume = {10},
number = {12},
pages = {5286--5296},
author = {Michel Caffarel and Emmanuel Giner and Anthony Scemama and Alejandro Ram{\'{\i}}rez-Sol{\'{\i}}s},
title = {Spin Density Distribution in Open-Shell Transition Metal Systems: A Comparative Post-Hartree-Fock, Density Functional Theory, and Quantum Monte Carlo Study of the CuCl2 Molecule},
journal = {Journal of Chemical Theory and Computation}
}
@article{Giner_2013,
doi = {10.1139/cjc-2013-0017},
url = {https://doi.org/10.1139%2Fcjc-2013-0017},
year = 2013,
month = {sep},
publisher = {Canadian Science Publishing},
volume = {91},
number = {9},
pages = {879--885},
author = {Emmanuel Giner and Anthony Scemama and Michel Caffarel},
title = {Using perturbatively selected configuration interaction in quantum Monte Carlo calculations},
journal = {Canadian Journal of Chemistry}
}
@article{Scemama2013Nov,
author = {Scemama, Anthony and Giner, Emmanuel},
title = {{An efficient implementation of Slater-Condon rules}},
journal = {arXiv},
year = {2013},
month = {Nov},
eprint = {1311.6244},
url = {https://arxiv.org/abs/1311.6244}
}
@article{Bytautas_2009,
doi = {10.1016/j.chemphys.2008.11.021},
url = {https://doi.org/10.1016%2Fj.chemphys.2008.11.021},
year = 2009,
month = {feb},
publisher = {Elsevier {BV}},
volume = {356},
number = {1-3},
pages = {64--75},
author = {Laimutis Bytautas and Klaus Ruedenberg},
title = {A priori identification of configurational deadwood},
journal = {Chemical Physics}
}
@article{Anderson_2018,
doi = {10.1016/j.comptc.2018.08.017},
url = {https://doi.org/10.1016%2Fj.comptc.2018.08.017},
year = 2018,
month = {oct},
publisher = {Elsevier {BV}},
volume = {1142},
pages = {66--77},
author = {James S.M. Anderson and Farnaz Heidar-Zadeh and Paul W. Ayers},
title = {Breaking the curse of dimension for the electronic Schrodinger equation with functional analysis},
journal = {Computational and Theoretical Chemistry}
}
@article{Bender_1969,
doi = {10.1103/physrev.183.23},
url = {http://dx.doi.org/10.1103/PhysRev.183.23},
year = 1969,
month = {jul},
publisher = {American Physical Society ({APS})},
volume = {183},
number = {1},
pages = {23--30},
author = {Charles F. Bender and Ernest R. Davidson},
title = {Studies in Configuration Interaction: The First-Row Diatomic Hydrides},
journal = {Phys. Rev.}
}
@article{Whitten_1969,
doi = {10.1063/1.1671985},
url = {https://doi.org/10.1063%2F1.1671985},
year = 1969,
month = {dec},
publisher = {{AIP} Publishing},
volume = {51},
number = {12},
pages = {5584--5596},
author = {J. L. Whitten and Melvyn Hackmeyer},
title = {Configuration Interaction Studies of Ground and Excited States of Polyatomic Molecules. I. The {CI} Formulation and Studies of Formaldehyde},
journal = {The Journal of Chemical Physics}
}
@article{Huron_1973,
doi = {10.1063/1.1679199},
url = {https://doi.org/10.1063%2F1.1679199},
year = 1973,
month = {jun},
publisher = {{AIP} Publishing},
volume = {58},
number = {12},
pages = {5745--5759},
author = {B. Huron and J. P. Malrieu and P. Rancurel},
title = {Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions},
journal = {The Journal of Chemical Physics}
}
@article{Knowles_1984,
author="Peter J. Knowles and Nicholas C Handy",
year=1984,
journal={Chem. Phys. Letters},
volume=111,
pages="315--321",
title="A New Determinant-based Full Configuration Interaction Method"
}
@article{Sharma_2017,
doi = {10.1021/acs.jctc.6b01028},
url = {https://doi.org/10.1021%2Facs.jctc.6b01028},
year = 2017,
month = {mar},
publisher = {American Chemical Society ({ACS})},
volume = {13},
number = {4},
pages = {1595--1604},
author = {Sandeep Sharma and Adam A. Holmes and Guillaume Jeanmairet and Ali Alavi and C. J. Umrigar},
title = {Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory},
journal = {Journal of Chemical Theory and Computation}
}
@article{Holmes_2016,
doi = {10.1021/acs.jctc.6b00407},
url = {https://doi.org/10.1021%2Facs.jctc.6b00407},
year = 2016,
month = {aug},
publisher = {American Chemical Society ({ACS})},
volume = {12},
number = {8},
pages = {3674--3680},
author = {Adam A. Holmes and Norm M. Tubman and C. J. Umrigar},
title = {Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling},
journal = {Journal of Chemical Theory and Computation}
}
@article{Evangelisti_1983,
doi = {10.1016/0301-0104(83)85011-3},
url = {https://doi.org/10.1016%2F0301-0104%2883%2985011-3},
year = 1983,
month = {feb},
publisher = {Elsevier {BV}},
volume = {75},
number = {1},
pages = {91--102},
author = {Stefano Evangelisti and Jean-Pierre Daudey and Jean-Paul Malrieu},
title = {Convergence of an improved {CIPSI} algorithm},
journal = {Chemical Physics}
}
@article{Booth_2009,
doi = {10.1063/1.3193710},
url = {https://doi.org/10.1063%2F1.3193710},
year = 2009,
publisher = {{AIP} Publishing},
volume = {131},
number = {5},
pages = {054106},
author = {George H. Booth and Alex J. W. Thom and Ali Alavi},
title = {Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space},
journal = {The Journal of Chemical Physics}
}
@article{Booth_2010,
doi = {10.1063/1.3407895},
url = {https://doi.org/10.1063%2F1.3407895},
year = 2010,
month = {may},
publisher = {{AIP} Publishing},
volume = {132},
number = {17},
pages = {174104},
author = {George H. Booth and Ali Alavi},
title = {Approaching chemical accuracy using full configuration-interaction quantum Monte Carlo: A study of ionization potentials},
journal = {The Journal of Chemical Physics}
}
@article{Cleland_2010,
doi = {10.1063/1.3302277},
url = {https://doi.org/10.1063%2F1.3302277},
year = 2010,
month = {jan},
publisher = {{AIP} Publishing},
volume = {132},
number = {4},
pages = {041103},
author = {Deidre Cleland and George H. Booth and Ali Alavi},
title = {Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo},
journal = {The Journal of Chemical Physics}
}
@article{Garniron_2017b,
doi = {10.1063/1.4992127},
url = {https://doi.org/10.1063%2F1.4992127},
year = 2017,
month = {jul},
publisher = {{AIP} Publishing},
volume = {147},
number = {3},
pages = {034101},
author = {Yann Garniron and Anthony Scemama and Pierre-Fran{\c{c}}ois Loos and Michel Caffarel},
title = {Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory},
journal = {The Journal of Chemical Physics}
}

View File

@ -120,7 +120,9 @@ function qp()
if [[ $? -eq 0 ]] ; then if [[ $? -eq 0 ]] ; then
COMMAND='qp_$@' COMMAND='qp_$@'
eval "$COMMAND" "${EZFIO_FILE}" eval "$COMMAND" "${EZFIO_FILE}"
result=$?
unset COMMAND unset COMMAND
return $result
else else
_qp_usage _qp_usage
fi fi

2
external/irpf90 vendored

@ -1 +1 @@
Subproject commit 4ab1b175fc7ed0d96c1912f13dc53579b24157a6 Subproject commit beac615343f421bd6c0571a408ba389a6d5a32ac

View File

@ -26,8 +26,7 @@ let of_string = function
| "J" | "j" -> J | "J" | "j" -> J
| "K" | "k" -> K | "K" | "k" -> K
| "L" | "l" -> L | "L" | "l" -> L
| x -> raise (Failure ("Angmom should be S|P|D|F|G|H|I|J|K|L, | x -> raise (Failure ("Angmom should be S|P|D|F|G|H|I|J|K|L, not "^x^"."))
not "^x^"."))
let of_char = function let of_char = function
| 'S' | 's' -> S | 'S' | 's' -> S

View File

@ -17,7 +17,7 @@ let read in_channel at_number =
(** Find an element in the basis set file *) (** Find an element in the basis set file *)
let find in_channel element = let find in_channel element =
seek_in in_channel 0; seek_in in_channel 0;
let element_read = ref Element.X in let element_read = ref Element.Og in
while !element_read <> element while !element_read <> element
do do
let buffer = input_line in_channel in let buffer = input_line in_channel in

View File

@ -20,7 +20,7 @@ type t = X
let of_string x = let of_string x =
match (String.capitalize_ascii (String.lowercase_ascii x)) with match (String.capitalize_ascii (String.lowercase_ascii x)) with
| "X" | "Dummy" -> X | "X" | "Ghost" -> X
| "H" | "Hydrogen" -> H | "H" | "Hydrogen" -> H
| "He" | "Helium" -> He | "He" | "Helium" -> He
| "Li" | "Lithium" -> Li | "Li" | "Lithium" -> Li
@ -265,7 +265,7 @@ let to_string = function
let to_long_string = function let to_long_string = function
| X -> "Dummy" | X -> "Ghost"
| H -> "Hydrogen" | H -> "Hydrogen"
| He -> "Helium" | He -> "Helium"
| Li -> "Lithium" | Li -> "Lithium"

View File

@ -6,8 +6,8 @@ type element =
| Element of Element.t | Element of Element.t
| Int_elem of (Nucl_number.t * Element.t) | Int_elem of (Nucl_number.t * Element.t)
(** Handle dummy atoms placed on bonds *) (** Handle ghost atoms placed on bonds *)
let dummy_centers ~threshold ~molecule ~nuclei = let ghost_centers ~threshold ~molecule ~nuclei =
let d = let d =
Molecule.distance_matrix molecule Molecule.distance_matrix molecule
in in
@ -68,11 +68,11 @@ let run ?o b au c d m p cart xyz_file =
(Molecule.of_file xyz_file ~charge:(Charge.of_int c) (Molecule.of_file xyz_file ~charge:(Charge.of_int c)
~multiplicity:(Multiplicity.of_int m) ) ~multiplicity:(Multiplicity.of_int m) )
in in
let dummy = let ghost =
dummy_centers ~threshold:d ~molecule ~nuclei:molecule.Molecule.nuclei ghost_centers ~threshold:d ~molecule ~nuclei:molecule.Molecule.nuclei
in in
let nuclei = let nuclei =
molecule.Molecule.nuclei @ dummy molecule.Molecule.nuclei @ ghost
in in
@ -145,8 +145,6 @@ let run ?o b au c d m p cart xyz_file =
| i :: k :: [] -> (Nucl_number.of_int @@ int_of_string i, Element.of_string k) | i :: k :: [] -> (Nucl_number.of_int @@ int_of_string i, Element.of_string k)
| _ -> failwith "Expected format is int,Element:basis" | _ -> failwith "Expected format is int,Element:basis"
in Int_elem result in Int_elem result
and basis =
String.lowercase_ascii basis
in in
let key = let key =
match elem with match elem with
@ -313,7 +311,7 @@ let run ?o b au c d m p cart xyz_file =
} }
in in
let nuclei = let nuclei =
molecule.Molecule.nuclei @ dummy molecule.Molecule.nuclei @ ghost
in in
@ -491,11 +489,7 @@ let run ?o b au c d m p cart xyz_file =
|> List.rev |> List.rev
|> list_map (fun (x,i) -> |> list_map (fun (x,i) ->
try try
let e = let e = x.Atom.element in
match x.Atom.element with
| Element.X -> Element.H
| e -> e
in
let key = let key =
Int_elem (i,x.Atom.element) Int_elem (i,x.Atom.element)
in in
@ -507,9 +501,15 @@ let run ?o b au c d m p cart xyz_file =
in in
try try
Basis.read_element (basis_channel key) i e Basis.read_element (basis_channel key) i e
with Not_found -> with _ ->
failwith (Printf.sprintf "Basis not found for atom %d (%s)" (Nucl_number.to_int i) try
(Element.to_string x.Atom.element) ) if e = Element.X then
Basis.read_element (basis_channel key) i (Element.H)
else
raise Not_found
with Not_found ->
failwith (Printf.sprintf "Basis not found for atom %d (%s)" (Nucl_number.to_int i)
(Element.to_string x.Atom.element) )
with with
| End_of_file -> failwith | End_of_file -> failwith
("Element "^(Element.to_string x.Atom.element)^" not found in basis set.") ("Element "^(Element.to_string x.Atom.element)^" not found in basis set.")
@ -710,9 +710,9 @@ If a file with the same name as the basis set exists, this file will be read. O
arg=With_arg "<int>"; arg=With_arg "<int>";
doc="Total charge of the molecule. Default is 0. For negative values, use m instead of -, for ex m1"} ; doc="Total charge of the molecule. Default is 0. For negative values, use m instead of -, for ex m1"} ;
{ opt=Optional ; short='d'; long="dummy"; { opt=Optional ; short='g'; long="ghost";
arg=With_arg "<float>"; arg=With_arg "<float>";
doc="Add dummy atoms. x * (covalent radii of the atoms)."} ; doc="Add ghost atoms. x * (covalent radii of the atoms)."} ;
{ opt=Optional ; short='m'; long="multiplicity"; { opt=Optional ; short='m'; long="multiplicity";
arg=With_arg "<int>"; arg=With_arg "<int>";
@ -756,8 +756,8 @@ If a file with the same name as the basis set exists, this file will be read. O
int_of_string x ) int_of_string x )
in in
let dummy = let ghost =
match Command_line.get "dummy" with match Command_line.get "ghost" with
| None -> 0. | None -> 0.
| Some x -> float_of_string x | Some x -> float_of_string x
in in
@ -782,7 +782,7 @@ If a file with the same name as the basis set exists, this file will be read. O
| x::_ -> x | x::_ -> x
in in
run ?o:output basis au charge dummy multiplicity pseudo cart xyz_filename run ?o:output basis au charge ghost multiplicity pseudo cart xyz_filename
) )
with with
(* | Failure txt -> Printf.eprintf "Fatal error: %s\n%!" txt *) (* | Failure txt -> Printf.eprintf "Fatal error: %s\n%!" txt *)

131
plugins/README.rst Normal file
View File

@ -0,0 +1,131 @@
==============================
Tutorial for creating a plugin
==============================
Introduction: what is a plugin, and what tutorial will be about ?
=================================================================
The |QP| is split into two kinds of routines/global variables (i.e. *providers*):
1) the **core modules** locatedin qp2/src/, which contains all the bulk of a quantum chemistry software (integrals, matrix elements between Slater determinants, linear algebra routines, DFT stuffs etc..)
2) the **plugins** which are external routines/*providers* connected to the qp2/src/ routines/*providers*.
More precisely, a **plugin** of the |QP| is a directory where you can create routines,
providers and executables that use all the global variables/functions/routines already created
in the modules of qp2/src or in other plugins.
Instead of giving a theoretical lecture on what is a plugin,
we will go through a series of examples that allow you to do the following thing:
1) print out **one- and two-electron integrals** on the AO/MO basis, creates two providers which manipulate these objects, print out these providers,
2) browse the **Slater determinants stored** in the |EZFIO| wave function and compute their matrix elements,
3) build the **Hamiltonian matrix** and **diagonalize** it either with **Lapack or Davidson**,
4) print out the **one- and two-electron rdms**,
5) obtain the **AOs** and **MOs** on the **DFT grid**, together with the **density**,
How the tutorial will be done
-----------------------------
This tuto is as follows:
1) you **READ THIS FILE UNTIL THE END** in order to get the big picture and vocabulary,
2) you go to the directory :file:`qp2/plugins/tuto_plugins/` and you will find detailed tutorials for each of the 5 examples.
Creating a plugin: the basic
----------------------------
The first thing to do is to be in the QPSH mode: you execute the qp2/bin/qpsh script that essentially loads all
the environement variables and allows for the completion of command lines in bash (that is an AMAZING feature :)
Then, you need to known **where** you want to create your plugin, and what is the **name** of the plugin.
.. important::
The plugins are **NECESSARILY** located in qp2/plugins/, and from there you can create any structures of directories.
Ex: If you want to create a plugin named "my_fancy_plugin" in the directory plugins/plugins_test/,
this goes with the command
.. code:: bash
qp plugins create -n my_fancy_plugin -r plugins_test/
Then, to create the plugin of your dreams, the two questions you need to answer are the following:
1) What do I **need** to compute what I want, which means what are the **objects** that I need ?
There are two kind of objects:
+ the *routines/functions*:
Ex: Linear algebra routines, integration routines etc ...
+ the global variables which are called the *providers*:
Ex: one-electron integrals, Slater determinants, density matrices etc ...
2) **Where do I find** these objects ?
The objects (routines/functions/providers) are necessarily created in other *modules/plugins*.
.. seealso::
The routine :c:func:`lapack_diagd` (which diagonalises a real hermitian matrix) is located in the file
:file:`qp2/src/utils/linear_algebra.irp.f`
therefore it "belongs" to the module :ref:`module_utils`
The routine :c:func:`ao_to_mo` (which converts a given matrix A from the AO basis to the MO basis) is located in the file
:file:`qp2/src/mo_one_e_ints/ao_to_mo.irp.f`
therefore it "belongs" to the module :ref:`module_mo_one_e_ints`
The provider :c:data:`ao_one_e_integrals` (which is the integrals of one-body part of H on the AO basis) is located in the file
:file:`qp2/src/ao_one_e_ints/ao_one_e_ints.irp.f`
therefore it belongs to the module :ref:`module_ao_one_e_ints`
The provider :c:data:`one_e_dm_mo_beta_average` (which is the state average beta density matrix on the MO basis) is located in the file
:file:`qp2/src/determinants/density_matrix.irp.f`
therefore it belongs to the module :ref:`module_determinants`
To import all the variables that you need, you just need to write the name of the plugins in the :file:`NEED` file .
To import all the variables/routines of the module :ref:`module_utils`, :ref:`module_determinants` and :ref:`module_mo_one_e_ints`, the :file:`NEED` file you will need is simply the following:
.. code:: bash
cat NEED
utils
determinants
mo_one_e_ints
.. important::
There are **many** routines/providers in the core modules of QP.
Nevertheless, as everything is coded with the |IRPF90|, you can use the following amazing tools: :command:`irpman`
:command:`irpman` can be used in command line in bash to obtain all the info on a routine or variable !
Example: execute the following command line :
.. code:: bash
irpman ao_one_e_integrals
Then all the information you need on :c:data:`ao_one_e_integrals` will appear on the screen.
This includes
- **where** the provider is created, (*i.e.* the actual file where the provider is designed)
- the **type** of the provider (*i.e.* a logical, integer etc ...)
- the **dimension** if it is an array,
- what other *providers* are **needed** to build this provider,
- what other *providers* **need** this provider.

View File

@ -248,6 +248,28 @@ BEGIN_PROVIDER [double precision, mo_bi_ortho_tc_two_e, (mo_num, mo_num, mo_num,
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_transp, (mo_num, mo_num, mo_num, mo_num)]
implicit none
BEGIN_DOC
!
! mo_bi_ortho_tc_two_e_transp(i,j,k,l) = <k l| V(r_12) |i j> = transpose of mo_bi_ortho_tc_two_e
!
! the potential V(r_12) contains ALL TWO-E CONTRIBUTION OF THE TC-HAMILTONIAN
!
END_DOC
integer :: i,j,k,l
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
mo_bi_ortho_tc_two_e_transp(i,j,k,l) = mo_bi_ortho_tc_two_e_transp(k,l,i,j)
enddo
enddo
enddo
enddo
END_PROVIDER
! --- ! ---
BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj, (mo_num,mo_num)] BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj, (mo_num,mo_num)]

View File

@ -1,3 +1,4 @@
cipsi_utils
json json
mpi mpi
perturbation perturbation

View File

@ -65,7 +65,7 @@ subroutine run_cipsi
if (N_det > N_det_max) then if (N_det > N_det_max) then
psi_det(1:N_int,1:2,1:N_det) = psi_det_generators(1:N_int,1:2,1:N_det) psi_det(1:N_int,1:2,1:N_det) = psi_det_generators(1:N_int,1:2,1:N_det)
psi_coef(1:N_det,1:N_states) = psi_coef_sorted_tc_gen(1:N_det,1:N_states) psi_coef(1:N_det,1:N_states) = psi_coef_sorted_gen(1:N_det,1:N_states)
N_det = N_det_max N_det = N_det_max
soft_touch N_det psi_det psi_coef soft_touch N_det psi_det psi_coef
if (s2_eig) then if (s2_eig) then

View File

@ -15,37 +15,5 @@ BEGIN_PROVIDER [ double precision, pt2_E0_denominator, (N_states) ]
pt2_E0_denominator = eigval_right_tc_bi_orth pt2_E0_denominator = eigval_right_tc_bi_orth
! if (initialize_pt2_E0_denominator) then
! if (h0_type == "EN") then
! pt2_E0_denominator(1:N_states) = psi_energy(1:N_states)
! else if (h0_type == "HF") then
! do i=1,N_states
! j = maxloc(abs(psi_coef(:,i)),1)
! pt2_E0_denominator(i) = psi_det_hii(j)
! enddo
! else if (h0_type == "Barycentric") then
! pt2_E0_denominator(1:N_states) = barycentric_electronic_energy(1:N_states)
! else if (h0_type == "CFG") then
! pt2_E0_denominator(1:N_states) = psi_energy(1:N_states)
! else
! print *, h0_type, ' not implemented'
! stop
! endif
! do i=1,N_states
! call write_double(6,pt2_E0_denominator(i)+nuclear_repulsion, 'PT2 Energy denominator')
! enddo
! else
! pt2_E0_denominator = -huge(1.d0)
! endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, pt2_overlap, (N_states, N_states) ]
implicit none
BEGIN_DOC
! Overlap between the perturbed wave functions
END_DOC
pt2_overlap(1:N_states,1:N_states) = 0.d0
END_PROVIDER END_PROVIDER

View File

@ -1,14 +0,0 @@
BEGIN_PROVIDER [ integer, nthreads_pt2 ]
implicit none
BEGIN_DOC
! Number of threads for Davidson
END_DOC
nthreads_pt2 = nproc
character*(32) :: env
call getenv('QP_NTHREADS_PT2',env)
if (trim(env) /= '') then
read(env,*) nthreads_pt2
call write_int(6,nthreads_pt2,'Target number of threads for PT2')
endif
END_PROVIDER

View File

@ -1,868 +1,3 @@
BEGIN_PROVIDER [ integer, pt2_stoch_istate ] subroutine provide_for_zmq_pt2
implicit none PROVIDE psi_selectors_coef_transp_tc psi_det_sorted_tc psi_det_sorted_tc_order
BEGIN_DOC
! State for stochatsic PT2
END_DOC
pt2_stoch_istate = 1
END_PROVIDER
BEGIN_PROVIDER [ integer, pt2_F, (N_det_generators) ]
&BEGIN_PROVIDER [ integer, pt2_n_tasks_max ]
implicit none
logical, external :: testTeethBuilding
integer :: i,j
pt2_n_tasks_max = elec_alpha_num*elec_alpha_num + elec_alpha_num*elec_beta_num - n_core_orb*2
pt2_n_tasks_max = min(pt2_n_tasks_max,1+N_det_generators/10000)
call write_int(6,pt2_n_tasks_max,'pt2_n_tasks_max')
pt2_F(:) = max(int(sqrt(float(pt2_n_tasks_max))),1)
do i=1,pt2_n_0(1+pt2_N_teeth/4)
pt2_F(i) = pt2_n_tasks_max*pt2_min_parallel_tasks
enddo
do i=1+pt2_n_0(pt2_N_teeth-pt2_N_teeth/4), pt2_n_0(pt2_N_teeth-pt2_N_teeth/10)
pt2_F(i) = pt2_min_parallel_tasks
enddo
do i=1+pt2_n_0(pt2_N_teeth-pt2_N_teeth/10), N_det_generators
pt2_F(i) = 1
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer, pt2_N_teeth ]
&BEGIN_PROVIDER [ integer, pt2_minDetInFirstTeeth ]
implicit none
logical, external :: testTeethBuilding
if(N_det_generators < 500) then
pt2_minDetInFirstTeeth = 1
pt2_N_teeth = 1
else
pt2_minDetInFirstTeeth = min(5, N_det_generators)
do pt2_N_teeth=100,2,-1
if(testTeethBuilding(pt2_minDetInFirstTeeth, pt2_N_teeth)) exit
end do
end if
call write_int(6,pt2_N_teeth,'Number of comb teeth')
END_PROVIDER
logical function testTeethBuilding(minF, N)
implicit none
integer, intent(in) :: minF, N
integer :: n0, i
double precision :: u0, Wt, r
double precision, allocatable :: tilde_w(:), tilde_cW(:)
integer, external :: dress_find_sample
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
rss = memory_of_double(2*N_det_generators+1)
call check_mem(rss,irp_here)
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
double precision :: norm2
norm2 = 0.d0
do i=N_det_generators,1,-1
tilde_w(i) = psi_coef_sorted_tc_gen(i,pt2_stoch_istate) * &
psi_coef_sorted_tc_gen(i,pt2_stoch_istate)
norm2 = norm2 + tilde_w(i)
enddo
f = 1.d0/norm2
tilde_w(:) = tilde_w(:) * f
tilde_cW(0) = -1.d0
do i=1,N_det_generators
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
enddo
tilde_cW(:) = tilde_cW(:) + 1.d0
deallocate(tilde_w)
n0 = 0
testTeethBuilding = .false.
double precision :: f
integer :: minFN
minFN = N_det_generators - minF * N
f = 1.d0/dble(N)
do
u0 = tilde_cW(n0)
r = tilde_cW(n0 + minF)
Wt = (1d0 - u0) * f
if (dabs(Wt) <= 1.d-3) then
exit
endif
if(Wt >= r - u0) then
testTeethBuilding = .true.
exit
end if
n0 += 1
if(n0 > minFN) then
exit
end if
end do
deallocate(tilde_cW)
end function
subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull
integer, intent(in) :: N_in
! integer, intent(inout) :: N_in
double precision, intent(in) :: relative_error, E(N_states)
type(pt2_type), intent(inout) :: pt2_data, pt2_data_err
!
integer :: i, N
double precision :: state_average_weight_save(N_states), w(N_states,4)
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
type(selection_buffer) :: b
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_tc_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp_tc psi_det_sorted_tc
PROVIDE psi_det_hii selection_weight pseudo_sym
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
if (h0_type == 'CFG') then
PROVIDE psi_configuration_hii det_to_configuration
endif
if (N_det <= max(4,N_states) .or. pt2_N_teeth < 2) then
print*,'ZMQ_selection'
call ZMQ_selection(N_in, pt2_data)
else
print*,'else ZMQ_selection'
N = max(N_in,1) * N_states
state_average_weight_save(:) = state_average_weight(:)
if (int(N,8)*2_8 > huge(1)) then
print *, irp_here, ': integer too large'
stop -1
endif
call create_selection_buffer(N, N*2, b)
ASSERT (associated(b%det))
ASSERT (associated(b%val))
do pt2_stoch_istate=1,N_states
state_average_weight(:) = 0.d0
state_average_weight(pt2_stoch_istate) = 1.d0
TOUCH state_average_weight pt2_stoch_istate selection_weight
PROVIDE nproc pt2_F mo_two_e_integrals_in_map mo_one_e_integrals pt2_w
PROVIDE pt2_u pt2_J pt2_R
call new_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'pt2')
integer, external :: zmq_put_psi
integer, external :: zmq_put_N_det_generators
integer, external :: zmq_put_N_det_selectors
integer, external :: zmq_put_dvector
integer, external :: zmq_put_ivector
if (zmq_put_psi(zmq_to_qp_run_socket,1) == -1) then
stop 'Unable to put psi on ZMQ server'
endif
if (zmq_put_N_det_generators(zmq_to_qp_run_socket, 1) == -1) then
stop 'Unable to put N_det_generators on ZMQ server'
endif
if (zmq_put_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) then
stop 'Unable to put N_det_selectors on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'energy',pt2_e0_denominator,size(pt2_e0_denominator)) == -1) then
stop 'Unable to put energy on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) then
stop 'Unable to put state_average_weight on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) then
stop 'Unable to put selection_weight on ZMQ server'
endif
if (zmq_put_ivector(zmq_to_qp_run_socket,1,'pt2_stoch_istate',pt2_stoch_istate,1) == -1) then
stop 'Unable to put pt2_stoch_istate on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'threshold_generators',(/threshold_generators/),1) == -1) then
stop 'Unable to put threshold_generators on ZMQ server'
endif
integer, external :: add_task_to_taskserver
character(300000) :: task
integer :: j,k,ipos,ifirst
ifirst=0
ipos=0
do i=1,N_det_generators
if (pt2_F(i) > 1) then
ipos += 1
endif
enddo
call write_int(6,sum(pt2_F),'Number of tasks')
call write_int(6,ipos,'Number of fragmented tasks')
ipos=1
do i= 1, N_det_generators
do j=1,pt2_F(pt2_J(i))
write(task(ipos:ipos+30),'(I9,1X,I9,1X,I9,''|'')') j, pt2_J(i), N_in
ipos += 30
if (ipos > 300000-30) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server'
endif
ipos=1
if (ifirst == 0) then
ifirst=1
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Failed in zmq_set_running'
endif
endif
endif
end do
enddo
if (ipos > 1) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server'
endif
endif
integer, external :: zmq_set_running
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Failed in zmq_set_running'
endif
double precision :: mem_collector, mem, rss
call resident_memory(rss)
mem_collector = 8.d0 * & ! bytes
( 1.d0*pt2_n_tasks_max & ! task_id, index
+ 0.635d0*N_det_generators & ! f,d
+ pt2_n_tasks_max*pt2_type_size(N_states) & ! pt2_data_task
+ N_det_generators*pt2_type_size(N_states) & ! pt2_data_I
+ 4.d0*(pt2_N_teeth+1) & ! S, S2, T2, T3
+ 1.d0*(N_int*2.d0*N + N) & ! selection buffer
+ 1.d0*(N_int*2.d0*N + N) & ! sort selection buffer
) / 1024.d0**3
integer :: nproc_target, ii
nproc_target = nthreads_pt2
ii = min(N_det, (elec_alpha_num*(mo_num-elec_alpha_num))**2)
do
mem = mem_collector + & !
nproc_target * 8.d0 * & ! bytes
( 0.5d0*pt2_n_tasks_max & ! task_id
+ 64.d0*pt2_n_tasks_max & ! task
+ pt2_type_size(N_states)*pt2_n_tasks_max*N_states & ! pt2, variance, overlap
+ 1.d0*pt2_n_tasks_max & ! i_generator, subset
+ 1.d0*(N_int*2.d0*ii+ ii) & ! selection buffer
+ 1.d0*(N_int*2.d0*ii+ ii) & ! sort selection buffer
+ 2.0d0*(ii) & ! preinteresting, interesting,
! prefullinteresting, fullinteresting
+ 2.0d0*(N_int*2*ii) & ! minilist, fullminilist
+ 1.0d0*(N_states*mo_num*mo_num) & ! mat
) / 1024.d0**3
if (nproc_target == 0) then
call check_mem(mem,irp_here)
nproc_target = 1
exit
endif
if (mem+rss < qp_max_mem) then
exit
endif
nproc_target = nproc_target - 1
enddo
call write_int(6,nproc_target,'Number of threads for PT2')
call write_double(6,mem,'Memory (Gb)')
call omp_set_max_active_levels(1)
print '(A)', '========== ======================= ===================== ===================== ==========='
print '(A)', ' Samples Energy Variance Norm^2 Seconds'
print '(A)', '========== ======================= ===================== ===================== ==========='
PROVIDE global_selection_buffer
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(nproc_target+1) &
!$OMP PRIVATE(i)
i = omp_get_thread_num()
if (i==0) then
call pt2_collector(zmq_socket_pull, E(pt2_stoch_istate),relative_error, pt2_data, pt2_data_err, b, N)
pt2_data % rpt2(pt2_stoch_istate) = &
pt2_data % pt2(pt2_stoch_istate)/(1.d0+pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate))
!TODO : We should use here the correct formula for the error of X/Y
pt2_data_err % rpt2(pt2_stoch_istate) = &
pt2_data_err % pt2(pt2_stoch_istate)/(1.d0 + pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate))
else
call pt2_slave_inproc(i)
endif
!$OMP END PARALLEL
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'pt2')
call omp_set_max_active_levels(8)
print '(A)', '========== ======================= ===================== ===================== ==========='
do k=1,N_states
pt2_overlap(pt2_stoch_istate,k) = pt2_data % overlap(k,pt2_stoch_istate)
enddo
SOFT_TOUCH pt2_overlap
enddo
FREE pt2_stoch_istate
! Symmetrize overlap
do j=2,N_states
do i=1,j-1
pt2_overlap(i,j) = 0.5d0 * (pt2_overlap(i,j) + pt2_overlap(j,i))
pt2_overlap(j,i) = pt2_overlap(i,j)
enddo
enddo
print *, 'Overlap of perturbed states:'
do k=1,N_states
print *, pt2_overlap(k,:)
enddo
print *, '-------'
if (N_in > 0) then
b%cur = min(N_in,b%cur)
if (s2_eig) then
call make_selection_buffer_s2(b)
else
call remove_duplicates_in_selection_buffer(b)
endif
call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0)
endif
call delete_selection_buffer(b)
state_average_weight(:) = state_average_weight_save(:)
TOUCH state_average_weight
call update_pt2_and_variance_weights(pt2_data, N_states)
endif
end subroutine
subroutine pt2_slave_inproc(i)
implicit none
integer, intent(in) :: i
PROVIDE global_selection_buffer
call run_pt2_slave(1,i,pt2_e0_denominator)
end end
subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2_data, pt2_data_err, b, N_)
use f77_zmq
use selection_types
use bitmasks
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(in) :: relative_error, E
type(pt2_type), intent(inout) :: pt2_data, pt2_data_err
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: N_
type(pt2_type), allocatable :: pt2_data_task(:)
type(pt2_type), allocatable :: pt2_data_I(:)
type(pt2_type), allocatable :: pt2_data_S(:)
type(pt2_type), allocatable :: pt2_data_S2(:)
type(pt2_type) :: pt2_data_teeth
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer, external :: zmq_delete_tasks_async_send
integer, external :: zmq_delete_tasks_async_recv
integer, external :: zmq_abort
integer, external :: pt2_find_sample_lr
PROVIDE pt2_stoch_istate
integer :: more, n, i, p, c, t, n_tasks, U
integer, allocatable :: task_id(:)
integer, allocatable :: index(:)
double precision :: v, x, x2, x3, avg, avg2, avg3(N_states), eqt, E0, v0, n0(N_states)
double precision :: eqta(N_states)
double precision :: time, time1, time0
integer, allocatable :: f(:)
logical, allocatable :: d(:)
logical :: do_exit, stop_now, sending
logical, external :: qp_stop
type(selection_buffer) :: b2
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
sending =.False.
rss = memory_of_int(pt2_n_tasks_max*2+N_det_generators*2)
rss += memory_of_double(N_states*N_det_generators)*3.d0
rss += memory_of_double(N_states*pt2_n_tasks_max)*3.d0
rss += memory_of_double(pt2_N_teeth+1)*4.d0
call check_mem(rss,irp_here)
! If an allocation is added here, the estimate of the memory should also be
! updated in ZMQ_pt2
allocate(task_id(pt2_n_tasks_max), index(pt2_n_tasks_max), f(N_det_generators))
allocate(d(N_det_generators+1))
allocate(pt2_data_task(pt2_n_tasks_max))
allocate(pt2_data_I(N_det_generators))
allocate(pt2_data_S(pt2_N_teeth+1))
allocate(pt2_data_S2(pt2_N_teeth+1))
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
call create_selection_buffer(N_, N_*2, b2)
pt2_data % pt2(pt2_stoch_istate) = -huge(1.)
pt2_data_err % pt2(pt2_stoch_istate) = huge(1.)
pt2_data % variance(pt2_stoch_istate) = huge(1.)
pt2_data_err % variance(pt2_stoch_istate) = huge(1.)
pt2_data % overlap(:,pt2_stoch_istate) = 0.d0
pt2_data_err % overlap(:,pt2_stoch_istate) = huge(1.)
n = 1
t = 0
U = 0
do i=1,pt2_n_tasks_max
call pt2_alloc(pt2_data_task(i),N_states)
enddo
do i=1,pt2_N_teeth+1
call pt2_alloc(pt2_data_S(i),N_states)
call pt2_alloc(pt2_data_S2(i),N_states)
enddo
do i=1,N_det_generators
call pt2_alloc(pt2_data_I(i),N_states)
enddo
f(:) = pt2_F(:)
d(:) = .false.
n_tasks = 0
E0 = E
v0 = 0.d0
n0(:) = 0.d0
more = 1
call wall_time(time0)
time1 = time0
do_exit = .false.
stop_now = .false.
do while (n <= N_det_generators)
if(f(pt2_J(n)) == 0) then
d(pt2_J(n)) = .true.
do while(d(U+1))
U += 1
end do
! Deterministic part
do while(t <= pt2_N_teeth)
if(U >= pt2_n_0(t+1)) then
t=t+1
E0 = 0.d0
v0 = 0.d0
n0(:) = 0.d0
do i=pt2_n_0(t),1,-1
E0 += pt2_data_I(i) % pt2(pt2_stoch_istate)
v0 += pt2_data_I(i) % variance(pt2_stoch_istate)
n0(:) += pt2_data_I(i) % overlap(:,pt2_stoch_istate)
end do
else
exit
end if
end do
! Add Stochastic part
c = pt2_R(n)
if(c > 0) then
call pt2_alloc(pt2_data_teeth,N_states)
do p=pt2_N_teeth, 1, -1
v = pt2_u_0 + pt2_W_T * (pt2_u(c) + dble(p-1))
i = pt2_find_sample_lr(v, pt2_cW,pt2_n_0(p),pt2_n_0(p+1))
v = pt2_W_T / pt2_w(i)
call pt2_add ( pt2_data_teeth, v, pt2_data_I(i) )
call pt2_add ( pt2_data_S(p), 1.d0, pt2_data_teeth )
call pt2_add2( pt2_data_S2(p), 1.d0, pt2_data_teeth )
enddo
call pt2_dealloc(pt2_data_teeth)
avg = E0 + pt2_data_S(t) % pt2(pt2_stoch_istate) / dble(c)
avg2 = v0 + pt2_data_S(t) % variance(pt2_stoch_istate) / dble(c)
avg3(:) = n0(:) + pt2_data_S(t) % overlap(:,pt2_stoch_istate) / dble(c)
if ((avg /= 0.d0) .or. (n == N_det_generators) ) then
do_exit = .true.
endif
if (qp_stop()) then
stop_now = .True.
endif
pt2_data % pt2(pt2_stoch_istate) = avg
pt2_data % variance(pt2_stoch_istate) = avg2
pt2_data % overlap(:,pt2_stoch_istate) = avg3(:)
call wall_time(time)
! 1/(N-1.5) : see Brugger, The American Statistician (23) 4 p. 32 (1969)
if(c > 2) then
eqt = dabs((pt2_data_S2(t) % pt2(pt2_stoch_istate) / c) - (pt2_data_S(t) % pt2(pt2_stoch_istate)/c)**2) ! dabs for numerical stability
eqt = sqrt(eqt / (dble(c) - 1.5d0))
pt2_data_err % pt2(pt2_stoch_istate) = eqt
eqt = dabs((pt2_data_S2(t) % variance(pt2_stoch_istate) / c) - (pt2_data_S(t) % variance(pt2_stoch_istate)/c)**2) ! dabs for numerical stability
eqt = sqrt(eqt / (dble(c) - 1.5d0))
pt2_data_err % variance(pt2_stoch_istate) = eqt
eqta(:) = dabs((pt2_data_S2(t) % overlap(:,pt2_stoch_istate) / c) - (pt2_data_S(t) % overlap(:,pt2_stoch_istate)/c)**2) ! dabs for numerical stability
eqta(:) = sqrt(eqta(:) / (dble(c) - 1.5d0))
pt2_data_err % overlap(:,pt2_stoch_istate) = eqta(:)
if ((time - time1 > 1.d0) .or. (n==N_det_generators)) then
time1 = time
print '(I10, X, F12.6, X, G10.3, X, F10.6, X, G10.3, X, F10.6, X, G10.3, X, F10.4)', c, &
pt2_data % pt2(pt2_stoch_istate) +E, &
pt2_data_err % pt2(pt2_stoch_istate), &
pt2_data % variance(pt2_stoch_istate), &
pt2_data_err % variance(pt2_stoch_istate), &
pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate), &
pt2_data_err % overlap(pt2_stoch_istate,pt2_stoch_istate), &
time-time0
if (stop_now .or. ( &
(do_exit .and. (dabs(pt2_data_err % pt2(pt2_stoch_istate)) / &
(1.d-20 + dabs(pt2_data % pt2(pt2_stoch_istate)) ) <= relative_error))) ) then
if (zmq_abort(zmq_to_qp_run_socket) == -1) then
call sleep(10)
if (zmq_abort(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Error in sending abort signal (2)'
endif
endif
endif
endif
endif
end if
n += 1
else if(more == 0) then
exit
else
call pull_pt2_results(zmq_socket_pull, index, pt2_data_task, task_id, n_tasks, b2)
if(n_tasks > pt2_n_tasks_max)then
print*,'PB !!!'
print*,'If you see this, send a bug report with the following content'
print*,irp_here
print*,'n_tasks,pt2_n_tasks_max = ',n_tasks,pt2_n_tasks_max
stop -1
endif
if (zmq_delete_tasks_async_send(zmq_to_qp_run_socket,task_id,n_tasks,sending) == -1) then
stop 'PT2: Unable to delete tasks (send)'
endif
do i=1,n_tasks
if(index(i).gt.size(pt2_data_I,1).or.index(i).lt.1)then
print*,'PB !!!'
print*,'If you see this, send a bug report with the following content'
print*,irp_here
print*,'i,index(i),size(pt2_data_I,1) = ',i,index(i),size(pt2_data_I,1)
stop -1
endif
call pt2_add(pt2_data_I(index(i)),1.d0,pt2_data_task(i))
f(index(i)) -= 1
end do
do i=1, b2%cur
! We assume the pulled buffer is sorted
if (b2%val(i) > b%mini) exit
call add_to_selection_buffer(b, b2%det(1,1,i), b2%val(i))
end do
if (zmq_delete_tasks_async_recv(zmq_to_qp_run_socket,more,sending) == -1) then
stop 'PT2: Unable to delete tasks (recv)'
endif
end if
end do
do i=1,N_det_generators
call pt2_dealloc(pt2_data_I(i))
enddo
do i=1,pt2_N_teeth+1
call pt2_dealloc(pt2_data_S(i))
call pt2_dealloc(pt2_data_S2(i))
enddo
do i=1,pt2_n_tasks_max
call pt2_dealloc(pt2_data_task(i))
enddo
!print *, 'deleting b2'
call delete_selection_buffer(b2)
!print *, 'sorting b'
call sort_selection_buffer(b)
!print *, 'done'
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
end subroutine
integer function pt2_find_sample(v, w)
implicit none
double precision, intent(in) :: v, w(0:N_det_generators)
integer, external :: pt2_find_sample_lr
pt2_find_sample = pt2_find_sample_lr(v, w, 0, N_det_generators)
end function
integer function pt2_find_sample_lr(v, w, l_in, r_in)
implicit none
double precision, intent(in) :: v, w(0:N_det_generators)
integer, intent(in) :: l_in,r_in
integer :: i,l,r
l=l_in
r=r_in
do while(r-l > 1)
i = shiftr(r+l,1)
if(w(i) < v) then
l = i
else
r = i
end if
end do
i = r
do r=i+1,N_det_generators
if (w(r) /= w(i)) then
exit
endif
enddo
pt2_find_sample_lr = r-1
end function
BEGIN_PROVIDER [ integer, pt2_n_tasks ]
implicit none
BEGIN_DOC
! Number of parallel tasks for the Monte Carlo
END_DOC
pt2_n_tasks = N_det_generators
END_PROVIDER
BEGIN_PROVIDER[ double precision, pt2_u, (N_det_generators)]
implicit none
integer, allocatable :: seed(:)
integer :: m,i
call random_seed(size=m)
allocate(seed(m))
do i=1,m
seed(i) = i
enddo
call random_seed(put=seed)
deallocate(seed)
call RANDOM_NUMBER(pt2_u)
END_PROVIDER
BEGIN_PROVIDER[ integer, pt2_J, (N_det_generators)]
&BEGIN_PROVIDER[ integer, pt2_R, (N_det_generators)]
implicit none
BEGIN_DOC
! pt2_J contains the list of generators after ordering them according to the
! Monte Carlo sampling.
!
! pt2_R(i) is the number of combs drawn when determinant i is computed.
END_DOC
integer :: N_c, N_j
integer :: U, t, i
double precision :: v
integer, external :: pt2_find_sample_lr
logical, allocatable :: pt2_d(:)
integer :: m,l,r,k
integer :: ncache
integer, allocatable :: ii(:,:)
double precision :: dt
ncache = min(N_det_generators,10000)
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
rss = memory_of_int(ncache)*dble(pt2_N_teeth) + memory_of_int(N_det_generators)
call check_mem(rss,irp_here)
allocate(ii(pt2_N_teeth,ncache),pt2_d(N_det_generators))
pt2_R(:) = 0
pt2_d(:) = .false.
N_c = 0
N_j = pt2_n_0(1)
do i=1,N_j
pt2_d(i) = .true.
pt2_J(i) = i
end do
U = 0
do while(N_j < pt2_n_tasks)
if (N_c+ncache > N_det_generators) then
ncache = N_det_generators - N_c
endif
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(dt,v,t,k)
do k=1, ncache
dt = pt2_u_0
do t=1, pt2_N_teeth
v = dt + pt2_W_T *pt2_u(N_c+k)
dt = dt + pt2_W_T
ii(t,k) = pt2_find_sample_lr(v, pt2_cW,pt2_n_0(t),pt2_n_0(t+1))
end do
enddo
!$OMP END PARALLEL DO
do k=1,ncache
!ADD_COMB
N_c = N_c+1
do t=1, pt2_N_teeth
i = ii(t,k)
if(.not. pt2_d(i)) then
N_j += 1
pt2_J(N_j) = i
pt2_d(i) = .true.
end if
end do
pt2_R(N_j) = N_c
!FILL_TOOTH
do while(U < N_det_generators)
U += 1
if(.not. pt2_d(U)) then
N_j += 1
pt2_J(N_j) = U
pt2_d(U) = .true.
exit
end if
end do
if (N_j >= pt2_n_tasks) exit
end do
enddo
if(N_det_generators > 1) then
pt2_R(N_det_generators-1) = 0
pt2_R(N_det_generators) = N_c
end if
deallocate(ii,pt2_d)
END_PROVIDER
BEGIN_PROVIDER [ double precision, pt2_w, (N_det_generators) ]
&BEGIN_PROVIDER [ double precision, pt2_cW, (0:N_det_generators) ]
&BEGIN_PROVIDER [ double precision, pt2_W_T ]
&BEGIN_PROVIDER [ double precision, pt2_u_0 ]
&BEGIN_PROVIDER [ integer, pt2_n_0, (pt2_N_teeth+1) ]
implicit none
integer :: i, t
double precision, allocatable :: tilde_w(:), tilde_cW(:)
double precision :: r, tooth_width
integer, external :: pt2_find_sample
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
rss = memory_of_double(2*N_det_generators+1)
call check_mem(rss,irp_here)
if (N_det_generators == 1) then
pt2_w(1) = 1.d0
pt2_cw(1) = 1.d0
pt2_u_0 = 1.d0
pt2_W_T = 0.d0
pt2_n_0(1) = 0
pt2_n_0(2) = 1
else
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
tilde_cW(0) = 0d0
do i=1,N_det_generators
tilde_w(i) = psi_coef_sorted_tc_gen(i,pt2_stoch_istate)**2 !+ 1.d-20
enddo
double precision :: norm2
norm2 = 0.d0
do i=N_det_generators,1,-1
norm2 += tilde_w(i)
enddo
tilde_w(:) = tilde_w(:) / norm2
tilde_cW(0) = -1.d0
do i=1,N_det_generators
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
enddo
tilde_cW(:) = tilde_cW(:) + 1.d0
pt2_n_0(1) = 0
do
pt2_u_0 = tilde_cW(pt2_n_0(1))
r = tilde_cW(pt2_n_0(1) + pt2_minDetInFirstTeeth)
pt2_W_T = (1d0 - pt2_u_0) / dble(pt2_N_teeth)
if(pt2_W_T >= r - pt2_u_0) then
exit
end if
pt2_n_0(1) += 1
if(N_det_generators - pt2_n_0(1) < pt2_minDetInFirstTeeth * pt2_N_teeth) then
print *, "teeth building failed"
stop -1
end if
end do
do t=2, pt2_N_teeth
r = pt2_u_0 + pt2_W_T * dble(t-1)
pt2_n_0(t) = pt2_find_sample(r, tilde_cW)
end do
pt2_n_0(pt2_N_teeth+1) = N_det_generators
pt2_w(:pt2_n_0(1)) = tilde_w(:pt2_n_0(1))
do t=1, pt2_N_teeth
tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t))
if (tooth_width == 0.d0) then
tooth_width = sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1)))
endif
ASSERT(tooth_width > 0.d0)
do i=pt2_n_0(t)+1, pt2_n_0(t+1)
pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width
end do
end do
pt2_cW(0) = 0d0
do i=1,N_det_generators
pt2_cW(i) = pt2_cW(i-1) + pt2_w(i)
end do
pt2_n_0(pt2_N_teeth+1) = N_det_generators
endif
END_PROVIDER

View File

@ -1,546 +0,0 @@
use omp_lib
use selection_types
use f77_zmq
BEGIN_PROVIDER [ integer(omp_lock_kind), global_selection_buffer_lock ]
use omp_lib
implicit none
BEGIN_DOC
! Global buffer for the OpenMP selection
END_DOC
call omp_init_lock(global_selection_buffer_lock)
END_PROVIDER
BEGIN_PROVIDER [ type(selection_buffer), global_selection_buffer ]
use omp_lib
implicit none
BEGIN_DOC
! Global buffer for the OpenMP selection
END_DOC
call omp_set_lock(global_selection_buffer_lock)
call delete_selection_buffer(global_selection_buffer)
call create_selection_buffer(N_det_generators, 2*N_det_generators, &
global_selection_buffer)
call omp_unset_lock(global_selection_buffer_lock)
END_PROVIDER
subroutine run_pt2_slave(thread,iproc,energy)
use selection_types
use f77_zmq
implicit none
double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: thread, iproc
call run_pt2_slave_large(thread,iproc,energy)
! if (N_det > 100000 ) then
! call run_pt2_slave_large(thread,iproc,energy)
! else
! call run_pt2_slave_small(thread,iproc,energy)
! endif
end
subroutine run_pt2_slave_small(thread,iproc,energy)
use selection_types
use f77_zmq
implicit none
double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, ctask, ltask
character*(512), allocatable :: task(:)
integer, allocatable :: task_id(:)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: b
logical :: done, buffer_ready
type(pt2_type), allocatable :: pt2_data(:)
integer :: n_tasks, k, N
integer, allocatable :: i_generator(:), subset(:)
double precision, external :: memory_of_double, memory_of_int
integer :: bsize ! Size of selection buffers
allocate(task_id(pt2_n_tasks_max), task(pt2_n_tasks_max))
allocate(pt2_data(pt2_n_tasks_max), i_generator(pt2_n_tasks_max), subset(pt2_n_tasks_max))
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
integer, external :: connect_to_taskserver
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
return
endif
zmq_socket_push = new_zmq_push_socket(thread)
b%N = 0
buffer_ready = .False.
n_tasks = 1
done = .False.
do while (.not.done)
n_tasks = max(1,n_tasks)
n_tasks = min(pt2_n_tasks_max,n_tasks)
integer, external :: get_tasks_from_taskserver
if (get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task, n_tasks) == -1) then
exit
endif
done = task_id(n_tasks) == 0
if (done) then
n_tasks = n_tasks-1
endif
if (n_tasks == 0) exit
do k=1,n_tasks
call sscanf_ddd(task(k), subset(k), i_generator(k), N)
enddo
if (b%N == 0) then
! Only first time
bsize = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2)
call create_selection_buffer(bsize, bsize*2, b)
buffer_ready = .True.
else
ASSERT (b%N == bsize)
endif
double precision :: time0, time1
call wall_time(time0)
do k=1,n_tasks
call pt2_alloc(pt2_data(k),N_states)
b%cur = 0
call select_connected(i_generator(k),energy,pt2_data(k),b,subset(k),pt2_F(i_generator(k)))
enddo
call wall_time(time1)
integer, external :: tasks_done_to_taskserver
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
done = .true.
endif
call sort_selection_buffer(b)
call push_pt2_results(zmq_socket_push, i_generator, pt2_data, b, task_id, n_tasks)
do k=1,n_tasks
call pt2_dealloc(pt2_data(k))
enddo
b%cur=0
! ! Try to adjust n_tasks around nproc/2 seconds per job
n_tasks = min(2*n_tasks,int( dble(n_tasks * nproc/2) / (time1 - time0 + 1.d0)))
n_tasks = min(n_tasks, pt2_n_tasks_max)
! n_tasks = 1
end do
integer, external :: disconnect_from_taskserver
do i=1,300
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) /= -2) exit
call usleep(500)
print *, 'Retry disconnect...'
end do
call end_zmq_push_socket(zmq_socket_push,thread)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
if (buffer_ready) then
call delete_selection_buffer(b)
endif
deallocate(pt2_data)
end subroutine
subroutine run_pt2_slave_large(thread,iproc,energy)
use selection_types
use f77_zmq
implicit none
double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, ctask, ltask
character*(512) :: task
integer :: task_id(1)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: b
logical :: done, buffer_ready
type(pt2_type) :: pt2_data
integer :: n_tasks, k, N
integer :: i_generator, subset
integer :: ifirst
integer :: bsize ! Size of selection buffers
logical :: sending
PROVIDE global_selection_buffer global_selection_buffer_lock
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
integer, external :: connect_to_taskserver
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
return
endif
zmq_socket_push = new_zmq_push_socket(thread)
ifirst = 0
b%N = 0
buffer_ready = .False.
n_tasks = 1
sending = .False.
done = .False.
do while (.not.done)
integer, external :: get_tasks_from_taskserver
if (get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task, n_tasks) == -1) then
exit
endif
done = task_id(1) == 0
if (done) then
n_tasks = n_tasks-1
endif
if (n_tasks == 0) exit
call sscanf_ddd(task, subset, i_generator, N)
if( pt2_F(i_generator) <= 0 .or. pt2_F(i_generator) > N_det ) then
print *, irp_here
stop 'bug in selection'
endif
if (b%N == 0) then
! Only first time
bsize = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2)
call create_selection_buffer(bsize, bsize*2, b)
buffer_ready = .True.
else
ASSERT (b%N == bsize)
endif
double precision :: time0, time1
call wall_time(time0)
call pt2_alloc(pt2_data,N_states)
b%cur = 0
call select_connected(i_generator,energy,pt2_data,b,subset,pt2_F(i_generator))
call wall_time(time1)
integer, external :: tasks_done_to_taskserver
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
done = .true.
endif
call sort_selection_buffer(b)
call push_pt2_results_async_recv(zmq_socket_push,b%mini,sending)
call omp_set_lock(global_selection_buffer_lock)
global_selection_buffer%mini = b%mini
call merge_selection_buffers(b,global_selection_buffer)
if (ifirst /= 0 ) then
b%cur=0
else
ifirst = 1
endif
call omp_unset_lock(global_selection_buffer_lock)
if ( iproc == 1 ) then
call omp_set_lock(global_selection_buffer_lock)
call push_pt2_results_async_send(zmq_socket_push, (/i_generator/), (/pt2_data/), global_selection_buffer, (/task_id/), 1,sending)
global_selection_buffer%cur = 0
call omp_unset_lock(global_selection_buffer_lock)
else
call push_pt2_results_async_send(zmq_socket_push, (/i_generator/), (/pt2_data/), b, (/task_id/), 1,sending)
endif
call pt2_dealloc(pt2_data)
end do
call push_pt2_results_async_recv(zmq_socket_push,b%mini,sending)
integer, external :: disconnect_from_taskserver
do i=1,300
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) /= -2) exit
call sleep(1)
print *, 'Retry disconnect...'
end do
call end_zmq_push_socket(zmq_socket_push,thread)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
if (buffer_ready) then
call delete_selection_buffer(b)
endif
FREE global_selection_buffer
end subroutine
subroutine push_pt2_results(zmq_socket_push, index, pt2_data, b, task_id, n_tasks)
use selection_types
use f77_zmq
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
type(pt2_type), intent(in) :: pt2_data(n_tasks)
integer, intent(in) :: n_tasks, index(n_tasks), task_id(n_tasks)
type(selection_buffer), intent(inout) :: b
logical :: sending
sending = .False.
call push_pt2_results_async_send(zmq_socket_push, index, pt2_data, b, task_id, n_tasks, sending)
call push_pt2_results_async_recv(zmq_socket_push, b%mini, sending)
end subroutine
subroutine push_pt2_results_async_send(zmq_socket_push, index, pt2_data, b, task_id, n_tasks, sending)
use selection_types
use f77_zmq
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
type(pt2_type), intent(in) :: pt2_data(n_tasks)
integer, intent(in) :: n_tasks, index(n_tasks), task_id(n_tasks)
type(selection_buffer), intent(inout) :: b
logical, intent(inout) :: sending
integer :: rc, i
integer*8 :: rc8
double precision, allocatable :: pt2_serialized(:,:)
if (sending) then
print *, irp_here, ': sending is true'
stop -1
endif
sending = .True.
rc = f77_zmq_send( zmq_socket_push, n_tasks, 4, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 1
return
else if(rc /= 4) then
stop 'push'
endif
rc = f77_zmq_send( zmq_socket_push, index, 4*n_tasks, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 2
return
else if(rc /= 4*n_tasks) then
stop 'push'
endif
allocate(pt2_serialized (pt2_type_size(N_states),n_tasks) )
do i=1,n_tasks
call pt2_serialize(pt2_data(i),N_states,pt2_serialized(1,i))
enddo
rc = f77_zmq_send( zmq_socket_push, pt2_serialized, size(pt2_serialized)*8, ZMQ_SNDMORE)
deallocate(pt2_serialized)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 3
return
else if(rc /= size(pt2_serialized)*8) then
stop 'push'
endif
rc = f77_zmq_send( zmq_socket_push, task_id, n_tasks*4, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 6
return
else if(rc /= 4*n_tasks) then
stop 'push'
endif
if (b%cur == 0) then
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, 0)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 7
return
else if(rc /= 4) then
stop 'push'
endif
else
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 7
return
else if(rc /= 4) then
stop 'push'
endif
rc8 = f77_zmq_send8( zmq_socket_push, b%val, 8_8*int(b%cur,8), ZMQ_SNDMORE)
if (rc8 == -1_8) then
print *, irp_here, ': error sending result'
stop 8
return
else if(rc8 /= 8_8*int(b%cur,8)) then
stop 'push'
endif
rc8 = f77_zmq_send8( zmq_socket_push, b%det, int(bit_kind*N_int*2,8)*int(b%cur,8), 0)
if (rc8 == -1_8) then
print *, irp_here, ': error sending result'
stop 9
return
else if(rc8 /= int(N_int*2*8,8)*int(b%cur,8)) then
stop 'push'
endif
endif
end subroutine
subroutine push_pt2_results_async_recv(zmq_socket_push,mini,sending)
use selection_types
use f77_zmq
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
double precision, intent(out) :: mini
logical, intent(inout) :: sending
integer :: rc
if (.not.sending) return
! Activate is zmq_socket_push is a REQ
IRP_IF ZMQ_PUSH
IRP_ELSE
character*(2) :: ok
rc = f77_zmq_recv( zmq_socket_push, ok, 2, 0)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 10
return
else if ((rc /= 2).and.(ok(1:2) /= 'ok')) then
print *, irp_here//': error in receiving ok'
stop -1
endif
rc = f77_zmq_recv( zmq_socket_push, mini, 8, 0)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 11
return
else if (rc /= 8) then
print *, irp_here//': error in receiving mini'
stop 12
endif
IRP_ENDIF
sending = .False.
end subroutine
subroutine pull_pt2_results(zmq_socket_pull, index, pt2_data, task_id, n_tasks, b)
use selection_types
use f77_zmq
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
type(pt2_type), intent(inout) :: pt2_data(*)
type(selection_buffer), intent(inout) :: b
integer, intent(out) :: index(*)
integer, intent(out) :: n_tasks, task_id(*)
integer :: rc, rn, i
integer*8 :: rc8
double precision, allocatable :: pt2_serialized(:,:)
rc = f77_zmq_recv( zmq_socket_pull, n_tasks, 4, 0)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if(rc /= 4) then
stop 'pull'
endif
rc = f77_zmq_recv( zmq_socket_pull, index, 4*n_tasks, 0)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if(rc /= 4*n_tasks) then
stop 'pull'
endif
allocate(pt2_serialized (pt2_type_size(N_states),n_tasks) )
rc = f77_zmq_recv( zmq_socket_pull, pt2_serialized, 8*size(pt2_serialized)*n_tasks, 0)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if(rc /= 8*size(pt2_serialized)) then
stop 'pull'
endif
do i=1,n_tasks
call pt2_deserialize(pt2_data(i),N_states,pt2_serialized(1,i))
enddo
deallocate(pt2_serialized)
rc = f77_zmq_recv( zmq_socket_pull, task_id, n_tasks*4, 0)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if(rc /= 4*n_tasks) then
stop 'pull'
endif
rc = f77_zmq_recv( zmq_socket_pull, b%cur, 4, 0)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if(rc /= 4) then
stop 'pull'
endif
if (b%cur > 0) then
rc8 = f77_zmq_recv8( zmq_socket_pull, b%val, 8_8*int(b%cur,8), 0)
if (rc8 == -1_8) then
n_tasks = 1
task_id(1) = 0
else if(rc8 /= 8_8*int(b%cur,8)) then
stop 'pull'
endif
rc8 = f77_zmq_recv8( zmq_socket_pull, b%det, int(bit_kind*N_int*2,8)*int(b%cur,8), 0)
if (rc8 == -1_8) then
n_tasks = 1
task_id(1) = 0
else if(rc8 /= int(N_int*2*8,8)*int(b%cur,8)) then
stop 'pull'
endif
endif
! Activate is zmq_socket_pull is a REP
IRP_IF ZMQ_PUSH
IRP_ELSE
rc = f77_zmq_send( zmq_socket_pull, 'ok', 2, ZMQ_SNDMORE)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if (rc /= 2) then
print *, irp_here//': error in sending ok'
stop -1
endif
rc = f77_zmq_send( zmq_socket_pull, b%mini, 8, 0)
IRP_ENDIF
end subroutine

View File

@ -1,258 +1,5 @@
subroutine run_selection_slave(thread, iproc, energy) subroutine provide_for_selection_slave
PROVIDE psi_det_sorted_tc_order
use f77_zmq PROVIDE psi_selectors_coef_transp_tc psi_det_sorted_tc
use selection_types end
implicit none
double precision, intent(in) :: energy(N_states)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, task_id(1), ctask, ltask
character*(512) :: task
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: buf, buf2
logical :: done, buffer_ready
type(pt2_type) :: pt2_data
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_tc_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order N_int pt2_F pseudo_sym
PROVIDE psi_selectors_coef_transp_tc psi_det_sorted_tc weight_selection
call pt2_alloc(pt2_data,N_states)
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
integer, external :: connect_to_taskserver
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
return
endif
zmq_socket_push = new_zmq_push_socket(thread)
buf%N = 0
buffer_ready = .False.
ctask = 1
do
integer, external :: get_task_from_taskserver
if (get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id(ctask), task) == -1) then
exit
endif
done = task_id(ctask) == 0
if (done) then
ctask = ctask - 1
else
integer :: i_generator, N, subset, bsize
call sscanf_ddd(task, subset, i_generator, N)
if(buf%N == 0) then
! Only first time
call create_selection_buffer(N, N*2, buf)
buffer_ready = .True.
else
if (N /= buf%N) then
print *, 'N=', N
print *, 'buf%N=', buf%N
print *, 'bug in ', irp_here
stop '-1'
end if
end if
call select_connected(i_generator, energy, pt2_data, buf, subset, pt2_F(i_generator))
endif
integer, external :: task_done_to_taskserver
if(done .or. ctask == size(task_id)) then
do i=1, ctask
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
call usleep(100)
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
ctask = 0
done = .true.
exit
endif
endif
end do
if(ctask > 0) then
call sort_selection_buffer(buf)
! call merge_selection_buffers(buf,buf2)
call push_selection_results(zmq_socket_push, pt2_data, buf, task_id(1), ctask)
call pt2_dealloc(pt2_data)
call pt2_alloc(pt2_data,N_states)
! buf%mini = buf2%mini
buf%cur = 0
end if
ctask = 0
end if
if(done) exit
ctask = ctask + 1
end do
if(ctask > 0) then
call sort_selection_buffer(buf)
! call merge_selection_buffers(buf,buf2)
call push_selection_results(zmq_socket_push, pt2_data, buf, task_id(1), ctask)
! buf%mini = buf2%mini
buf%cur = 0
end if
ctask = 0
call pt2_dealloc(pt2_data)
integer, external :: disconnect_from_taskserver
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) == -1) then
continue
endif
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
if (buffer_ready) then
call delete_selection_buffer(buf)
! call delete_selection_buffer(buf2)
endif
end subroutine
subroutine push_selection_results(zmq_socket_push, pt2_data, b, task_id, ntasks)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
type(pt2_type), intent(in) :: pt2_data
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: ntasks, task_id(*)
integer :: rc
double precision, allocatable :: pt2_serialized(:)
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
if(rc /= 4) then
print *, 'f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)'
endif
allocate(pt2_serialized (pt2_type_size(N_states)) )
call pt2_serialize(pt2_data,N_states,pt2_serialized)
rc = f77_zmq_send( zmq_socket_push, pt2_serialized, size(pt2_serialized)*8, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 3
return
else if(rc /= size(pt2_serialized)*8) then
stop 'push'
endif
deallocate(pt2_serialized)
if (b%cur > 0) then
rc = f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)
if(rc /= 8*b%cur) then
print *, 'f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)'
endif
rc = f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)
if(rc /= bit_kind*N_int*2*b%cur) then
print *, 'f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)'
endif
endif
rc = f77_zmq_send( zmq_socket_push, ntasks, 4, ZMQ_SNDMORE)
if(rc /= 4) then
print *, 'f77_zmq_send( zmq_socket_push, ntasks, 4, ZMQ_SNDMORE)'
endif
rc = f77_zmq_send( zmq_socket_push, task_id(1), ntasks*4, 0)
if(rc /= 4*ntasks) then
print *, 'f77_zmq_send( zmq_socket_push, task_id(1), ntasks*4, 0)'
endif
! Activate is zmq_socket_push is a REQ
IRP_IF ZMQ_PUSH
IRP_ELSE
character*(2) :: ok
rc = f77_zmq_recv( zmq_socket_push, ok, 2, 0)
if ((rc /= 2).and.(ok(1:2) /= 'ok')) then
print *, irp_here//': error in receiving ok'
stop -1
endif
IRP_ENDIF
end subroutine
subroutine pull_selection_results(zmq_socket_pull, pt2_data, val, det, N, task_id, ntasks)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
type(pt2_type), intent(inout) :: pt2_data
double precision, intent(out) :: val(*)
integer(bit_kind), intent(out) :: det(N_int, 2, *)
integer, intent(out) :: N, ntasks, task_id(*)
integer :: rc, rn, i
double precision, allocatable :: pt2_serialized(:)
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
if(rc /= 4) then
print *, 'f77_zmq_recv( zmq_socket_pull, N, 4, 0)'
endif
allocate(pt2_serialized (pt2_type_size(N_states)) )
rc = f77_zmq_recv( zmq_socket_pull, pt2_serialized, 8*size(pt2_serialized), 0)
if (rc == -1) then
ntasks = 1
task_id(1) = 0
else if(rc /= 8*size(pt2_serialized)) then
stop 'pull'
endif
call pt2_deserialize(pt2_data,N_states,pt2_serialized)
deallocate(pt2_serialized)
if (N>0) then
rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)
if(rc /= 8*N) then
print *, 'f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)'
endif
rc = f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)
if(rc /= bit_kind*N_int*2*N) then
print *, 'f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)'
endif
endif
rc = f77_zmq_recv( zmq_socket_pull, ntasks, 4, 0)
if(rc /= 4) then
print *, 'f77_zmq_recv( zmq_socket_pull, ntasks, 4, 0)'
endif
rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntasks*4, 0)
if(rc /= 4*ntasks) then
print *, 'f77_zmq_recv( zmq_socket_pull, task_id(1), ntasks*4, 0)'
endif
! Activate is zmq_socket_pull is a REP
IRP_IF ZMQ_PUSH
IRP_ELSE
rc = f77_zmq_send( zmq_socket_pull, 'ok', 2, 0)
if (rc /= 2) then
print *, irp_here//': error in sending ok'
stop -1
endif
IRP_ENDIF
end subroutine

View File

@ -76,6 +76,8 @@ subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
double precision, allocatable :: fock_diag_tmp(:,:) double precision, allocatable :: fock_diag_tmp(:,:)
if (csubset == 0) return
allocate(fock_diag_tmp(2,mo_num+1)) allocate(fock_diag_tmp(2,mo_num+1))
call build_fock_tmp_tc(fock_diag_tmp, psi_det_generators(1,1,i_generator), N_int) call build_fock_tmp_tc(fock_diag_tmp, psi_det_generators(1,1,i_generator), N_int)
@ -86,10 +88,13 @@ subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) ) particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) )
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) ) particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) )
enddo enddo
! if ((subset == 1).and.(sum(hole_mask(:,2)) == 0_bit_kind)) then
! ! No beta electron to excite
! call select_singles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b)
! endif
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b,subset,csubset) call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b,subset,csubset)
deallocate(fock_diag_tmp) deallocate(fock_diag_tmp)
end subroutine select_connected end subroutine
double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint) double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint)
@ -136,7 +141,7 @@ double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint)
end end
subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock_diag_tmp, E0, pt2_data, buf, subset, csubset) subroutine select_singles_and_doubles(i_generator, hole_mask, particle_mask, fock_diag_tmp, E0, pt2_data, buf, subset, csubset)
use bitmasks use bitmasks
use selection_types use selection_types
implicit none implicit none
@ -151,8 +156,6 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
type(pt2_type), intent(inout) :: pt2_data type(pt2_type), intent(inout) :: pt2_data
type(selection_buffer), intent(inout) :: buf type(selection_buffer), intent(inout) :: buf
double precision, parameter :: norm_thr = 1.d-16
integer :: h1, h2, s1, s2, s3, i1, i2, ib, sp, k, i, j, nt, ii, sze integer :: h1, h2, s1, s2, s3, i1, i2, ib, sp, k, i, j, nt, ii, sze
integer :: maskInd integer :: maskInd
integer :: N_holes(2), N_particles(2) integer :: N_holes(2), N_particles(2)
@ -170,6 +173,7 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
integer, allocatable :: preinteresting(:), prefullinteresting(:) integer, allocatable :: preinteresting(:), prefullinteresting(:)
integer, allocatable :: interesting(:), fullinteresting(:) integer, allocatable :: interesting(:), fullinteresting(:)
integer, allocatable :: tmp_array(:) integer, allocatable :: tmp_array(:)
integer, allocatable :: indices(:), exc_degree(:), iorder(:) integer, allocatable :: indices(:), exc_degree(:), iorder(:)
integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :) integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :)
logical, allocatable :: banned(:,:,:), bannedOrb(:,:) logical, allocatable :: banned(:,:,:), bannedOrb(:,:)
@ -178,15 +182,16 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_tc_order psi_bilinear_matrix_order PROVIDE psi_bilinear_matrix_rows psi_bilinear_matrix_order psi_bilinear_matrix_transp_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp_tc PROVIDE psi_selectors_coef_transp_tc psi_det_sorted_tc_order
PROVIDE banned_excitation PROVIDE banned_excitation
monoAdo = .true. monoAdo = .true.
monoBdo = .true. monoBdo = .true.
if (csubset == 0) return
do k=1,N_int do k=1,N_int
hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1)) hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1))
@ -198,7 +203,11 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
call bitstring_to_list_ab(hole , hole_list , N_holes , N_int) call bitstring_to_list_ab(hole , hole_list , N_holes , N_int)
call bitstring_to_list_ab(particle, particle_list, N_particles, N_int) call bitstring_to_list_ab(particle, particle_list, N_particles, N_int)
allocate( indices(N_det), exc_degree( max(N_det_alpha_unique, N_det_beta_unique) ) ) ! Removed to avoid introducing determinants already presents in the wf
!double precision, parameter :: norm_thr = 1.d-16
allocate (indices(N_det), &
exc_degree(max(N_det_alpha_unique,N_det_beta_unique)))
! Pre-compute excitation degrees wrt alpha determinants ! Pre-compute excitation degrees wrt alpha determinants
k=1 k=1
@ -214,73 +223,76 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
if (nt > 2) cycle if (nt > 2) cycle
do l_a=psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1 do l_a=psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1
i = psi_bilinear_matrix_rows(l_a) i = psi_bilinear_matrix_rows(l_a)
if(nt + exc_degree(i) <= 4) then if (nt + exc_degree(i) <= 4) then
idx = psi_det_sorted_tc_order(psi_bilinear_matrix_order(l_a)) idx = psi_det_sorted_tc_order(psi_bilinear_matrix_order(l_a))
! if (psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then ! Removed to avoid introducing determinants already presents in the wf
!if (psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then
indices(k) = idx indices(k) = idx
k = k + 1 k=k+1
! endif !endif
endif endif
enddo enddo
enddo enddo
! Pre-compute excitation degrees wrt beta determinants ! Pre-compute excitation degrees wrt beta determinants
do i=1,N_det_beta_unique do i=1,N_det_beta_unique
call get_excitation_degree_spin(psi_det_beta_unique(1,i), psi_det_generators(1,2,i_generator), exc_degree(i), N_int) call get_excitation_degree_spin(psi_det_beta_unique(1,i), &
psi_det_generators(1,2,i_generator), exc_degree(i), N_int)
enddo enddo
! Iterate on 0S alpha, and find betas TQ such that exc_degree <= 4 ! Iterate on 0S alpha, and find betas TQ such that exc_degree <= 4
! Remove also contributions < 1.d-20)
do j=1,N_det_alpha_unique do j=1,N_det_alpha_unique
call get_excitation_degree_spin(psi_det_alpha_unique(1,j), psi_det_generators(1,1,i_generator), nt, N_int) call get_excitation_degree_spin(psi_det_alpha_unique(1,j), &
psi_det_generators(1,1,i_generator), nt, N_int)
if (nt > 1) cycle if (nt > 1) cycle
do l_a = psi_bilinear_matrix_transp_rows_loc(j), psi_bilinear_matrix_transp_rows_loc(j+1)-1 do l_a=psi_bilinear_matrix_transp_rows_loc(j), psi_bilinear_matrix_transp_rows_loc(j+1)-1
i = psi_bilinear_matrix_transp_columns(l_a) i = psi_bilinear_matrix_transp_columns(l_a)
if(exc_degree(i) < 3) cycle if (exc_degree(i) < 3) cycle
if(nt + exc_degree(i) <= 4) then if (nt + exc_degree(i) <= 4) then
idx = psi_det_sorted_tc_order( & idx = psi_det_sorted_tc_order( &
psi_bilinear_matrix_order( & psi_bilinear_matrix_order( &
psi_bilinear_matrix_transp_order(l_a))) psi_bilinear_matrix_transp_order(l_a)))
! if(psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then ! Removed to avoid introducing determinants already presents in the wf
!if(psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then
indices(k) = idx indices(k) = idx
k = k + 1 k=k+1
! endif !endif
endif endif
enddo enddo
enddo enddo
deallocate(exc_degree) deallocate(exc_degree)
nmax = k - 1 nmax=k-1
call isort_noidx(indices,nmax) call isort_noidx(indices,nmax)
! Start with 32 elements. Size will double along with the filtering. ! Start with 32 elements. Size will double along with the filtering.
allocate(preinteresting(0:32), prefullinteresting(0:32), interesting(0:32), fullinteresting(0:32)) allocate(preinteresting(0:32), prefullinteresting(0:32), &
interesting(0:32), fullinteresting(0:32))
preinteresting(:) = 0 preinteresting(:) = 0
prefullinteresting(:) = 0 prefullinteresting(:) = 0
do i = 1, N_int do i=1,N_int
negMask(i,1) = not(psi_det_generators(i,1,i_generator)) negMask(i,1) = not(psi_det_generators(i,1,i_generator))
negMask(i,2) = not(psi_det_generators(i,2,i_generator)) negMask(i,2) = not(psi_det_generators(i,2,i_generator))
enddo end do
do k = 1, nmax
do k=1,nmax
i = indices(k) i = indices(k)
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted_tc(1,1,i)) mobMask(1,1) = iand(negMask(1,1), psi_det_sorted_tc(1,1,i))
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted_tc(1,2,i)) mobMask(1,2) = iand(negMask(1,2), psi_det_sorted_tc(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
do j = 2, N_int do j=2,N_int
mobMask(j,1) = iand(negMask(j,1), psi_det_sorted_tc(j,1,i)) mobMask(j,1) = iand(negMask(j,1), psi_det_sorted_tc(j,1,i))
mobMask(j,2) = iand(negMask(j,2), psi_det_sorted_tc(j,2,i)) mobMask(j,2) = iand(negMask(j,2), psi_det_sorted_tc(j,2,i))
nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
enddo end do
if(nt <= 4) then if(nt <= 4) then
if(i <= N_det_selectors) then if(i <= N_det_selectors) then
sze = preinteresting(0) sze = preinteresting(0)
if(sze+1 == size(preinteresting)) then if (sze+1 == size(preinteresting)) then
allocate(tmp_array(0:sze)) allocate (tmp_array(0:sze))
tmp_array(0:sze) = preinteresting(0:sze) tmp_array(0:sze) = preinteresting(0:sze)
deallocate(preinteresting) deallocate(preinteresting)
allocate(preinteresting(0:2*sze)) allocate(preinteresting(0:2*sze))
@ -289,9 +301,9 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
endif endif
preinteresting(0) = sze+1 preinteresting(0) = sze+1
preinteresting(sze+1) = i preinteresting(sze+1) = i
elseif(nt <= 2) then else if(nt <= 2) then
sze = prefullinteresting(0) sze = prefullinteresting(0)
if(sze+1 == size(prefullinteresting)) then if (sze+1 == size(prefullinteresting)) then
allocate (tmp_array(0:sze)) allocate (tmp_array(0:sze))
tmp_array(0:sze) = prefullinteresting(0:sze) tmp_array(0:sze) = prefullinteresting(0:sze)
deallocate(prefullinteresting) deallocate(prefullinteresting)
@ -301,20 +313,16 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
endif endif
prefullinteresting(0) = sze+1 prefullinteresting(0) = sze+1
prefullinteresting(sze+1) = i prefullinteresting(sze+1) = i
endif end if
endif end if
end do
enddo
deallocate(indices) deallocate(indices)
allocate( banned(mo_num, mo_num,2), bannedOrb(mo_num, 2) ) allocate(banned(mo_num, mo_num,2), bannedOrb(mo_num, 2))
allocate( mat(N_states, mo_num, mo_num) ) allocate(mat(N_states, mo_num, mo_num))
allocate( mat_l(N_states, mo_num, mo_num), mat_r(N_states, mo_num, mo_num) ) allocate(mat_l(N_states, mo_num, mo_num), mat_r(N_states, mo_num, mo_num))
maskInd = -1 maskInd = -1
do s1 = 1, 2 do s1 = 1, 2
do i1 = N_holes(s1), 1, -1 ! Generate low excitations first do i1 = N_holes(s1), 1, -1 ! Generate low excitations first
@ -347,17 +355,17 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
do ii = 1, preinteresting(0) do ii = 1, preinteresting(0)
i = preinteresting(ii) i = preinteresting(ii)
select case(N_int) select case (N_int)
case(1) case (1)
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted_tc(1,1,i)) mobMask(1,1) = iand(negMask(1,1), psi_det_sorted_tc(1,1,i))
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted_tc(1,2,i)) mobMask(1,2) = iand(negMask(1,2), psi_det_sorted_tc(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
case(2) case (2)
mobMask(1:2,1) = iand(negMask(1:2,1), psi_det_sorted_tc(1:2,1,i)) mobMask(1:2,1) = iand(negMask(1:2,1), psi_det_sorted_tc(1:2,1,i))
mobMask(1:2,2) = iand(negMask(1:2,2), psi_det_sorted_tc(1:2,2,i)) mobMask(1:2,2) = iand(negMask(1:2,2), psi_det_sorted_tc(1:2,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) + & nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) + &
popcnt(mobMask(2, 1)) + popcnt(mobMask(2, 2)) popcnt(mobMask(2, 1)) + popcnt(mobMask(2, 2))
case(3) case (3)
mobMask(1:3,1) = iand(negMask(1:3,1), psi_det_sorted_tc(1:3,1,i)) mobMask(1:3,1) = iand(negMask(1:3,1), psi_det_sorted_tc(1:3,1,i))
mobMask(1:3,2) = iand(negMask(1:3,2), psi_det_sorted_tc(1:3,2,i)) mobMask(1:3,2) = iand(negMask(1:3,2), psi_det_sorted_tc(1:3,2,i))
nt = 0 nt = 0
@ -370,8 +378,8 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
nt = nt+ popcnt(mobMask(j, 2)) nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit if (nt > 4) exit
endif endif
enddo end do
case(4) case (4)
mobMask(1:4,1) = iand(negMask(1:4,1), psi_det_sorted_tc(1:4,1,i)) mobMask(1:4,1) = iand(negMask(1:4,1), psi_det_sorted_tc(1:4,1,i))
mobMask(1:4,2) = iand(negMask(1:4,2), psi_det_sorted_tc(1:4,2,i)) mobMask(1:4,2) = iand(negMask(1:4,2), psi_det_sorted_tc(1:4,2,i))
nt = 0 nt = 0
@ -384,7 +392,7 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
nt = nt+ popcnt(mobMask(j, 2)) nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit if (nt > 4) exit
endif endif
enddo end do
case default case default
mobMask(1:N_int,1) = iand(negMask(1:N_int,1), psi_det_sorted_tc(1:N_int,1,i)) mobMask(1:N_int,1) = iand(negMask(1:N_int,1), psi_det_sorted_tc(1:N_int,1,i))
mobMask(1:N_int,2) = iand(negMask(1:N_int,2), psi_det_sorted_tc(1:N_int,2,i)) mobMask(1:N_int,2) = iand(negMask(1:N_int,2), psi_det_sorted_tc(1:N_int,2,i))
@ -398,12 +406,12 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
nt = nt+ popcnt(mobMask(j, 2)) nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit if (nt > 4) exit
endif endif
enddo end do
end select end select
if(nt <= 4) then if(nt <= 4) then
sze = interesting(0) sze = interesting(0)
if(sze+1 == size(interesting)) then if (sze+1 == size(interesting)) then
allocate (tmp_array(0:sze)) allocate (tmp_array(0:sze))
tmp_array(0:sze) = interesting(0:sze) tmp_array(0:sze) = interesting(0:sze)
deallocate(interesting) deallocate(interesting)
@ -425,8 +433,8 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
endif endif
fullinteresting(0) = sze+1 fullinteresting(0) = sze+1
fullinteresting(sze+1) = i fullinteresting(sze+1) = i
endif end if
endif end if
enddo enddo
@ -456,10 +464,10 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
endif endif
fullinteresting(0) = sze+1 fullinteresting(0) = sze+1
fullinteresting(sze+1) = i fullinteresting(sze+1) = i
endif end if
enddo end do
allocate( fullminilist (N_int, 2, fullinteresting(0)), & allocate (fullminilist (N_int, 2, fullinteresting(0)), &
minilist (N_int, 2, interesting(0)) ) minilist (N_int, 2, interesting(0)) )
do i = 1, fullinteresting(0) do i = 1, fullinteresting(0)
do k = 1, N_int do k = 1, N_int
@ -517,7 +525,8 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting, mat_l, mat_r) call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting, mat_l, mat_r)
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf, mat_l, mat_r) call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf, mat_l, mat_r)
endif end if
enddo enddo
@ -533,7 +542,8 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
deallocate(banned, bannedOrb,mat) deallocate(banned, bannedOrb,mat)
deallocate(mat_l, mat_r) deallocate(mat_l, mat_r)
end subroutine select_singles_and_doubles
end subroutine
! --- ! ---
@ -785,6 +795,11 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int) call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_ormas) then
logical, external :: det_allowed_ormas
if (.not.det_allowed_ormas(det)) cycle
endif
if(do_only_cas) then if(do_only_cas) then
if( number_of_particles(det) > 0 ) cycle if( number_of_particles(det) > 0 ) cycle
if( number_of_holes(det) > 0 ) cycle if( number_of_holes(det) > 0 ) cycle
@ -945,7 +960,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
! endif ! endif
e_pert(istate) = 0.25 * val / delta_E e_pert(istate) = 0.25 * val / delta_E
! e_pert(istate) = 0.5d0 * (tmp - delta_E) ! e_pert(istate) = 0.5d0 * (tmp - delta_E)
if(dsqrt(dabs(tmp)).gt.1.d-4.and.dabs(alpha_h_psi).gt.1.d-4)then if(dsqrt(tmp).gt.1.d-4.and.dabs(psi_h_alpha).gt.1.d-4)then
coef(istate) = e_pert(istate) / psi_h_alpha coef(istate) = e_pert(istate) / psi_h_alpha
else else
coef(istate) = alpha_h_psi / delta_E coef(istate) = alpha_h_psi / delta_E
@ -980,8 +995,11 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
psi_h_alpha = mat_l(istate, p1, p2) psi_h_alpha = mat_l(istate, p1, p2)
pt2_data % overlap(:,istate) = pt2_data % overlap(:,istate) + coef(:) * coef(istate) pt2_data % overlap(:,istate) = pt2_data % overlap(:,istate) + coef(:) * coef(istate)
pt2_data % variance(istate) = pt2_data % variance(istate) + dabs(e_pert(istate)) if(e_pert(istate).gt.0.d0)then! accumulate the positive part of the pt2
pt2_data % pt2(istate) = pt2_data % pt2(istate) + e_pert(istate) pt2_data % variance(istate) = pt2_data % variance(istate) + e_pert(istate)
else ! accumulate the negative part of the pt2
pt2_data % pt2(istate) = pt2_data % pt2(istate) + e_pert(istate)
endif
select case (weight_selection) select case (weight_selection)
case(5) case(5)

View File

@ -1,424 +0,0 @@
subroutine create_selection_buffer(N, size_in, res)
use selection_types
implicit none
BEGIN_DOC
! Allocates the memory for a selection buffer.
! The arrays have dimension size_in and the maximum number of elements is N
END_DOC
integer, intent(in) :: N, size_in
type(selection_buffer), intent(out) :: res
integer :: siz
siz = max(size_in,1)
double precision :: rss
double precision, external :: memory_of_double
rss = memory_of_double(siz)*(N_int*2+1)
call check_mem(rss,irp_here)
allocate(res%det(N_int, 2, siz), res%val(siz))
res%val(:) = 0d0
res%det(:,:,:) = 0_8
res%N = N
res%mini = 0d0
res%cur = 0
end subroutine
subroutine delete_selection_buffer(b)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
if (associated(b%det)) then
deallocate(b%det)
endif
if (associated(b%val)) then
deallocate(b%val)
endif
NULLIFY(b%det)
NULLIFY(b%val)
b%cur = 0
b%mini = 0.d0
b%N = 0
end
subroutine add_to_selection_buffer(b, det, val)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
integer(bit_kind), intent(in) :: det(N_int, 2)
double precision, intent(in) :: val
integer :: i
if(b%N > 0 .and. val <= b%mini) then
b%cur += 1
b%det(1:N_int,1:2,b%cur) = det(1:N_int,1:2)
b%val(b%cur) = val
if(b%cur == size(b%val)) then
call sort_selection_buffer(b)
end if
end if
end subroutine
subroutine merge_selection_buffers(b1, b2)
use selection_types
implicit none
BEGIN_DOC
! Merges the selection buffers b1 and b2 into b2
END_DOC
type(selection_buffer), intent(inout) :: b1
type(selection_buffer), intent(inout) :: b2
integer(bit_kind), pointer :: detmp(:,:,:)
double precision, pointer :: val(:)
integer :: i, i1, i2, k, nmwen, sze
if (b1%cur == 0) return
do while (b1%val(b1%cur) > b2%mini)
b1%cur = b1%cur-1
if (b1%cur == 0) then
return
endif
enddo
nmwen = min(b1%N, b1%cur+b2%cur)
double precision :: rss
double precision, external :: memory_of_double
sze = max(size(b1%val), size(b2%val))
rss = memory_of_double(sze) + 2*N_int*memory_of_double(sze)
call check_mem(rss,irp_here)
allocate(val(sze), detmp(N_int, 2, sze))
i1=1
i2=1
do i=1,nmwen
if ( (i1 > b1%cur).and.(i2 > b2%cur) ) then
exit
else if (i1 > b1%cur) then
val(i) = b2%val(i2)
detmp(1:N_int,1,i) = b2%det(1:N_int,1,i2)
detmp(1:N_int,2,i) = b2%det(1:N_int,2,i2)
i2=i2+1
else if (i2 > b2%cur) then
val(i) = b1%val(i1)
detmp(1:N_int,1,i) = b1%det(1:N_int,1,i1)
detmp(1:N_int,2,i) = b1%det(1:N_int,2,i1)
i1=i1+1
else
if (b1%val(i1) <= b2%val(i2)) then
val(i) = b1%val(i1)
detmp(1:N_int,1,i) = b1%det(1:N_int,1,i1)
detmp(1:N_int,2,i) = b1%det(1:N_int,2,i1)
i1=i1+1
else
val(i) = b2%val(i2)
detmp(1:N_int,1,i) = b2%det(1:N_int,1,i2)
detmp(1:N_int,2,i) = b2%det(1:N_int,2,i2)
i2=i2+1
endif
endif
enddo
deallocate(b2%det, b2%val)
do i=nmwen+1,b2%N
val(i) = 0.d0
detmp(1:N_int,1:2,i) = 0_bit_kind
enddo
b2%det => detmp
b2%val => val
! if(selection_tc == 1)then
! b2%mini = max(b2%mini,b2%val(b2%N))
! else
b2%mini = min(b2%mini,b2%val(b2%N))
! endif
b2%cur = nmwen
end
subroutine sort_selection_buffer(b)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
integer, allocatable :: iorder(:)
integer(bit_kind), pointer :: detmp(:,:,:)
integer :: i, nmwen
logical, external :: detEq
if (b%N == 0 .or. b%cur == 0) return
nmwen = min(b%N, b%cur)
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
rss = memory_of_int(b%cur) + 2*N_int*memory_of_double(size(b%det,3))
call check_mem(rss,irp_here)
allocate(iorder(b%cur), detmp(N_int, 2, size(b%det,3)))
do i=1,b%cur
iorder(i) = i
end do
call dsort(b%val, iorder, b%cur)
do i=1, nmwen
detmp(1:N_int,1,i) = b%det(1:N_int,1,iorder(i))
detmp(1:N_int,2,i) = b%det(1:N_int,2,iorder(i))
end do
deallocate(b%det,iorder)
b%det => detmp
! if(selection_tc == 1)then
! b%mini = max(b%mini,b%val(b%N))
! else
b%mini = min(b%mini,b%val(b%N))
! endif
b%cur = nmwen
end subroutine
subroutine make_selection_buffer_s2(b)
use selection_types
type(selection_buffer), intent(inout) :: b
integer(bit_kind), allocatable :: o(:,:,:)
double precision, allocatable :: val(:)
integer :: n_d
integer :: i,k,sze,n_alpha,j,n
logical :: dup
! Sort
integer, allocatable :: iorder(:)
integer*8, allocatable :: bit_tmp(:)
integer*8, external :: configuration_search_key
integer(bit_kind), allocatable :: tmp_array(:,:,:)
logical, allocatable :: duplicate(:)
n_d = b%cur
double precision :: rss
double precision, external :: memory_of_double
rss = (4*N_int+4)*memory_of_double(n_d)
call check_mem(rss,irp_here)
allocate(o(N_int,2,n_d), iorder(n_d), duplicate(n_d), bit_tmp(n_d), &
tmp_array(N_int,2,n_d), val(n_d) )
do i=1,n_d
do k=1,N_int
o(k,1,i) = ieor(b%det(k,1,i), b%det(k,2,i))
o(k,2,i) = iand(b%det(k,1,i), b%det(k,2,i))
enddo
iorder(i) = i
bit_tmp(i) = configuration_search_key(o(1,1,i),N_int)
enddo
deallocate(b%det)
call i8sort(bit_tmp,iorder,n_d)
do i=1,n_d
do k=1,N_int
tmp_array(k,1,i) = o(k,1,iorder(i))
tmp_array(k,2,i) = o(k,2,iorder(i))
enddo
val(i) = b%val(iorder(i))
duplicate(i) = .False.
enddo
! Find duplicates
do i=1,n_d-1
if (duplicate(i)) then
cycle
endif
j = i+1
do while (bit_tmp(j)==bit_tmp(i))
if (duplicate(j)) then
j+=1
if (j>n_d) then
exit
endif
cycle
endif
dup = .True.
do k=1,N_int
if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) &
.or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then
dup = .False.
exit
endif
enddo
if (dup) then
val(i) = max(val(i), val(j))
duplicate(j) = .True.
endif
j+=1
if (j>n_d) then
exit
endif
enddo
enddo
deallocate (b%val)
! Copy filtered result
integer :: n_p
n_p=0
do i=1,n_d
if (duplicate(i)) then
cycle
endif
n_p = n_p + 1
do k=1,N_int
o(k,1,n_p) = tmp_array(k,1,i)
o(k,2,n_p) = tmp_array(k,2,i)
enddo
val(n_p) = val(i)
enddo
! Sort by importance
do i=1,n_p
iorder(i) = i
end do
call dsort(val,iorder,n_p)
do i=1,n_p
do k=1,N_int
tmp_array(k,1,i) = o(k,1,iorder(i))
tmp_array(k,2,i) = o(k,2,iorder(i))
enddo
enddo
do i=1,n_p
do k=1,N_int
o(k,1,i) = tmp_array(k,1,i)
o(k,2,i) = tmp_array(k,2,i)
enddo
enddo
! Create determinants
n_d = 0
do i=1,n_p
call configuration_to_dets_size(o(1,1,i),sze,elec_alpha_num,N_int)
n_d = n_d + sze
if (n_d > b%cur) then
! if (n_d - b%cur > b%cur - n_d + sze) then
! n_d = n_d - sze
! endif
exit
endif
enddo
rss = (4*N_int+2)*memory_of_double(n_d)
call check_mem(rss,irp_here)
allocate(b%det(N_int,2,2*n_d), b%val(2*n_d))
k=1
do i=1,n_p
n=n_d
call configuration_to_dets_size(o(1,1,i),n,elec_alpha_num,N_int)
call configuration_to_dets(o(1,1,i),b%det(1,1,k),n,elec_alpha_num,N_int)
do j=k,k+n-1
b%val(j) = val(i)
enddo
k = k+n
if (k > n_d) exit
enddo
deallocate(o)
b%cur = n_d
b%N = n_d
end
subroutine remove_duplicates_in_selection_buffer(b)
use selection_types
type(selection_buffer), intent(inout) :: b
integer(bit_kind), allocatable :: o(:,:,:)
double precision, allocatable :: val(:)
integer :: n_d
integer :: i,k,sze,n_alpha,j,n
logical :: dup
! Sort
integer, allocatable :: iorder(:)
integer*8, allocatable :: bit_tmp(:)
integer*8, external :: det_search_key
integer(bit_kind), allocatable :: tmp_array(:,:,:)
logical, allocatable :: duplicate(:)
n_d = b%cur
logical :: found_duplicates
double precision :: rss
double precision, external :: memory_of_double
rss = (4*N_int+4)*memory_of_double(n_d)
call check_mem(rss,irp_here)
found_duplicates = .False.
allocate(iorder(n_d), duplicate(n_d), bit_tmp(n_d), &
tmp_array(N_int,2,n_d), val(n_d) )
do i=1,n_d
iorder(i) = i
bit_tmp(i) = det_search_key(b%det(1,1,i),N_int)
enddo
call i8sort(bit_tmp,iorder,n_d)
do i=1,n_d
do k=1,N_int
tmp_array(k,1,i) = b%det(k,1,iorder(i))
tmp_array(k,2,i) = b%det(k,2,iorder(i))
enddo
val(i) = b%val(iorder(i))
duplicate(i) = .False.
enddo
! Find duplicates
do i=1,n_d-1
if (duplicate(i)) then
cycle
endif
j = i+1
do while (bit_tmp(j)==bit_tmp(i))
if (duplicate(j)) then
j+=1
if (j>n_d) then
exit
endif
cycle
endif
dup = .True.
do k=1,N_int
if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) &
.or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then
dup = .False.
exit
endif
enddo
if (dup) then
duplicate(j) = .True.
found_duplicates = .True.
endif
j+=1
if (j>n_d) then
exit
endif
enddo
enddo
if (found_duplicates) then
! Copy filtered result
integer :: n_p
n_p=0
do i=1,n_d
if (duplicate(i)) then
cycle
endif
n_p = n_p + 1
do k=1,N_int
b%det(k,1,n_p) = tmp_array(k,1,i)
b%det(k,2,n_p) = tmp_array(k,2,i)
enddo
val(n_p) = val(i)
enddo
b%cur=n_p
b%N=n_p
endif
end

View File

@ -1,134 +0,0 @@
BEGIN_PROVIDER [ double precision, pt2_match_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weights adjusted along the selection to make the PT2 contributions
! of each state coincide.
END_DOC
pt2_match_weight(:) = 1.d0
END_PROVIDER
BEGIN_PROVIDER [ double precision, variance_match_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weights adjusted along the selection to make the variances
! of each state coincide.
END_DOC
variance_match_weight(:) = 1.d0
END_PROVIDER
subroutine update_pt2_and_variance_weights(pt2_data, N_st)
implicit none
use selection_types
BEGIN_DOC
! Updates the PT2- and Variance- matching weights.
END_DOC
integer, intent(in) :: N_st
type(pt2_type), intent(in) :: pt2_data
double precision :: pt2(N_st)
double precision :: variance(N_st)
double precision :: avg, element, dt, x
integer :: k
pt2(:) = pt2_data % pt2(:)
variance(:) = pt2_data % variance(:)
avg = sum(pt2(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
dt = 8.d0 !* selection_factor
do k=1,N_st
element = exp(dt*(pt2(k)/avg - 1.d0))
element = min(2.0d0 , element)
element = max(0.5d0 , element)
pt2_match_weight(k) *= element
enddo
avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
do k=1,N_st
element = exp(dt*(variance(k)/avg -1.d0))
element = min(2.0d0 , element)
element = max(0.5d0 , element)
variance_match_weight(k) *= element
enddo
if (N_det < 100) then
! For tiny wave functions, weights are 1.d0
pt2_match_weight(:) = 1.d0
variance_match_weight(:) = 1.d0
endif
threshold_davidson_pt2 = min(1.d-6, &
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) )
SOFT_TOUCH pt2_match_weight variance_match_weight threshold_davidson_pt2
end
BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weights used in the selection criterion
END_DOC
select case (weight_selection)
case (0)
print *, 'Using input weights in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * state_average_weight(1:N_states)
case (1)
print *, 'Using 1/c_max^2 weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states)
case (2)
print *, 'Using pt2-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
case (3)
print *, 'Using variance-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
print *, '# var weight ', real(variance_match_weight(:),4)
case (4)
print *, 'Using variance- and pt2-matching weights in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states))
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
print *, '# var weight ', real(variance_match_weight(:),4)
case (5)
print *, 'Using variance-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
print *, '# var weight ', real(variance_match_weight(:),4)
case (6)
print *, 'Using CI coefficient-based selection'
selection_weight(1:N_states) = c0_weight(1:N_states)
case (7)
print *, 'Input weights multiplied by variance- and pt2-matching'
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)) * state_average_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
print *, '# var weight ', real(variance_match_weight(:),4)
case (8)
print *, 'Input weights multiplied by pt2-matching'
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states) * state_average_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
case (9)
print *, 'Input weights multiplied by variance-matching'
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states) * state_average_weight(1:N_states)
print *, '# var weight ', real(variance_match_weight(:),4)
end select
print *, '# Total weight ', real(selection_weight(:),4)
END_PROVIDER

View File

@ -1,348 +0,0 @@
subroutine run_slave_cipsi
BEGIN_DOC
! Helper program for distributed parallelism
END_DOC
implicit none
call omp_set_max_active_levels(1)
distributed_davidson = .False.
read_wf = .False.
SOFT_TOUCH read_wf distributed_davidson
call provide_everything
call switch_qp_run_to_master
call run_slave_main
end
subroutine provide_everything
PROVIDE H_apply_buffer_allocated mo_two_e_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context N_states_diag
PROVIDE pt2_e0_denominator mo_num N_int ci_energy mpi_master zmq_state zmq_context
PROVIDE psi_det psi_coef threshold_generators state_average_weight
PROVIDE N_det_selectors pt2_stoch_istate N_det selection_weight pseudo_sym
end
subroutine run_slave_main
use f77_zmq
implicit none
IRP_IF MPI
include 'mpif.h'
IRP_ENDIF
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
double precision :: energy(N_states)
character*(64) :: states(10)
character*(64) :: old_state
integer :: rc, i, ierr
double precision :: t0, t1
integer, external :: zmq_get_dvector, zmq_get_N_det_generators
integer, external :: zmq_get8_dvector
integer, external :: zmq_get_ivector
integer, external :: zmq_get_psi, zmq_get_N_det_selectors, zmq_get_psi_bilinear
integer, external :: zmq_get_psi_notouch
integer, external :: zmq_get_N_states_diag
zmq_context = f77_zmq_ctx_new ()
states(1) = 'selection'
states(2) = 'davidson'
states(3) = 'pt2'
old_state = 'Waiting'
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
PROVIDE psi_det psi_coef threshold_generators state_average_weight mpi_master
PROVIDE zmq_state N_det_selectors pt2_stoch_istate N_det pt2_e0_denominator
PROVIDE N_det_generators N_states N_states_diag pt2_e0_denominator mpi_rank
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
do
if (mpi_master) then
call wait_for_states(states,zmq_state,size(states))
if (zmq_state(1:64) == old_state(1:64)) then
call usleep(200)
cycle
else
old_state(1:64) = zmq_state(1:64)
endif
print *, trim(zmq_state)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST (zmq_state, 128, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in broadcast of zmq_state'
endif
IRP_ENDIF
if(zmq_state(1:7) == 'Stopped') then
exit
endif
if (zmq_state(1:9) == 'selection') then
! Selection
! ---------
call wall_time(t0)
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_psi')
IRP_ENDIF
if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector threshold_generators')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'threshold_generators',(/threshold_generators/),1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector energy')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'energy',energy,N_states) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_N_det_generators')
IRP_ENDIF
if (zmq_get_N_det_generators (zmq_to_qp_run_socket, 1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_N_det_selectors')
IRP_ENDIF
if (zmq_get_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector state_average_weight')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector selection_weight')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) cycle
pt2_e0_denominator(1:N_states) = energy(1:N_states)
TOUCH pt2_e0_denominator state_average_weight threshold_generators selection_weight psi_det psi_coef
if (mpi_master) then
print *, 'N_det', N_det
print *, 'N_det_generators', N_det_generators
print *, 'N_det_selectors', N_det_selectors
print *, 'pt2_e0_denominator', pt2_e0_denominator
print *, 'pt2_stoch_istate', pt2_stoch_istate
print *, 'state_average_weight', state_average_weight
print *, 'selection_weight', selection_weight
endif
call wall_time(t1)
call write_double(6,(t1-t0),'Broadcast time')
IRP_IF MPI_DEBUG
call mpi_print('Entering OpenMP section')
IRP_ENDIF
!$OMP PARALLEL PRIVATE(i)
i = omp_get_thread_num()
call run_selection_slave(0,i,energy)
!$OMP END PARALLEL
print *, mpi_rank, ': Selection done'
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
call mpi_print('----------')
else if (zmq_state(1:8) == 'davidson') then
! Davidson
! --------
call wall_time(t0)
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_N_states_diag')
IRP_ENDIF
if (zmq_get_N_states_diag(zmq_to_qp_run_socket,1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_psi')
IRP_ENDIF
if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle
call wall_time(t1)
call write_double(6,(t1-t0),'Broadcast time')
!---
call omp_set_max_active_levels(8)
call davidson_slave_tcp(0)
call omp_set_max_active_levels(1)
print *, mpi_rank, ': Davidson done'
!---
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
call mpi_print('----------')
else if (zmq_state(1:3) == 'pt2') then
! PT2
! ---
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
call wall_time(t0)
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_psi')
IRP_ENDIF
if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_N_det_generators')
IRP_ENDIF
if (zmq_get_N_det_generators (zmq_to_qp_run_socket, 1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_N_det_selectors')
IRP_ENDIF
if (zmq_get_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector threshold_generators')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'threshold_generators',(/threshold_generators/),1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector energy')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'energy',energy,N_states) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_ivector pt2_stoch_istate')
IRP_ENDIF
if (zmq_get_ivector(zmq_to_qp_run_socket,1,'pt2_stoch_istate',pt2_stoch_istate,1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector state_average_weight')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector selection_weight')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) cycle
pt2_e0_denominator(1:N_states) = energy(1:N_states)
SOFT_TOUCH pt2_e0_denominator state_average_weight pt2_stoch_istate threshold_generators selection_weight psi_det psi_coef N_det_generators N_det_selectors
call wall_time(t1)
call write_double(6,(t1-t0),'Broadcast time')
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
IRP_IF MPI_DEBUG
call mpi_print('Entering OpenMP section')
IRP_ENDIF
if (.true.) then
integer :: nproc_target, ii
double precision :: mem_collector, mem, rss
call resident_memory(rss)
nproc_target = nthreads_pt2
ii = min(N_det, (elec_alpha_num*(mo_num-elec_alpha_num))**2)
do
mem = rss + & !
nproc_target * 8.d0 * & ! bytes
( 0.5d0*pt2_n_tasks_max & ! task_id
+ 64.d0*pt2_n_tasks_max & ! task
+ 3.d0*pt2_n_tasks_max*N_states & ! pt2, variance, norm
+ 1.d0*pt2_n_tasks_max & ! i_generator, subset
+ 3.d0*(N_int*2.d0*ii+ ii) & ! selection buffer
+ 1.d0*(N_int*2.d0*ii+ ii) & ! sort selection buffer
+ 2.0d0*(ii) & ! preinteresting, interesting,
! prefullinteresting, fullinteresting
+ 2.0d0*(N_int*2*ii) & ! minilist, fullminilist
+ 1.0d0*(N_states*mo_num*mo_num) & ! mat
) / 1024.d0**3
if (nproc_target == 0) then
call check_mem(mem,irp_here)
nproc_target = 1
exit
endif
if (mem+rss < qp_max_mem) then
exit
endif
nproc_target = nproc_target - 1
enddo
if (N_det > 100000) then
if (mpi_master) then
print *, 'N_det', N_det
print *, 'N_det_generators', N_det_generators
print *, 'N_det_selectors', N_det_selectors
print *, 'pt2_e0_denominator', pt2_e0_denominator
print *, 'pt2_stoch_istate', pt2_stoch_istate
print *, 'state_average_weight', state_average_weight
print *, 'selection_weight', selection_weight
print *, 'Number of threads', nproc_target
endif
if (h0_type == 'CFG') then
PROVIDE det_to_configuration
endif
PROVIDE global_selection_buffer pt2_N_teeth pt2_F N_det_generators
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_tc_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted_tc
PROVIDE psi_det_hii selection_weight pseudo_sym pt2_min_parallel_tasks
if (mpi_master) then
print *, 'Running PT2'
endif
!$OMP PARALLEL PRIVATE(i) NUM_THREADS(nproc_target+1)
i = omp_get_thread_num()
call run_pt2_slave(0,i,pt2_e0_denominator)
!$OMP END PARALLEL
FREE state_average_weight
print *, mpi_rank, ': PT2 done'
print *, '-------'
endif
endif
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
call mpi_print('----------')
endif
end do
IRP_IF MPI
call MPI_finalize(ierr)
IRP_ENDIF
end

View File

@ -11,15 +11,13 @@ subroutine run_stochastic_cipsi
implicit none implicit none
integer :: i, j, k, ndet integer :: i, j, k, ndet
integer :: to_select integer :: to_select
logical :: print_pt2
logical :: has logical :: has
type(pt2_type) :: pt2_data, pt2_data_err type(pt2_type) :: pt2_data, pt2_data_err
double precision :: rss double precision :: rss
double precision :: correlation_energy_ratio, E_denom, E_tc, norm double precision :: correlation_energy_ratio
double precision :: hf_energy_ref double precision :: hf_energy_ref
double precision :: relative_error double precision :: relative_error
double precision, allocatable :: ept2(:), pt1(:), extrap_energy(:) double precision, allocatable :: zeros(:),E_tc(:), norm(:)
double precision, allocatable :: zeros(:)
logical, external :: qp_stop logical, external :: qp_stop
double precision, external :: memory_of_double double precision, external :: memory_of_double
@ -32,14 +30,13 @@ subroutine run_stochastic_cipsi
write(*,*) i, Fock_matrix_tc_mo_tot(i,i) write(*,*) i, Fock_matrix_tc_mo_tot(i,i)
enddo enddo
N_iter = 1
threshold_generators = 1.d0 threshold_generators = 1.d0
SOFT_TOUCH threshold_generators SOFT_TOUCH threshold_generators
rss = memory_of_double(N_states)*4.d0 rss = memory_of_double(N_states)*4.d0
call check_mem(rss, irp_here) call check_mem(rss, irp_here)
allocate(zeros(N_states)) allocate(zeros(N_states),E_tc(N_states), norm(N_states))
call pt2_alloc(pt2_data, N_states) call pt2_alloc(pt2_data, N_states)
call pt2_alloc(pt2_data_err, N_states) call pt2_alloc(pt2_data_err, N_states)
@ -55,32 +52,27 @@ subroutine run_stochastic_cipsi
! if (s2_eig) then ! if (s2_eig) then
! call make_s2_eigenfunction ! call make_s2_eigenfunction
! endif ! endif
print_pt2 = .False. call diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm)
call diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
! call routine_save_right
! if (N_det > N_det_max) then ! if (N_det > N_det_max) then
! psi_det(1:N_int,1:2,1:N_det) = psi_det_generators(1:N_int,1:2,1:N_det) ! psi_det(1:N_int,1:2,1:N_det) = psi_det_generators(1:N_int,1:2,1:N_det)
! psi_coef(1:N_det,1:N_states) = psi_coef_sorted_tc_gen(1:N_det,1:N_states) ! psi_coef(1:N_det,1:N_states) = psi_coef_sorted_gen(1:N_det,1:N_states)
! N_det = N_det_max ! N_det = N_det_max
! soft_touch N_det psi_det psi_coef ! soft_touch N_det psi_det psi_coef
! if (s2_eig) then ! if (s2_eig) then
! call make_s2_eigenfunction ! call make_s2_eigenfunction
! endif ! endif
! print_pt2 = .False. ! call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm)
! call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
! call routine_save_right ! call routine_save_right
! endif ! endif
allocate(ept2(1000),pt1(1000),extrap_energy(100))
correlation_energy_ratio = 0.d0 correlation_energy_ratio = 0.d0
! thresh_it_dav = 5.d-5 ! thresh_it_dav = 5.d-5
! soft_touch thresh_it_dav ! soft_touch thresh_it_dav
print_pt2 = .True.
do while( (N_det < N_det_max) .and. & do while( (N_det < N_det_max) .and. &
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max)) (maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max))
@ -91,15 +83,15 @@ subroutine run_stochastic_cipsi
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor) to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
to_select = max(N_states_diag, to_select) to_select = max(N_states_diag, to_select)
E_denom = E_tc ! TC Energy of the current wave function print*,'E_tc = ',E_tc
call pt2_dealloc(pt2_data) call pt2_dealloc(pt2_data)
call pt2_dealloc(pt2_data_err) call pt2_dealloc(pt2_data_err)
call pt2_alloc(pt2_data, N_states) call pt2_alloc(pt2_data, N_states)
call pt2_alloc(pt2_data_err, N_states) call pt2_alloc(pt2_data_err, N_states)
call ZMQ_pt2(E_denom, pt2_data, pt2_data_err, relative_error,to_select) ! Stochastic PT2 and selection call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,to_select) ! Stochastic PT2 and selection
! stop ! stop
call print_summary(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, N_det, N_configuration, N_states, psi_s2) call print_summary_tc(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, N_det, N_configuration, N_states, psi_s2)
call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2) call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2)
@ -117,48 +109,19 @@ subroutine run_stochastic_cipsi
PROVIDE psi_det PROVIDE psi_det
PROVIDE psi_det_sorted_tc PROVIDE psi_det_sorted_tc
ept2(N_iter-1) = E_tc + nuclear_repulsion + (pt2_data % pt2(1))/norm call diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm)
pt1(N_iter-1) = dsqrt(pt2_data % overlap(1,1))
call diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
! stop ! stop
if (qp_stop()) exit if (qp_stop()) exit
enddo enddo
! print*,'data to extrapolate '
! do i = 2, N_iter
! print*,'iteration ',i
! print*,'pt1,Ept2',pt1(i),ept2(i)
! call get_extrapolated_energy(i-1,ept2(i),pt1(i),extrap_energy(i))
! do j = 2, i
! print*,'j,e,energy',j,extrap_energy(j)
! enddo
! enddo
! thresh_it_dav = 5.d-6
! soft_touch thresh_it_dav
call pt2_dealloc(pt2_data) call pt2_dealloc(pt2_data)
call pt2_dealloc(pt2_data_err) call pt2_dealloc(pt2_data_err)
call pt2_alloc(pt2_data, N_states) call pt2_alloc(pt2_data, N_states)
call pt2_alloc(pt2_data_err, N_states) call pt2_alloc(pt2_data_err, N_states)
call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,0) ! Stochastic PT2 and selection call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,0) ! Stochastic PT2 and selection
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2) call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm)
! if (.not.qp_stop()) then call pt2_dealloc(pt2_data)
! if (N_det < N_det_max) then call pt2_dealloc(pt2_data_err)
! thresh_it_dav = 5.d-7
! soft_touch thresh_it_dav
! call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
! endif
!
! call pt2_dealloc(pt2_data)
! call pt2_dealloc(pt2_data_err)
! call pt2_alloc(pt2_data, N_states)
! call pt2_alloc(pt2_data_err, N_states)
! call ZMQ_pt2(E_denom, pt2_data, pt2_data_err, relative_error, 0) ! Stochastic PT2
! call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
! endif
! call pt2_dealloc(pt2_data)
! call pt2_dealloc(pt2_data_err)
! call routine_save_right
end end

View File

@ -9,6 +9,8 @@ subroutine write_cipsi_json(pt2_data, pt2_data_err)
call lock_io call lock_io
character*(64), allocatable :: fmtk(:) character*(64), allocatable :: fmtk(:)
double precision:: pt2_minus,pt2_plus,pt2_tot, pt2_abs
double precision :: error_pt2_minus, error_pt2_plus, error_pt2_tot, error_pt2_abs
integer :: N_states_p, N_iter_p integer :: N_states_p, N_iter_p
N_states_p = min(N_states,N_det) N_states_p = min(N_states,N_det)
N_iter_p = min(N_iter,8) N_iter_p = min(N_iter,8)
@ -26,15 +28,34 @@ subroutine write_cipsi_json(pt2_data, pt2_data_err)
endif endif
write(json_unit, json_array_open_fmt) 'states' write(json_unit, json_array_open_fmt) 'states'
do k=1,N_states_p do k=1,N_states_p
pt2_plus = pt2_data % variance(k)
pt2_minus = pt2_data % pt2(k)
pt2_abs = pt2_plus - pt2_minus
pt2_tot = pt2_plus + pt2_minus
error_pt2_minus = pt2_data_err % pt2(k)
error_pt2_plus = pt2_data_err % variance(k)
error_pt2_tot = dsqrt(error_pt2_minus**2+error_pt2_plus**2)
error_pt2_abs = error_pt2_tot ! same variance because independent variables
write(json_unit, json_dict_uopen_fmt) write(json_unit, json_dict_uopen_fmt)
write(json_unit, json_real_fmt) 'energy', psi_energy_with_nucl_rep(k) write(json_unit, json_real_fmt) 'energy', psi_energy_with_nucl_rep(k)
write(json_unit, json_real_fmt) 's2', psi_s2(k) write(json_unit, json_real_fmt) 's2', psi_s2(k)
write(json_unit, json_real_fmt) 'pt2', pt2_data % pt2(k)
write(json_unit, json_real_fmt) 'pt2_err', pt2_data_err % pt2(k) write(json_unit, json_real_fmt) 'pt2', pt2_tot
write(json_unit, json_real_fmt) 'pt2_err', error_pt2_tot
write(json_unit, json_real_fmt) 'pt2_minus', pt2_minus
write(json_unit, json_real_fmt) 'pt2_minus_err', error_pt2_minus
write(json_unit, json_real_fmt) 'pt2_abs', pt2_abs
write(json_unit, json_real_fmt) 'pt2_abs_err', error_pt2_abs
write(json_unit, json_real_fmt) 'pt2_plus', pt2_plus
write(json_unit, json_real_fmt) 'pt2_plus_err', error_pt2_plus
write(json_unit, json_real_fmt) 'rpt2', pt2_data % rpt2(k) write(json_unit, json_real_fmt) 'rpt2', pt2_data % rpt2(k)
write(json_unit, json_real_fmt) 'rpt2_err', pt2_data_err % rpt2(k) write(json_unit, json_real_fmt) 'rpt2_err', pt2_data_err % rpt2(k)
write(json_unit, json_real_fmt) 'variance', pt2_data % variance(k) ! write(json_unit, json_real_fmt) 'variance', pt2_data % variance(k)
write(json_unit, json_real_fmt) 'variance_err', pt2_data_err % variance(k) ! write(json_unit, json_real_fmt) 'variance_err', pt2_data_err % variance(k)
write(json_unit, json_array_open_fmt) 'ex_energy' write(json_unit, json_array_open_fmt) 'ex_energy'
do i=2,N_iter_p do i=2,N_iter_p
write(json_unit, fmtk(i)) extrapolated_energy(i,k) write(json_unit, fmtk(i)) extrapolated_energy(i,k)

View File

@ -1,234 +0,0 @@
subroutine ZMQ_selection(N_in, pt2_data)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR) :: zmq_to_qp_run_socket , zmq_socket_pull
integer, intent(in) :: N_in
type(selection_buffer) :: b
integer :: i, l, N
integer, external :: omp_get_thread_num
type(pt2_type), intent(inout) :: pt2_data
! PROVIDE psi_det psi_coef N_det qp_max_mem N_states pt2_F s2_eig N_det_generators
N = max(N_in,1)
N = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2)
if (.True.) then
PROVIDE pt2_e0_denominator nproc
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_tc_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order selection_weight pseudo_sym
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'selection')
integer, external :: zmq_put_psi
integer, external :: zmq_put_N_det_generators
integer, external :: zmq_put_N_det_selectors
integer, external :: zmq_put_dvector
if (zmq_put_psi(zmq_to_qp_run_socket,1) == -1) then
stop 'Unable to put psi on ZMQ server'
endif
if (zmq_put_N_det_generators(zmq_to_qp_run_socket, 1) == -1) then
stop 'Unable to put N_det_generators on ZMQ server'
endif
if (zmq_put_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) then
stop 'Unable to put N_det_selectors on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'energy',pt2_e0_denominator,size(pt2_e0_denominator)) == -1) then
stop 'Unable to put energy on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) then
stop 'Unable to put state_average_weight on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) then
stop 'Unable to put selection_weight on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'threshold_generators',(/threshold_generators/),1) == -1) then
stop 'Unable to put threshold_generators on ZMQ server'
endif
call create_selection_buffer(N, N*2, b)
endif
integer, external :: add_task_to_taskserver
character(len=100000) :: task
integer :: j,k,ipos
ipos=1
task = ' '
do i= 1, N_det_generators
do j=1,pt2_F(i)
write(task(ipos:ipos+30),'(I9,1X,I9,1X,I9,''|'')') j, i, N
ipos += 30
if (ipos > 100000-30) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server'
endif
ipos=1
endif
end do
enddo
if (ipos > 1) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server'
endif
endif
N = max(N_in,1)
ASSERT (associated(b%det))
ASSERT (associated(b%val))
integer, external :: zmq_set_running
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Failed in zmq_set_running'
endif
integer :: nproc_target
if (N_det < 3*nproc) then
nproc_target = N_det/4
else
nproc_target = nproc
endif
double precision :: mem
mem = 8.d0 * N_det * (N_int * 2.d0 * 3.d0 + 3.d0 + 5.d0) / (1024.d0**3)
call write_double(6,mem,'Estimated memory/thread (Gb)')
if (qp_max_mem > 0) then
nproc_target = max(1,int(dble(qp_max_mem)/(0.1d0 + mem)))
nproc_target = min(nproc_target,nproc)
endif
f(:) = 1.d0
if (.not.do_pt2) then
double precision :: f(N_states), u_dot_u
do k=1,min(N_det,N_states)
f(k) = 1.d0 / u_dot_u(psi_selectors_coef(1,k), N_det_selectors)
enddo
endif
!$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2_data) PRIVATE(i) NUM_THREADS(nproc_target+1)
i = omp_get_thread_num()
if (i==0) then
call selection_collector(zmq_socket_pull, b, N, pt2_data)
else
call selection_slave_inproc(i)
endif
!$OMP END PARALLEL
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'selection')
if (N_in > 0) then
if (s2_eig) then
call make_selection_buffer_s2(b)
endif
call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0)
endif
call delete_selection_buffer(b)
do k=1,N_states
pt2_data % pt2(k) = pt2_data % pt2(k) * f(k)
pt2_data % variance(k) = pt2_data % variance(k) * f(k)
do l=1,N_states
pt2_data % overlap(k,l) = pt2_data % overlap(k,l) * dsqrt(f(k)*f(l))
pt2_data % overlap(l,k) = pt2_data % overlap(l,k) * dsqrt(f(k)*f(l))
enddo
pt2_data % rpt2(k) = &
pt2_data % pt2(k)/(1.d0 + pt2_data % overlap(k,k))
enddo
pt2_overlap(:,:) = pt2_data % overlap(:,:)
print *, 'Overlap of perturbed states:'
do l=1,N_states
print *, pt2_overlap(l,:)
enddo
print *, '-------'
SOFT_TOUCH pt2_overlap
call update_pt2_and_variance_weights(pt2_data, N_states)
end subroutine
subroutine selection_slave_inproc(i)
implicit none
integer, intent(in) :: i
call run_selection_slave(1,i,pt2_e0_denominator)
end
subroutine selection_collector(zmq_socket_pull, b, N, pt2_data)
use f77_zmq
use selection_types
use bitmasks
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: N
type(pt2_type), intent(inout) :: pt2_data
type(pt2_type) :: pt2_data_tmp
double precision :: pt2_mwen(N_states)
double precision :: variance_mwen(N_states)
double precision :: norm2_mwen(N_states)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_pull_socket
integer :: msg_size, rc, more
integer :: acc, i, j, robin, ntask
double precision, pointer :: val(:)
integer(bit_kind), pointer :: det(:,:,:)
integer, allocatable :: task_id(:)
type(selection_buffer) :: b2
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
call create_selection_buffer(N, N*2, b2)
integer :: k
double precision :: rss
double precision, external :: memory_of_int
rss = memory_of_int(N_det_generators)
call check_mem(rss,irp_here)
allocate(task_id(N_det_generators))
more = 1
pt2_data % pt2(:) = 0d0
pt2_data % variance(:) = 0.d0
pt2_data % overlap(:,:) = 0.d0
call pt2_alloc(pt2_data_tmp,N_states)
do while (more == 1)
call pull_selection_results(zmq_socket_pull, pt2_data_tmp, b2%val(1), b2%det(1,1,1), b2%cur, task_id, ntask)
call pt2_add(pt2_data, 1.d0, pt2_data_tmp)
do i=1, b2%cur
call add_to_selection_buffer(b, b2%det(1,1,i), b2%val(i))
if (b2%val(i) > b%mini) exit
end do
do i=1, ntask
if(task_id(i) == 0) then
print *, "Error in collector"
endif
integer, external :: zmq_delete_task
if (zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more) == -1) then
stop 'Unable to delete task'
endif
end do
end do
call pt2_dealloc(pt2_data_tmp)
call delete_selection_buffer(b2)
call sort_selection_buffer(b)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
end subroutine

View File

@ -1,3 +1,4 @@
generators_full_tc
json json
tc_bi_ortho tc_bi_ortho
davidson_undressed davidson_undressed

View File

@ -1,7 +1,7 @@
! --- ! ---
subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2) subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm )
BEGIN_DOC BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the ! Replace the coefficients of the CI states by the coefficients of the
@ -11,49 +11,19 @@ subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
use selection_types use selection_types
implicit none implicit none
integer, intent(inout) :: ndet ! number of determinants from before integer, intent(inout) :: ndet ! number of determinants from before
double precision, intent(inout) :: E_tc, norm ! E and norm from previous wave function double precision, intent(inout) :: E_tc(N_states), norm(N_states) ! E and norm from previous wave function
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function integer :: i, j,k
logical, intent(in) :: print_pt2
integer :: i, j
double precision :: pt2_tmp, pt1_norm, rpt2_tmp, abs_pt2
PROVIDE mo_l_coef mo_r_coef PROVIDE mo_l_coef mo_r_coef
pt2_tmp = pt2_data % pt2(1) do k = 1, N_states
abs_pt2 = pt2_data % variance(1) E_tc(k) = eigval_right_tc_bi_orth(k)
pt1_norm = pt2_data % overlap(1,1) norm(k) = norm_ground_left_right_bi_orth(k)
rpt2_tmp = pt2_tmp/(1.d0 + pt1_norm) enddo
print*,'*****'
print*,'New wave function information'
print*,'N_det tc = ',N_det
print*,'norm_ground_left_right_bi_orth = ',norm_ground_left_right_bi_orth
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1)
print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1)
print*,'*****'
if(print_pt2) then
print*,'*****'
print*,'previous wave function info'
print*,'norm(before) = ',norm
print*,'E(before) = ',E_tc
print*,'PT1 norm = ',dsqrt(pt1_norm)
print*,'PT2 = ',pt2_tmp
print*,'rPT2 = ',rpt2_tmp
print*,'|PT2| = ',abs_pt2
print*,'Positive PT2 = ',(pt2_tmp + abs_pt2)*0.5d0
print*,'Negative PT2 = ',(pt2_tmp - abs_pt2)*0.5d0
print*,'E(before) + PT2 = ',E_tc + pt2_tmp/norm
print*,'E(before) +rPT2 = ',E_tc + rpt2_tmp/norm
write(*,'(A28,X,I10,X,100(F16.8,X))')'Ndet,E,E+PT2,E+RPT2,|PT2|=',ndet,E_tc ,E_tc + pt2_tmp/norm,E_tc + rpt2_tmp/norm,abs_pt2
print*,'*****'
endif
psi_energy(1:N_states) = eigval_right_tc_bi_orth(1:N_states) - nuclear_repulsion psi_energy(1:N_states) = eigval_right_tc_bi_orth(1:N_states) - nuclear_repulsion
psi_s2(1:N_states) = s2_eigvec_tc_bi_orth(1:N_states) psi_s2(1:N_states) = s2_eigvec_tc_bi_orth(1:N_states)
E_tc = eigval_right_tc_bi_orth(1)
norm = norm_ground_left_right_bi_orth
ndet = N_det ndet = N_det
do j = 1, N_states do j = 1, N_states
do i = 1, N_det do i = 1, N_det
@ -71,53 +41,3 @@ end
! --- ! ---
subroutine print_CI_dressed(ndet, E_tc, norm, pt2_data, print_pt2)
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
use selection_types
implicit none
integer, intent(inout) :: ndet ! number of determinants from before
double precision, intent(inout) :: E_tc,norm ! E and norm from previous wave function
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
logical, intent(in) :: print_pt2
integer :: i, j
print*,'*****'
print*,'New wave function information'
print*,'N_det tc = ',N_det
print*,'norm_ground_left_right_bi_orth = ',norm_ground_left_right_bi_orth
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1)
print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1)
print*,'*****'
if(print_pt2) then
print*,'*****'
print*,'previous wave function info'
print*,'norm(before) = ',norm
print*,'E(before) = ',E_tc
print*,'PT1 norm = ',dsqrt(pt2_data % overlap(1,1))
print*,'E(before) + PT2 = ',E_tc + (pt2_data % pt2(1))/norm
print*,'PT2 = ',pt2_data % pt2(1)
print*,'Ndet, E_tc, E+PT2 = ',ndet,E_tc,E_tc + (pt2_data % pt2(1))/norm,dsqrt(pt2_data % overlap(1,1))
print*,'*****'
endif
E_tc = eigval_right_tc_bi_orth(1)
norm = norm_ground_left_right_bi_orth
ndet = N_det
do j = 1, N_states
do i = 1, N_det
psi_coef(i,j) = reigvec_tc_bi_orth(i,j)
enddo
enddo
SOFT_TOUCH eigval_left_tc_bi_orth eigval_right_tc_bi_orth leigvec_tc_bi_orth norm_ground_left_right_bi_orth psi_coef reigvec_tc_bi_orth
end
! ---

View File

@ -0,0 +1,85 @@
#!/bin/bash
source ~/qp2/quantum_package.rc
## Define the system/basis/charge/mult and genric keywords
system=H2O
xyz=${system}.xyz
basis=6-31g
mult=1
charge=0
j2e_type="Boys_Handy"
thresh_tcscf=1e-10
io_tc_integ="Write"
nstates=4
##################### Function to create the EZFIO
function create_ezfio (){
qp create_ezfio -b $basis -m $mult -c $charge $xyz -o $ezfio
qp run scf | tee ${EZFIO_FILE}.scf.out
}
##################### Function to set parameters for BH9 jastrow
function BH_9 (){
j2e_type="Boys_Handy" # type of correlation factor: Boys Handy type
env_type="None" # Boys Handy J does not use our envelopes
j1e_type="None" # Boys Handy J does not use our J1body
tc_integ_type="numeric" # Boys Handy requires numerical integrals
jBH_size=9 # Number of parameters for the BH
######## All parameters for the H2O and Boys Handy Jastrow
jBH_c=[[0.50000,-0.57070,0.49861,-0.78663,0.01990,0.13386,-0.60446,-1.67160,1.36590],[0.0,0.0,0.0,0.0,0.12063,-0.18527,0.12324,-0.11187,-0.06558],[0.0,0.0,0.0,0.0,0.12063,-0.18527,0.12324,-0.11187,-0.06558]]
jBH_m=[[0,0,0,0,2,3,4,2,2],[0,0,0,0,2,3,4,2,2],[0,0,0,0,2,3,4,2,2]]
jBH_n=[[0,0,0,0,0,0,0,2,0],[0,0,0,0,0,0,0,2,0],[0,0,0,0,0,0,0,2,0]]
jBH_o=[[1,2,3,4,0,0,0,0,2],[1,2,3,4,0,0,0,0,2],[1,2,3,4,0,0,0,0,2]]
jBH_ee=[1.0,1.0,1.0]
jBH_en=[1.0,1.0,1.0]
set_BH_J_keywords
}
function set_BH_J_keywords (){
qp set jastrow j2e_type $j2e_type # set the jastrow two-e type
qp set jastrow env_type $env_type
qp set jastrow j1e_type $j1e_type
qp set jastrow jBH_size $jBH_size # set the number of parameters in Boys-Handy jastrow
qp set jastrow jBH_c "$jBH_c" # set the parameters which are lists for Boys-Handy
qp set jastrow jBH_m "$jBH_m" #
qp set jastrow jBH_n "$jBH_n" #
qp set jastrow jBH_o "$jBH_o" #
qp set jastrow jBH_ee $jBH_ee #
qp set jastrow jBH_en $jBH_en #
qp set tc_keywords tc_integ_type $tc_integ_type # set the analytical or numerical integrals
qp set tc_keywords thresh_tcscf $thresh_tcscf
qp set tc_keywords io_tc_integ $io_tc_integ # set the io
rm ${EZFIO_FILE}/tc_bi_ortho/psi_*
}
function run_ground_state (){
qp set tc_keywords minimize_lr_angles True
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
qp set_frozen_core
qp set determinants n_det_max 1e6
qp run fci_tc_bi_ortho | tee ${EZFIO_FILE}.fci_tc_bi.out
}
function run_excited_state (){
qp set determinants n_states $nstates
qp run cis | tee ${EZFIO_FILE}.cis.out
rm ${EZFIO_FILE}/tc_bi_ortho/psi_*
qp run tc_bi_ortho | tee ${EZFIO_FILE}.tc_cis_nst_${nstates}.out
qp set determinants read_wf True
qp run fci_tc_bi_ortho | tee ${EZFIO_FILE}.fci_tc_bi_nst_${nstates}.out
}
## BH9 calculations
ezfio=${system}_${charge}_${basis}_${j2e_type}
create_ezfio
BH_9
run_ground_state
run_excited_state

View File

@ -0,0 +1,84 @@
#!/bin/bash
source ~/qp2/quantum_package.rc
## Define the system/basis/charge/mult and genric keywords
system=H2O
xyz=${system}.xyz
basis=6-31g
mult=1
charge=0
j2e_type=Mu
thresh_tcscf=1e-10
io_tc_integ="Write"
nstates=4
nol_standard=False
tc_integ_type=numeric # can be changed for semi-analytic
if (( $nol_standard == "False" ))
then
three_body_h_tc=True
else
three_body_h_tc=False
fi
##################### Function to create the EZFIO
function create_ezfio (){
qp create_ezfio -b $basis -m $mult -c $charge $xyz -o $ezfio
qp run scf | tee ${EZFIO_FILE}.scf.out
}
function set_env_j_keywords (){
qp set hamiltonian mu_erf 0.87
qp set jastrow env_type Sum_Gauss
qp set jastrow env_coef "${coef}"
qp set tc_keywords tc_integ_type $tc_integ_type
qp set jastrow j1e_type $j1e_type
qp set jastrow j2e_type $j2e_type
qp set jastrow env_expo "${alpha}"
}
function run_ground_state (){
qp set tc_keywords minimize_lr_angles True
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
qp set_frozen_core
qp set determinants n_det_max 1e6
qp set perturbation pt2_max 0.001
qp set tc_keywords nol_standard $nol_standard
qp set tc_keywords three_body_h_tc $three_body_h_tc
qp run fci_tc_bi_ortho | tee ${EZFIO_FILE}.fci_tc_bi.out
}
function run_excited_state (){
qp set determinants n_states $nstates
qp run cis | tee ${EZFIO_FILE}.cis.out
rm ${EZFIO_FILE}/tc_bi_ortho/psi_*
qp run tc_bi_ortho | tee ${EZFIO_FILE}.tc_cis_nst_${nstates}.out
qp set determinants read_wf True
qp run fci_tc_bi_ortho | tee ${EZFIO_FILE}.fci_tc_bi_nst_${nstates}.out
}
# Define J(mu) with envelope and without j1e
j2e_type=Mu
j1e_type=None
ezfio=${system}_${charge}_${basis}_${j2e_type}_${j1e_type}
create_ezfio
alpha=[2.0,1000.,1000.] # parameters for H2O
coef=[1.,1.,1.] # parameters for H2O
set_env_j_keywords
run_ground_state
run_excited_state
# Define J(mu) with envelope and with a charge Harmonizer for J1e
j2e_type=Mu
j1e_type=Charge_Harmonizer
ezfio=${system}_${charge}_${basis}_${j2e_type}_${j1e_type}
create_ezfio
alpha=[2.5,1000.,1000.] # parameters for H2O
coef=[1.,1.,1.] # parameters for H2O
set_env_j_keywords
run_ground_state
run_excited_state

View File

@ -40,7 +40,7 @@ END_PROVIDER
enddo enddo
do k=1,N_states do k=1,N_states
do i=1,N_det_selectors do i=1,N_det_selectors
psi_selectors_coef(i,k) = psi_coef_sorted_tc_gen(i,k) psi_selectors_coef(i,k) = psi_coef_sorted_gen(i,k)
psi_selectors_coef_tc(i,1,k) = psi_l_coef_sorted_bi_ortho(i,k) psi_selectors_coef_tc(i,1,k) = psi_l_coef_sorted_bi_ortho(i,k)
psi_selectors_coef_tc(i,2,k) = psi_r_coef_sorted_bi_ortho(i,k) psi_selectors_coef_tc(i,2,k) = psi_r_coef_sorted_bi_ortho(i,k)
enddo enddo

View File

@ -3,7 +3,7 @@ To localize the MOs:
``` ```
qp run localization qp run localization
``` ```
By default, the different otbital classes are automatically set by splitting By default, the different orbital classes are automatically set by splitting
the orbitales in the following classes: the orbitales in the following classes:
- Core -> Core - Core -> Core
- Active, doubly occupied -> Inactive - Active, doubly occupied -> Inactive

View File

@ -167,9 +167,9 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
integer :: jpoint integer :: jpoint
integer :: i_nucl, p, mpA, npA, opA integer :: i_nucl, p, mpA, npA, opA
double precision :: r2(3) double precision :: r2(3)
double precision :: dx, dy, dz, r12, tmp double precision :: dx, dy, dz, r12, tmp, r12_inv
double precision :: mu_val, mu_tmp, mu_der(3) double precision :: mu_val, mu_tmp, mu_der(3)
double precision :: rn(3), f1A, gard1_f1A(3), f2A, gard2_f2A(3), g12, gard1_g12(3) double precision :: rn(3), f1A, grad1_f1A(3), f2A, grad2_f2A(3), g12, grad1_g12(3)
double precision :: tmp1, tmp2 double precision :: tmp1, tmp2
@ -191,15 +191,19 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
dy = r1(2) - r2(2) dy = r1(2) - r2(2)
dz = r1(3) - r2(3) dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz) r12 = dx * dx + dy * dy + dz * dz
if(r12 .lt. 1d-10) then
if(r12 .lt. 1d-20) then
gradx(jpoint) = 0.d0 gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0 grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0 gradz(jpoint) = 0.d0
cycle cycle
endif endif
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12 r12_inv = 1.d0/dsqrt(r12)
r12 = r12*r12_inv
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) * r12_inv
gradx(jpoint) = tmp * dx gradx(jpoint) = tmp * dx
grady(jpoint) = tmp * dy grady(jpoint) = tmp * dy
@ -220,23 +224,29 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
dx = r1(1) - r2(1) dx = r1(1) - r2(1)
dy = r1(2) - r2(2) dy = r1(2) - r2(2)
dz = r1(3) - r2(3) dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
call mu_r_val_and_grad(r1, r2, mu_val, mu_der) r12 = dx * dx + dy * dy + dz * dz
mu_tmp = mu_val * r12
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
gradx(jpoint) = tmp * mu_der(1)
grady(jpoint) = tmp * mu_der(2)
gradz(jpoint) = tmp * mu_der(3)
if(r12 .lt. 1d-10) then if(r12 .lt. 1d-20) then
gradx(jpoint) = 0.d0 gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0 grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0 gradz(jpoint) = 0.d0
cycle cycle
endif endif
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12 r12_inv = 1.d0/dsqrt(r12)
r12 = r12*r12_inv
call mu_r_val_and_grad(r1, r2, mu_val, mu_der)
mu_tmp = mu_val * r12
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
gradx(jpoint) = tmp * mu_der(1)
grady(jpoint) = tmp * mu_der(2)
gradz(jpoint) = tmp * mu_der(3)
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) * r12_inv
gradx(jpoint) = gradx(jpoint) + tmp * dx gradx(jpoint) = gradx(jpoint) + tmp * dx
grady(jpoint) = grady(jpoint) + tmp * dy grady(jpoint) = grady(jpoint) + tmp * dy
@ -263,7 +273,8 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
dx = r1(1) - r2(1) dx = r1(1) - r2(1)
dy = r1(2) - r2(2) dy = r1(2) - r2(2)
dz = r1(3) - r2(3) dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz) r12 = dx * dx + dy * dy + dz * dz
if(r12 .lt. 1d-10) then if(r12 .lt. 1d-10) then
gradx(jpoint) = 0.d0 gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0 grady(jpoint) = 0.d0
@ -271,6 +282,8 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
cycle cycle
endif endif
r12 = dsqrt(r12)
tmp = 1.d0 + a_boys * r12 tmp = 1.d0 + a_boys * r12
tmp = 0.5d0 / (r12 * tmp * tmp) tmp = 0.5d0 / (r12 * tmp * tmp)
@ -281,6 +294,24 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
elseif(j2e_type .eq. "Boys_Handy") then elseif(j2e_type .eq. "Boys_Handy") then
integer :: powmax
powmax = max(maxval(jBH_m),maxval(jBH_n))
double precision, allocatable :: f1A_power(:), f2A_power(:), double_p(:), g12_power(:)
allocate (f1A_power(-1:powmax), f2A_power(-1:powmax), g12_power(-1:powmax), double_p(0:powmax))
do p=0,powmax
double_p(p) = dble(p)
enddo
f1A_power(-1) = 0.d0
f2A_power(-1) = 0.d0
g12_power(-1) = 0.d0
f1A_power(0) = 1.d0
f2A_power(0) = 1.d0
g12_power(0) = 1.d0
do jpoint = 1, n_points_extra_final_grid ! r2 do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint) r2(1) = final_grid_points_extra(1,jpoint)
@ -290,15 +321,33 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
gradx(jpoint) = 0.d0 gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0 grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0 gradz(jpoint) = 0.d0
do i_nucl = 1, nucl_num do i_nucl = 1, nucl_num
rn(1) = nucl_coord(i_nucl,1) rn(1) = nucl_coord(i_nucl,1)
rn(2) = nucl_coord(i_nucl,2) rn(2) = nucl_coord(i_nucl,2)
rn(3) = nucl_coord(i_nucl,3) rn(3) = nucl_coord(i_nucl,3)
call jBH_elem_fct_grad(jBH_en(i_nucl), r1, rn, f1A, gard1_f1A) call jBH_elem_fct_grad(jBH_en(i_nucl), r1, rn, f1A, grad1_f1A)
call jBH_elem_fct_grad(jBH_en(i_nucl), r2, rn, f2A, gard2_f2A) call jBH_elem_fct_grad(jBH_en(i_nucl), r2, rn, f2A, grad2_f2A)
call jBH_elem_fct_grad(jBH_ee(i_nucl), r1, r2, g12, gard1_g12) call jBH_elem_fct_grad(jBH_ee(i_nucl), r1, r2, g12, grad1_g12)
! Compute powers of f1A and f2A
do p = 1, maxval(jBH_m(:,i_nucl))
f1A_power(p) = f1A_power(p-1) * f1A
enddo
do p = 1, maxval(jBH_n(:,i_nucl))
f2A_power(p) = f2A_power(p-1) * f2A
enddo
do p = 1, maxval(jBH_o(:,i_nucl))
g12_power(p) = g12_power(p-1) * g12
enddo
do p = 1, jBH_size do p = 1, jBH_size
mpA = jBH_m(p,i_nucl) mpA = jBH_m(p,i_nucl)
@ -309,23 +358,31 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
tmp = tmp * 0.5d0 tmp = tmp * 0.5d0
endif endif
tmp1 = 0.d0 !TODO : Powers to optimize here
if(mpA .gt. 0) then
tmp1 = tmp1 + dble(mpA) * f1A**dble(mpA-1) * f2A**dble(npA)
endif
if(npA .gt. 0) then
tmp1 = tmp1 + dble(npA) * f1A**dble(npA-1) * f2A**dble(mpA)
endif
tmp1 = tmp1 * g12**dble(opA)
tmp2 = 0.d0 ! tmp1 = 0.d0
if(opA .gt. 0) then ! if(mpA .gt. 0) then
tmp2 = tmp2 + dble(opA) * g12**dble(opA-1) * (f1A**dble(mpA) * f2A**dble(npA) + f1A**dble(npA) * f2A**dble(mpA)) ! tmp1 = tmp1 + dble(mpA) * f1A**(mpA-1) * f2A**npA
endif ! endif
! if(npA .gt. 0) then
! tmp1 = tmp1 + dble(npA) * f1A**(npA-1) * f2A**mpA
! endif
! tmp1 = tmp1 * g12**(opA)
!
! tmp2 = 0.d0
! if(opA .gt. 0) then
! tmp2 = tmp2 + dble(opA) * g12**(opA-1) * (f1A**(mpA) * f2A**(npA) + f1A**(npA) * f2A**(mpA))
! endif
gradx(jpoint) = gradx(jpoint) + tmp * (tmp1 * gard1_f1A(1) + tmp2 * gard1_g12(1)) tmp1 = double_p(mpA) * f1A_power(mpA-1) * f2A_power(npA) + double_p(npA) * f1A_power(npA-1) * f2A_power(mpA)
grady(jpoint) = grady(jpoint) + tmp * (tmp1 * gard1_f1A(2) + tmp2 * gard1_g12(2)) tmp1 = tmp1 * g12_power(opA)
gradz(jpoint) = gradz(jpoint) + tmp * (tmp1 * gard1_f1A(3) + tmp2 * gard1_g12(3))
tmp2 = double_p(opA) * g12_power(opA-1) * (f1A_power(mpA) * f2A_power(npA) + f1A_power(npA) * f2A_power(mpA))
gradx(jpoint) = gradx(jpoint) + tmp * (tmp1 * grad1_f1A(1) + tmp2 * grad1_g12(1))
grady(jpoint) = grady(jpoint) + tmp * (tmp1 * grad1_f1A(2) + tmp2 * grad1_g12(2))
gradz(jpoint) = gradz(jpoint) + tmp * (tmp1 * grad1_f1A(3) + tmp2 * grad1_g12(3))
enddo ! p enddo ! p
enddo ! i_nucl enddo ! i_nucl
enddo ! jpoint enddo ! jpoint
@ -361,7 +418,7 @@ subroutine grad1_jmu_r1_seq(mu, r1, n_grid2, gradx, grady, gradz)
integer :: jpoint integer :: jpoint
double precision :: r2(3) double precision :: r2(3)
double precision :: dx, dy, dz, r12, tmp double precision :: dx, dy, dz, r12, r12_inv, tmp
do jpoint = 1, n_points_extra_final_grid ! r2 do jpoint = 1, n_points_extra_final_grid ! r2
@ -374,15 +431,19 @@ subroutine grad1_jmu_r1_seq(mu, r1, n_grid2, gradx, grady, gradz)
dy = r1(2) - r2(2) dy = r1(2) - r2(2)
dz = r1(3) - r2(3) dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz) r12 = dx * dx + dy * dy + dz * dz
if(r12 .lt. 1d-10) then
if(r12 .lt. 1d-20) then
gradx(jpoint) = 0.d0 gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0 grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0 gradz(jpoint) = 0.d0
cycle cycle
endif endif
tmp = 0.5d0 * (1.d0 - derf(mu * r12)) / r12 r12_inv = 1.d0 / dsqrt(r12)
r12 = r12 * r12_inv
tmp = 0.5d0 * (1.d0 - derf(mu * r12)) * r12_inv
gradx(jpoint) = tmp * dx gradx(jpoint) = tmp * dx
grady(jpoint) = tmp * dy grady(jpoint) = tmp * dy
@ -406,7 +467,7 @@ subroutine j12_r1_seq(r1, n_grid2, res)
integer :: jpoint integer :: jpoint
double precision :: r2(3) double precision :: r2(3)
double precision :: dx, dy, dz double precision :: dx, dy, dz
double precision :: mu_tmp, r12 double precision :: mu_tmp, r12, mu_erf_inv
PROVIDE final_grid_points_extra PROVIDE final_grid_points_extra
@ -414,6 +475,7 @@ subroutine j12_r1_seq(r1, n_grid2, res)
PROVIDE mu_erf PROVIDE mu_erf
mu_erf_inv = 1.d0 / mu_erf
do jpoint = 1, n_points_extra_final_grid ! r2 do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint) r2(1) = final_grid_points_extra(1,jpoint)
@ -427,7 +489,7 @@ subroutine j12_r1_seq(r1, n_grid2, res)
mu_tmp = mu_erf * r12 mu_tmp = mu_erf * r12
res(jpoint) = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf res(jpoint) = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) * mu_erf_inv
enddo enddo
elseif(j2e_type .eq. "Boys") then elseif(j2e_type .eq. "Boys") then
@ -820,11 +882,11 @@ end
! --- ! ---
subroutine jBH_elem_fct_grad(alpha, r1, r2, fct, gard1_fct) subroutine jBH_elem_fct_grad(alpha, r1, r2, fct, grad1_fct)
implicit none implicit none
double precision, intent(in) :: alpha, r1(3), r2(3) double precision, intent(in) :: alpha, r1(3), r2(3)
double precision, intent(out) :: fct, gard1_fct(3) double precision, intent(out) :: fct, grad1_fct(3)
double precision :: dist, tmp1, tmp2 double precision :: dist, tmp1, tmp2
dist = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) & dist = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
@ -836,14 +898,14 @@ subroutine jBH_elem_fct_grad(alpha, r1, r2, fct, gard1_fct)
fct = alpha * dist * tmp1 fct = alpha * dist * tmp1
if(dist .lt. 1d-10) then if(dist .lt. 1d-10) then
gard1_fct(1) = 0.d0 grad1_fct(1) = 0.d0
gard1_fct(2) = 0.d0 grad1_fct(2) = 0.d0
gard1_fct(3) = 0.d0 grad1_fct(3) = 0.d0
else else
tmp2 = alpha * tmp1 * tmp1 / dist tmp2 = alpha * tmp1 * tmp1 / dist
gard1_fct(1) = tmp2 * (r1(1) - r2(1)) grad1_fct(1) = tmp2 * (r1(1) - r2(1))
gard1_fct(2) = tmp2 * (r1(2) - r2(2)) grad1_fct(2) = tmp2 * (r1(2) - r2(2))
gard1_fct(3) = tmp2 * (r1(3) - r2(3)) grad1_fct(3) = tmp2 * (r1(3) - r2(3))
endif endif
return return

View File

@ -520,6 +520,7 @@ compute_singles=.True.
ASSERT (lrow <= N_det_alpha_unique) ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
! TODO: i_htc "optimized" for normal ordering for single/double by spin
! call i_h_j_single_spin( tmp_det, tmp_det2, $N_int, 1, hij) ! call i_h_j_single_spin( tmp_det, tmp_det2, $N_int, 1, hij)
if(do_right)then if(do_right)then
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij) call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij)

View File

@ -14,7 +14,7 @@ function run_Ne() {
qp run tc_bi_ortho | tee Ne_tc_scf.cisd_tc_bi_ortho.out qp run tc_bi_ortho | tee Ne_tc_scf.cisd_tc_bi_ortho.out
eref=-128.77020441279302 eref=-128.77020441279302
energy=$(get_e Ne_tc_scf.cisd_tc_bi_ortho.out) energy=$(get_e Ne_tc_scf.cisd_tc_bi_ortho.out)
eq $energy $eref 1e-6 eq $energy $eref 2e-4
} }
@ -29,7 +29,7 @@ function run_C() {
qp run tc_bi_ortho | tee C_tc_scf.cisd_tc_bi_ortho.out qp run tc_bi_ortho | tee C_tc_scf.cisd_tc_bi_ortho.out
eref=-37.757536149952514 eref=-37.757536149952514
energy=$(get_e C_tc_scf.cisd_tc_bi_ortho.out) energy=$(get_e C_tc_scf.cisd_tc_bi_ortho.out)
eq $energy $eref 1e-6 eq $energy $eref 2e-4
} }
@ -43,7 +43,7 @@ function run_O() {
qp run tc_bi_ortho | tee O_tc_scf.cisd_tc_bi_ortho.out qp run tc_bi_ortho | tee O_tc_scf.cisd_tc_bi_ortho.out
eref=-74.908518517716161 eref=-74.908518517716161
energy=$(get_e O_tc_scf.cisd_tc_bi_ortho.out) energy=$(get_e O_tc_scf.cisd_tc_bi_ortho.out)
eq $energy $eref 1e-6 eq $energy $eref 2e-4
} }

View File

@ -1,6 +1,2 @@
bi_ort_ints
bi_ortho_mos
tc_keywords
non_hermit_dav
dav_general_mat
tc_scf tc_scf
slater_tc

View File

@ -0,0 +1,2 @@
S^2 !!
Bi orthonormalize the eigenvectors of H_tc after Davidson or lapack

View File

@ -37,7 +37,8 @@ subroutine write_l_r_wf
integer :: i integer :: i
print*,'Writing the left-right wf' print*,'Writing the left-right wf'
do i = 1, N_det do i = 1, N_det
write(i_unit_output,*)i, psi_l_coef_sorted_bi_ortho_left(i)/psi_l_coef_sorted_bi_ortho_left(1) & write(i_unit_output,*)i, psi_coef_sorted_tc(i,1)/psi_coef_sorted_tc(i,1) &
, psi_l_coef_sorted_bi_ortho_left(i)/psi_l_coef_sorted_bi_ortho_left(1) &
, psi_r_coef_sorted_bi_ortho_right(i)/psi_r_coef_sorted_bi_ortho_right(1) , psi_r_coef_sorted_bi_ortho_right(i)/psi_r_coef_sorted_bi_ortho_right(1)
enddo enddo

View File

@ -11,14 +11,24 @@ BEGIN_PROVIDER [ double precision, psi_average_norm_contrib_tc, (psi_det_size) ]
psi_average_norm_contrib_tc(:) = 0.d0 psi_average_norm_contrib_tc(:) = 0.d0
do k=1,N_states do k=1,N_states
do i=1,N_det do i=1,N_det
psi_average_norm_contrib_tc(i) = & ! print*,dabs(psi_l_coef_bi_ortho(i,k)*psi_r_coef_bi_ortho(i,k)),psi_l_coef_bi_ortho(i,k),psi_r_coef_bi_ortho(i,k)
psi_average_norm_contrib_tc(i) += &
dabs(psi_l_coef_bi_ortho(i,k)*psi_r_coef_bi_ortho(i,k))*state_average_weight(k) dabs(psi_l_coef_bi_ortho(i,k)*psi_r_coef_bi_ortho(i,k))*state_average_weight(k)
enddo enddo
enddo enddo
! print*,'***'
! do i = 1, N_det
! print*,psi_average_norm_contrib_tc(i)
! enddo
print*,'sum(psi_average_norm_contrib_tc(1:N_det))',sum(psi_average_norm_contrib_tc(1:N_det))
f = 1.d0/sum(psi_average_norm_contrib_tc(1:N_det)) f = 1.d0/sum(psi_average_norm_contrib_tc(1:N_det))
do i=1,N_det do i=1,N_det
psi_average_norm_contrib_tc(i) = psi_average_norm_contrib_tc(i)*f psi_average_norm_contrib_tc(i) = psi_average_norm_contrib_tc(i)*f
enddo enddo
f = 0.d0
do i=1,N_det
f+= psi_average_norm_contrib_tc(i)
enddo
END_PROVIDER END_PROVIDER

View File

@ -33,7 +33,8 @@ program tc_natorb_bi_ortho
read_wf = .True. read_wf = .True.
touch read_wf touch read_wf
call print_energy_and_mos() logical :: good_angles
call print_energy_and_mos(good_angles)
call save_tc_natorb() call save_tc_natorb()
call print_angles_tc() call print_angles_tc()
!call minimize_tc_orb_angles() !call minimize_tc_orb_angles()

View File

@ -45,12 +45,12 @@ end
! --- ! ---
BEGIN_PROVIDER [double precision, eigval_right_tc_bi_orth, (N_states) ] BEGIN_PROVIDER [double precision, eigval_right_tc_bi_orth , (N_states) ]
&BEGIN_PROVIDER [double precision, eigval_left_tc_bi_orth , (N_states) ] &BEGIN_PROVIDER [double precision, eigval_left_tc_bi_orth , (N_states) ]
&BEGIN_PROVIDER [double precision, reigvec_tc_bi_orth , (N_det,N_states)] &BEGIN_PROVIDER [double precision, reigvec_tc_bi_orth , (N_det,N_states)]
&BEGIN_PROVIDER [double precision, leigvec_tc_bi_orth , (N_det,N_states)] &BEGIN_PROVIDER [double precision, leigvec_tc_bi_orth , (N_det,N_states)]
&BEGIN_PROVIDER [double precision, s2_eigvec_tc_bi_orth , (N_states) ] &BEGIN_PROVIDER [double precision, s2_eigvec_tc_bi_orth , (N_states) ]
&BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth ] &BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth , (N_states) ]
BEGIN_DOC BEGIN_DOC
! eigenvalues, right and left eigenvectors of the transcorrelated Hamiltonian on the BI-ORTHO basis ! eigenvalues, right and left eigenvectors of the transcorrelated Hamiltonian on the BI-ORTHO basis
@ -86,17 +86,20 @@ end
endif endif
call non_hrmt_real_diag(N_det, H_prime, leigvec_tc_bi_orth_tmp, reigvec_tc_bi_orth_tmp, n_real_tc_bi_orth_eigval_right, eigval_right_tmp) call non_hrmt_real_diag(N_det, H_prime, leigvec_tc_bi_orth_tmp, reigvec_tc_bi_orth_tmp, n_real_tc_bi_orth_eigval_right, eigval_right_tmp)
if(N_states.gt.1)then
print*,'n_real_tc_bi_orth_eigval_right = ',n_real_tc_bi_orth_eigval_right
endif
! do i = 1, N_det ! do i = 1, N_det
! call get_H_tc_s2_l0_r0(leigvec_tc_bi_orth_tmp(1,i),reigvec_tc_bi_orth_tmp(1,i),1,N_det,expect_e(i), s2_values_tmp(i)) ! call get_H_tc_s2_l0_r0(leigvec_tc_bi_orth_tmp(1,i),reigvec_tc_bi_orth_tmp(1,i),1,N_det,expect_e(i), s2_values_tmp(i))
! enddo ! enddo
call get_H_tc_s2_l0_r0(leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,N_det,N_det,expect_e, s2_values_tmp) call get_H_tc_s2_l0_r0(leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,N_det,N_det,expect_e, s2_values_tmp)
allocate(index_good_state_array(N_det),good_state_array(N_det)) allocate(index_good_state_array(N_det),good_state_array(N_det))
i_state = 0 i_state = 0
good_state_array = .False. good_state_array = .False.
if(s2_eig) then if(s2_eig) then
if(only_expected_s2) then if(only_expected_s2) then
do j = 1, N_det do j = 1, N_det
! Select at least n_states states with S^2 values closed to "expected_s2" ! Select at least n_states states with S^2 values closed to "expected_s2"
@ -116,6 +119,9 @@ end
good_state_array(j) = .True. good_state_array(j) = .True.
enddo enddo
endif endif
if(N_states.gt.1)then
print*,'i_state = ',i_state
endif
if(i_state .ne. 0) then if(i_state .ne. 0) then
! Fill the first "i_state" states that have a correct S^2 value ! Fill the first "i_state" states that have a correct S^2 value
@ -230,6 +236,7 @@ end
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag)) allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag))
! TODO : OPEN-MP
do i = 1, N_det do i = 1, N_det
call htilde_mu_mat_opt_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i)) call htilde_mu_mat_opt_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
enddo enddo
@ -277,7 +284,6 @@ end
do istate = N_states+1, n_states_diag do istate = N_states+1, n_states_diag
vec_tmp(istate,istate) = 1.d0 vec_tmp(istate,istate) = 1.d0
enddo enddo
!call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_u_0_opt)
converged = .False. converged = .False.
i_it = 0 i_it = 0
do while (.not. converged) do while (.not. converged)
@ -309,13 +315,13 @@ end
deallocate(Stmp) deallocate(Stmp)
print*,'leigvec_tc_bi_orth(1,1),reigvec_tc_bi_orth(1,1) = ', leigvec_tc_bi_orth(1,1), reigvec_tc_bi_orth(1,1) print*,'leigvec_tc_bi_orth(1,1),reigvec_tc_bi_orth(1,1) = ', leigvec_tc_bi_orth(1,1), reigvec_tc_bi_orth(1,1)
norm_ground_left_right_bi_orth = 0.d0
do i = 1, N_states do i = 1, N_states
norm_ground_left_right_bi_orth = 0.d0
do j = 1, N_det do j = 1, N_det
norm_ground_left_right_bi_orth += leigvec_tc_bi_orth(j,i) * reigvec_tc_bi_orth(j,i) norm_ground_left_right_bi_orth(i) += leigvec_tc_bi_orth(j,i) * reigvec_tc_bi_orth(j,i)
enddo enddo
print*,' state ', i print*,' state ', i
print*,' norm l/r = ', norm_ground_left_right_bi_orth print*,' norm l/r = ', norm_ground_left_right_bi_orth(i)
print*,' <S2> = ', s2_eigvec_tc_bi_orth(i) print*,' <S2> = ', s2_eigvec_tc_bi_orth(i)
enddo enddo
@ -338,11 +344,6 @@ end
TOUCH psi_r_coef_bi_ortho TOUCH psi_r_coef_bi_ortho
call ezfio_set_tc_bi_ortho_psi_r_coef_bi_ortho(buffer) call ezfio_set_tc_bi_ortho_psi_r_coef_bi_ortho(buffer)
deallocate(buffer) deallocate(buffer)
! print*,'After diag'
! do i = 1, N_det! old version
! print*,'i',i,psi_l_coef_bi_ortho(i,1),psi_r_coef_bi_ortho(i,1)
! call debug_det(psi_det(1,1,i),N_int)
! enddo
END_PROVIDER END_PROVIDER
@ -357,22 +358,29 @@ subroutine bi_normalize(u_l, u_r, n, ld, nstates)
implicit none implicit none
integer, intent(in) :: n, ld, nstates integer, intent(in) :: n, ld, nstates
double precision, intent(inout) :: u_l(ld,nstates), u_r(ld,nstates) double precision, intent(inout) :: u_l(ld,nstates), u_r(ld,nstates)
integer :: i, j integer :: i, j,j_loc
double precision :: accu, tmp double precision :: accu, tmp, maxval_tmp
do i = 1, nstates do i = 1, nstates
!!!! Normalization of right eigenvectors |Phi> !!!! Normalization of right eigenvectors |Phi>
accu = 0.d0 accu = 0.d0
! TODO: dot product lapack
maxval_tmp = 0.d0
do j = 1, n do j = 1, n
accu += u_r(j,i) * u_r(j,i) accu += u_r(j,i) * u_r(j,i)
if(dabs(u_r(j,i)).gt.maxval_tmp)then
maxval_tmp = dabs(u_r(j,i))
j_loc = j
endif
enddo enddo
accu = 1.d0/dsqrt(accu) accu = 1.d0/dsqrt(accu)
print*,'accu_r = ',accu print*,'accu_r = ',accu
print*,'j_loc = ',j_loc
do j = 1, n do j = 1, n
u_r(j,i) *= accu u_r(j,i) *= accu
enddo enddo
tmp = u_r(1,i) / dabs(u_r(1,i)) tmp = u_r(j_loc,i) / dabs(u_r(j_loc,i))
do j = 1, n do j = 1, n
u_r(j,i) *= tmp u_r(j,i) *= tmp
enddo enddo
@ -389,7 +397,7 @@ subroutine bi_normalize(u_l, u_r, n, ld, nstates)
else else
accu = 1.d0/dsqrt(-accu) accu = 1.d0/dsqrt(-accu)
endif endif
tmp = (u_l(1,i) * u_r(1,i) )/dabs(u_l(1,i) * u_r(1,i)) tmp = (u_l(j_loc,i) * u_r(j_loc,i) )/dabs(u_l(j_loc,i) * u_r(j_loc,i))
do j = 1, n do j = 1, n
u_l(j,i) *= accu * tmp u_l(j,i) *= accu * tmp
u_r(j,i) *= accu u_r(j,i) *= accu

View File

@ -33,7 +33,6 @@
do i = 1, ao_num do i = 1, ao_num
write(*, '(100(F16.10,X))') tc_transition_matrix_ao(:,i,1,1) write(*, '(100(F16.10,X))') tc_transition_matrix_ao(:,i,1,1)
enddo enddo
stop
thr_d = 1.d-6 thr_d = 1.d-6
thr_nd = 1.d-6 thr_nd = 1.d-6
@ -52,7 +51,6 @@
! call diag_mat_per_fock_degen( fock_diag, dm_tmp, mo_num, thr_d, thr_nd, thr_deg & ! call diag_mat_per_fock_degen( fock_diag, dm_tmp, mo_num, thr_d, thr_nd, thr_deg &
! , natorb_tc_leigvec_mo, natorb_tc_reigvec_mo, natorb_tc_eigval) ! , natorb_tc_leigvec_mo, natorb_tc_reigvec_mo, natorb_tc_eigval)
! endif ! endif
call non_hrmt_bieig(mo_num, dm_tmp, thresh_biorthog_diag, thresh_biorthog_nondiag & call non_hrmt_bieig(mo_num, dm_tmp, thresh_biorthog_diag, thresh_biorthog_nondiag &
, natorb_tc_leigvec_mo, natorb_tc_reigvec_mo & , natorb_tc_leigvec_mo, natorb_tc_reigvec_mo &
, mo_num, natorb_tc_eigval ) , mo_num, natorb_tc_eigval )

View File

@ -280,6 +280,12 @@ doc: approach used to evaluate TC integrals [ analytic | numeric | semi-analytic
interface: ezfio,ocaml,provider interface: ezfio,ocaml,provider
default: semi-analytic default: semi-analytic
[minimize_lr_angles]
type: logical
doc: If |true|, you minimize the angle between the left and right vectors associated to degenerate orbitals
interface: ezfio,provider,ocaml
default: False
[ao_to_mo_tc_n3] [ao_to_mo_tc_n3]
type: logical type: logical
doc: If |true|, memory scale of TC ao -> mo: O(N3) doc: If |true|, memory scale of TC ao -> mo: O(N3)
@ -298,4 +304,3 @@ doc: If |true|, more calc but less mem
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: False default: False

View File

@ -10,16 +10,17 @@ function run_Ne() {
qp create_ezfio -b cc-pcvdz Ne.xyz -o Ne_tc_scf qp create_ezfio -b cc-pcvdz Ne.xyz -o Ne_tc_scf
qp run scf qp run scf
qp set tc_keywords tc_integ_type numeric
qp set jastrow env_type Sum_Gauss
qp set hamiltonian mu_erf 0.87 qp set hamiltonian mu_erf 0.87
qp set tc_keywords j1b_type 3 qp set jastrow j1e_type None
qp set tc_keywords j1b_pen [1.5] qp set jastrow env_coef "[1.]"
qp set tc_keywords bi_ortho True qp set jastrow env_expo "[1.5]"
qp set tc_keywords test_cycle_tc True
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
eref=-128.552134 eref=-128.552134
energy="$(qp get tc_scf bitc_energy)" energy="$(qp get tc_scf bitc_energy)"
eq $energy $eref 1e-6 eq $energy $eref 2e-4
} }
@ -33,16 +34,17 @@ function run_C() {
qp create_ezfio -b cc-pcvdz C.xyz -o C_tc_scf -m 3 qp create_ezfio -b cc-pcvdz C.xyz -o C_tc_scf -m 3
qp run scf qp run scf
qp set tc_keywords tc_integ_type numeric
qp set jastrow env_type Sum_Gauss
qp set hamiltonian mu_erf 0.87 qp set hamiltonian mu_erf 0.87
qp set tc_keywords j1b_type 3 qp set jastrow j1e_type None
qp set tc_keywords j1b_pen [1.5] qp set jastrow env_coef "[1.]"
qp set tc_keywords bi_ortho True qp set jastrow env_expo "[1.5]"
qp set tc_keywords test_cycle_tc True
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
eref=-37.691254356408791 eref=-37.691254356408791
energy="$(qp get tc_scf bitc_energy)" energy="$(qp get tc_scf bitc_energy)"
eq $energy $eref 1e-6 eq $energy $eref 2e-4
} }
@ -57,16 +59,17 @@ function run_O() {
qp create_ezfio -b cc-pcvdz O.xyz -o O_tc_scf -m 3 qp create_ezfio -b cc-pcvdz O.xyz -o O_tc_scf -m 3
qp run scf qp run scf
qp set tc_keywords tc_integ_type numeric
qp set jastrow env_type Sum_Gauss
qp set jastrow j1e_type None
qp set jastrow env_coef "[1.]"
qp set jastrow env_expo "[1.5]"
qp set hamiltonian mu_erf 0.87 qp set hamiltonian mu_erf 0.87
qp set tc_keywords j1b_type 3
qp set tc_keywords j1b_pen [1.5]
qp set tc_keywords bi_ortho True
qp set tc_keywords test_cycle_tc True
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
eref=-74.814687229354590 eref=-74.814687229354590
energy="$(qp get tc_scf bitc_energy)" energy="$(qp get tc_scf bitc_energy)"
eq $energy $eref 1e-6 eq $energy $eref 2e-4
} }
@ -82,16 +85,17 @@ function run_ch2() {
qp create_ezfio -b "C:cc-pcvdz|H:cc-pvdz" ch2.xyz -o ch2_tc_scf qp create_ezfio -b "C:cc-pcvdz|H:cc-pvdz" ch2.xyz -o ch2_tc_scf
qp run scf qp run scf
qp set tc_keywords tc_integ_type numeric
qp set jastrow env_type Sum_Gauss
qp set jastrow j1e_type None
qp set jastrow env_coef "[1., 1., 1.]"
qp set jastrow env_expo '[1.5,10000,10000]'
qp set hamiltonian mu_erf 0.87 qp set hamiltonian mu_erf 0.87
qp set tc_keywords j1b_type 3
qp set tc_keywords j1b_pen '[1.5,10000,10000]'
qp set tc_keywords bi_ortho True
qp set tc_keywords test_cycle_tc True
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
eref=-38.903247818077737 eref=-38.903247818077737
energy="$(qp get tc_scf bitc_energy)" energy="$(qp get tc_scf bitc_energy)"
eq $energy $eref 1e-6 eq $energy $eref 2e-4
} }

View File

@ -0,0 +1,318 @@
BEGIN_PROVIDER [integer , m_max_sm_7]
&BEGIN_PROVIDER [integer , n_max_sm_7]
&BEGIN_PROVIDER [integer , o_max_sm_7]
implicit none
BEGIN_DOC
! maximum value of the "m", "n" and "o" integer in the Jastrow function as in Eq. (4)
! of Schmidt,Moskowitz, JCP, 93, 4172 (1990) for the SM_7 version of Table IV
END_DOC
m_max_sm_7 = 4
n_max_sm_7 = 0
o_max_sm_7 = 4
END_PROVIDER
BEGIN_PROVIDER [integer , m_max_sm_9]
&BEGIN_PROVIDER [integer , n_max_sm_9]
&BEGIN_PROVIDER [integer , o_max_sm_9]
implicit none
BEGIN_DOC
! maximum value of the "m", "n" and "o" integer in the Jastrow function as in Eq. (4)
! of Schmidt,Moskowitz, JCP, 93, 4172 (1990) for the SM_9 version of Table IV
END_DOC
m_max_sm_9 = 4
n_max_sm_9 = 2
o_max_sm_9 = 4
END_PROVIDER
BEGIN_PROVIDER [integer , m_max_sm_17]
&BEGIN_PROVIDER [integer , n_max_sm_17]
&BEGIN_PROVIDER [integer , o_max_sm_17]
implicit none
BEGIN_DOC
! maximum value of the "m", "n" and "o" integer in the Jastrow function as in Eq. (4)
! of Schmidt,Moskowitz, JCP, 93, 4172 (1990) for the SM_17 version of Table IV
END_DOC
m_max_sm_17 = 6
n_max_sm_17 = 2
o_max_sm_17 = 6
END_PROVIDER
BEGIN_PROVIDER [ double precision, c_mn_o_sm_7, (0:m_max_sm_7,0:n_max_sm_7,0:o_max_sm_7,2:10)]
implicit none
BEGIN_DOC
!
!c_mn_o_7(0:4,0:4,2:10) = coefficient for the SM_7 correlation factor as given is Table IV of
! Schmidt,Moskowitz, JCP, 93, 4172 (1990)
! the first index (0:4) is the "m" integer for the 1e part
! the second index(0:0) is the "n" integer for the 1e part WHICH IS ALWAYS SET TO 0 FOR SM_7
! the third index (0:4) is the "o" integer for the 2e part
! the fourth index (2:10) is the nuclear charge of the atom
END_DOC
c_mn_o_sm_7 = 0.d0
integer :: i
do i = 2, 10 ! loop over nuclear charge
c_mn_o_sm_7(0,0,1,i) = 0.5d0 ! all the linear terms are set to 1/2 to satisfy the anti-parallel spin condition
enddo
! He atom
! two electron terms
c_mn_o_sm_7(0,0,2,2) = 0.50516d0
c_mn_o_sm_7(0,0,3,2) = -0.19313d0
c_mn_o_sm_7(0,0,4,2) = 0.30276d0
! one-electron terms
c_mn_o_sm_7(2,0,0,2) = -0.16995d0
c_mn_o_sm_7(3,0,0,2) = -0.34505d0
c_mn_o_sm_7(4,0,0,2) = -0.54777d0
! Ne atom
! two electron terms
c_mn_o_sm_7(0,0,2,10) = -0.792d0
c_mn_o_sm_7(0,0,3,10) = 1.05232d0
c_mn_o_sm_7(0,0,4,10) = -0.65615d0
! one-electron terms
c_mn_o_sm_7(2,0,0,10) = -0.13312d0
c_mn_o_sm_7(3,0,0,10) = -0.00131d0
c_mn_o_sm_7(4,0,0,10) = 0.09083d0
END_PROVIDER
BEGIN_PROVIDER [ double precision, c_mn_o_sm_9, (0:m_max_sm_9,0:n_max_sm_9,0:o_max_sm_9,2:10)]
implicit none
BEGIN_DOC
!
!c_mn_o_9(0:4,0:4,2:10) = coefficient for the SM_9 correlation factor as given is Table IV of
! Schmidt,Moskowitz, JCP, 93, 4172 (1990)
! the first index (0:4) is the "m" integer for the 1e part
! the second index(0:0) is the "n" integer for the 1e part WHICH IS ALWAYS SET TO 0 FOR SM_9
! the third index (0:4) is the "o" integer for the 2e part
! the fourth index (2:10) is the nuclear charge of the atom
END_DOC
c_mn_o_sm_9 = 0.d0
integer :: i
do i = 2, 10 ! loop over nuclear charge
c_mn_o_sm_9(0,0,1,i) = 0.5d0 ! all the linear terms are set to 1/2 to satisfy the anti-parallel spin condition
enddo
! He atom
! two electron terms
c_mn_o_sm_9(0,0,2,2) = 0.50516d0
c_mn_o_sm_9(0,0,3,2) = -0.19313d0
c_mn_o_sm_9(0,0,4,2) = 0.30276d0
! one-electron terms
c_mn_o_sm_9(2,0,0,2) = -0.16995d0
c_mn_o_sm_9(3,0,0,2) = -0.34505d0
c_mn_o_sm_9(4,0,0,2) = -0.54777d0
! Ne atom
! two electron terms
c_mn_o_sm_9(0,0,2,10) = -0.792d0
c_mn_o_sm_9(0,0,3,10) = 1.05232d0
c_mn_o_sm_9(0,0,4,10) = -0.65615d0
! one-electron terms
c_mn_o_sm_9(2,0,0,10) = -0.13312d0
c_mn_o_sm_9(3,0,0,10) = -0.00131d0
c_mn_o_sm_9(4,0,0,10) = 0.09083d0
END_PROVIDER
BEGIN_PROVIDER [ double precision, c_mn_o_sm_17, (0:m_max_sm_17,0:n_max_sm_17,0:o_max_sm_17,2:10)]
implicit none
BEGIN_DOC
!
!c_mn_o_17(0:4,0:4,2:10) = coefficient for the SM_17 correlation factor as given is Table IV of
! Schmidt,Moskowitz, JCP, 93, 4172 (1990)
! the first index (0:4) is the "m" integer for the 1e part
! the second index(0:0) is the "n" integer for the 1e part WHICH IS ALWAYS SET TO 0 FOR SM_17
! the third index (0:4) is the "o" integer for the 2e part
! the fourth index (2:10) is the nuclear charge of the atom
END_DOC
c_mn_o_sm_17 = 0.d0
integer :: i
do i = 2, 10 ! loop over nuclear charge
c_mn_o_sm_17(0,0,1,i) = 0.5d0 ! all the linear terms are set to 1/2 to satisfy the anti-parallel spin condition
enddo
! He atom
! two electron terms
c_mn_o_sm_17(0,0,2,2) = 0.09239d0
c_mn_o_sm_17(0,0,3,2) = -0.38664d0
c_mn_o_sm_17(0,0,4,2) = 0.95764d0
! one-electron terms
c_mn_o_sm_17(2,0,0,2) = 0.23208d0
c_mn_o_sm_17(3,0,0,2) = -0.45032d0
c_mn_o_sm_17(4,0,0,2) = 0.82777d0
c_mn_o_sm_17(2,2,0,2) = -4.15388d0
! ee-n terms
c_mn_o_sm_17(2,0,2,2) = 0.80622d0
c_mn_o_sm_17(2,2,2,2) = 10.19704d0
c_mn_o_sm_17(4,0,2,2) = -4.96259d0
c_mn_o_sm_17(2,0,4,2) = -1.35647d0
c_mn_o_sm_17(4,2,2,2) = -5.90907d0
c_mn_o_sm_17(6,0,2,2) = 0.90343d0
c_mn_o_sm_17(4,0,4,2) = 5.50739d0
c_mn_o_sm_17(2,2,4,2) = -0.03154d0
c_mn_o_sm_17(2,0,6,2) = -1.1051860
! Ne atom
! two electron terms
c_mn_o_sm_17(0,0,2,10) = -0.80909d0
c_mn_o_sm_17(0,0,3,10) = -0.00219d0
c_mn_o_sm_17(0,0,4,10) = 0.59188d0
! one-electron terms
c_mn_o_sm_17(2,0,0,10) = -0.00567d0
c_mn_o_sm_17(3,0,0,10) = 0.14011d0
c_mn_o_sm_17(4,0,0,10) = -0.05671d0
c_mn_o_sm_17(2,2,0,10) = -3.33767d0
! ee-n terms
c_mn_o_sm_17(2,0,2,10) = 1.95067d0
c_mn_o_sm_17(2,2,2,10) = 6.83340d0
c_mn_o_sm_17(4,0,2,10) = -3.29231d0
c_mn_o_sm_17(2,0,4,10) = -2.44998d0
c_mn_o_sm_17(4,2,2,10) = -2.13029d0
c_mn_o_sm_17(6,0,2,10) = 2.25768d0
c_mn_o_sm_17(4,0,4,10) = 1.97951d0
c_mn_o_sm_17(2,2,4,10) = -2.0924160
c_mn_o_sm_17(2,0,6,10) = 0.35493d0
END_PROVIDER
BEGIN_PROVIDER [ double precision, b_I_sm_90,(2:10)]
&BEGIN_PROVIDER [ double precision, d_I_sm_90,(2:10)]
implicit none
BEGIN_DOC
! "b_I" and "d_I" parameters of Eqs. (4) and (5) of Schmidt,Moskowitz, JCP, 93, 4172 (1990)
END_DOC
b_I_sm_90 = 1.d0
d_I_sm_90 = 1.d0
END_PROVIDER
subroutine get_full_sm_90_jastrow(r1,r2,rI,sm_j,i_charge, j_1e,j_2e,j_een,j_tot)
implicit none
double precision, intent(in) :: r1(3),r2(3),rI(3)
integer, intent(in) :: sm_j, i_charge
double precision, intent(out):: j_1e,j_2e,j_een,j_tot
BEGIN_DOC
! Jastrow function as in Eq. (4) of Schmidt,Moskowitz, JCP, 93, 4172 (1990)
! the i_charge variable is the integer specifying the charge of the atom for the Jastrow
! the sm_j integer variable represents the "quality" of the jastrow : sm_j = 7, 9, 17
END_DOC
double precision :: r_inucl,r_jnucl,r_ij,b_I, d_I
b_I = b_I_sm_90(i_charge)
d_I = d_I_sm_90(i_charge)
call get_rescaled_variables_j_sm_90(r1,r2,rI,b_I,d_I,r_inucl,r_jnucl,r_ij)
call jastrow_func_sm_90(r_inucl,r_jnucl,r_ij,sm_j,i_charge, j_1e,j_2e,j_een,j_tot)
end
subroutine get_rescaled_variables_j_sm_90(r1,r2,rI,b_I,d_I,r_inucl,r_jnucl,r_ij)
implicit none
BEGIN_DOC
! rescaled variables of Eq. (5) and (6) of Schmidt,Moskowitz, JCP, 93, 4172 (1990)
! the "b_I" and "d_I" parameters are the same as in Eqs. (5) and (6)
END_DOC
double precision, intent(in) :: r1(3),r2(3),rI(3)
double precision, intent(in) :: b_I, d_I
double precision, intent(out):: r_inucl,r_jnucl,r_ij
double precision :: rin, rjn, rij
integer :: i
rin = 0.d0
rjn = 0.d0
rij = 0.d0
do i = 1,3
rin += (r1(i) - rI(i)) * (r1(i) - rI(i))
rjn += (r2(i) - rI(i)) * (r2(i) - rI(i))
rij += (r2(i) - r1(i)) * (r2(i) - r1(i))
enddo
rin = dsqrt(rin)
rjn = dsqrt(rjn)
rij = dsqrt(rij)
r_inucl = b_I * rin/(1.d0 + b_I * rin)
r_jnucl = b_I * rjn/(1.d0 + b_I * rjn)
r_ij = d_I * rij/(1.d0 + b_I * rij)
end
subroutine jastrow_func_sm_90(r_inucl,r_jnucl,r_ij,sm_j,i_charge, j_1e,j_2e,j_een,j_tot)
implicit none
BEGIN_DOC
! Jastrow function as in Eq. (4) of Schmidt,Moskowitz, JCP, 93, 4172 (1990)
! Here the r_inucl, r_jnucl are the rescaled variables as defined in Eq. (5) with "b_I"
! r_ij is the rescaled variable as defined in Eq. (6) with "d_I"
! the i_charge variable is the integer specifying the charge of the atom for the Jastrow
! the sm_j integer variable represents the "quality" of the jastrow : sm_j = 7, 9, 17
!
! it returns the j_1e : sum of terms with "o" = "n" = 0, "m" /= 0,
! j_2e : sum of terms with "m" = "n" = 0, "o" /= 0,
! j_een : sum of terms with "m" /=0, "n" /= 0, "o" /= 0,
! j_tot : the total sum
END_DOC
double precision, intent(in) :: r_inucl,r_jnucl,r_ij
integer, intent(in) :: sm_j,i_charge
double precision, intent(out):: j_1e,j_2e,j_een,j_tot
j_1e = 0.D0
j_2e = 0.D0
j_een = 0.D0
double precision :: delta_mn,jastrow_sm_90_atomic
integer :: m,n,o
BEGIN_TEMPLATE
! pure 2e part
n = 0
m = 0
if(sm_j == $X )then
do o = 1, o_max_sm_$X
if(dabs(c_mn_o_sm_$X(m,n,o,i_charge)).lt.1.d-10)cycle
j_2e += c_mn_o_sm_$X(m,n,o,i_charge) * jastrow_sm_90_atomic(m,n,o,i_charge,r_inucl,r_jnucl,r_ij)
enddo
! else
! print*,'sm_j = ',sm_j
! print*,'not implemented, stop'
! stop
endif
! pure one-e part
o = 0
if(sm_j == $X)then
do n = 2, n_max_sm_$X
do m = 2, m_max_sm_$X
j_1e += c_mn_o_sm_$X(m,n,o,i_charge) * jastrow_sm_90_atomic(m,n,o,i_charge,r_inucl,r_jnucl,r_ij)
enddo
enddo
! else
! print*,'sm_j = ',sm_j
! print*,'not implemented, stop'
! stop
endif
! e-e-n part
if(sm_j == $X)then
do o = 1, o_max_sm_$X
do m = 2, m_max_sm_$X
do n = 2, n_max_sm_$X
j_een += c_mn_o_sm_$X(m,n,o,i_charge) * jastrow_sm_90_atomic(m,n,o,i_charge,r_inucl,r_jnucl,r_ij)
enddo
enddo
enddo
else
! print*,'sm_j = ',sm_j
! print*,'not implemented, stop'
! stop
endif
j_tot = j_1e + j_2e + j_een
SUBST [ X]
7 ;;
9 ;;
17 ;;
END_TEMPLATE
end
double precision function jastrow_sm_90_atomic(m,n,o,i_charge,r_inucl,r_jnucl,r_ij)
implicit none
BEGIN_DOC
! contribution to the function of Eq. (4) of Schmidt,Moskowitz, JCP, 93, 4172 (1990)
! for a given m,n,o and atom
END_DOC
double precision, intent(in) :: r_inucl,r_jnucl,r_ij
integer , intent(in) :: m,n,o,i_charge
double precision :: delta_mn
if(m==n)then
delta_mn = 0.5d0
else
delta_mn = 1.D0
endif
jastrow_sm_90_atomic = delta_mn * (r_inucl**m * r_jnucl**n + r_jnucl**m * r_inucl**n)*r_ij**o
end

View File

@ -0,0 +1,69 @@
program plot_j
implicit none
double precision :: r1(3),rI(3),r2(3)
double precision :: r12,dx,xmax, j_1e,j_2e,j_een,j_tot
double precision :: j_mu_F_x_j
integer :: i,nx,m,i_charge,sm_j
character*(128) :: output
integer :: i_unit_output_He_sm_7,i_unit_output_Ne_sm_7
integer :: i_unit_output_He_sm_17,i_unit_output_Ne_sm_17
integer :: getUnitAndOpen
output='J_SM_7_He'
i_unit_output_He_sm_7 = getUnitAndOpen(output,'w')
output='J_SM_7_Ne'
i_unit_output_Ne_sm_7 = getUnitAndOpen(output,'w')
output='J_SM_17_He'
i_unit_output_He_sm_17 = getUnitAndOpen(output,'w')
output='J_SM_17_Ne'
i_unit_output_Ne_sm_17 = getUnitAndOpen(output,'w')
rI = 0.d0
r1 = 0.d0
r2 = 0.d0
r1(1) = 1.5d0
xmax = 20.d0
r2(1) = -xmax*0.5d0
nx = 1000
dx = xmax/dble(nx)
do i = 1, nx
r12 = 0.d0
do m = 1, 3
r12 += (r1(m) - r2(m))*(r1(m) - r2(m))
enddo
r12 = dsqrt(r12)
double precision :: jmu,env_nucl,jmu_env,jmu_scaled, jmu_scaled_env
double precision :: b_I,d_I,r_inucl,r_jnucl,r_ij
b_I = 1.D0
d_I = 1.D0
call get_rescaled_variables_j_sm_90(r1,r2,rI,b_I,d_I,r_inucl,r_jnucl,r_ij)
jmu=j_mu_F_x_j(r12)
jmu_scaled=j_mu_F_x_j(r_ij)
jmu_env = jmu * env_nucl(r1) * env_nucl(r2)
! jmu_scaled_env= jmu_scaled * (1.d0 - env_coef(1) * dexp(-env_expo(1)*r_inucl**2)) * (1.d0 - env_coef(1) * dexp(-env_expo(1)*r_jnucl**2))
jmu_scaled_env= jmu_scaled * env_nucl(r1) * env_nucl(r2)
! He
i_charge = 2
! SM 7 Jastrow
sm_j = 7
call get_full_sm_90_jastrow(r1,r2,rI,sm_j,i_charge, j_1e,j_2e,j_een,j_tot)
write(i_unit_output_He_sm_7,'(100(F16.10,X))')r2(1),r12,j_mu_F_x_j(r12), j_1e,j_2e,j_een,j_tot,jmu_env,jmu_scaled,jmu_scaled_env
! SM 17 Jastrow
sm_j = 17
call get_full_sm_90_jastrow(r1,r2,rI,sm_j,i_charge, j_1e,j_2e,j_een,j_tot)
write(i_unit_output_He_sm_17,'(100(F16.10,X))')r2(1),r12,j_mu_F_x_j(r12), j_1e,j_2e,j_een,j_tot,jmu_env,jmu_scaled,jmu_scaled_env
! Ne
i_charge = 10
! SM 7 Jastrow
sm_j = 7
call get_full_sm_90_jastrow(r1,r2,rI,sm_j,i_charge, j_1e,j_2e,j_een,j_tot)
write(i_unit_output_Ne_sm_7,'(100(F16.10,X))')r2(1),r12,j_mu_F_x_j(r12), j_1e,j_2e,j_een,j_tot,jmu_env,jmu_scaled,jmu_scaled_env
! SM 17 Jastrow
sm_j = 17
call get_full_sm_90_jastrow(r1,r2,rI,sm_j,i_charge, j_1e,j_2e,j_een,j_tot)
write(i_unit_output_Ne_sm_17,'(100(F16.10,X))')r2(1),r12,j_mu_F_x_j(r12), j_1e,j_2e,j_een,j_tot,jmu_env,jmu_scaled,jmu_scaled_env
r2(1) += dx
enddo
end

View File

@ -442,18 +442,18 @@ subroutine print_energy_and_mos(good_angles)
if(max_angle_left_right .lt. thresh_lr_angle) then if(max_angle_left_right .lt. thresh_lr_angle) then
print *, ' Maximum angle BELOW 45 degrees, everthing is OK !' print *, ' Maximum angle BELOW 45 degrees, everthing is OK !'
good_angles = .true. good_angles = .true.
else if(max_angle_left_right .gt. thresh_lr_angle .and. max_angle_left_right .lt. 75.d0) then ! else if(max_angle_left_right .gt. thresh_lr_angle .and. max_angle_left_right .lt. 75.d0) then
print *, ' Maximum angle between thresh_lr_angle and 75 degrees, this is not the best for TC-CI calculations ...' ! print *, ' Maximum angle between thresh_lr_angle and 75 degrees, this is not the best for TC-CI calculations ...'
good_angles = .false. ! good_angles = .false.
else if(max_angle_left_right .gt. 75.d0) then ! else if(max_angle_left_right .gt. 75.d0) then
print *, ' Maximum angle between ABOVE 75 degrees, YOU WILL CERTAINLY FIND TROUBLES IN TC-CI calculations ...' ! print *, ' Maximum angle between ABOVE 75 degrees, YOU WILL CERTAINLY FIND TROUBLES IN TC-CI calculations ...'
good_angles = .false. ! good_angles = .false.
endif endif
!
print *, ' Diag Fock elem, product of left/right norm, angle left/right ' ! print *, ' Diag Fock elem, product of left/right norm, angle left/right '
do i = 1, mo_num ! do i = 1, mo_num
write(*, '(I3,X,100(F16.10,X))') i, Fock_matrix_tc_mo_tot(i,i), overlap_mo_l(i,i)*overlap_mo_r(i,i), angle_left_right(i) ! write(*, '(I3,X,100(F16.10,X))') i, Fock_matrix_tc_mo_tot(i,i), overlap_mo_l(i,i)*overlap_mo_r(i,i), angle_left_right(i)
enddo ! enddo
end end

View File

@ -78,7 +78,9 @@ program tc_scf
! TODO ! TODO
! rotate angles in separate code only if necessary ! rotate angles in separate code only if necessary
!call minimize_tc_orb_angles() if(minimize_lr_angles)then
call minimize_tc_orb_angles()
endif
call print_energy_and_mos(good_angles) call print_energy_and_mos(good_angles)
endif endif

View File

@ -0,0 +1,6 @@
2
H2, equilibrium geometry
H 0.0 0.0 0.
H 0.0 0.0 0.74

View File

@ -0,0 +1,4 @@
2
N2 Geo: Experiment Mult: 1 symmetry: 14
N 0.0 0.0 0.5488
N 0.0 0.0 -0.5488

View File

@ -0,0 +1,20 @@
program my_program_to_print_stuffs
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
integer :: i,j
print*,'AO integrals '
do i = 1, ao_num
do j = 1, ao_num
print*,j,i,ao_one_e_integrals(j,i)
enddo
enddo
print*,'MO integrals '
do i = 1, mo_num
do j = 1, mo_num
print*,j,i,mo_one_e_integrals(j,i)
enddo
enddo
end

View File

@ -0,0 +1,24 @@
program my_program
implicit none
BEGIN_DOC
! This program is there essentially to show how one can use providers in programs
END_DOC
integer :: i,j
double precision :: accu
print*,'Trace on the AO basis '
print*,trace_ao_one_e_ints
print*,'Trace on the AO basis after projection on the MO basis'
print*,trace_ao_one_e_ints_from_mo
print*,'Trace of MO integrals '
print*,trace_mo_one_e_ints
print*,'ao_num = ',ao_num
print*,'mo_num = ',mo_num
if(ao_num .ne. mo_num)then
print*,'The AO basis and MO basis are different ...'
print*,'Trace on the AO basis should not be the same as Trace of MO integrals'
print*,'Only the second one must be equal to the trace on the MO integrals'
else
print*,'The AO basis and MO basis are the same !'
print*,'All traces should coincide '
endif
end

View File

@ -0,0 +1,32 @@
program my_program_to_print_stuffs
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
integer :: i,j,k,l
double precision :: integral
double precision :: get_ao_two_e_integral, get_two_e_integral ! declaration of the functions
print*,'AO integrals, physicist notations : <i j|k l>'
do i = 1, ao_num
do j = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
integral = get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
print*,i,j,k,l,integral
enddo
enddo
enddo
enddo
print*,'MO integrals, physicist notations : <i j|k l>'
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
integral = get_two_e_integral(i, j, k, l, mo_integrals_map)
print*,i,j,k,l,integral
enddo
enddo
enddo
enddo
end

View File

@ -0,0 +1,111 @@
! This file is an example of the kind of manipulations that you can do with providers
!
!!!!!!!!!!!!!!!!!!!!!!!!!! Main providers useful for the program !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!! type name
BEGIN_PROVIDER [ double precision, trace_mo_one_e_ints]
implicit none
BEGIN_DOC
! trace_mo_one_e_ints = Trace of the one-electron integrals on the MO basis
!
! = sum_i mo_one_e_integrals(i,i)
END_DOC
integer :: i
trace_mo_one_e_ints = 0.d0
do i = 1, mo_num
trace_mo_one_e_ints += mo_one_e_integrals(i,i)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, trace_ao_one_e_ints]
implicit none
BEGIN_DOC
! trace_ao_one_e_ints = Trace of the one-electron integrals on the AO basis taking into account the non orthogonality
!
! Be aware that the trace of an operator in a non orthonormal basis is Tr(A S^{-1}) = \sum_{m,n}(A_mn S^{-1}_mn)
!
! WARNING: it is equal to the trace on the MO basis if and only if the AO basis and MO basis
! have the same number of functions
END_DOC
integer :: i,j
double precision, allocatable :: inv_overlap_times_integrals(:,:) ! = h S^{-1}
allocate(inv_overlap_times_integrals(ao_num,ao_num))
! routine that computes the product of two matrices, you can check it with
! irpman get_AB_prod
call get_AB_prod(ao_one_e_integrals,ao_num,ao_num,s_inv,ao_num,inv_overlap_times_integrals)
! Tr(inv_overlap_times_integrals) = Tr(h S^{-1})
trace_ao_one_e_ints = 0.d0
do i = 1, ao_num
trace_ao_one_e_ints += inv_overlap_times_integrals(i,i)
enddo
!
! testing the formula Tr(A S^{-1}) = \sum_{m,n}(A_mn S^{-1}_mn)
double precision :: test
test = 0.d0
do i = 1, ao_num
do j = 1, ao_num
test += ao_one_e_integrals(j,i) * s_inv(i,j)
enddo
enddo
if(dabs(accu - trace_ao_one_e_ints).gt.1.d-12)then
print*,'Warning ! '
print*,'Something is wrong because Tr(AB) \ne sum_{mn}A_mn B_nm'
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, trace_ao_one_e_ints_from_mo]
implicit none
BEGIN_DOC
! trace_ao_one_e_ints_from_mo = Trace of the one-electron integrals on the AO basis after projection on the MO basis
!
! = Tr([SC h {SC}^+] S^{-1})
!
! = Be aware that the trace of an operator in a non orthonormal basis is = Tr(A S^{-1}) where S is the metric
! Must be equal to the trace_mo_one_e_ints
END_DOC
integer :: i
double precision, allocatable :: inv_overlap_times_integrals(:,:)
allocate(inv_overlap_times_integrals(ao_num,ao_num))
! Using the provider ao_one_e_integrals_from_mo = [SC h {SC}^+]
call get_AB_prod(ao_one_e_integrals_from_mo,ao_num,ao_num,s_inv,ao_num,inv_overlap_times_integrals)
! inv_overlap_times_integrals = [SC h {SC}^+] S^{-1}
trace_ao_one_e_ints_from_mo = 0.d0
! Computing the trace
do i = 1, ao_num
trace_ao_one_e_ints_from_mo += inv_overlap_times_integrals(i,i)
enddo
END_PROVIDER
!!!!!!!!!!!!!!!!!!!!!!!!!!! Additional providers to check some stuffs !!!!!!!!!!!!!!!!!!!!!!!!!
BEGIN_PROVIDER [ double precision, ao_one_e_int_no_ov_from_mo, (ao_num, ao_num) ]
BEGIN_DOC
! ao_one_e_int_no_ov_from_mo = C mo_one_e_integrals C^T
!
! WARNING : NON EQUAL TO ao_one_e_integrals due to the non orthogonality
END_DOC
call mo_to_ao_no_overlap(mo_one_e_integrals,mo_num,ao_one_e_int_no_ov_from_mo,ao_num)
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_one_e_int_no_ov_from_mo_ov_ov, (ao_num, ao_num)]
BEGIN_DOC
! ao_one_e_int_no_ov_from_mo_ov_ov = S ao_one_e_int_no_ov_from_mo S = SC mo_one_e_integrals (SC)^T
!
! EQUAL TO ao_one_e_integrals ONLY IF ao_num = mo_num
END_DOC
double precision, allocatable :: tmp(:,:)
allocate(tmp(ao_num, ao_num))
call get_AB_prod(ao_overlap,ao_num,ao_num,ao_one_e_int_no_ov_from_mo,ao_num,tmp)
call get_AB_prod(tmp,ao_num,ao_num,ao_overlap,ao_num,ao_one_e_int_no_ov_from_mo_ov_ov)
END_PROVIDER
BEGIN_PROVIDER [ double precision, c_t_s_c, (mo_num, mo_num)]
implicit none
BEGIN_DOC
! C^T S C = should be the identity
END_DOC
call get_AB_prod(mo_coef_transp,mo_num,ao_num,S_mo_coef,mo_num,c_t_s_c)
END_PROVIDER

View File

@ -0,0 +1,218 @@
=============================================
Tuto I: One- and two-e integrals (20 minutes)
=============================================
Requirements
------------
1) You know how to create an |EZFIO| file and run calculations with |QP| (check the tuto: `<https://quantumpackage.github.io/qp2/post/hartree-fock/>`_),
2) You have an |EZFIO| file with MOs created (with the :ref:`scf` executable for instance). As we are going to print out some integrals, don't take a too large system/basis (Ex: H2, cc-pVDZ is ok :)
3) You made an qp set_file YOUR_EZFIO_FILE_FOR_H2 in order to work on that ezfio folder.
4) You have READ the :file:`qp2/plugins/README.rst` file to HAVE THE **VOCABULARY**.
Our goals:
----------
We want to create a plugin to do the following things:
1) print out one- and two-electron integrals on the AO/MO basis,
2) creates two providers which manipulate these objects,
3) print out these providers.
I) Getting started: creating the plugin
---------------------------------------
We will go step-by-step through these plugins.
We will create a plugin named "plugin_I", and its location will be in "tuto_plugins".
Therefore to create the plugin, we do:
.. code:: bash
qp plugins create -n plugin_I -r tuto_plugins
Then do an "ls" in qp2/plugins/tuto_plugins/ and you will find a directory called "plugin_I".
In that directory you will find:
1) a :file:`NEED` file that will eventually contain all the other modules/plugins needed by our "plugin_I",
2) a :file:`README.rst` file that you can and **SHOULD** modify in order to **DOCUMENT** what is doing the plugin,
3) a :file:`plugin_I.irp.f` file that is a program to be compiled and just printing "Hello world"
II) Specifying the dependencies
-------------------------------
The next step is to know what are the other modules/plugins that we need to do what we want.
We need here
a) the one-electron integrals on the AO basis, which are computed in :file:`qp2/src/ao_one_e_ints/`
b) the one-electron integrals on the MO basis, which are computed in :file:`qp2/src/mo_one_e_ints/`
c) the two-electron integrals on the AO basis, which are computed in :file:`qp2/src/ao_two_e_ints/`
d) the two-electron integrals on the MO basis, which are computed in :file:`qp2/src/mo_two_e_ints/`
Therefore, we will need the following four modules:
a) ao_one_e_ints
b) mo_one_e_ints
c) ao_two_e_ints
d) mo_two_e_ints
You can then create the following "NEED" file by executing the following command
.. code:: bash
cat <<EOF > NEED
ao_one_e_ints
mo_one_e_ints
ao_two_e_ints
mo_two_e_ints
EOF
II) Installing the plugin
-------------------------
Now that we have specified the various depenencies we need now to INSTALL the plugin, which means to create the equivalent of a Makefile for the compilation.
To do it we simply do
.. code:: bash
qp plugins install plugin_I
III) Compiling the void plugin
------------------------------
It is customary to compile first your "void" plugin, void in the sense that it does not contain anything else than the program printing "Hello world".
To do so, just go in the plugin and execute the following command
.. code:: bash
ninja
It does a lot of stuffs, but it must conclude with something like
.. code:: bash
make: Leaving directory 'SOME_PATH_TOWARD_YOUR_QP2_DIRECTORY/qp2/ocaml'
Since that it has compiled, an executable "plugin_I" has been created.
Also, if you make "ls" in the "plugin_I" you will notice that many symbolink links have been created, and among which the four modules that you included in the NEED file.
All the other modules (Ex::ref:`module_ao_basis`, :ref:`module_utils`) are here because they are need by some of the four modules that you need.
The variables that we need are
:data:`ao_one_e_integrals`
:data:`mo_one_e_integrals`
You can check them with
.. code:: bash
irpman ao_one_e_integrals
.. code:: bash
irpman mo_one_e_integrals
in order to get some information on where they are created, and many more information.
We will now create an executable such that it prints out the integrals.
IV) Printing out the one-electron integrals
--------------------------------------------
We will now create a program that will print out the one-electron integrals on the AO and MO basis.
You can then copy the file :file:`qp2/plugins/tuto_plugins/tuto_I/print_one_e_h.irp.f` in your plugin.
In this file you will see that we simply browse the two arrays :data:`ao_one_e_integrals` and :data:`mo_one_e_integrals`, which are the providers and we browse them until either :data:`ao_num` or :data:`mo_num` which are also providers representing the number of AOs or MOs.
.. seealso::
You can check these variables with :command:`irpman` !
If you recompile using |ninja| as before, and another executable has been created "print_one_e_h".
Then, you can run the program on the ezfio file by doing
.. code:: bash
qp run print_one_e_h
and will print out the data you need :)
By the way, as the file :file:`plugin_I.irp.f` contains nothing but a "Hello world" print, you can simply remove it if you want.
V) Printing out the two-electron integrals
------------------------------------------
We will now create a file that prints out the two-electron integrals in the AO and MO basis.
These can be accessed with the following subroutines :
1- :c:func:`get_ao_two_e_integral` for the AO basis
2- :c:func:`get_two_e_integral` for the MO basis
.. seealso::
check them with irpman !
To print the two-electron integrals, you can copy the file :file:`qp2/plugins/tuto_plugins/tuto_I/print_two_e_h.irp.f` in your plugin and recompile with |ninja|.
Then just run the program
.. code:: bash
qp run print_two_e_h
and it will print all the things you want :)
VI) Creating new providers and a program to print them
------------------------------------------------------
We will now create new providers that manipulates the objects that we just printed.
As an example, we will compute the trace of the one electron integrals in the AO and MO basis.
In the file :file:`qp2/plugins/tuto_plugins/tuto_I/traces_one_e.irp.f` you will find the several new providers among which
1- :c:data:`trace_mo_one_e_ints` : simply the sum of the diagonal matrix element of the one-electron integrals
2- :c:data:`trace_ao_one_e_ints` : the corresponding trace on the AO basis
.. math::
\text{Tr}({\bf h}{\bf S}^{-1}) = \sum_{m,n} S^{-1}_{mn} h_{mn}
3- :c:data:`trace_ao_one_e_ints_from_mo` : the trace on the AO basis with the integrals obtained first from the MO basis
.. math::
\text{Tr}({\bf \tilde{h}}{\bf S}^{-1}) = \text{Tr}\big({\bf SC h}({\bf SC }^T){\bf S}^{-1}\big)
Just copy the :file:`qp2/plugins/tuto_plugins/tuto_I/traces_one_e.irp.f` in your plugin and recompile.
.. seealso::
Once it has compiled, check your new providers with :command:`irpman` !
As explained in the files :file:`qp2/plugins/tuto_plugins/tuto_I/traces_one_e.irp.f` and :file:`qp2/plugins/tuto_plugins/tuto_I/print_traces_on_e.irp.f`, :c:data:`trace_mo_one_e_ints` is equal to :c:data:`trace_ao_one_e_ints` only if the number of AO basis functions is equal to the number of MO basis functions, which means if you work with cartesian functions.
.. seealso::
You can check with :command:`qp create_ezfio -h` for the option to create an |EZFIO| with cartesian basis functions
In the file :file:`qp2/plugins/tuto_plugins/tuto_I/print_traces_on_e.irp.f` you will find an example of executable that prints out the various providers.
Copy these two files in your plugin and recompile to execute it.
Execute the program print_traces_on_e and check for the results with
.. code:: bash
qp run print_traces_on_e
The code in :file:`qp2/plugins/tuto_plugins/tuto_I/print_traces_on_e.irp.f` should be easy to read, I let the reader interpret it.

View File

@ -802,8 +802,12 @@ if __name__ == "__main__":
pickle_path = os.path.join(QP_ROOT, "config", "qp_create_ninja.pickle") pickle_path = os.path.join(QP_ROOT, "config", "qp_create_ninja.pickle")
if arguments["update"]: if arguments["update"]:
try:
with open(pickle_path, 'rb') as handle: with open(pickle_path, 'rb') as handle:
arguments = pickle.load(handle) arguments = pickle.load(handle)
except FileNotFoundError:
print("\n-----\nError: Please run 'configure -c config/<config_file>'\n-----\n")
raise
elif arguments["create"]: elif arguments["create"]:

View File

@ -129,15 +129,23 @@ let set str s =
(** Creates the temporary file for interactive editing *) (** Creates the temporary file for interactive editing *)
let create_temp_file ezfio_filename fields = let create_temp_file ?filename ezfio_filename fields =
let temp_filename = Filename.temp_file "qp_edit_" ".rst" in let temp_filename =
match filename with
| None -> Filename.temp_file "qp_edit_" ".rst"
| Some f -> f
in
let () =
match filename with
| None -> at_exit (fun () -> Sys.remove temp_filename)
| _ -> ()
in
begin begin
let oc = open_out temp_filename in let oc = open_out temp_filename in
(file_header ezfio_filename) :: (List.map get fields) (file_header ezfio_filename) :: (List.map get fields)
|> String.concat "\n" |> String.concat "\n"
|> Printf.fprintf oc "%s"; |> Printf.fprintf oc "%s";
close_out oc; close_out oc;
at_exit (fun () -> Sys.remove temp_filename);
temp_filename temp_filename
end end
@ -145,13 +153,13 @@ let create_temp_file ezfio_filename fields =
let run check_only ?ndet ?state ezfio_filename = let run check_only ?ndet ?state ?read ?write ezfio_filename =
(* Set check_only if the arguments are not empty *) (* Set check_only if the arguments are not empty *)
let check_only = let open_editor =
match ndet, state with match ndet, state, read, write with
| None, None -> check_only | None, None, None, None -> not check_only
| _ -> true | _ -> false
in in
(* Open EZFIO *) (* Open EZFIO *)
@ -230,33 +238,37 @@ let run check_only ?ndet ?state ezfio_filename =
(* Create the temp file *) (* Create the temp file *)
let temp_filename = let temp_filename =
create_temp_file ezfio_filename tasks match read, write with
| None, None -> create_temp_file ezfio_filename tasks
| Some filename, None -> filename
| None, filename -> create_temp_file ?filename ezfio_filename tasks
| x, y -> failwith "read and write options are incompatible"
in in
(* Open the temp file with external editor *)
let editor =
try Sys.getenv "EDITOR"
with Not_found -> "vi"
in
match check_only with if open_editor then
| true -> () begin
| false -> (* Open the temp file with external editor *)
Printf.sprintf "%s %s" editor temp_filename let editor =
|> Sys.command |> ignore try Sys.getenv "EDITOR"
; with Not_found -> "vi"
in
Printf.sprintf "%s %s" editor temp_filename
|> Sys.command |> ignore
end;
(* Re-read the temp file *) if write = None then
let temp_string = (* Re-read the temp file *)
let ic = open_in temp_filename in let temp_string =
let result = let ic = open_in temp_filename in
input_lines ic let result =
|> String.concat "\n" input_lines ic
|> String.concat "\n"
in
close_in ic;
result
in in
close_in ic; List.iter (fun x -> set temp_string x) tasks
result
in
List.iter (fun x -> set temp_string x) tasks
@ -312,6 +324,16 @@ let () =
doc="Checks the input data"; doc="Checks the input data";
arg=Without_arg; }}; arg=Without_arg; }};
{{
short='w'; long="write"; opt=Optional;
doc="Writes the qp_edit file to a file\"";
arg=With_arg "<string>"; }};
{{
short='r'; long="read"; opt=Optional;
doc="Reads the file and applies it to the EZFIO\"";
arg=With_arg "<string>"; }};
{{ short='n'; long="ndet"; opt=Optional; {{ short='n'; long="ndet"; opt=Optional;
doc="Truncates the wavefunction to the target number of determinants"; doc="Truncates the wavefunction to the target number of determinants";
arg=With_arg "<int>"; }}; arg=With_arg "<int>"; }};
@ -328,6 +350,12 @@ let () =
end; end;
(* Handle options *) (* Handle options *)
let write =
Command_line.get "write"
in
let read =
Command_line.get "read"
in
let ndet = let ndet =
match Command_line.get "ndet" with match Command_line.get "ndet" with
| None -> None | None -> None
@ -353,7 +381,7 @@ let () =
(* Run the program *) (* Run the program *)
try try
if (not c) then create_backup ezfio_filename; if (not c) then create_backup ezfio_filename;
run c ?ndet ?state ezfio_filename run c ?ndet ?state ?read ?write ezfio_filename
with with
| Failure exc | Failure exc
| Invalid_argument exc -> | Invalid_argument exc ->

1
src/.gitignore vendored
View File

@ -1,5 +1,6 @@
* *
!README.rst !README.rst
!NEED
!*/ !*/
*/* */*
!*/*.* !*/*.*

View File

@ -45,3 +45,13 @@ BEGIN_PROVIDER [ double precision, ao_one_e_integrals_imag,(ao_num,ao_num)]
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_one_e_integrals_from_mo, (ao_num, ao_num)]
implicit none
BEGIN_DOC
! Integrals of the one e hamiltonian obtained from the integrals on the MO basis
!
! WARNING : this is equal to ao_one_e_integrals only if the AO and MO basis have the same number of functions
END_DOC
call mo_to_ao(mo_one_e_integrals,mo_num,ao_one_e_integrals_from_mo,ao_num)
END_PROVIDER

View File

@ -138,6 +138,8 @@ END_PROVIDER
deallocate(S) deallocate(S)
endif endif
FREE ao_overlap
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [double precision, ao_ortho_canonical_overlap, (ao_ortho_canonical_num,ao_ortho_canonical_num)] BEGIN_PROVIDER [double precision, ao_ortho_canonical_overlap, (ao_ortho_canonical_num,ao_ortho_canonical_num)]

View File

@ -66,7 +66,8 @@ END_PROVIDER
else else
PROVIDE nucl_coord PROVIDE nucl_coord ao_two_e_integral_schwartz
call set_multiple_levels_omp(.False.)
if (do_direct_integrals) then if (do_direct_integrals) then
if (ao_two_e_integral(1,1,1,1) < huge(1.d0)) then if (ao_two_e_integral(1,1,1,1) < huge(1.d0)) then

View File

@ -3,3 +3,36 @@ type: integer
doc: Number of active |MOs| doc: Number of active |MOs|
interface: ezfio interface: ezfio
[do_ormas]
type: logical
doc: if |true| restrict selection based on ORMAS rules
interface: ezfio, provider, ocaml
default: false
[ormas_n_space]
type: integer
doc: Number of active spaces
interface: ezfio, provider, ocaml
default: 1
[ormas_mstart]
type: integer
doc: starting orb for each ORMAS space
size: (bitmask.ormas_n_space)
interface: ezfio
#default: (1)
[ormas_min_e]
type: integer
doc: min number of electrons in each ORMAS space
size: (bitmask.ormas_n_space)
interface: ezfio
#default: (0)
[ormas_max_e]
type: integer
doc: max number of electrons in each ORMAS space
size: (bitmask.ormas_n_space)
interface: ezfio
#default: (electrons.elec_num)

View File

@ -0,0 +1,206 @@
use bitmasks
BEGIN_PROVIDER [integer, ormas_mstart, (ormas_n_space) ]
implicit none
BEGIN_DOC
! first orbital idx in each active space
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_bitmask_ormas_mstart(has)
if (has) then
! write(6,'(A)') '.. >>>>> [ IO READ: ormas_mstart ] <<<<< ..'
call ezfio_get_bitmask_ormas_mstart(ormas_mstart)
ASSERT (ormas_mstart(1).eq.1)
else if (ormas_n_space.eq.1) then
ormas_mstart = 1
else
print *, 'bitmask/ormas_mstart not found in EZFIO file'
stop 1
endif
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( ormas_mstart, ormas_n_space, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read ormas_mstart with MPI'
endif
IRP_ENDIF
! call write_time(6)
END_PROVIDER
BEGIN_PROVIDER [integer, ormas_min_e, (ormas_n_space) ]
implicit none
BEGIN_DOC
! min nelec in each active space
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_bitmask_ormas_min_e(has)
if (has) then
! write(6,'(A)') '.. >>>>> [ IO READ: ormas_min_e ] <<<<< ..'
call ezfio_get_bitmask_ormas_min_e(ormas_min_e)
else if (ormas_n_space.eq.1) then
ormas_min_e = 0
else
print *, 'bitmask/ormas_min_e not found in EZFIO file'
stop 1
endif
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( ormas_min_e, ormas_n_space, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read ormas_min_e with MPI'
endif
IRP_ENDIF
! call write_time(6)
END_PROVIDER
BEGIN_PROVIDER [integer, ormas_max_e, (ormas_n_space) ]
implicit none
BEGIN_DOC
! max nelec in each active space
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_bitmask_ormas_max_e(has)
if (has) then
! write(6,'(A)') '.. >>>>> [ IO READ: ormas_max_e ] <<<<< ..'
call ezfio_get_bitmask_ormas_max_e(ormas_max_e)
else if (ormas_n_space.eq.1) then
ormas_max_e = elec_num
else
print *, 'bitmask/ormas_max_e not found in EZFIO file'
stop 1
endif
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( ormas_max_e, ormas_n_space, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read ormas_max_e with MPI'
endif
IRP_ENDIF
! call write_time(6)
END_PROVIDER
BEGIN_PROVIDER [ integer, ormas_n_orb, (ormas_n_space) ]
&BEGIN_PROVIDER [ integer, ormas_max_n_orb ]
implicit none
BEGIN_DOC
! number of orbitals in each ormas space
END_DOC
integer :: i
ormas_n_orb = 0
ormas_n_orb(ormas_n_space) = mo_num + 1 - ormas_mstart(ormas_n_space)
do i = ormas_n_space-1, 1, -1
ormas_n_orb(i) = ormas_mstart(i+1) - ormas_mstart(i)
ASSERT (ormas_n_orb(i).ge.1)
enddo
ormas_max_n_orb = maxval(ormas_n_orb)
END_PROVIDER
BEGIN_PROVIDER [ integer, ormas_list_orb, (ormas_max_n_orb, ormas_n_space) ]
implicit none
BEGIN_DOC
! list of orbitals in each ormas space
END_DOC
integer :: i,j,k
ormas_list_orb = 0
i = 1
do j = 1, ormas_n_space
do k = 1, ormas_n_orb(j)
ormas_list_orb(k,j) = i
i += 1
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), ormas_bitmask, (N_int, ormas_n_space) ]
implicit none
BEGIN_DOC
! bitmask for each ormas space
END_DOC
integer :: j
ormas_bitmask = 0_bit_kind
do j = 1, ormas_n_space
call list_to_bitstring(ormas_bitmask(1,j), ormas_list_orb(:,j), ormas_n_orb(j), N_int)
enddo
END_PROVIDER
subroutine ormas_occ(key_in, occupancies)
implicit none
BEGIN_DOC
! number of electrons in each ormas space
END_DOC
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer, intent(out) :: occupancies(ormas_n_space)
integer :: i,ispin,ispace
occupancies = 0
! TODO: get start/end of each space within N_int
do ispace=1,ormas_n_space
do ispin=1,2
do i=1,N_int
occupancies(ispace) += popcnt(iand(ormas_bitmask(i,ispace),key_in(i,ispin)))
enddo
enddo
enddo
end
logical function det_allowed_ormas(key_in)
implicit none
BEGIN_DOC
! return true if det has allowable ormas occupations
END_DOC
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: i,ispin,ispace,occ
det_allowed_ormas = .True.
if (ormas_n_space.eq.1) return
det_allowed_ormas = .False.
! TODO: get start/end of each space within N_int
do ispace=1,ormas_n_space
occ = 0
do ispin=1,2
do i=1,N_int
occ += popcnt(iand(ormas_bitmask(i,ispace),key_in(i,ispin)))
enddo
enddo
if ((occ.lt.ormas_min_e(ispace)).or.(occ.gt.ormas_max_e(ispace))) return
enddo
det_allowed_ormas = .True.
end

View File

@ -110,6 +110,7 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
double precision :: eocc double precision :: eocc
double precision :: norm double precision :: norm
integer :: isample integer :: isample
PROVIDE nthreads_pt2
! Prepare table of triplets (a,b,c) ! Prepare table of triplets (a,b,c)
@ -124,7 +125,7 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
do b = a+1, nV do b = a+1, nV
do c = b+1, nV do c = b+1, nV
Nabc = Nabc + 1_8 Nabc = Nabc + 1_8
Pabc(Nabc) = -1.d0/(f_v(a) + f_v(b) + f_v(c)) Pabc(Nabc) = f_v(a) + f_v(b) + f_v(c)
abc(1,Nabc) = int(a,2) abc(1,Nabc) = int(a,2)
abc(2,Nabc) = int(b,2) abc(2,Nabc) = int(b,2)
abc(3,Nabc) = int(c,2) abc(3,Nabc) = int(c,2)
@ -134,13 +135,13 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
abc(1,Nabc) = int(a,2) abc(1,Nabc) = int(a,2)
abc(2,Nabc) = int(b,2) abc(2,Nabc) = int(b,2)
abc(3,Nabc) = int(a,2) abc(3,Nabc) = int(a,2)
Pabc(Nabc) = -1.d0/(2.d0*f_v(a) + f_v(b)) Pabc(Nabc) = 2.d0*f_v(a) + f_v(b)
Nabc = Nabc + 1_8 Nabc = Nabc + 1_8
abc(1,Nabc) = int(b,2) abc(1,Nabc) = int(b,2)
abc(2,Nabc) = int(a,2) abc(2,Nabc) = int(a,2)
abc(3,Nabc) = int(b,2) abc(3,Nabc) = int(b,2)
Pabc(Nabc) = -1.d0/(f_v(a) + 2.d0*f_v(b)) Pabc(Nabc) = f_v(a) + 2.d0*f_v(b)
enddo enddo
enddo enddo
@ -149,6 +150,7 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
enddo enddo
! Sort triplets in decreasing Pabc ! Sort triplets in decreasing Pabc
Pabc(:) = -1.d0/max(0.2d0,Pabc(:))
call dsort_big(Pabc, iorder, Nabc) call dsort_big(Pabc, iorder, Nabc)
! Normalize ! Normalize
@ -163,7 +165,6 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
call i8set_order_big(abc, iorder, Nabc) call i8set_order_big(abc, iorder, Nabc)
! Cumulative distribution for sampling ! Cumulative distribution for sampling
waccu(Nabc) = 0.d0 waccu(Nabc) = 0.d0
do i8=Nabc-1,1,-1 do i8=Nabc-1,1,-1
@ -181,8 +182,8 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
integer :: nbuckets integer :: nbuckets
nbuckets = 100 nbuckets = 100
double precision, allocatable :: ED(:)
double precision, allocatable :: wsum(:) double precision, allocatable :: wsum(:)
allocate(wsum(nbuckets))
converged = .False. converged = .False.
Ncomputed = 0_8 Ncomputed = 0_8
@ -197,7 +198,8 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
iright = Nabc iright = Nabc
integer*8, allocatable :: bounds(:,:) integer*8, allocatable :: bounds(:,:)
allocate (bounds(2,nbuckets)) allocate(wsum(nbuckets), ED(nbuckets), bounds(2,nbuckets))
ED(:) = 0.d0
do isample=1,nbuckets do isample=1,nbuckets
eta = 1.d0/dble(nbuckets) * dble(isample) eta = 1.d0/dble(nbuckets) * dble(isample)
ieta = binary_search(waccu,eta,Nabc) ieta = binary_search(waccu,eta,Nabc)
@ -215,11 +217,12 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
print '(A)', ' ======================= ============== ==========' print '(A)', ' ======================= ============== =========='
call set_multiple_levels_omp(.False.)
call wall_time(t00) call wall_time(t00)
imin = 1_8 imin = 1_8
!$OMP PARALLEL & !$OMP PARALLEL &
!$OMP PRIVATE(ieta,eta,a,b,c,kiter,isample) & !$OMP PRIVATE(ieta,eta,a,b,c,kiter,isample) &
!$OMP DEFAULT(SHARED) !$OMP DEFAULT(SHARED) NUM_THREADS(nthreads_pt2)
do kiter=1,Nabc do kiter=1,Nabc
@ -233,7 +236,7 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
enddo enddo
! Deterministic part ! Deterministic part
if (imin < Nabc) then if (imin <= Nabc) then
ieta=imin ieta=imin
sampled(ieta) = 0_8 sampled(ieta) = 0_8
a = abc(1,ieta) a = abc(1,ieta)
@ -254,7 +257,7 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
! Stochastic part ! Stochastic part
call random_number(eta) call random_number(eta)
do isample=1,nbuckets do isample=1,nbuckets
if (imin >= bounds(2,isample)) then if (imin > bounds(2,isample)) then
cycle cycle
endif endif
ieta = binary_search(waccu,(eta + dble(isample-1))/dble(nbuckets),Nabc)+1 ieta = binary_search(waccu,(eta + dble(isample-1))/dble(nbuckets),Nabc)+1
@ -280,7 +283,7 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
enddo enddo
call wall_time(t01) call wall_time(t01)
if ((t01-t00 > 1.0d0).or.(imin >= Nabc)) then if ((t01-t00 > 1.0d0).or.(imin > Nabc)) then
!$OMP TASKWAIT !$OMP TASKWAIT
call wall_time(t01) call wall_time(t01)
@ -300,8 +303,11 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
do isample=1,nbuckets do isample=1,nbuckets
if (imin >= bounds(2,isample)) then if (imin > bounds(2,isample)) then
energy_det = energy_det + sum(memo(bounds(1,isample):bounds(2,isample))) if (ED(isample) == 0.d0) then
ED(isample) = sum(memo(bounds(1,isample):bounds(2,isample)))
endif
energy_det = energy_det + ED(isample)
scale = scale - wsum(isample) scale = scale - wsum(isample)
else else
exit exit
@ -310,12 +316,14 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
isample = min(isample,nbuckets) isample = min(isample,nbuckets)
do ieta=bounds(1,isample), Nabc do ieta=bounds(1,isample), Nabc
w = dble(max(sampled(ieta),0_8)) if (sampled(ieta) < 0_8) cycle
tmp = w * memo(ieta) * Pabc(ieta) w = dble(sampled(ieta))
ET = ET + tmp tmp = w * memo(ieta) * Pabc(ieta)
ET2 = ET2 + tmp * memo(ieta) * Pabc(ieta) ET = ET + tmp
norm = norm + w ET2 = ET2 + tmp * memo(ieta) * Pabc(ieta)
norm = norm + w
enddo enddo
norm = norm/scale norm = norm/scale
if (norm > 0.d0) then if (norm > 0.d0) then
energy_stoch = ET / norm energy_stoch = ET / norm
@ -327,7 +335,7 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
print '('' '',F20.8, '' '', ES12.4,'' '', F8.2,'' '')', eccsd+energy, dsqrt(variance/(norm-1.d0)), 100.*real(Ncomputed)/real(Nabc) print '('' '',F20.8, '' '', ES12.4,'' '', F8.2,'' '')', eccsd+energy, dsqrt(variance/(norm-1.d0)), 100.*real(Ncomputed)/real(Nabc)
endif endif
!$OMP END MASTER !$OMP END MASTER
if (imin >= Nabc) exit if (imin > Nabc) exit
enddo enddo
!$OMP END PARALLEL !$OMP END PARALLEL

View File

@ -1,3 +1,4 @@
cipsi_utils
json json
perturbation perturbation
zmq zmq

View File

@ -15,18 +15,18 @@ The :c:func:`run_cipsi` subroutine iteratively:
* If :option:`determinants s2_eig` is |true|, it adds all the necessary * If :option:`determinants s2_eig` is |true|, it adds all the necessary
determinants to allow the eigenstates of |H| to be eigenstates of |S^2| determinants to allow the eigenstates of |H| to be eigenstates of |S^2|
* Diagonalizes |H| in the enlarged internal space * Diagonalizes |H| in the enlarged internal space
* Computes the |PT2| contribution to the energy stochastically :cite:`Garniron_2017.2` * Computes the |PT2| contribution to the energy stochastically :cite:`Garniron_2017b`
or deterministically, depending on :option:`perturbation do_pt2` or deterministically, depending on :option:`perturbation do_pt2`
* Extrapolates the variational energy by fitting * Extrapolates the variational energy by fitting
:math:`E=E_\text{FCI} - \alpha\, E_\text{PT2}` :math:`E=E_\text{FCI} - \alpha\, E_\text{PT2}`
The difference between :c:func:`run_stochastic_cipsi` and :c:func:`run_cipsi` is that The difference between :c:func:`run_stochastic_cipsi` and :c:func:`run_cipsi` is that
:c:func:`run_stochastic_cipsi` selects the determinants on the fly with the computation :c:func:`run_stochastic_cipsi` selects the determinants on the fly with the computation
of the stochastic |PT2| :cite:`Garniron_2017.2`. Hence, it is a semi-stochastic selection. It of the stochastic |PT2| :cite:`Garniron_2017b`. Hence, it is a semi-stochastic selection. It
* Selects the most important determinants from the external space and adds them to the * Selects the most important determinants from the external space and adds them to the
internal space, on the fly with the computation of the PT2 with the stochastic algorithm internal space, on the fly with the computation of the PT2 with the stochastic algorithm
presented in :cite:`Garniron_2017.2`. presented in :cite:`Garniron_2017b`.
* If :option:`determinants s2_eig` is |true|, it adds all the necessary * If :option:`determinants s2_eig` is |true|, it adds all the necessary
determinants to allow the eigenstates of |H| to be eigenstates of |S^2| determinants to allow the eigenstates of |H| to be eigenstates of |S^2|
* Extrapolates the variational energy by fitting * Extrapolates the variational energy by fitting

View File

@ -1,10 +1,13 @@
subroutine run_cipsi subroutine run_cipsi
implicit none
use selection_types
BEGIN_DOC BEGIN_DOC
! Selected Full Configuration Interaction with deterministic selection and ! Selected Full Configuration Interaction with deterministic selection and
! stochastic PT2. ! stochastic PT2.
END_DOC END_DOC
use selection_types
implicit none
integer :: i,j,k integer :: i,j,k
type(pt2_type) :: pt2_data, pt2_data_err type(pt2_type) :: pt2_data, pt2_data_err
double precision, allocatable :: zeros(:) double precision, allocatable :: zeros(:)

View File

@ -36,12 +36,3 @@ BEGIN_PROVIDER [ double precision, pt2_E0_denominator, (N_states) ]
endif endif
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, pt2_overlap, (N_states, N_states) ]
implicit none
BEGIN_DOC
! Overlap between the perturbed wave functions
END_DOC
pt2_overlap(1:N_states,1:N_states) = 0.d0
END_PROVIDER

Some files were not shown because too many files have changed in this diff Show More