mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-03 10:05:52 +01:00
commit
8e2d2120b0
@ -313,6 +313,15 @@ def write_ezfio(res, filename):
|
||||
for i in range(len(sym)):
|
||||
sym[MOmap[i]] = sym0[i]
|
||||
|
||||
irrep = {}
|
||||
for i in sym:
|
||||
irrep[i] = 0
|
||||
|
||||
for i, j in enumerate(irrep.keys()):
|
||||
irrep[j] = i+1
|
||||
|
||||
sym = [ irrep[k] for k in sym ]
|
||||
|
||||
MoMatrix = []
|
||||
for i in range(len(MOs)):
|
||||
m = MOs[i]
|
||||
@ -329,6 +338,7 @@ def write_ezfio(res, filename):
|
||||
ezfio.set_mo_basis_mo_num(mo_num)
|
||||
ezfio.set_mo_basis_mo_coef(MoMatrix)
|
||||
ezfio.set_mo_basis_mo_occ(OccNum)
|
||||
ezfio.set_mo_basis_mo_symmetry(sym)
|
||||
|
||||
print("OK")
|
||||
|
||||
|
@ -103,7 +103,7 @@ subroutine routine_save_rotated_mos(thr_deg, good_angles)
|
||||
double precision, allocatable :: stmp(:,:), T(:,:), Snew(:,:), smat2(:,:)
|
||||
double precision, allocatable :: mo_l_coef_tmp(:,:), mo_r_coef_tmp(:,:), mo_l_coef_new(:,:)
|
||||
|
||||
E_thr = 1d-8
|
||||
E_thr = 1d-04
|
||||
E_old = TC_HF_energy
|
||||
allocate(mo_l_coef_old(ao_num,mo_num), mo_r_coef_old(ao_num,mo_num))
|
||||
mo_r_coef_old = mo_r_coef
|
||||
@ -164,10 +164,42 @@ subroutine routine_save_rotated_mos(thr_deg, good_angles)
|
||||
allocate(mo_r_coef_tmp(ao_num,n_degen), mo_l_coef_tmp(ao_num,n_degen), mo_l_coef_new(ao_num,n_degen))
|
||||
allocate(T(n_degen,n_degen), Snew(n_degen,n_degen))
|
||||
|
||||
print*,'Right orbitals before'
|
||||
do j = 1, n_degen
|
||||
write(*,'(100(F16.10,X))') mo_r_coef_new(1:ao_num,list_degen(i,j))
|
||||
enddo
|
||||
print*,'Left orbitals before'
|
||||
do j = 1, n_degen
|
||||
write(*,'(100(F16.10,X))')mo_l_coef(1:ao_num,list_degen(i,j))
|
||||
enddo
|
||||
if(angle_left_right(list_degen(i,1)).gt.80.d0.and.n_degen==2)then
|
||||
integer :: i_list, j_list
|
||||
i_list = list_degen(i,1)
|
||||
j_list = list_degen(i,2)
|
||||
print*,'Huge angle !!! == ',angle_left_right(list_degen(i,1)),angle_left_right(list_degen(i,2))
|
||||
print*,'i_list = ',i_list
|
||||
print*,'i_list = ',j_list
|
||||
print*,'Swapping left/right orbitals'
|
||||
call print_strong_overlap(i_list, j_list)
|
||||
mo_r_coef_tmp(1:ao_num,1) = mo_r_coef_new(1:ao_num,i_list)
|
||||
mo_r_coef_tmp(1:ao_num,2) = mo_l_coef(1:ao_num,i_list)
|
||||
mo_l_coef_tmp(1:ao_num,1) = mo_l_coef(1:ao_num,j_list)
|
||||
mo_l_coef_tmp(1:ao_num,2) = mo_r_coef_new(1:ao_num,j_list)
|
||||
else
|
||||
do j = 1, n_degen
|
||||
print*,'i_list = ',list_degen(i,j)
|
||||
mo_r_coef_tmp(1:ao_num,j) = mo_r_coef_new(1:ao_num,list_degen(i,j))
|
||||
mo_l_coef_tmp(1:ao_num,j) = mo_l_coef(1:ao_num,list_degen(i,j))
|
||||
enddo
|
||||
endif
|
||||
print*,'Right orbitals '
|
||||
do j = 1, n_degen
|
||||
write(*,'(100(F16.10,X))')mo_r_coef_tmp(1:ao_num,j)
|
||||
enddo
|
||||
print*,'Left orbitals '
|
||||
do j = 1, n_degen
|
||||
write(*,'(100(F16.10,X))')mo_l_coef_tmp(1:ao_num,j)
|
||||
enddo
|
||||
! Orthogonalization of right functions
|
||||
print *, ' Orthogonalization of RIGHT functions'
|
||||
print *, ' ------------------------------------'
|
||||
@ -445,3 +477,31 @@ subroutine sort_by_tc_fock
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine print_strong_overlap(i_list, j_list)
|
||||
implicit none
|
||||
integer, intent(in) :: i_list,j_list
|
||||
double precision :: o_i, o_j,o_ij
|
||||
double precision :: s_mat_r(2,2),s_mat_l(2,2)
|
||||
o_i = dsqrt(overlap_mo_r(i_list, i_list))
|
||||
o_j = dsqrt(overlap_mo_r(j_list, j_list))
|
||||
o_ij = overlap_mo_r(j_list, i_list)
|
||||
s_mat_r(1,1) = o_i*o_i
|
||||
s_mat_r(2,1) = o_ij/(o_i * o_j)
|
||||
s_mat_r(2,2) = o_j*o_j
|
||||
s_mat_r(1,2) = s_mat_r(2,1)
|
||||
print*,'Right overlap matrix '
|
||||
write(*,'(2(F10.5,X))')s_mat_r(1:2,1)
|
||||
write(*,'(2(F10.5,X))')s_mat_r(1:2,2)
|
||||
o_i = dsqrt(overlap_mo_l(i_list, i_list))
|
||||
o_j = dsqrt(overlap_mo_l(j_list, j_list))
|
||||
o_ij = overlap_mo_l(j_list, i_list)
|
||||
s_mat_l(1,1) = o_i*o_i
|
||||
s_mat_l(2,1) = o_ij/(o_i * o_j)
|
||||
s_mat_l(2,2) = o_j*o_j
|
||||
s_mat_l(1,2) = s_mat_l(2,1)
|
||||
print*,'Left overlap matrix '
|
||||
write(*,'(2(F10.5,X))')s_mat_l(1:2,1)
|
||||
write(*,'(2(F10.5,X))')s_mat_l(1:2,2)
|
||||
|
||||
end
|
||||
|
@ -32,6 +32,12 @@ doc: |MO| occupation numbers
|
||||
interface: ezfio
|
||||
size: (mo_basis.mo_num)
|
||||
|
||||
[mo_symmetry]
|
||||
type: integer
|
||||
doc: MOs with the same integer belong to the same irrep.
|
||||
interface: ezfio
|
||||
size: (mo_basis.mo_num)
|
||||
|
||||
[mo_class]
|
||||
type: MO_class
|
||||
doc: [ Core | Inactive | Active | Virtual | Deleted ], as defined by :ref:`qp_set_mo_class`
|
||||
|
@ -58,3 +58,21 @@ END_PROVIDER
|
||||
)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, mo_spread_centered_x, (mo_num, mo_num) ]
|
||||
&BEGIN_PROVIDER [double precision, mo_spread_centered_y, (mo_num, mo_num) ]
|
||||
&BEGIN_PROVIDER [double precision, mo_spread_centered_z, (mo_num, mo_num) ]
|
||||
BEGIN_DOC
|
||||
! array of the integrals of MO_i * (x^2 - <MO_i|x|MO_j>^2) MO_j = MO_i x^2 MO_j - (MO_i x MO_j)^2
|
||||
! array of the integrals of MO_i * (y^2 - <MO_i|y|MO_j>^2) MO_j = MO_i y^2 MO_j - (MO_i y MO_j)^2
|
||||
! array of the integrals of MO_i * (z^2 - <MO_i|z|MO_j>^2) MO_j = MO_i z^2 MO_j - (MO_i z MO_j)^2
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
mo_spread_centered_x(j,i) = mo_spread_x(j,i) - mo_dipole_x(j,i)**2
|
||||
mo_spread_centered_y(j,i) = mo_spread_y(j,i) - mo_dipole_y(j,i)**2
|
||||
mo_spread_centered_z(j,i) = mo_spread_z(j,i) - mo_dipole_z(j,i)**2
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
@ -1920,8 +1920,12 @@ subroutine exp_matrix(X,n,exp_X)
|
||||
call get_A_squared(X,n,r2_mat)
|
||||
call lapack_diagd(eigvalues,eigvectors,r2_mat,n,n)
|
||||
eigvalues=-eigvalues
|
||||
do i = 1,n
|
||||
! t = dsqrt(t^2) where t^2 are eigenvalues of X^2
|
||||
eigvalues(i) = dsqrt(eigvalues(i))
|
||||
enddo
|
||||
|
||||
if(.False.)then
|
||||
if(.false.)then
|
||||
!!! For debugging and following the book intermediate
|
||||
! rebuilding the matrix : X^2 = -W t^2 W^T as in 3.1.30
|
||||
! matrix_tmp1 = W t^2
|
||||
@ -1932,14 +1936,16 @@ subroutine exp_matrix(X,n,exp_X)
|
||||
enddo
|
||||
eigvalues_mat=0.d0
|
||||
do i = 1,n
|
||||
! t = dsqrt(t^2) where t^2 are eigenvalues of X^2
|
||||
eigvalues(i) = dsqrt(eigvalues(i))
|
||||
eigvalues_mat(i,i) = eigvalues(i)*eigvalues(i)
|
||||
enddo
|
||||
call dgemm('N','N',n,n,n,1.d0,eigvectors,size(eigvectors,1), &
|
||||
eigvalues_mat,size(eigvalues_mat,1),0.d0,matrix_tmp1,size(matrix_tmp1,1))
|
||||
call dgemm('N','T',n,n,n,-1.d0,matrix_tmp1,size(matrix_tmp1,1), &
|
||||
eigvectors,size(eigvectors,1),0.d0,matrix_tmp2,size(matrix_tmp2,1))
|
||||
print*,'r2_mat = '
|
||||
do i = 1, n
|
||||
write(*,'(100(F16.10,X))')r2_mat(:,i)
|
||||
enddo
|
||||
print*,'r2_mat new = '
|
||||
do i = 1, n
|
||||
write(*,'(100(F16.10,X))')matrix_tmp2(:,i)
|
||||
@ -1964,7 +1970,8 @@ subroutine exp_matrix(X,n,exp_X)
|
||||
if(dabs(eigvalues(i)).gt.1.d-4)then
|
||||
eigvalues_mat(i,i) = dsin(eigvalues(i))/eigvalues(i)
|
||||
else ! Taylor development of sin(x)/x near x=0 = 1 - x^2/6
|
||||
eigvalues_mat(i,i) = 1.d0 - eigvalues(i)*eigvalues(i)*c_1_3*0.5d0
|
||||
eigvalues_mat(i,i) = 1.d0 - eigvalues(i)*eigvalues(i)*c_1_3*0.5d0 &
|
||||
+ eigvalues(i)*eigvalues(i)*eigvalues(i)*eigvalues(i)*c_1_3*0.025d0
|
||||
endif
|
||||
enddo
|
||||
! matrix_tmp1 = W t^-1 sin(t)
|
||||
|
Loading…
Reference in New Issue
Block a user