mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-05 10:59:45 +01:00
Vectorized int2_grad1u2_grad2u2_j1b2
This commit is contained in:
parent
768e1ac5d8
commit
86b4ff44d9
@ -176,8 +176,8 @@ END_PROVIDER
|
|||||||
|
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
ASSERT(List_all_comb_b3_expo(i) .gt. 0d0)
|
|
||||||
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
|
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
|
||||||
|
ASSERT(List_all_comb_b3_expo(i) .gt. 0d0)
|
||||||
|
|
||||||
List_all_comb_b3_cent(1,i) = List_all_comb_b3_cent(1,i) / List_all_comb_b3_expo(i)
|
List_all_comb_b3_cent(1,i) = List_all_comb_b3_cent(1,i) / List_all_comb_b3_expo(i)
|
||||||
List_all_comb_b3_cent(2,i) = List_all_comb_b3_cent(2,i) / List_all_comb_b3_expo(i)
|
List_all_comb_b3_cent(2,i) = List_all_comb_b3_cent(2,i) / List_all_comb_b3_expo(i)
|
||||||
|
@ -56,7 +56,7 @@ end
|
|||||||
|
|
||||||
!---
|
!---
|
||||||
|
|
||||||
subroutine overlap_gauss_r12_v(D_center_,delta,A_center,B_center,power_A,power_B,alpha,beta,rvec,n_points)
|
subroutine overlap_gauss_r12_v(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,rvec,n_points)
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
! Computes the following integral :
|
! Computes the following integral :
|
||||||
!
|
!
|
||||||
@ -70,7 +70,7 @@ subroutine overlap_gauss_r12_v(D_center_,delta,A_center,B_center,power_A,power_B
|
|||||||
implicit none
|
implicit none
|
||||||
include 'constants.include.F'
|
include 'constants.include.F'
|
||||||
integer, intent(in) :: n_points
|
integer, intent(in) :: n_points
|
||||||
double precision, intent(in) :: D_center_(n_points,3), delta ! pure gaussian "D"
|
double precision, intent(in) :: D_center(n_points,3), delta ! pure gaussian "D"
|
||||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||||
integer, intent(in) :: power_A(3),power_B(3)
|
integer, intent(in) :: power_A(3),power_B(3)
|
||||||
double precision, intent(out) :: rvec(n_points)
|
double precision, intent(out) :: rvec(n_points)
|
||||||
@ -92,14 +92,7 @@ subroutine overlap_gauss_r12_v(D_center_,delta,A_center,B_center,power_A,power_B
|
|||||||
|
|
||||||
maxab = maxval(power_A(1:3))
|
maxab = maxval(power_A(1:3))
|
||||||
|
|
||||||
double precision, allocatable :: D_center(:,:)
|
allocate (A_new(n_points, 0:maxab, 3), A_center_new(n_points, 3), &
|
||||||
allocate(D_center(3,n_points))
|
|
||||||
D_center(1,1:n_points) = D_center_(1:n_points,1)
|
|
||||||
D_center(2,1:n_points) = D_center_(1:n_points,2)
|
|
||||||
D_center(3,1:n_points) = D_center_(1:n_points,3)
|
|
||||||
|
|
||||||
|
|
||||||
allocate (A_new(0:maxab, 3, n_points), A_center_new(3, n_points), &
|
|
||||||
fact_a_new(n_points), iorder_a_new(3), overlap(n_points) )
|
fact_a_new(n_points), iorder_a_new(3), overlap(n_points) )
|
||||||
|
|
||||||
call give_explicit_poly_and_gaussian_v(A_new, maxab, A_center_new, &
|
call give_explicit_poly_and_gaussian_v(A_new, maxab, A_center_new, &
|
||||||
@ -118,9 +111,9 @@ subroutine overlap_gauss_r12_v(D_center_,delta,A_center,B_center,power_A,power_B
|
|||||||
iorder_tmp(3) = lz
|
iorder_tmp(3) = lz
|
||||||
call overlap_gaussian_xyz_v(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B,overlap,dim1,n_points)
|
call overlap_gaussian_xyz_v(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B,overlap,dim1,n_points)
|
||||||
do ipoint=1,n_points
|
do ipoint=1,n_points
|
||||||
rvec(ipoint) = rvec(ipoint) + A_new(lx,1,ipoint) * &
|
rvec(ipoint) = rvec(ipoint) + A_new(ipoint,lx,1) * &
|
||||||
A_new(ly,2,ipoint) * &
|
A_new(ipoint,ly,2) * &
|
||||||
A_new(lz,3,ipoint) * overlap(ipoint)
|
A_new(ipoint,lz,3) * overlap(ipoint)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
@ -147,12 +147,12 @@ subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_k,iorde
|
|||||||
integer, intent(in) :: n_points, ldp
|
integer, intent(in) :: n_points, ldp
|
||||||
integer, intent(in) :: a(3),b(3) ! powers : (x-xa)**a_x = (x-A(1))**a(1)
|
integer, intent(in) :: a(3),b(3) ! powers : (x-xa)**a_x = (x-A(1))**a(1)
|
||||||
double precision, intent(in) :: alpha, beta ! exponents
|
double precision, intent(in) :: alpha, beta ! exponents
|
||||||
double precision, intent(in) :: A_center(3,n_points) ! A center
|
double precision, intent(in) :: A_center(n_points,3) ! A center
|
||||||
double precision, intent(in) :: B_center (3) ! B center
|
double precision, intent(in) :: B_center (3) ! B center
|
||||||
double precision, intent(out) :: P_center(3,n_points) ! new center
|
double precision, intent(out) :: P_center(n_points,3) ! new center
|
||||||
double precision, intent(out) :: p ! new exponent
|
double precision, intent(out) :: p ! new exponent
|
||||||
double precision, intent(out) :: fact_k(n_points) ! constant factor
|
double precision, intent(out) :: fact_k(n_points) ! constant factor
|
||||||
double precision, intent(out) :: P_new(0:ldp,3,n_points)! polynomial
|
double precision, intent(out) :: P_new(n_points,0:ldp,3)! polynomial
|
||||||
integer, intent(out) :: iorder(3) ! i_order(i) = order of the polynomials
|
integer, intent(out) :: iorder(3) ! i_order(i) = order of the polynomials
|
||||||
|
|
||||||
double precision, allocatable :: P_a(:,:,:), P_b(:,:,:)
|
double precision, allocatable :: P_a(:,:,:), P_b(:,:,:)
|
||||||
@ -161,82 +161,54 @@ subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_k,iorde
|
|||||||
|
|
||||||
call gaussian_product_v(alpha,A_center,beta,B_center,fact_k,p,P_center,n_points)
|
call gaussian_product_v(alpha,A_center,beta,B_center,fact_k,p,P_center,n_points)
|
||||||
|
|
||||||
!TODO TRANSP
|
|
||||||
double precision, allocatable :: P_a_(:,:,:), P_b_(:,:,:), A_center_(:,:), P_center_(:,:), P_new_(:,:,:)
|
|
||||||
allocate(A_center_(n_points,3), P_center_(n_points,3), P_new_(n_points,0:ldp,3))
|
|
||||||
A_center_(1:n_points,1) = A_center(1,1:n_points)
|
|
||||||
A_center_(1:n_points,2) = A_center(2,1:n_points)
|
|
||||||
A_center_(1:n_points,3) = A_center(3,1:n_points)
|
|
||||||
P_center_(1:n_points,1) = P_center(1,1:n_points)
|
|
||||||
P_center_(1:n_points,2) = P_center(2,1:n_points)
|
|
||||||
P_center_(1:n_points,3) = P_center(3,1:n_points)
|
|
||||||
|
|
||||||
if ( ior(ior(b(1),b(2)),b(3)) == 0 ) then ! b == (0,0,0)
|
if ( ior(ior(b(1),b(2)),b(3)) == 0 ) then ! b == (0,0,0)
|
||||||
|
|
||||||
|
|
||||||
lda = maxval(a)
|
lda = maxval(a)
|
||||||
ldb = 0
|
ldb = 0
|
||||||
allocate(P_a_(n_points,0:lda,3), P_b_(n_points,0:0,3))
|
allocate(P_a(n_points,0:lda,3), P_b(n_points,0:0,3))
|
||||||
|
|
||||||
|
call recentered_poly2_v0(P_a,lda,A_center,P_center,a,P_b,B_center,P_center,n_points)
|
||||||
call recentered_poly2_v0(P_a_,lda,A_center_,P_center_,a,P_b_,B_center,P_center_,n_points)
|
|
||||||
|
|
||||||
iorder(1:3) = a(1:3)
|
iorder(1:3) = a(1:3)
|
||||||
do ipoint=1,n_points
|
do ipoint=1,n_points
|
||||||
do xyz=1,3
|
do xyz=1,3
|
||||||
P_new_(ipoint,0,xyz) = P_a_(ipoint,0,xyz) * P_b_(ipoint,0,xyz)
|
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
|
||||||
do i=1,a(xyz)
|
do i=1,a(xyz)
|
||||||
P_new_(ipoint,i,xyz) = P_new_(ipoint,i,xyz) + P_b_(ipoint,0,xyz) * P_a_(ipoint,i,xyz)
|
P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
do ipoint=1,n_points
|
|
||||||
do i=0,ldp
|
|
||||||
P_new(i,1,ipoint) = P_new_(ipoint,i,1)
|
|
||||||
P_new(i,2,ipoint) = P_new_(ipoint,i,2)
|
|
||||||
P_new(i,3,ipoint) = P_new_(ipoint,i,3)
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
return
|
return
|
||||||
|
|
||||||
endif
|
endif
|
||||||
|
|
||||||
lda = maxval(a)
|
lda = maxval(a)
|
||||||
ldb = maxval(b)
|
ldb = maxval(b)
|
||||||
allocate(P_a_(n_points,0:lda,3), P_b_(n_points,0:ldb,3))
|
allocate(P_a(n_points,0:lda,3), P_b(n_points,0:ldb,3))
|
||||||
|
|
||||||
call recentered_poly2_v(P_a_,lda,A_center_,P_center_,a,P_b_,ldb,B_center,P_center_,b,n_points)
|
|
||||||
|
|
||||||
|
call recentered_poly2_v(P_a,lda,A_center,P_center,a,P_b,ldb,B_center,P_center,b,n_points)
|
||||||
|
|
||||||
iorder(1:3) = a(1:3) + b(1:3)
|
iorder(1:3) = a(1:3) + b(1:3)
|
||||||
|
|
||||||
do xyz=1,3
|
do xyz=1,3
|
||||||
if (b(xyz) == 0) then
|
if (b(xyz) == 0) then
|
||||||
do ipoint=1,n_points
|
do ipoint=1,n_points
|
||||||
P_new_(ipoint,0,xyz) = P_a_(ipoint,0,xyz) * P_b_(ipoint,0,xyz)
|
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
|
||||||
do i=1,a(xyz)
|
do i=1,a(xyz)
|
||||||
P_new_(ipoint,i,xyz) = P_new_(ipoint,i,xyz) + P_b_(ipoint,0,xyz) * P_a_(ipoint,i,xyz)
|
P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
else
|
else
|
||||||
do i=0,iorder(xyz)
|
do i=0,iorder(xyz)
|
||||||
do ipoint=1,n_points
|
do ipoint=1,n_points
|
||||||
P_new_(ipoint,i,xyz) = 0.d0
|
P_new(ipoint,i,xyz) = 0.d0
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
call multiply_poly_v(P_a_(1,0,xyz), a(xyz),P_b_(1,0,xyz),b(xyz),P_new_(1,0,xyz),ldp,n_points)
|
call multiply_poly_v(P_a(1,0,xyz), a(xyz),P_b(1,0,xyz),b(xyz),P_new(1,0,xyz),ldp,n_points)
|
||||||
endif
|
endif
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
|
||||||
do ipoint=1,n_points
|
|
||||||
do i=0,ldp
|
|
||||||
P_new(i,1,ipoint) = P_new_(ipoint,i,1)
|
|
||||||
P_new(i,2,ipoint) = P_new_(ipoint,i,2)
|
|
||||||
P_new(i,3,ipoint) = P_new_(ipoint,i,3)
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
end
|
end
|
||||||
|
|
||||||
!-
|
!-
|
||||||
@ -353,9 +325,9 @@ subroutine gaussian_product_v(a,xa,b,xb,k,p,xp,n_points)
|
|||||||
|
|
||||||
integer, intent(in) :: n_points
|
integer, intent(in) :: n_points
|
||||||
double precision, intent(in) :: a,b ! Exponents
|
double precision, intent(in) :: a,b ! Exponents
|
||||||
double precision, intent(in) :: xa(3,n_points),xb(3) ! Centers
|
double precision, intent(in) :: xa(n_points,3),xb(3) ! Centers
|
||||||
double precision, intent(out) :: p ! New exponent
|
double precision, intent(out) :: p ! New exponent
|
||||||
double precision, intent(out) :: xp(3,n_points) ! New center
|
double precision, intent(out) :: xp(n_points,3) ! New center
|
||||||
double precision, intent(out) :: k(n_points) ! Constant
|
double precision, intent(out) :: k(n_points) ! Constant
|
||||||
|
|
||||||
double precision :: p_inv
|
double precision :: p_inv
|
||||||
@ -377,20 +349,20 @@ subroutine gaussian_product_v(a,xa,b,xb,k,p,xp,n_points)
|
|||||||
bpxb(3) = bp*xb(3)
|
bpxb(3) = bp*xb(3)
|
||||||
|
|
||||||
do ipoint=1,n_points
|
do ipoint=1,n_points
|
||||||
xab(1) = xa(1,ipoint)-xb(1)
|
xab(1) = xa(ipoint,1)-xb(1)
|
||||||
xab(2) = xa(2,ipoint)-xb(2)
|
xab(2) = xa(ipoint,2)-xb(2)
|
||||||
xab(3) = xa(3,ipoint)-xb(3)
|
xab(3) = xa(ipoint,3)-xb(3)
|
||||||
k(ipoint) = ab*(xab(1)*xab(1)+xab(2)*xab(2)+xab(3)*xab(3))
|
k(ipoint) = ab*(xab(1)*xab(1)+xab(2)*xab(2)+xab(3)*xab(3))
|
||||||
if (k(ipoint) > 40.d0) then
|
if (k(ipoint) > 40.d0) then
|
||||||
k(ipoint)=0.d0
|
k(ipoint)=0.d0
|
||||||
xp(1,ipoint) = 0.d0
|
xp(ipoint,1) = 0.d0
|
||||||
xp(2,ipoint) = 0.d0
|
xp(ipoint,2) = 0.d0
|
||||||
xp(3,ipoint) = 0.d0
|
xp(ipoint,3) = 0.d0
|
||||||
else
|
else
|
||||||
k(ipoint) = dexp(-k(ipoint))
|
k(ipoint) = dexp(-k(ipoint))
|
||||||
xp(1,ipoint) = ap*xa(1,ipoint)+bpxb(1)
|
xp(ipoint,1) = ap*xa(ipoint,1)+bpxb(1)
|
||||||
xp(2,ipoint) = ap*xa(2,ipoint)+bpxb(2)
|
xp(ipoint,2) = ap*xa(ipoint,2)+bpxb(2)
|
||||||
xp(3,ipoint) = ap*xa(3,ipoint)+bpxb(3)
|
xp(ipoint,3) = ap*xa(ipoint,3)+bpxb(3)
|
||||||
endif
|
endif
|
||||||
enddo
|
enddo
|
||||||
end subroutine
|
end subroutine
|
||||||
|
@ -165,7 +165,7 @@ subroutine overlap_gaussian_xyz_v(A_center,B_center,alpha,beta,power_A,&
|
|||||||
END_DOC
|
END_DOC
|
||||||
include 'constants.include.F'
|
include 'constants.include.F'
|
||||||
integer,intent(in) :: dim, n_points
|
integer,intent(in) :: dim, n_points
|
||||||
double precision,intent(in) :: A_center(3,n_points),B_center(3) ! center of the x1 functions
|
double precision,intent(in) :: A_center(n_points,3),B_center(3) ! center of the x1 functions
|
||||||
double precision, intent(in) :: alpha,beta
|
double precision, intent(in) :: alpha,beta
|
||||||
integer,intent(in) :: power_A(3), power_B(3) ! power of the x1 functions
|
integer,intent(in) :: power_A(3), power_B(3) ! power of the x1 functions
|
||||||
double precision, intent(out) :: overlap(n_points)
|
double precision, intent(out) :: overlap(n_points)
|
||||||
@ -177,7 +177,7 @@ subroutine overlap_gaussian_xyz_v(A_center,B_center,alpha,beta,power_A,&
|
|||||||
double precision :: F_integral
|
double precision :: F_integral
|
||||||
|
|
||||||
ldp = maxval( power_A(1:3) + power_B(1:3) )
|
ldp = maxval( power_A(1:3) + power_B(1:3) )
|
||||||
allocate(P_new(0:ldp,3,n_points), P_center(3,n_points), fact_p(n_points), &
|
allocate(P_new(n_points,0:ldp,3), P_center(n_points,3), fact_p(n_points), &
|
||||||
fact_pp(n_points), pp(n_points))
|
fact_pp(n_points), pp(n_points))
|
||||||
|
|
||||||
call give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_p,iorder_p,alpha,beta,power_A,power_B,A_center,B_center,n_points)
|
call give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_p,iorder_p,alpha,beta,power_A,power_B,A_center,B_center,n_points)
|
||||||
@ -197,19 +197,19 @@ subroutine overlap_gaussian_xyz_v(A_center,B_center,alpha,beta,power_A,&
|
|||||||
cycle
|
cycle
|
||||||
endif
|
endif
|
||||||
|
|
||||||
overlap_x = P_new(0,1,ipoint) * F_integral_tab(0)
|
overlap_x = P_new(ipoint,0,1) * F_integral_tab(0)
|
||||||
do i = 1,iorder_p(1)
|
do i = 1,iorder_p(1)
|
||||||
overlap_x = overlap_x + P_new(i,1,ipoint) * F_integral_tab(i)
|
overlap_x = overlap_x + P_new(ipoint,i,1) * F_integral_tab(i)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
overlap_y = P_new(0,2,ipoint) * F_integral_tab(0)
|
overlap_y = P_new(ipoint,0,2) * F_integral_tab(0)
|
||||||
do i = 1,iorder_p(2)
|
do i = 1,iorder_p(2)
|
||||||
overlap_y = overlap_y + P_new(i,2,ipoint) * F_integral_tab(i)
|
overlap_y = overlap_y + P_new(ipoint,i,2) * F_integral_tab(i)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
overlap_z = P_new(0,3,ipoint) * F_integral_tab(0)
|
overlap_z = P_new(ipoint,0,3) * F_integral_tab(0)
|
||||||
do i = 1,iorder_p(3)
|
do i = 1,iorder_p(3)
|
||||||
overlap_z = overlap_z + P_new(i,3,ipoint) * F_integral_tab(i)
|
overlap_z = overlap_z + P_new(ipoint,i,3) * F_integral_tab(i)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
overlap(ipoint) = overlap_x * overlap_y * overlap_z * fact_pp(ipoint)
|
overlap(ipoint) = overlap_x * overlap_y * overlap_z * fact_pp(ipoint)
|
||||||
|
Loading…
Reference in New Issue
Block a user