mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-08 20:33:20 +01:00
updated DOC for correct normalization of two-rdms
This commit is contained in:
parent
c95f1ee0ac
commit
8515fcf93f
@ -4,21 +4,18 @@
|
||||
BEGIN_DOC
|
||||
! 12 12
|
||||
! 1 2 1 2 == <ij|kl>
|
||||
! act_2_rdm_ab_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of alpha/beta electrons
|
||||
! act_2_rdm_ab_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of alpha/beta+beta/alpha electrons
|
||||
!
|
||||
! <Psi_{istate}| a^{\dagger}_{i \alpha} a^{\dagger}_{j \beta} a_{l \beta} a_{k \alpha} |Psi_{istate}>
|
||||
!
|
||||
! + <Psi_{istate}| a^{\dagger}_{i \beta} a^{\dagger}_{j \alpha} a_{l \alpha} a_{k \beta} |Psi_{istate}>
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha}^{act} * N_{\beta}^{act}
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha}^{act} * N_{\beta}^{act} * 2
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is alpha, electron 2 is beta
|
||||
!
|
||||
! act_2_rdm_ab_mo(i,j,k,l,istate) = i:alpha, j:beta, j:alpha, l:beta
|
||||
!
|
||||
! Therefore you don't necessary have symmetry between electron 1 and 2
|
||||
END_DOC
|
||||
integer :: ispin
|
||||
double precision :: wall_1, wall_2
|
||||
@ -57,7 +54,7 @@
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha}^{act} * (N_{\alpha}^{act} - 1)/2
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha}^{act} * (N_{\alpha}^{act} - 1)
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
END_DOC
|
||||
@ -98,7 +95,7 @@
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\beta}^{act} * (N_{\beta}^{act} - 1)/2
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\beta}^{act} * (N_{\beta}^{act} - 1)
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
END_DOC
|
||||
@ -138,7 +135,7 @@
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec}^{act} * (N_{elec}^{act} - 1)/2
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec}^{act} * (N_{elec}^{act} - 1)
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
END_DOC
|
||||
|
@ -4,22 +4,18 @@
|
||||
full_occ_2_rdm_ab_mo = 0.d0
|
||||
integer :: i,j,k,l,iorb,jorb,korb,lorb,istate
|
||||
BEGIN_DOC
|
||||
! full_occ_2_rdm_ab_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of alpha/beta electrons
|
||||
! full_occ_2_rdm_ab_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of alpha/beta + beta/alpha electrons
|
||||
!
|
||||
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \beta} a_{l \beta} a_{k \alpha} |Psi>
|
||||
!
|
||||
! + <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \alpha} a_{l \alpha} a_{k \beta} |Psi>
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * N_{\beta}
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * N_{\beta} * 2
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is ALPHA, electron 2 is BETA
|
||||
!
|
||||
! full_occ_2_rdm_ab_mo(i,j,k,l,istate) = i:alpha, j:beta, j:alpha, l:beta
|
||||
!
|
||||
! Therefore you don't necessary have symmetry between electron 1 and 2
|
||||
!
|
||||
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO ARE SET TO ZERO
|
||||
END_DOC
|
||||
full_occ_2_rdm_ab_mo = 0.d0
|
||||
@ -139,7 +135,7 @@
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * (N_{\alpha} - 1)/2
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * (N_{\alpha} - 1)
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
@ -237,7 +233,7 @@
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\beta} * (N_{\beta} - 1)/2
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\beta} * (N_{\beta} - 1)
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
@ -335,14 +331,14 @@
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec} * (N_{elec} - 1)/2
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec} * (N_{elec} - 1)
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
|
||||
! The two-electron energy of each state can be computed as:
|
||||
!
|
||||
! \sum_{i,j,k,l = 1, n_core_inact_act_orb} full_occ_2_rdm_spin_trace_mo(i,j,k,l,istate) * < ii jj | kk ll >
|
||||
! \sum_{i,j,k,l = 1, n_core_inact_act_orb} full_occ_2_rdm_spin_trace_mo(i,j,k,l,istate) * 1/2 * < ii jj | kk ll >
|
||||
!
|
||||
! with ii = list_core_inact_act(i), jj = list_core_inact_act(j), kk = list_core_inact_act(k), ll = list_core_inact_act(l)
|
||||
END_DOC
|
||||
|
@ -2,21 +2,16 @@
|
||||
implicit none
|
||||
double precision, allocatable :: state_weights(:)
|
||||
BEGIN_DOC
|
||||
! state_av_act_2_rdm_ab_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-beta electron pairs
|
||||
! state_av_act_2_rdm_ab_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha/beta+beta/alpha electron pairs
|
||||
!
|
||||
! = \sum_{istate} w(istate) * <Psi_{istate}| a^{\dagger}_{i,alpha} a^{\dagger}_{j,beta} a_{l,beta} a_{k,alpha} |Psi_{istate}>
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha}^{act} * N_{\beta}^{act}
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha}^{act} * N_{\beta}^{act} * 2
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is alpha, electron 2 is beta
|
||||
!
|
||||
! state_av_act_2_rdm_ab_mo(i,j,k,l) = i:alpha, j:beta, j:alpha, l:beta
|
||||
!
|
||||
! Therefore you don't necessary have symmetry between electron 1 and 2
|
||||
END_DOC
|
||||
allocate(state_weights(N_states))
|
||||
state_weights = state_average_weight
|
||||
@ -34,6 +29,7 @@
|
||||
call orb_range_2_rdm_state_av_openmp(state_av_act_2_rdm_ab_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
||||
call wall_time(wall_2)
|
||||
print*,'Wall time to provide state_av_act_2_rdm_ab_mo',wall_2 - wall_1
|
||||
! factor 2 to have the correct normalization factor
|
||||
state_av_act_2_rdm_ab_mo *= 2.d0
|
||||
|
||||
END_PROVIDER
|
||||
@ -64,6 +60,7 @@
|
||||
call orb_range_2_rdm_state_av_openmp(state_av_act_2_rdm_aa_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
||||
call wall_time(wall_2)
|
||||
print*,'Wall time to provide state_av_act_2_rdm_aa_mo',wall_2 - wall_1
|
||||
! factor 2 to have the correct normalization factor
|
||||
state_av_act_2_rdm_aa_mo *= 2.d0
|
||||
|
||||
END_PROVIDER
|
||||
@ -93,6 +90,7 @@
|
||||
call orb_range_2_rdm_state_av_openmp(state_av_act_2_rdm_bb_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
||||
call wall_time(wall_2)
|
||||
print*,'Wall time to provide state_av_act_2_rdm_bb_mo',wall_2 - wall_1
|
||||
! factor 2 to have the correct normalization factor
|
||||
state_av_act_2_rdm_bb_mo *= 2.d0
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -4,22 +4,16 @@
|
||||
state_av_full_occ_2_rdm_ab_mo = 0.d0
|
||||
integer :: i,j,k,l,iorb,jorb,korb,lorb
|
||||
BEGIN_DOC
|
||||
! state_av_full_occ_2_rdm_ab_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of alpha/beta electrons
|
||||
! state_av_full_occ_2_rdm_ab_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of alpha/beta + beta/alpha electrons
|
||||
!
|
||||
! = \sum_{istate} w(istate) * <Psi_{istate}| a^{\dagger}_{i,alpha} a^{\dagger}_{j,beta} a_{l,beta} a_{k,alpha} |Psi_{istate}>
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * N_{\beta}
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * N_{\beta} * 2
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is ALPHA, electron 2 is BETA
|
||||
!
|
||||
! state_av_full_occ_2_rdm_ab_mo(i,j,k,l) = i:alpha, j:beta, j:alpha, l:beta
|
||||
!
|
||||
! Therefore you don't necessary have symmetry between electron 1 and 2
|
||||
!
|
||||
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
|
||||
END_DOC
|
||||
state_av_full_occ_2_rdm_ab_mo = 0.d0
|
||||
@ -135,7 +129,7 @@
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * (N_{\alpha} - 1)/2
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\alpha} * (N_{\alpha} - 1)
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
@ -231,7 +225,7 @@
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\beta} * (N_{\beta} - 1)/2
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{\beta} * (N_{\beta} - 1)
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
@ -328,7 +322,7 @@
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
|
||||
!
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec} * (N_{elec} - 1)/2
|
||||
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec} * (N_{elec} - 1)
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
|
Loading…
Reference in New Issue
Block a user