10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-10 21:18:24 +01:00

working on molecule converter

This commit is contained in:
Kevin Gasperich 2020-04-24 09:48:19 -05:00
parent 12e9c88d71
commit 8479bed7a5

View File

@ -650,7 +650,8 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
qph5['mo_basis'].attrs['mo_num']=Nk*nmo qph5['mo_basis'].attrs['mo_num']=Nk*nmo
qph5['ao_basis'].attrs['ao_num']=Nk*nao qph5['ao_basis'].attrs['ao_num']=Nk*nao
qph5['ao_basis'].attrs['ao_basis']=mf.cell.basis #qph5['ao_basis'].attrs['ao_basis']=mf.cell.basis
qph5['ao_basis'].attrs['ao_basis']="dummy basis"
qph5.create_dataset('ao_basis/ao_nucl',data=Nk*ao_nucl) qph5.create_dataset('ao_basis/ao_nucl',data=Nk*ao_nucl)
@ -848,3 +849,175 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
if (print_mo_ints_bi): if (print_mo_ints_bi):
print_mo_bi(mf,kconserv,'W.mo.qp',cas_idx,bielec_int_threshold) print_mo_bi(mf,kconserv,'W.mo.qp',cas_idx,bielec_int_threshold)
return return
def xyzcount(s):
return list(map(s.count,['x','y','z']))
def pyscf2QP2_mol(mf, cas_idx=None, int_threshold = 1E-8,
qph5path = 'qpdat.h5',
norm='sp',
print_debug=False):
'''
cas_idx = List of active MOs. If not specified all MOs are actives
int_threshold = The integral will be not printed in they are bellow that
norm should be one of 'sp', 'all', or None
'''
import h5py
mol = mf.mol
nao_c = mol.nao_cart()
mo_coef_threshold = int_threshold
ovlp_threshold = int_threshold
kin_threshold = int_threshold
ne_threshold = int_threshold
bielec_int_threshold = int_threshold
thresh_mono = int_threshold
# qph5path = 'qpdat.h5'
# create hdf5 file, delete old data if exists
with h5py.File(qph5path,'w') as qph5:
qph5.create_group('nuclei')
qph5.create_group('electrons')
qph5.create_group('ao_basis')
qph5.create_group('mo_basis')
if mf.mol.cart:
mo_coeff = mf.mo_coeff
else:
c2s = mol.cart2sph_coeff(normalized=norm)
#c2s = mol.cart2sph_coeff(normalized='sp')
#c2s = mol.cart2sph_coeff(normalized='all')
#c2s = mol.cart2sph_coeff(normalized=None)
mo_coeff = np.dot(c2s,mf.mo_coeff)
# Mo_coeff actif
mo_c = np.array([c[:,cas_idx] for c in mo_coeff] if cas_idx is not None else mo_coeff)
e_c = np.array([e[cas_idx] for e in mf.mo_energy] if cas_idx is not None else mf.mo_energy)
nao, nmo = mo_c.shape
print("n active MOs", nmo)
print("n AOs", nao)
assert nao==nao_c, "wrong number of AOs"
##########################################
# #
# Nuclei #
# #
##########################################
natom = mol.natm
print('n_atom', natom)
atom_xyz = mol.atom_coords(unit='Bohr')
#if not(mol.unit.startswith(('B','b','au','AU'))):
# from pyscf.data.nist import BOHR
# atom_xyz /= BOHR # always convert to au
with h5py.File(qph5path,'a') as qph5:
qph5['nuclei'].attrs['nucl_num']=natom
qph5.create_dataset('nuclei/nucl_coord',data=atom_xyz)
qph5.create_dataset('nuclei/nucl_charge',data=mol.atom_charges())
strtype=h5py.special_dtype(vlen=str)
atom_dset=qph5.create_dataset('nuclei/nucl_label',(natom,),dtype=strtype)
for i in range(natom):
atom_dset[i] = mol.atom_pure_symbol(i)
##########################################
# #
# Basis #
# #
##########################################
# nucleus on which each AO is centered
ao_nucl=[i[0] for i in mf.mol.ao_labels(fmt=False,base=1)]
nprim_max = 0
for iatom, (sh0,sh1,ao0,ao1) in enumerate(mol.aoslice_by_atom()):
for ib in range(sh0,sh1): # sets of contracted exponents
nprim = mol.bas_nprim(ib)
if (nprim > nprim_max):
nprim_max = nprim
qp_prim_num = np.zeros((nao),dtype=int)
qp_coef = np.zeros((nao,nprim_max))
qp_expo = np.zeros((nao,nprim_max))
qp_nucl = np.zeros((nao),dtype=int)
qp_pwr = np.zeros((nao,3),dtype=int)
clabels = mol.cart_labels(fmt=False)
tmp_idx=0
for iatom, (sh0,sh1,ao0,ao1) in enumerate(mol.aoslice_by_atom()):
# shell start,end; AO start,end (sph or cart) for each atom
for ib in range(sh0,sh1): # sets of contracted exponents
l = mol.bas_angular(ib) # angular momentum
nprim = mol.bas_nprim(ib) # numer of primitives
es = mol.bas_exp(ib) # exponents
cs = mol.bas_ctr_coeff(ib) # coeffs
nctr = mol.bas_nctr(ib) # number of contractions
print(iatom,ib,l,nprim,nctr,tmp_idx)
for ic in range(nctr): # sets of contraction coeffs
for nfunc in range(((l+1)*(l+2))//2): # always use cart for qp ao basis?
qp_expo[tmp_idx,:nprim] = es[:]
qp_coef[tmp_idx,:nprim] = cs[:,ic]
qp_nucl[tmp_idx] = iatom + 1
qp_pwr[tmp_idx,:] = xyzcount(clabels[tmp_idx][3])
qp_prim_num[tmp_idx] = nprim
tmp_idx += 1
with h5py.File(qph5path,'a') as qph5:
qph5['mo_basis'].attrs['mo_num']=nmo
qph5['ao_basis'].attrs['ao_num']=nao
#qph5['ao_basis'].attrs['ao_basis']=mf.cell.basis
qph5['ao_basis'].attrs['ao_basis']="dummy basis"
qph5.create_dataset('ao_basis/ao_nucl',data=qp_nucl)
qph5.create_dataset('ao_basis/ao_prim_num',data=qp_prim_num)
qph5.create_dataset('ao_basis/ao_expo',data=qp_expo.T)
qph5.create_dataset('ao_basis/ao_coef',data=qp_coef.T)
qph5.create_dataset('ao_basis/ao_power',data=qp_pwr.T)
##########################################
# #
# Electrons #
# #
##########################################
nelec = mol.nelectron
neleca,nelecb = mol.nelec
print('num_elec', nelec)
with h5py.File(qph5path,'a') as qph5:
qph5['electrons'].attrs['elec_alpha_num']=neleca
qph5['electrons'].attrs['elec_beta_num']=nelecb
##########################################
# #
# Nuclear Repulsion #
# #
##########################################
e_nuc = mol.energy_nuc()
print('nucl_repul', e_nuc)
with h5py.File(qph5path,'a') as qph5:
qph5['nuclei'].attrs['nuclear_repulsion']=e_nuc
##########################################
# #
# MO Coef #
# #
##########################################
with h5py.File(qph5path,'a') as qph5:
qph5.create_dataset('mo_basis/mo_coef',data=mo_c.T)
return