mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-11 21:48:25 +01:00
working on kpts
This commit is contained in:
parent
92294cf973
commit
84531d8021
@ -12,7 +12,7 @@
|
||||
integer :: ibegin,j,k
|
||||
integer :: prev
|
||||
prev = 0
|
||||
ao_cart_to_sphe_coefi_kpts(:,:) = (0.d0,0.d0)
|
||||
ao_cart_to_sphe_coef_kpts(:,:) = (0.d0,0.d0)
|
||||
! Assume order provided by ao_power_index
|
||||
i = 1
|
||||
ao_cart_to_sphe_num_per_kpt = 0
|
||||
@ -79,13 +79,13 @@ BEGIN_PROVIDER [ complex*16, ao_cart_to_sphe_overlap_kpts, (ao_cart_to_sphe_num_
|
||||
|
||||
call zgemm('T','N',ao_cart_to_sphe_num_per_kpt,ao_num_per_kpt,ao_num_per_kpt, (1.d0,0.d0), &
|
||||
ao_cart_to_sphe_coef_kpts,size(ao_cart_to_sphe_coef_kpts,1), &
|
||||
ao_overlap_kpts(1,1,k),size(ao_overlap_kpts,1), (0.d0,0.d0), &
|
||||
ao_overlap_kpts(:,:,k),size(ao_overlap_kpts,1), (0.d0,0.d0), &
|
||||
S, size(S,1))
|
||||
|
||||
call zgemm('N','N',ao_cart_to_sphe_num_per_kpt,ao_cart_to_sphe_num_per_kpt,ao_num_per_kpt, (1.d0,0.d0), &
|
||||
S, size(S,1), &
|
||||
ao_cart_to_sphe_coef_kpts,size(ao_cart_to_sphe_coef_kpts,1), (0.d0,0.d0), &
|
||||
ao_cart_to_sphe_overlap_kpts(1,1,k),size(ao_cart_to_sphe_overlap_kpts,1))
|
||||
ao_cart_to_sphe_overlap_kpts(:,:,k),size(ao_cart_to_sphe_overlap_kpts,1))
|
||||
enddo
|
||||
deallocate(S)
|
||||
|
||||
@ -106,7 +106,7 @@ BEGIN_PROVIDER [ complex*16, ao_ortho_cano_coef_inv_kpts, (ao_num_per_kpt,ao_num
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, ao_ortho_canonical_coef_kpts, (ao_num_per_kpt,ao_num_per_kpt)]
|
||||
BEGIN_PROVIDER [ complex*16, ao_ortho_canonical_coef_kpts, (ao_num_per_kpt,ao_num_per_kpt,kpt_num)]
|
||||
&BEGIN_PROVIDER [ integer, ao_ortho_canonical_num_per_kpt, (kpt_num) ]
|
||||
&BEGIN_PROVIDER [ integer, ao_ortho_canonical_num_per_kpt_max ]
|
||||
implicit none
|
||||
@ -155,14 +155,14 @@ END_PROVIDER
|
||||
ao_cart_to_sphe_num_per_kpt, S, size(S,1), ao_ortho_canonical_num_per_kpt(k))
|
||||
|
||||
call zgemm('N','N', ao_num_per_kpt, ao_ortho_canonical_num_per_kpt(k), ao_cart_to_sphe_num_per_kpt, (1.d0,0.d0), &
|
||||
ao_cart_to_sphe_coef_kpts(:,:,k), size(ao_cart_to_sphe_coef_kpts,1), &
|
||||
ao_cart_to_sphe_coef_kpts, size(ao_cart_to_sphe_coef_kpts,1), &
|
||||
S, size(S,1), &
|
||||
(0.d0,0.d0), ao_ortho_canonical_coef_kpts(:,:,k), size(ao_ortho_canonical_coef_kpts,1))
|
||||
enddo
|
||||
|
||||
deallocate(S)
|
||||
endif
|
||||
ao_ortho_canonical_num_per_kpt_max = max(ao_ortho_canonical_num_per_kpt)
|
||||
ao_ortho_canonical_num_per_kpt_max = maxval(ao_ortho_canonical_num_per_kpt)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [complex*16, ao_ortho_canonical_overlap_kpts, (ao_ortho_canonical_num_per_kpt_max,ao_ortho_canonical_num_per_kpt_max,kpt_num)]
|
||||
@ -176,7 +176,7 @@ BEGIN_PROVIDER [complex*16, ao_ortho_canonical_overlap_kpts, (ao_ortho_canonical
|
||||
do k=1,kpt_num
|
||||
do j=1, ao_ortho_canonical_num_per_kpt_max
|
||||
do i=1, ao_ortho_canonical_num_per_kpt_max
|
||||
ao_ortho_canonical_overlap_complex(i,j,k) = (0.d0,0.d0)
|
||||
ao_ortho_canonical_overlap_kpts(i,j,k) = (0.d0,0.d0)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
@ -413,3 +413,444 @@ END_PROVIDER
|
||||
print *, list_inact_act(1:n_inact_act_orb)
|
||||
END_PROVIDER
|
||||
|
||||
!============================================!
|
||||
! !
|
||||
! kpts !
|
||||
! !
|
||||
!============================================!
|
||||
BEGIN_PROVIDER [ integer, n_core_orb_kpts, (kpt_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of core MOs
|
||||
END_DOC
|
||||
integer :: i,k,kshift
|
||||
|
||||
do k=1,kpt_num
|
||||
n_core_orb_kpts(k) = 0
|
||||
kshift = (1-k)*mo_num_per_kpt
|
||||
do i = 1, mo_num_per_kpt
|
||||
if(mo_class(i+kshift) == 'Core')then
|
||||
n_core_orb_kpts(k) += 1
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! call write_int(6,n_core_orb, 'Number of core MOs')
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_inact_orb_kpts, (kpt_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of inactive MOs
|
||||
END_DOC
|
||||
integer :: i,k,kshift
|
||||
|
||||
do k=1,kpt_num
|
||||
n_inact_orb_kpts(k) = 0
|
||||
kshift = (1-k)*mo_num_per_kpt
|
||||
do i = 1, mo_num_per_kpt
|
||||
if(mo_class(i+kshift) == 'Inactive')then
|
||||
n_inact_orb_kpts(k) += 1
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! call write_int(6,n_inact_orb, 'Number of inactive MOs')
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_act_orb_kpts, (kpt_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of active MOs
|
||||
END_DOC
|
||||
integer :: i,k,kshift
|
||||
|
||||
do k=1,kpt_num
|
||||
n_act_orb_kpts(k) = 0
|
||||
kshift = (1-k)*mo_num_per_kpt
|
||||
do i = 1, mo_num_per_kpt
|
||||
if(mo_class(i+kshift) == 'Active')then
|
||||
n_act_orb_kpts(k) += 1
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! call write_int(6,n_act_orb, 'Number of active MOs')
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_virt_orb_kpts, (kpt_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of virtual MOs
|
||||
END_DOC
|
||||
integer :: i,k,kshift
|
||||
|
||||
do k=1,kpt_num
|
||||
n_virt_orb_kpts(k) = 0
|
||||
kshift = (1-k)*mo_num_per_kpt
|
||||
do i = 1, mo_num_per_kpt
|
||||
if(mo_class(i+kshift) == 'Virtual')then
|
||||
n_virt_orb_kpts(k) += 1
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! call write_int(6,n_virt_orb, 'Number of virtual MOs')
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_del_orb_kpts, (kpt_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of deleted MOs
|
||||
END_DOC
|
||||
integer :: i,k,kshift
|
||||
|
||||
do k=1,kpt_num
|
||||
n_del_orb_kpts(k) = 0
|
||||
kshift = (1-k)*mo_num_per_kpt
|
||||
do i = 1, mo_num_per_kpt
|
||||
if(mo_class(i+kshift) == 'Deleted')then
|
||||
n_del_orb_kpts(k) += 1
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! call write_int(6,n_del_orb, 'Number of deleted MOs')
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_core_inact_orb_kpts, (kpt_num) ]
|
||||
!todo: finish implementation for kpts (will need kpt_mask)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! n_core + n_inact
|
||||
END_DOC
|
||||
integer :: i,k
|
||||
do k=1,kpt_num
|
||||
n_core_inact_orb_kpts(k) = 0
|
||||
do i = 1, N_int
|
||||
n_core_inact_orb_kpts(k) += popcnt(iand(kpt_mask(i,k),reunion_of_core_inact_bitmask(i,1)))
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_inact_act_orb_kpts, (kpt_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! n_inact + n_act
|
||||
END_DOC
|
||||
integer :: k
|
||||
do k=1,kpt_num
|
||||
n_inact_act_orb_kpts(k) = (n_inact_orb_kpts(k)+n_act_orb_kpts(k))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_core_orb_kpts]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_core.
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_core_orb_kpts = max(maxval(n_core_orb_kpts),1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_inact_orb_kpts]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_inact.
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_inact_orb_kpts = max(maxval(n_inact_orb_kpts),1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_core_inact_orb_kpts]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_core.
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_core_inact_orb_kpts = max(maxval(n_core_inact_orb_kpts),1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_act_orb_kpts]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_act.
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_act_orb_kpts = max(maxval(n_act_orb_kpts),1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_virt_orb_kpts]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_virt.
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_virt_orb_kpts = max(maxval(n_virt_orb_kpts),1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_del_orb_kpts]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_del.
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_del_orb_kpts = max(maxval(n_del_orb_kpts),1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_core_inact_act_orb_kpts, (kpt_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of core inactive and active MOs
|
||||
END_DOC
|
||||
integer :: k
|
||||
do k=1,kpt_num
|
||||
n_core_inact_act_orb_kpts(k) = (n_core_orb_kpts(k) + n_inact_orb_kpts(k) + n_act_orb_kpts(k))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
!todo: finish below for kpts
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer(bit_kind), core_bitmask , (N_int,2) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Bitmask identifying the core MOs
|
||||
! END_DOC
|
||||
! core_bitmask = 0_bit_kind
|
||||
! if(n_core_orb > 0)then
|
||||
! call list_to_bitstring( core_bitmask(1,1), list_core, n_core_orb, N_int)
|
||||
! call list_to_bitstring( core_bitmask(1,2), list_core, n_core_orb, N_int)
|
||||
! endif
|
||||
! END_PROVIDER
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer(bit_kind), inact_bitmask, (N_int,2) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Bitmask identifying the inactive MOs
|
||||
! END_DOC
|
||||
! inact_bitmask = 0_bit_kind
|
||||
! if(n_inact_orb > 0)then
|
||||
! call list_to_bitstring( inact_bitmask(1,1), list_inact, n_inact_orb, N_int)
|
||||
! call list_to_bitstring( inact_bitmask(1,2), list_inact, n_inact_orb, N_int)
|
||||
! endif
|
||||
! END_PROVIDER
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer(bit_kind), act_bitmask , (N_int,2) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Bitmask identifying the active MOs
|
||||
! END_DOC
|
||||
! act_bitmask = 0_bit_kind
|
||||
! if(n_act_orb > 0)then
|
||||
! call list_to_bitstring( act_bitmask(1,1), list_act, n_act_orb, N_int)
|
||||
! call list_to_bitstring( act_bitmask(1,2), list_act, n_act_orb, N_int)
|
||||
! endif
|
||||
! END_PROVIDER
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer(bit_kind), virt_bitmask , (N_int,2) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Bitmask identifying the virtual MOs
|
||||
! END_DOC
|
||||
! virt_bitmask = 0_bit_kind
|
||||
! if(n_virt_orb > 0)then
|
||||
! call list_to_bitstring( virt_bitmask(1,1), list_virt, n_virt_orb, N_int)
|
||||
! call list_to_bitstring( virt_bitmask(1,2), list_virt, n_virt_orb, N_int)
|
||||
! endif
|
||||
! END_PROVIDER
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer(bit_kind), del_bitmask , (N_int,2) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Bitmask identifying the deleted MOs
|
||||
! END_DOC
|
||||
!
|
||||
! del_bitmask = 0_bit_kind
|
||||
!
|
||||
! if(n_del_orb > 0)then
|
||||
! call list_to_bitstring( del_bitmask(1,1), list_del, n_del_orb, N_int)
|
||||
! call list_to_bitstring( del_bitmask(1,2), list_del, n_del_orb, N_int)
|
||||
! endif
|
||||
!
|
||||
! END_PROVIDER
|
||||
!
|
||||
!
|
||||
!
|
||||
!
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer, list_core , (dim_list_core_orb) ]
|
||||
!&BEGIN_PROVIDER [ integer, list_core_reverse, (mo_num) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! List of MO indices which are in the core.
|
||||
! END_DOC
|
||||
! integer :: i, n
|
||||
! list_core = 0
|
||||
! list_core_reverse = 0
|
||||
!
|
||||
! n=0
|
||||
! do i = 1, mo_num
|
||||
! if(mo_class(i) == 'Core')then
|
||||
! n += 1
|
||||
! list_core(n) = i
|
||||
! list_core_reverse(i) = n
|
||||
! endif
|
||||
! enddo
|
||||
! print *, 'Core MOs:'
|
||||
! print *, list_core(1:n_core_orb)
|
||||
!
|
||||
!END_PROVIDER
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer, list_inact , (dim_list_inact_orb) ]
|
||||
!&BEGIN_PROVIDER [ integer, list_inact_reverse, (mo_num) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! List of MO indices which are inactive.
|
||||
! END_DOC
|
||||
! integer :: i, n
|
||||
! list_inact = 0
|
||||
! list_inact_reverse = 0
|
||||
!
|
||||
! n=0
|
||||
! do i = 1, mo_num
|
||||
! if (mo_class(i) == 'Inactive')then
|
||||
! n += 1
|
||||
! list_inact(n) = i
|
||||
! list_inact_reverse(i) = n
|
||||
! endif
|
||||
! enddo
|
||||
! print *, 'Inactive MOs:'
|
||||
! print *, list_inact(1:n_inact_orb)
|
||||
!
|
||||
!END_PROVIDER
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer, list_virt , (dim_list_virt_orb) ]
|
||||
!&BEGIN_PROVIDER [ integer, list_virt_reverse, (mo_num) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! List of MO indices which are virtual
|
||||
! END_DOC
|
||||
! integer :: i, n
|
||||
! list_virt = 0
|
||||
! list_virt_reverse = 0
|
||||
!
|
||||
! n=0
|
||||
! do i = 1, mo_num
|
||||
! if (mo_class(i) == 'Virtual')then
|
||||
! n += 1
|
||||
! list_virt(n) = i
|
||||
! list_virt_reverse(i) = n
|
||||
! endif
|
||||
! enddo
|
||||
! print *, 'Virtual MOs:'
|
||||
! print *, list_virt(1:n_virt_orb)
|
||||
!
|
||||
!END_PROVIDER
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer, list_del , (dim_list_del_orb) ]
|
||||
!&BEGIN_PROVIDER [ integer, list_del_reverse, (mo_num) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! List of MO indices which are deleted.
|
||||
! END_DOC
|
||||
! integer :: i, n
|
||||
! list_del = 0
|
||||
! list_del_reverse = 0
|
||||
!
|
||||
! n=0
|
||||
! do i = 1, mo_num
|
||||
! if (mo_class(i) == 'Deleted')then
|
||||
! n += 1
|
||||
! list_del(n) = i
|
||||
! list_del_reverse(i) = n
|
||||
! endif
|
||||
! enddo
|
||||
! print *, 'Deleted MOs:'
|
||||
! print *, list_del(1:n_del_orb)
|
||||
!
|
||||
!END_PROVIDER
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer, list_act , (dim_list_act_orb) ]
|
||||
!&BEGIN_PROVIDER [ integer, list_act_reverse, (mo_num) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! List of MO indices which are in the active.
|
||||
! END_DOC
|
||||
! integer :: i, n
|
||||
! list_act = 0
|
||||
! list_act_reverse = 0
|
||||
!
|
||||
! n=0
|
||||
! do i = 1, mo_num
|
||||
! if (mo_class(i) == 'Active')then
|
||||
! n += 1
|
||||
! list_act(n) = i
|
||||
! list_act_reverse(i) = n
|
||||
! endif
|
||||
! enddo
|
||||
! print *, 'Active MOs:'
|
||||
! print *, list_act(1:n_act_orb)
|
||||
!
|
||||
!END_PROVIDER
|
||||
!
|
||||
!
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer, list_core_inact , (dim_list_core_inact_orb) ]
|
||||
!&BEGIN_PROVIDER [ integer, list_core_inact_reverse, (mo_num) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! List of indices of the core and inactive MOs
|
||||
! END_DOC
|
||||
! integer :: i,itmp
|
||||
! call bitstring_to_list(reunion_of_core_inact_bitmask(1,1), list_core_inact, itmp, N_int)
|
||||
! list_core_inact_reverse = 0
|
||||
! ASSERT (itmp == n_core_inact_orb)
|
||||
! do i = 1, n_core_inact_orb
|
||||
! list_core_inact_reverse(list_core_inact(i)) = i
|
||||
! enddo
|
||||
! print *, 'Core and Inactive MOs:'
|
||||
! print *, list_core_inact(1:n_core_inact_orb)
|
||||
!END_PROVIDER
|
||||
!
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer, list_core_inact_act , (n_core_inact_act_orb) ]
|
||||
!&BEGIN_PROVIDER [ integer, list_core_inact_act_reverse, (mo_num) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! List of indices of the core inactive and active MOs
|
||||
! END_DOC
|
||||
! integer :: i,itmp
|
||||
! call bitstring_to_list(reunion_of_core_inact_act_bitmask(1,1), list_core_inact_act, itmp, N_int)
|
||||
! list_core_inact_act_reverse = 0
|
||||
! ASSERT (itmp == n_core_inact_act_orb)
|
||||
! do i = 1, n_core_inact_act_orb
|
||||
! list_core_inact_act_reverse(list_core_inact_act(i)) = i
|
||||
! enddo
|
||||
! print *, 'Core, Inactive and Active MOs:'
|
||||
! print *, list_core_inact_act(1:n_core_inact_act_orb)
|
||||
!END_PROVIDER
|
||||
!
|
||||
!
|
||||
! BEGIN_PROVIDER [ integer, list_inact_act , (n_inact_act_orb) ]
|
||||
!&BEGIN_PROVIDER [ integer, list_inact_act_reverse, (mo_num) ]
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! List of indices of the inactive and active MOs
|
||||
! END_DOC
|
||||
! integer :: i,itmp
|
||||
! call bitstring_to_list(reunion_of_inact_act_bitmask(1,1), list_inact_act, itmp, N_int)
|
||||
! list_inact_act_reverse = 0
|
||||
! ASSERT (itmp == n_inact_act_orb)
|
||||
! do i = 1, n_inact_act_orb
|
||||
! list_inact_act_reverse(list_inact_act(i)) = i
|
||||
! enddo
|
||||
! print *, 'Inactive and Active MOs:'
|
||||
! print *, list_inact_act(1:n_inact_act_orb)
|
||||
!END_PROVIDER
|
||||
!
|
||||
|
@ -46,21 +46,25 @@ subroutine create_guess
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename
|
||||
if (is_complex) then
|
||||
call ezfio_has_mo_basis_mo_coef_complex(exists)
|
||||
! call ezfio_has_mo_basis_mo_coef_complex(exists)
|
||||
call ezfio_has_mo_basis_mo_coef_kpts(exists)
|
||||
else
|
||||
call ezfio_has_mo_basis_mo_coef(exists)
|
||||
endif
|
||||
if (.not.exists) then
|
||||
if (mo_guess_type == "HCore") then
|
||||
if (is_complex) then
|
||||
mo_coef_complex = ao_ortho_lowdin_coef_complex
|
||||
TOUCH mo_coef_complex
|
||||
!mo_coef_complex = ao_ortho_lowdin_coef_complex
|
||||
mo_coef_kpts = ao_ortho_lowdin_coef_kpts
|
||||
TOUCH mo_coef_kpts
|
||||
mo_label = 'Guess'
|
||||
call mo_as_eigvectors_of_mo_matrix_complex(mo_one_e_integrals_complex, &
|
||||
size(mo_one_e_integrals_complex,1), &
|
||||
size(mo_one_e_integrals_complex,2), &
|
||||
!call mo_as_eigvectors_of_mo_matrix_complex(mo_one_e_integrals_kpts, &
|
||||
call mo_as_eigvectors_of_mo_matrix_kpts(mo_one_e_integrals_kpts, &
|
||||
size(mo_one_e_integrals_kpts,1), &
|
||||
size(mo_one_e_integrals_kpts,2), &
|
||||
size(mo_one_e_integrals_kpts,3), &
|
||||
mo_label,1,.false.)
|
||||
SOFT_TOUCH mo_coef_complex mo_label
|
||||
SOFT_TOUCH mo_coef_kpts mo_label
|
||||
else
|
||||
mo_coef = ao_ortho_lowdin_coef
|
||||
TOUCH mo_coef
|
||||
@ -73,7 +77,8 @@ subroutine create_guess
|
||||
endif
|
||||
else if (mo_guess_type == "Huckel") then
|
||||
if (is_complex) then
|
||||
call huckel_guess_complex
|
||||
!call huckel_guess_complex
|
||||
call huckel_guess_kpts
|
||||
else
|
||||
call huckel_guess
|
||||
endif
|
||||
|
@ -93,6 +93,7 @@ BEGIN_PROVIDER [ complex*16, mo_coef_complex_kpts, (ao_num_per_kpt, mo_num_per_k
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, mo_coef_transp_complex, (mo_num,ao_num) ]
|
||||
&BEGIN_PROVIDER [ complex*16, mo_coef_transp_complex_conjg, (mo_num,ao_num) ]
|
||||
implicit none
|
||||
@ -198,3 +199,276 @@ subroutine ao_ortho_cano_to_ao_cplx(A_ao,LDA_ao,A,LDA)
|
||||
deallocate(T)
|
||||
end
|
||||
|
||||
!============================================!
|
||||
! !
|
||||
! kpts !
|
||||
! !
|
||||
!============================================!
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, mo_coef_kpts, (ao_num_per_kpt, mo_num_per_kpt, kpt_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Molecular orbital coefficients on |AO| basis set
|
||||
!
|
||||
! mo_coef_kpts(i,j,k) = coefficient of the i-th |AO| on the jth |MO| in kth kpt
|
||||
!
|
||||
! mo_label : Label characterizing the |MOs| (local, canonical, natural, etc)
|
||||
END_DOC
|
||||
integer :: i, j, k
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename
|
||||
|
||||
if (mpi_master) then
|
||||
! Coefs
|
||||
call ezfio_has_mo_basis_mo_coef_complex(exists)
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST(exists, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read mo_coef_kpts with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
if (exists) then
|
||||
if (mpi_master) then
|
||||
call ezfio_get_mo_basis_mo_coef_kpts(mo_coef_kpts)
|
||||
write(*,*) 'Read mo_coef_kpts'
|
||||
endif
|
||||
IRP_IF MPI
|
||||
call MPI_BCAST( mo_coef_kpts, kpt_num*mo_num_per_kpt*ao_num_per_kpt, MPI_DOUBLE_COMPLEX, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read mo_coef_kpts with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
else
|
||||
! Orthonormalized AO basis
|
||||
|
||||
do k=1,kpt_num
|
||||
do i=1,mo_num_per_kpt
|
||||
do j=1,ao_num_per_kpt
|
||||
mo_coef_kpts(j,i,k) = ao_ortho_canonical_coef_kpts(j,i,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, mo_coef_in_ao_ortho_basis_kpts, (ao_num_per_kpt, mo_num_per_kpt, kpt_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! |MO| coefficients in orthogonalized |AO| basis
|
||||
!
|
||||
! $C^{-1}.C_{mo}$
|
||||
END_DOC
|
||||
integer :: k
|
||||
do k=1,kpt_num
|
||||
|
||||
call zgemm('N','N',ao_num_per_kpt,mo_num_per_kpt,ao_num_per_kpt,(1.d0,0.d0), &
|
||||
ao_ortho_cano_coef_inv_kpts(:,:,k), size(ao_ortho_cano_coef_inv_kpts,1),&
|
||||
mo_coef_kpts(:,:,k), size(mo_coef_kpts,1), (0.d0,0.d0), &
|
||||
mo_coef_in_ao_ortho_basis_kpts(:,:,k), size(mo_coef_in_ao_ortho_basis_kpts,1))
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, mo_coef_transp_kpts, (mo_num_per_kpt,ao_num_per_kpt,kpt_num) ]
|
||||
&BEGIN_PROVIDER [ complex*16, mo_coef_transp_kpts_conjg, (mo_num_per_kpt,ao_num_per_kpt,kpt_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! |MO| coefficients on |AO| basis set
|
||||
END_DOC
|
||||
integer :: i, j, k
|
||||
|
||||
do k=1,kpt_num
|
||||
do j=1,ao_num_per_kpt
|
||||
do i=1,mo_num_per_kpt
|
||||
mo_coef_transp_kpts(i,j,k) = mo_coef_kpts(j,i,k)
|
||||
mo_coef_transp_kpts_conjg(i,j,k) = dconjg(mo_coef_kpts(j,i,k))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine ao_to_mo_kpts(A_ao,LDA_ao,A_mo,LDA_mo)
|
||||
implicit none
|
||||
!todo: check this
|
||||
BEGIN_DOC
|
||||
! Transform A from the AO basis to the MO basis
|
||||
! where A is complex in the AO basis
|
||||
!
|
||||
! C^\dagger.A_ao.C
|
||||
END_DOC
|
||||
integer, intent(in) :: LDA_ao,LDA_mo
|
||||
complex*16, intent(in) :: A_ao(LDA_ao,ao_num_per_kpt,kpt_num)
|
||||
complex*16, intent(out) :: A_mo(LDA_mo,mo_num_per_kpt,kpt_num)
|
||||
complex*16, allocatable :: T(:,:)
|
||||
|
||||
allocate ( T(ao_num_per_kpt,mo_num_per_kpt) )
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
|
||||
integer :: k
|
||||
|
||||
do k=1,kpt_num
|
||||
call zgemm('N','N', ao_num_per_kpt, mo_num_per_kpt, ao_num_per_kpt, &
|
||||
(1.d0,0.d0), A_ao,LDA_ao, &
|
||||
mo_coef_kpts(:,:,k), size(mo_coef_kpts,1), &
|
||||
(0.d0,0.d0), T, size(T,1))
|
||||
|
||||
call zgemm('C','N', mo_num_per_kpt, mo_num_per_kpt, ao_num_per_kpt, &
|
||||
(1.d0,0.d0), mo_coef_kpts(:,:,k),size(mo_coef_kpts,1), &
|
||||
T, ao_num_per_kpt, &
|
||||
(0.d0,0.d0), A_mo(:,:,k), size(A_mo,1))
|
||||
enddo
|
||||
|
||||
deallocate(T)
|
||||
end
|
||||
|
||||
subroutine ao_to_mo_noconjg_kpts(A_ao,LDA_ao,A_mo,LDA_mo)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Transform A from the AO basis to the MO basis
|
||||
! where A is complex in the AO basis
|
||||
!
|
||||
! C^T.A_ao.C
|
||||
! needed for 4idx tranform in four_idx_novvvv
|
||||
END_DOC
|
||||
integer, intent(in) :: LDA_ao,LDA_mo
|
||||
complex*16, intent(in) :: A_ao(LDA_ao,ao_num_per_kpt,kpt_num)
|
||||
complex*16, intent(out) :: A_mo(LDA_mo,mo_num_per_kpt,kpt_num)
|
||||
complex*16, allocatable :: T(:,:)
|
||||
|
||||
allocate ( T(ao_num_per_kpt,mo_num_per_kpt) )
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
|
||||
integer :: k
|
||||
do k=1,kpt_num
|
||||
call zgemm('N','N', ao_num_per_kpt, mo_num_per_kpt, ao_num_per_kpt, &
|
||||
(1.d0,0.d0), A_ao,LDA_ao, &
|
||||
mo_coef_kpts(:,:,k), size(mo_coef_kpts,1), &
|
||||
(0.d0,0.d0), T, size(T,1))
|
||||
|
||||
call zgemm('T','N', mo_num_per_kpt, mo_num_per_kpt, ao_num_per_kpt, &
|
||||
(1.d0,0.d0), mo_coef_kpts(:,:,k),size(mo_coef_kpts,1), &
|
||||
T, ao_num_per_kpt, &
|
||||
(0.d0,0.d0), A_mo(:,:,k), size(A_mo,1))
|
||||
enddo
|
||||
deallocate(T)
|
||||
end
|
||||
|
||||
|
||||
subroutine ao_ortho_cano_to_ao_kpts(A_ao,LDA_ao,A,LDA)
|
||||
implicit none
|
||||
!todo: check this; no longer using assumed-size arrays
|
||||
BEGIN_DOC
|
||||
! Transform A from the |AO| basis to the orthogonal |AO| basis
|
||||
!
|
||||
! $C^{-1}.A_{ao}.C^{\dagger-1}$
|
||||
END_DOC
|
||||
integer, intent(in) :: LDA_ao,LDA
|
||||
complex*16, intent(in) :: A_ao(LDA_ao,ao_num_per_kpt,kpt_num)
|
||||
complex*16, intent(out) :: A(LDA,ao_num_per_kpt,kpt_num)
|
||||
complex*16, allocatable :: T(:,:)
|
||||
|
||||
allocate ( T(ao_num_per_kpt,ao_num_per_kpt) )
|
||||
|
||||
integer :: k
|
||||
do k=1,kpt_num
|
||||
call zgemm('C','N', ao_num_per_kpt, ao_num_per_kpt, ao_num_per_kpt, &
|
||||
(1.d0,0.d0), &
|
||||
ao_ortho_cano_coef_inv_kpts(:,:,k), size(ao_ortho_cano_coef_inv_kpts,1),&
|
||||
A_ao(:,:,k),size(A_ao,1), &
|
||||
(0.d0,0.d0), T, size(T,1))
|
||||
|
||||
call zgemm('N','N', ao_num_per_kpt, ao_num_per_kpt, ao_num_per_kpt, (1.d0,0.d0), &
|
||||
T, size(T,1), &
|
||||
ao_ortho_cano_coef_inv_kpts(:,:,k),size(ao_ortho_cano_coef_inv_kpts,1),&
|
||||
(0.d0,0.d0), A(:,:,k), size(A,1))
|
||||
enddo
|
||||
|
||||
deallocate(T)
|
||||
end
|
||||
|
||||
|
||||
!============================================!
|
||||
! !
|
||||
! elec kpts !
|
||||
! !
|
||||
!============================================!
|
||||
|
||||
BEGIN_PROVIDER [ integer, elec_alpha_num_kpts, (kpt_num) ]
|
||||
&BEGIN_PROVIDER [ integer, elec_beta_num_kpts, (kpt_num) ]
|
||||
!todo: reorder? if not integer multiple, use some list of kpts to determine filling order
|
||||
implicit none
|
||||
|
||||
integer :: i,k,kpt
|
||||
|
||||
PROVIDE elec_alpha_num elec_beta_num
|
||||
|
||||
do k=1,kpt_num
|
||||
elec_alpha_num_kpts(k) = 0
|
||||
elec_beta_num_kpts(k) = 0
|
||||
enddo
|
||||
kpt=1
|
||||
do i=1,elec_beta_num
|
||||
elec_alpha_num_kpts(kpt) += 1
|
||||
elec_beta_num_kpts(kpt) += 1
|
||||
kpt += 1
|
||||
if (kpt > kpt_num) then
|
||||
kpt = 1
|
||||
endif
|
||||
enddo
|
||||
do i=elec_beta_num+1,elec_alpha_num
|
||||
elec_alpha_num_kpts(kpt) += 1
|
||||
kpt += 1
|
||||
if (kpt > kpt_num) then
|
||||
kpt = 1
|
||||
endif
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_occ_kpts, (mo_num_per_kpt,kpt_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! |MO| occupation numbers
|
||||
END_DOC
|
||||
PROVIDE ezfio_filename elec_beta_num_kpts elec_alpha_num_kpts
|
||||
if (mpi_master) then
|
||||
logical :: exists
|
||||
call ezfio_has_mo_basis_mo_occ_kpts(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_mo_basis_mo_occ_kpts(mo_occ_kpts)
|
||||
else
|
||||
mo_occ_kpts = 0.d0
|
||||
integer :: i,k
|
||||
do k=1,kpt_num
|
||||
do i=1,elec_beta_num_kpts(k)
|
||||
mo_occ_kpts(i,k) = 2.d0
|
||||
enddo
|
||||
do i=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k)
|
||||
mo_occ_kpts(i,k) = 1.d0
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
write(*,*) 'Read mo_occ_kpts'
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( mo_occ_kpts, mo_num_per_kpt*kpt_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read mo_occ_kpts with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -245,4 +245,271 @@ subroutine mo_coef_new_as_svd_vectors_of_mo_matrix_eig_complex(matrix,lda,m,n,mo
|
||||
|
||||
end
|
||||
|
||||
!============================================!
|
||||
! !
|
||||
! kpts !
|
||||
! !
|
||||
!============================================!
|
||||
|
||||
subroutine mo_as_eigvectors_of_mo_matrix_kpts(matrix,n,m,nk,label,sign,output)
|
||||
!TODO: test this
|
||||
implicit none
|
||||
integer,intent(in) :: n,m,nk, sign
|
||||
character*(64), intent(in) :: label
|
||||
complex*16, intent(in) :: matrix(n,m,nk)
|
||||
logical, intent(in) :: output
|
||||
|
||||
integer :: i,j,k
|
||||
double precision, allocatable :: eigvalues(:)
|
||||
complex*16, allocatable :: mo_coef_new(:,:), R(:,:), A(:,:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: mo_coef_new, R
|
||||
|
||||
call write_time(6)
|
||||
if (m /= mo_num_per_kpt) then
|
||||
print *, irp_here, ': Error : m/= mo_num_per_kpt'
|
||||
stop 1
|
||||
endif
|
||||
if (nk /= kpt_num) then
|
||||
print *, irp_here, ': Error : nk/= kpt_num'
|
||||
stop 1
|
||||
endif
|
||||
allocate(A(n,m),R(n,m),mo_coef_new(ao_num_per_kpt,m),eigvalues(m))
|
||||
do k=1,nk
|
||||
if (sign == -1) then
|
||||
do j=1,m
|
||||
do i=1,n
|
||||
A(i,j) = -matrix(i,j,k)
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do j=1,m
|
||||
do i=1,n
|
||||
A(i,j) = matrix(i,j,k)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
mo_coef_new = mo_coef_kpts(:,:,k)
|
||||
|
||||
call lapack_diag_complex(eigvalues,R,A,n,m)
|
||||
if (sign == -1) then
|
||||
do i=1,m
|
||||
eigvalues(i) = -eigvalues(i)
|
||||
enddo
|
||||
endif
|
||||
if (output) then
|
||||
do i=1,m
|
||||
write (6,'(2(I8),1X,F16.10)') k,i,eigvalues(i)
|
||||
enddo
|
||||
write (6,'(A)') '======== ================'
|
||||
write (6,'(A)') ''
|
||||
write (6,'(A)') 'Fock Matrix'
|
||||
write (6,'(A)') '-----------'
|
||||
do i=1,n
|
||||
write(*,'(200(E24.15))') A(i,:)
|
||||
enddo
|
||||
endif
|
||||
|
||||
call zgemm('N','N',ao_num_per_kpt,m,m,(1.d0,0.d0), &
|
||||
mo_coef_new,size(mo_coef_new,1),R,size(R,1),(0.d0,0.d0), &
|
||||
mo_coef_kpts(:,:,k),size(mo_coef_kpts,1))
|
||||
enddo
|
||||
deallocate(A,mo_coef_new,R,eigvalues)
|
||||
call write_time(6)
|
||||
|
||||
mo_label = label
|
||||
if (output) then
|
||||
write (6,'(A)') 'MOs are now **'//trim(label)//'**'
|
||||
write (6,'(A)') ''
|
||||
write (6,'(A)') 'Eigenvalues'
|
||||
write (6,'(A)') '-----------'
|
||||
write (6,'(A)') ''
|
||||
write (6,'(A)') '======== ================'
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine mo_as_svd_vectors_of_mo_matrix_kpts(matrix,lda,m,n,label)
|
||||
!TODO: implement
|
||||
print *, irp_here, ' not implemented for kpts'
|
||||
stop 1
|
||||
implicit none
|
||||
integer,intent(in) :: lda,m,n
|
||||
character*(64), intent(in) :: label
|
||||
complex*16, intent(in) :: matrix(lda,n)
|
||||
|
||||
integer :: i,j
|
||||
double precision :: accu
|
||||
double precision, allocatable :: D(:)
|
||||
complex*16, allocatable :: mo_coef_new(:,:), U(:,:), A(:,:), Vt(:,:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: mo_coef_new, U, Vt, A
|
||||
|
||||
call write_time(6)
|
||||
if (m /= mo_num) then
|
||||
print *, irp_here, ': Error : m/= mo_num'
|
||||
stop 1
|
||||
endif
|
||||
|
||||
allocate(A(lda,n),U(lda,n),mo_coef_new(ao_num,m),D(m),Vt(lda,n))
|
||||
|
||||
do j=1,n
|
||||
do i=1,m
|
||||
A(i,j) = matrix(i,j)
|
||||
enddo
|
||||
enddo
|
||||
mo_coef_new = mo_coef_complex
|
||||
|
||||
call svd_complex(A,lda,U,lda,D,Vt,lda,m,n)
|
||||
|
||||
write (6,'(A)') 'MOs are now **'//trim(label)//'**'
|
||||
write (6,'(A)') ''
|
||||
write (6,'(A)') 'Eigenvalues'
|
||||
write (6,'(A)') '-----------'
|
||||
write (6,'(A)') ''
|
||||
write (6,'(A)') '======== ================ ================'
|
||||
write (6,'(A)') ' MO Eigenvalue Cumulative '
|
||||
write (6,'(A)') '======== ================ ================'
|
||||
|
||||
accu = 0.d0
|
||||
do i=1,m
|
||||
accu = accu + D(i)
|
||||
write (6,'(I8,1X,F16.10,1X,F16.10)') i,D(i), accu
|
||||
enddo
|
||||
write (6,'(A)') '======== ================ ================'
|
||||
write (6,'(A)') ''
|
||||
|
||||
call zgemm('N','N',ao_num,m,m,(1.d0,0.d0),mo_coef_new,size(mo_coef_new,1),U,size(U,1),(0.d0,0.d0),mo_coef_complex,size(mo_coef_complex,1))
|
||||
deallocate(A,mo_coef_new,U,Vt,D)
|
||||
call write_time(6)
|
||||
|
||||
mo_label = label
|
||||
end
|
||||
|
||||
|
||||
subroutine mo_as_svd_vectors_of_mo_matrix_eig_kpts(matrix,lda,m,n,eig,label)
|
||||
!TODO: implement
|
||||
print *, irp_here, ' not implemented for kpts'
|
||||
stop 1
|
||||
implicit none
|
||||
integer,intent(in) :: lda,m,n
|
||||
character*(64), intent(in) :: label
|
||||
complex*16, intent(in) :: matrix(lda,n)
|
||||
double precision, intent(out) :: eig(m)
|
||||
|
||||
integer :: i,j
|
||||
double precision :: accu
|
||||
double precision, allocatable :: D(:)
|
||||
complex*16, allocatable :: mo_coef_new(:,:), U(:,:), A(:,:), Vt(:,:), work(:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: mo_coef_new, U, Vt, A
|
||||
|
||||
call write_time(6)
|
||||
if (m /= mo_num) then
|
||||
print *, irp_here, ': Error : m/= mo_num'
|
||||
stop 1
|
||||
endif
|
||||
|
||||
allocate(A(lda,n),U(lda,n),mo_coef_new(ao_num,m),D(m),Vt(lda,n))
|
||||
|
||||
do j=1,n
|
||||
do i=1,m
|
||||
A(i,j) = matrix(i,j)
|
||||
enddo
|
||||
enddo
|
||||
mo_coef_new = mo_coef_complex
|
||||
|
||||
call svd_complex(A,lda,U,lda,D,Vt,lda,m,n)
|
||||
|
||||
write (6,'(A)') 'MOs are now **'//trim(label)//'**'
|
||||
write (6,'(A)') ''
|
||||
write (6,'(A)') 'Eigenvalues'
|
||||
write (6,'(A)') '-----------'
|
||||
write (6,'(A)') ''
|
||||
write (6,'(A)') '======== ================ ================'
|
||||
write (6,'(A)') ' MO Eigenvalue Cumulative '
|
||||
write (6,'(A)') '======== ================ ================'
|
||||
|
||||
accu = 0.d0
|
||||
do i=1,m
|
||||
accu = accu + D(i)
|
||||
write (6,'(I8,1X,F16.10,1X,F16.10)') i,D(i), accu
|
||||
enddo
|
||||
write (6,'(A)') '======== ================ ================'
|
||||
write (6,'(A)') ''
|
||||
|
||||
call zgemm('N','N',ao_num,m,m,(1.d0,0.d0),mo_coef_new,size(mo_coef_new,1),U,size(U,1),(0.d0,0.d0),mo_coef_complex,size(mo_coef_complex,1))
|
||||
|
||||
do i=1,m
|
||||
eig(i) = D(i)
|
||||
enddo
|
||||
|
||||
deallocate(A,mo_coef_new,U,Vt,D)
|
||||
call write_time(6)
|
||||
|
||||
mo_label = label
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine mo_coef_new_as_svd_vectors_of_mo_matrix_eig_kpts(matrix,lda,m,n,mo_coef_before,eig,mo_coef_new)
|
||||
!TODO: implement
|
||||
print *, irp_here, ' not implemented for kpts'
|
||||
stop 1
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! You enter with matrix in the MO basis defined with the mo_coef_before.
|
||||
!
|
||||
! You SVD the matrix and set the eigenvectors as mo_coef_new ordered by increasing singular values
|
||||
END_DOC
|
||||
integer,intent(in) :: lda,m,n
|
||||
complex*16, intent(in) :: matrix(lda,n),mo_coef_before(ao_num,m)
|
||||
double precision, intent(out) :: eig(m)
|
||||
complex*16, intent(out) :: mo_coef_new(ao_num,m)
|
||||
|
||||
integer :: i,j
|
||||
double precision :: accu
|
||||
double precision, allocatable :: D(:)
|
||||
complex*16, allocatable :: mo_coef_tmp(:,:), U(:,:), A(:,:), Vt(:,:), work(:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, Vt, A
|
||||
|
||||
call write_time(6)
|
||||
if (m /= mo_num) then
|
||||
print *, irp_here, ': Error : m/= mo_num'
|
||||
stop 1
|
||||
endif
|
||||
|
||||
allocate(A(lda,n),U(lda,n),D(m),Vt(lda,n),mo_coef_tmp(ao_num,mo_num))
|
||||
|
||||
do j=1,n
|
||||
do i=1,m
|
||||
A(i,j) = matrix(i,j)
|
||||
enddo
|
||||
enddo
|
||||
mo_coef_tmp = mo_coef_before
|
||||
|
||||
call svd_complex(A,lda,U,lda,D,Vt,lda,m,n)
|
||||
|
||||
write (6,'(A)') ''
|
||||
write (6,'(A)') 'Eigenvalues'
|
||||
write (6,'(A)') '-----------'
|
||||
write (6,'(A)') ''
|
||||
write (6,'(A)') '======== ================ ================'
|
||||
write (6,'(A)') ' MO Eigenvalue Cumulative '
|
||||
write (6,'(A)') '======== ================ ================'
|
||||
|
||||
accu = 0.d0
|
||||
do i=1,m
|
||||
accu = accu + D(i)
|
||||
write (6,'(I8,1X,F16.10,1X,F16.10)') i,D(i), accu
|
||||
enddo
|
||||
write (6,'(A)') '======== ================ ================'
|
||||
write (6,'(A)') ''
|
||||
|
||||
call zgemm('N','N',ao_num,m,m,(1.d0,0.d0),mo_coef_tmp,size(mo_coef_new,1),U,size(U,1),(0.d0,0.d0),mo_coef_new,size(mo_coef_new,1))
|
||||
|
||||
do i=1,m
|
||||
eig(i) = D(i)
|
||||
enddo
|
||||
|
||||
deallocate(A,U,Vt,D,mo_coef_tmp)
|
||||
call write_time(6)
|
||||
|
||||
end
|
||||
|
||||
|
@ -46,3 +46,64 @@ BEGIN_PROVIDER [complex*16, ao_ortho_lowdin_overlap_complex, (ao_num,ao_num)]
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
!============================================!
|
||||
! !
|
||||
! kpts !
|
||||
! !
|
||||
!============================================!
|
||||
|
||||
BEGIN_PROVIDER [complex*16, ao_ortho_lowdin_coef_kpts, (ao_num_per_kpt,ao_num_per_kpt,kpt_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! matrix of the coefficients of the mos generated by the
|
||||
! orthonormalization by the S^{-1/2} canonical transformation of the aos
|
||||
! ao_ortho_lowdin_coef(i,j) = coefficient of the ith ao on the jth ao_ortho_lowdin orbital
|
||||
END_DOC
|
||||
integer :: i,j,k,l
|
||||
complex*16, allocatable :: tmp_matrix(:,:)
|
||||
allocate (tmp_matrix(ao_num,ao_num))
|
||||
do k=1,kpt_num
|
||||
tmp_matrix(:,:) = (0.d0,0.d0)
|
||||
do j=1, ao_num
|
||||
tmp_matrix(j,j) = (1.d0,0.d0)
|
||||
enddo
|
||||
call ortho_lowdin_complex(ao_overlap_kpts(:,:,k),ao_num_per_kpt,ao_num_per_kpt,tmp_matrix,ao_num_per_kpt,ao_num_per_kpt)
|
||||
do i=1, ao_num_per_kpt
|
||||
do j=1, ao_num_per_kpt
|
||||
ao_ortho_lowdin_coef_kpts(j,i,k) = tmp_matrix(i,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
deallocate(tmp_matrix)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [complex*16, ao_ortho_lowdin_overlap_kpts, (ao_num_per_kpt,ao_num_per_kpt,kpt_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! overlap matrix of the ao_ortho_lowdin
|
||||
! supposed to be the Identity
|
||||
END_DOC
|
||||
integer :: i,j,k,l,kk
|
||||
complex*16 :: c
|
||||
do kk=1,kpt_num
|
||||
do j=1, ao_num_per_kpt
|
||||
do i=1, ao_num_per_kpt
|
||||
ao_ortho_lowdin_overlap_kpts(i,j,kk) = (0.d0,0.d0)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
do kk=1,kpt_num
|
||||
do k=1, ao_num_per_kpt
|
||||
do j=1, ao_num_per_kpt
|
||||
c = (0.d0,0.d0)
|
||||
do l=1, ao_num_per_kpt
|
||||
c += dconjg(ao_ortho_lowdin_coef_kpts(j,l,kk)) * ao_overlap_kpts(k,l,kk)
|
||||
enddo
|
||||
do i=1, ao_num_per_kpt
|
||||
ao_ortho_lowdin_overlap_kpts(i,j,kk) += ao_ortho_lowdin_coef_kpts(i,k,kk) * c
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
@ -51,3 +51,65 @@ BEGIN_PROVIDER [ complex*16, eigenvectors_Fock_matrix_mo_complex, (ao_num,mo_num
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
!============================================!
|
||||
! !
|
||||
! kpts !
|
||||
! !
|
||||
!============================================!
|
||||
BEGIN_PROVIDER [ complex*16, eigenvectors_Fock_matrix_mo_kpts, (ao_num_per_kpt,mo_num_per_kpt,kpt_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Eigenvectors of the Fock matrix in the |MO| basis obtained with level shift.
|
||||
END_DOC
|
||||
|
||||
integer :: i,j,k
|
||||
integer :: n
|
||||
complex*16, allocatable :: F(:,:)
|
||||
double precision, allocatable :: diag(:)
|
||||
|
||||
|
||||
allocate( F(mo_num_per_kpt,mo_num_per_kpt) )
|
||||
allocate (diag(mo_num_per_kpt) )
|
||||
|
||||
do k=1,kpt_num
|
||||
do j=1,mo_num
|
||||
do i=1,mo_num
|
||||
!F(i,j) = fock_matrix_mo_complex(i,j)
|
||||
F(i,j) = fock_matrix_mo_kpts(i,j,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if(frozen_orb_scf)then
|
||||
integer :: iorb,jorb
|
||||
!todo: core/act per kpt
|
||||
do i = 1, n_core_orb
|
||||
iorb = list_core(i)
|
||||
do j = 1, n_act_orb
|
||||
jorb = list_act(j)
|
||||
F(iorb,jorb) = (0.d0,0.d0)
|
||||
F(jorb,iorb) = (0.d0,0.d0)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
! Insert level shift here
|
||||
!todo: elec per kpt
|
||||
do i = elec_beta_num_per_kpt(k)+1, elec_alpha_num_per_kpt(k)
|
||||
F(i,i) += 0.5d0*level_shift
|
||||
enddo
|
||||
|
||||
do i = elec_alpha_num_per_kpt(k)+1, mo_num_per_kpt
|
||||
F(i,i) += level_shift
|
||||
enddo
|
||||
|
||||
n = mo_num_per_kpt
|
||||
call lapack_diagd_diag_in_place_complex(diag,F,n,n)
|
||||
|
||||
call zgemm('N','N',ao_num_per_kpt,mo_num_per_kpt,mo_num_per_kpt, (1.d0,0.d0), &
|
||||
mo_coef_kpts(:,:,k), size(mo_coef_kpts,1), F, size(F,1), &
|
||||
(0.d0,0.d0), eigenvectors_Fock_matrix_mo_kpts(:,:,k), size(eigenvectors_Fock_matrix_mo_kpts,1))
|
||||
enddo
|
||||
deallocate(F, diag)
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -359,3 +359,377 @@ END_PROVIDER
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
!============================================!
|
||||
! !
|
||||
! kpts !
|
||||
! !
|
||||
!============================================!
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, Fock_matrix_mo_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num) ]
|
||||
&BEGIN_PROVIDER [ double precision, Fock_matrix_diag_mo_kpts, (mo_num_per_kpt,kpt_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Fock matrix on the MO basis.
|
||||
! For open shells, the ROHF Fock Matrix is ::
|
||||
!
|
||||
! | F-K | F + K/2 | F |
|
||||
! |---------------------------------|
|
||||
! | F + K/2 | F | F - K/2 |
|
||||
! |---------------------------------|
|
||||
! | F | F - K/2 | F + K |
|
||||
!
|
||||
!
|
||||
! F = 1/2 (Fa + Fb)
|
||||
!
|
||||
! K = Fb - Fa
|
||||
!
|
||||
END_DOC
|
||||
integer :: i,j,n,k
|
||||
!todo: fix for kpts? (okay for simple cases)
|
||||
if (elec_alpha_num == elec_beta_num) then
|
||||
Fock_matrix_mo_kpts = Fock_matrix_mo_alpha_kpts
|
||||
else
|
||||
do k=1,kpt_num
|
||||
do j=1,elec_beta_num_kpts(k)
|
||||
! F-K
|
||||
do i=1,elec_beta_num_kpts(k) !CC
|
||||
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
|
||||
- (Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
|
||||
enddo
|
||||
! F+K/2
|
||||
do i=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k) !CA
|
||||
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
|
||||
+ 0.5d0*(Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
|
||||
enddo
|
||||
! F
|
||||
do i=elec_alpha_num_kpts(k)+1, mo_num_per_kpt !CV
|
||||
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k)
|
||||
! F+K/2
|
||||
do i=1,elec_beta_num_kpts(k) !AC
|
||||
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
|
||||
+ 0.5d0*(Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
|
||||
enddo
|
||||
! F
|
||||
do i=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k) !AA
|
||||
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))
|
||||
enddo
|
||||
! F-K/2
|
||||
do i=elec_alpha_num_kpts(k)+1, mo_num_per_kpt !AV
|
||||
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
|
||||
- 0.5d0*(Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=elec_alpha_num_kpts(k)+1, mo_num_per_kpt
|
||||
! F
|
||||
do i=1,elec_beta_num_kpts(k) !VC
|
||||
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))
|
||||
enddo
|
||||
! F-K/2
|
||||
do i=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k) !VA
|
||||
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
|
||||
- 0.5d0*(Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
|
||||
enddo
|
||||
! F+K
|
||||
do i=elec_alpha_num_kpts(k)+1,mo_num_per_kpt !VV
|
||||
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k)) &
|
||||
+ (Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
do k=1,kpt_num
|
||||
do i = 1, mo_num_per_kpt
|
||||
Fock_matrix_diag_mo_kpts(i,k) = dble(Fock_matrix_mo_kpts(i,i,k))
|
||||
if (dabs(dimag(Fock_matrix_mo_kpts(i,i,k))) .gt. 1.0d-12) then
|
||||
!stop 'diagonal elements of Fock matrix should be real'
|
||||
print *, 'diagonal elements of Fock matrix should be real',i,Fock_matrix_mo_kpts(i,i,k)
|
||||
!stop -1
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
if(frozen_orb_scf)then
|
||||
integer :: iorb,jorb
|
||||
do k=1,kpt_num
|
||||
! for tags: list_core, n_core_orb, n_act_orb, list_act
|
||||
do i = 1, n_core_orb_kpts(k)
|
||||
iorb = list_core_kpts(i,k)
|
||||
do j = 1, n_act_orb_kpts(k)
|
||||
jorb = list_act_kpts(j,k)
|
||||
fock_matrix_mo_kpts(iorb,jorb,k) = (0.d0,0.d0)
|
||||
fock_matrix_mo_kpts(jorb,iorb,k) = (0.d0,0.d0)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, Fock_matrix_mo_alpha_complex, (mo_num,mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Fock matrix on the MO basis
|
||||
END_DOC
|
||||
call ao_to_mo_complex(Fock_matrix_ao_alpha_complex,size(Fock_matrix_ao_alpha_complex,1), &
|
||||
Fock_matrix_mo_alpha_complex,size(Fock_matrix_mo_alpha_complex,1))
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, Fock_matrix_mo_beta_complex, (mo_num,mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Fock matrix on the MO basis
|
||||
END_DOC
|
||||
call ao_to_mo_complex(Fock_matrix_ao_beta_complex,size(Fock_matrix_ao_beta_complex,1), &
|
||||
Fock_matrix_mo_beta_complex,size(Fock_matrix_mo_beta_complex,1))
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_complex, (ao_num, ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Fock matrix in AO basis set
|
||||
END_DOC
|
||||
|
||||
if(frozen_orb_scf)then
|
||||
call mo_to_ao_complex(Fock_matrix_mo_complex,size(Fock_matrix_mo_complex,1), &
|
||||
Fock_matrix_ao_complex,size(Fock_matrix_ao_complex,1))
|
||||
else
|
||||
if ( (elec_alpha_num == elec_beta_num).and. &
|
||||
(level_shift == 0.) ) &
|
||||
then
|
||||
integer :: i,j
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
Fock_matrix_ao_complex(i,j) = Fock_matrix_ao_alpha_complex(i,j)
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
call mo_to_ao_complex(Fock_matrix_mo_complex,size(Fock_matrix_mo_complex,1), &
|
||||
Fock_matrix_ao_complex,size(Fock_matrix_ao_complex,1))
|
||||
endif
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, ao_two_e_integral_alpha_complex, (ao_num, ao_num) ]
|
||||
&BEGIN_PROVIDER [ complex*16, ao_two_e_integral_beta_complex , (ao_num, ao_num) ]
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Alpha and Beta Fock matrices in AO basis set
|
||||
END_DOC
|
||||
!TODO: finish implementing this: see complex qp1 (different mapping)
|
||||
|
||||
integer :: i,j,k,l,k1,r,s
|
||||
integer :: i0,j0,k0,l0
|
||||
integer*8 :: p,q
|
||||
complex*16 :: integral, c0
|
||||
complex*16, allocatable :: ao_two_e_integral_alpha_tmp(:,:)
|
||||
complex*16, allocatable :: ao_two_e_integral_beta_tmp(:,:)
|
||||
|
||||
ao_two_e_integral_alpha_complex = (0.d0,0.d0)
|
||||
ao_two_e_integral_beta_complex = (0.d0,0.d0)
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
|
||||
integer(omp_lock_kind) :: lck(ao_num)
|
||||
integer(map_size_kind) :: i8
|
||||
integer :: ii(4), jj(4), kk(4), ll(4), k2
|
||||
integer(cache_map_size_kind) :: n_elements_max, n_elements
|
||||
integer(key_kind), allocatable :: keys(:)
|
||||
double precision, allocatable :: values(:)
|
||||
complex*16, parameter :: i_sign(4) = (/(0.d0,1.d0),(0.d0,1.d0),(0.d0,-1.d0),(0.d0,-1.d0)/)
|
||||
integer(key_kind) :: key1
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
|
||||
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
|
||||
!$OMP c0,key1)&
|
||||
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha_complex, &
|
||||
!$OMP SCF_density_matrix_ao_beta_complex, &
|
||||
!$OMP ao_integrals_map, ao_two_e_integral_alpha_complex, ao_two_e_integral_beta_complex)
|
||||
|
||||
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
|
||||
allocate(keys(n_elements_max), values(n_elements_max))
|
||||
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
||||
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
||||
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
|
||||
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
|
||||
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
do i8=0_8,ao_integrals_map%map_size
|
||||
n_elements = n_elements_max
|
||||
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
|
||||
do k1=1,n_elements
|
||||
! get original key
|
||||
! reverse of 2*key (imag part) and 2*key-1 (real part)
|
||||
key1 = shiftr(keys(k1)+1,1)
|
||||
|
||||
call two_e_integrals_index_reverse_complex_1(ii,jj,kk,ll,key1)
|
||||
! i<=k, j<=l, ik<=jl
|
||||
! ijkl, jilk, klij*, lkji*
|
||||
|
||||
if (shiftl(key1,1)==keys(k1)) then !imaginary part (even)
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = i_sign(k2)*values(k1) !for klij and lkji, take complex conjugate
|
||||
|
||||
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
|
||||
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
|
||||
|
||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,k) += c0
|
||||
ao_two_e_integral_beta_tmp (i,k) += c0
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||
enddo
|
||||
else ! real part
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = values(k1)
|
||||
|
||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,k) += c0
|
||||
ao_two_e_integral_beta_tmp (i,k) += c0
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP CRITICAL
|
||||
ao_two_e_integral_alpha_complex += ao_two_e_integral_alpha_tmp
|
||||
ao_two_e_integral_beta_complex += ao_two_e_integral_beta_tmp
|
||||
!$OMP END CRITICAL
|
||||
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
|
||||
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
|
||||
!$OMP c0,key1)&
|
||||
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha_complex, &
|
||||
!$OMP SCF_density_matrix_ao_beta_complex, &
|
||||
!$OMP ao_integrals_map_2, ao_two_e_integral_alpha_complex, ao_two_e_integral_beta_complex)
|
||||
|
||||
call get_cache_map_n_elements_max(ao_integrals_map_2,n_elements_max)
|
||||
allocate(keys(n_elements_max), values(n_elements_max))
|
||||
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
||||
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
||||
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
|
||||
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
|
||||
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
do i8=0_8,ao_integrals_map_2%map_size
|
||||
n_elements = n_elements_max
|
||||
call get_cache_map(ao_integrals_map_2,i8,keys,values,n_elements)
|
||||
do k1=1,n_elements
|
||||
! get original key
|
||||
! reverse of 2*key (imag part) and 2*key-1 (real part)
|
||||
key1 = shiftr(keys(k1)+1,1)
|
||||
|
||||
call two_e_integrals_index_reverse_complex_2(ii,jj,kk,ll,key1)
|
||||
! i>=k, j<=l, ik<=jl
|
||||
! ijkl, jilk, klij*, lkji*
|
||||
if (shiftl(key1,1)==keys(k1)) then !imaginary part
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = i_sign(k2)*values(k1) ! for klij and lkji, take conjugate
|
||||
|
||||
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
|
||||
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
|
||||
|
||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,k) += c0
|
||||
ao_two_e_integral_beta_tmp (i,k) += c0
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||
enddo
|
||||
else ! real part
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = values(k1)
|
||||
|
||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,k) += c0
|
||||
ao_two_e_integral_beta_tmp (i,k) += c0
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP CRITICAL
|
||||
ao_two_e_integral_alpha_complex += ao_two_e_integral_alpha_tmp
|
||||
ao_two_e_integral_beta_complex += ao_two_e_integral_beta_tmp
|
||||
!$OMP END CRITICAL
|
||||
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_alpha_complex, (ao_num, ao_num) ]
|
||||
&BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_beta_complex, (ao_num, ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Alpha Fock matrix in AO basis set
|
||||
END_DOC
|
||||
|
||||
integer :: i,j
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
Fock_matrix_ao_alpha_complex(i,j) = ao_one_e_integrals_complex(i,j) + ao_two_e_integral_alpha_complex(i,j)
|
||||
Fock_matrix_ao_beta_complex (i,j) = ao_one_e_integrals_complex(i,j) + ao_two_e_integral_beta_complex (i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -40,3 +40,52 @@ subroutine huckel_guess_complex
|
||||
deallocate(A)
|
||||
|
||||
end
|
||||
!============================================!
|
||||
! !
|
||||
! kpts !
|
||||
! !
|
||||
!============================================!
|
||||
subroutine huckel_guess_kpts
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Build the MOs using the extended Huckel model
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
double precision :: accu
|
||||
double precision :: c
|
||||
character*(64) :: label
|
||||
complex*16, allocatable :: A(:,:)
|
||||
label = "Guess"
|
||||
c = 0.5d0 * 1.75d0
|
||||
|
||||
allocate (A(ao_num, ao_num))
|
||||
do k=1,kpt_num
|
||||
A = (0.d0,0.d0)
|
||||
do j=1,ao_num_per_kpt
|
||||
do i=1,ao_num_per_kpt
|
||||
A(i,j) = c * ao_overlap_kpts(i,j,k) * (ao_one_e_integrals_diag_kpts(i,k) + ao_one_e_integrals_diag_kpts(j,k))
|
||||
enddo
|
||||
A(j,j) = ao_one_e_integrals_diag_kpts(j,k) + dble(ao_two_e_integral_alpha_kpts(j,j,k))
|
||||
if (dabs(dimag(ao_two_e_integral_alpha_kpts(j,j,k))) .gt. 1.0d-10) then
|
||||
stop 'diagonal elements of ao_bi_elec_integral_alpha should be real'
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Fock_matrix_ao_alpha(1:ao_num,1:ao_num) = A(1:ao_num,1:ao_num)
|
||||
! Fock_matrix_ao_beta (1:ao_num,1:ao_num) = A(1:ao_num,1:ao_num)
|
||||
call zlacpy('X', ao_num_per_kpt, ao_num_per_kpt, A, size(A,1), &
|
||||
Fock_matrix_ao_alpha_kpts(:,:,k), size(Fock_matrix_ao_alpha_kpts,1))
|
||||
call zlacpy('X', ao_num_per_kpt, ao_num_per_kpt, A, size(A,1), &
|
||||
Fock_matrix_ao_beta_kpts(:,:,k), size(Fock_matrix_ao_beta_kpts, 1))
|
||||
enddo
|
||||
|
||||
! TOUCH mo_coef
|
||||
|
||||
!TOUCH fock_matrix_ao_alpha_complex fock_matrix_ao_beta_kpts
|
||||
TOUCH fock_matrix_ao_alpha_kpts fock_matrix_ao_beta_kpts
|
||||
mo_coef_kpts = eigenvectors_fock_matrix_mo_kpts
|
||||
SOFT_TOUCH mo_coef_complex
|
||||
call save_mos
|
||||
deallocate(A)
|
||||
|
||||
end
|
||||
|
@ -2,6 +2,8 @@
|
||||
|
||||
todo:
|
||||
change everything to be blocked by kpt
|
||||
elec_alpha_num_per_kpt (maybe add to mo_basis?)
|
||||
bitmasks per kpt? (or at least occ/act/virt num and list)
|
||||
|
||||
-------------------------------------------------------------------------------------
|
||||
old:
|
||||
|
Loading…
Reference in New Issue
Block a user