10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-14 10:03:47 +01:00

Merge branch 'dev' into features_kpts

This commit is contained in:
Kevin Gasperich 2020-09-01 11:43:40 -05:00
commit 8070f3aa85
15 changed files with 186 additions and 109 deletions

View File

@ -8,7 +8,7 @@
os: linux
dist: trusty
dist: bionic
sudo: false
@ -19,9 +19,11 @@ addons:
packages:
- gfortran
- gcc
- liblapack-dev
- libblas-dev
- libatlas-base-dev
# - liblapack-dev
# - libblas-dev
- wget
- eatmydata
env:
- OPAMROOT=$HOME/.opam
@ -29,12 +31,23 @@ env:
cache:
directories:
- $HOME/.opam/
- $HOME/cache
language: python
python:
- "2.7"
- "3.7"
stages:
- configuration
- compilation
- testing
jobs:
include:
- stage: configuration
script: eatmydata travis/configuration.sh
- stage: compilation
script: eatmydata travis/compilation.sh
- stage: testing
script: eatmydata travis/testing.sh
script:
- ./configure --install all --config ./config/travis.cfg
# - source ./quantum_package.rc ; ninja -j 1 -v
# - source ./quantum_package.rc ; qp_test -a

View File

@ -36,7 +36,7 @@ Requirements
- Fortran compiler : GNU Fortran, Intel Fortran or IBM XL Fortran
- `GNU make`_
- `Autoconf`_
- `Python`_ > 3.0
- `Python`_ > 3.7
- |IRPF90| : Fortran code generator
- |EZFIO| : Easy Fortran Input/Output library generator
- |BLAS| and |LAPACK|
@ -142,6 +142,14 @@ IRPF90
*IRPF90* is a Fortran code generator for programming using the Implicit Reference
to Parameters (IRP) method.
If you have *pip* for Python2, you can do
.. code:: bash
python2 -m pip install --user irpf90
Otherwise,
* Download the latest version of IRPF90
here : `<https://gitlab.com/scemama/irpf90/-/archive/v1.7.2/irpf90-v1.7.2.tar.gz>`_ and move
the downloaded archive in the :file:`${QP_ROOT}/external` directory
@ -385,3 +393,17 @@ Otherwise,
* Copy :file:`docopt-0.6.2/docopt.py` in the :file:`${QP_ROOT}/scripts` directory
resultsFile
-----------
*resultsFile* is a Python package to extract data from output files of quantum chemistry
codes.
If you have *pip* for Python3, you can do
.. code:: bash
python3 -m pip install --user resultsFile

View File

@ -11,9 +11,9 @@
#
[COMMON]
FC : gfortran -ffree-line-length-none -I . -g -fPIC
LAPACK_LIB : -llapack -lblas
LAPACK_LIB : -llapack -lblas
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert
IRPF90_FLAGS : --ninja --align=32 --assert
# Global options
################
@ -35,14 +35,14 @@ OPENMP : 1 ; Append OpenMP flags
# -ffast-math and the Fortran-specific
# -fno-protect-parens and -fstack-arrays.
[OPT]
FCFLAGS : -Ofast -march=native
FCFLAGS : -Ofast -march=native
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FC : -p -g
FCFLAGS : -Ofast -fimplicit-none
@ -53,7 +53,7 @@ FCFLAGS : -Ofast -fimplicit-none
# -g : Extra debugging information
#
[DEBUG]
FCFLAGS : -Ofast -fcheck=all -g -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant
FCFLAGS : -Ofast -fcheck=all -g -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant
# OpenMP flags
@ -61,5 +61,5 @@ FCFLAGS : -Ofast -fcheck=all -g -Waliasing -Wampersand -Wconversion -Wsurprising
#
[OPENMP]
FC : -fopenmp
IRPF90_FLAGS : --openmp
IRPF90_FLAGS : --openmp

2
configure vendored
View File

@ -499,7 +499,7 @@ echo " ||----w | "
echo " || || "
echo "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
echo ""
echo "If you have PIP, you can install the Basis Sex Exchange command-line tool:"
echo "If you have PIP, you can install the Basis Set Exchange command-line tool:"
echo ""
echo " ./configure -i bse"
echo ""

View File

@ -61,23 +61,23 @@ logical function testTeethBuilding(minF, N)
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
norm = 0.d0
double precision :: norm
double precision :: norm2
norm2 = 0.d0
if (is_complex) then
do i=N_det_generators,1,-1
tilde_w(i) = cdabs(psi_coef_sorted_gen_complex(i,pt2_stoch_istate) * &
psi_coef_sorted_gen_complex(i,pt2_stoch_istate))
norm = norm + tilde_w(i)
norm2 = norm2 + tilde_w(i)
enddo
else
do i=N_det_generators,1,-1
tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate) * &
psi_coef_sorted_gen(i,pt2_stoch_istate)
norm = norm + tilde_w(i)
norm2 = norm2 + tilde_w(i)
enddo
endif
f = 1.d0/norm
f = 1.d0/norm2
tilde_w(:) = tilde_w(:) * f
tilde_cW(0) = -1.d0
@ -115,7 +115,7 @@ end function
subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm2, N_in)
use f77_zmq
use selection_types
@ -126,7 +126,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
! integer, intent(inout) :: N_in
double precision, intent(in) :: relative_error, E(N_states)
double precision, intent(out) :: pt2(N_states),error(N_states)
double precision, intent(out) :: variance(N_states),norm(N_states)
double precision, intent(out) :: variance(N_states),norm2(N_states)
integer :: i, N
@ -156,8 +156,8 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
if (N_det <= max(4,N_states) .or. pt2_N_teeth < 2) then
pt2=0.d0
variance=0.d0
norm=0.d0
call zmq_selection(N_in, pt2, variance, norm)
norm2=0.d0
call ZMQ_selection(N_in, pt2, variance, norm2)
error(:) = 0.d0
else
@ -288,7 +288,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
nproc_target * 8.d0 * & ! bytes
( 0.5d0*pt2_n_tasks_max & ! task_id
+ 64.d0*pt2_n_tasks_max & ! task
+ 3.d0*pt2_n_tasks_max*N_states & ! pt2, variance, norm
+ 3.d0*pt2_n_tasks_max*N_states & ! pt2, variance, norm2
+ 1.d0*pt2_n_tasks_max & ! i_generator, subset
+ 1.d0*(N_int*2.d0*ii+ ii) & ! selection buffer
+ 1.d0*(N_int*2.d0*ii+ ii) & ! sort selection buffer
@ -322,7 +322,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
print '(A)', '========== ================= =========== =============== =============== ================='
print '(A)', ' Samples Energy Stat. Err Variance Norm Seconds '
print '(A)', ' Samples Energy Stat. Err Variance Norm^2 Seconds '
print '(A)', '========== ================= =========== =============== =============== ================='
PROVIDE global_selection_buffer
@ -335,7 +335,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
pt2(pt2_stoch_istate) = w(pt2_stoch_istate,1)
error(pt2_stoch_istate) = w(pt2_stoch_istate,2)
variance(pt2_stoch_istate) = w(pt2_stoch_istate,3)
norm(pt2_stoch_istate) = w(pt2_stoch_istate,4)
norm2(pt2_stoch_istate) = w(pt2_stoch_istate,4)
else
call pt2_slave_inproc(i)
@ -366,7 +366,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
pt2(k) = 0.d0
enddo
call update_pt2_and_variance_weights(pt2, variance, norm, N_states)
call update_pt2_and_variance_weights(pt2, variance, norm2, N_states)
end subroutine
@ -380,7 +380,7 @@ subroutine pt2_slave_inproc(i)
end
subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, variance, norm, b, N_)
subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, variance, norm2, b, N_)
use f77_zmq
use selection_types
use bitmasks
@ -390,7 +390,7 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(in) :: relative_error, E
double precision, intent(out) :: pt2(N_states), error(N_states)
double precision, intent(out) :: variance(N_states), norm(N_states)
double precision, intent(out) :: variance(N_states), norm2(N_states)
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: N_
@ -449,7 +449,7 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
pt2(:) = -huge(1.)
error(:) = huge(1.)
variance(:) = huge(1.)
norm(:) = 0.d0
norm2(:) = 0.d0
S(:) = 0d0
S2(:) = 0d0
T2(:) = 0d0
@ -525,7 +525,7 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
endif
pt2(pt2_stoch_istate) = avg
variance(pt2_stoch_istate) = avg2
norm(pt2_stoch_istate) = avg3
norm2(pt2_stoch_istate) = avg3
call wall_time(time)
! 1/(N-1.5) : see Brugger, The American Statistician (23) 4 p. 32 (1969)
if(c > 2) then
@ -791,13 +791,13 @@ END_PROVIDER
enddo
endif
double precision :: norm
norm = 0.d0
double precision :: norm2
norm2 = 0.d0
do i=N_det_generators,1,-1
norm += tilde_w(i)
norm2 += tilde_w(i)
enddo
tilde_w(:) = tilde_w(:) / norm
tilde_w(:) = tilde_w(:) / norm2
tilde_cW(0) = -1.d0
do i=1,N_det_generators

View File

@ -19,7 +19,7 @@ BEGIN_PROVIDER [ double precision, variance_match_weight, (N_states) ]
variance_match_weight(:) = 1.d0
END_PROVIDER
subroutine update_pt2_and_variance_weights(pt2, variance, norm, N_st)
subroutine update_pt2_and_variance_weights(pt2, variance, norm2, N_st)
implicit none
BEGIN_DOC
! Updates the PT2- and Variance- matching weights.
@ -27,7 +27,7 @@ subroutine update_pt2_and_variance_weights(pt2, variance, norm, N_st)
integer, intent(in) :: N_st
double precision, intent(in) :: pt2(N_st)
double precision, intent(in) :: variance(N_st)
double precision, intent(in) :: norm(N_st)
double precision, intent(in) :: norm2(N_st)
double precision :: avg, rpt2(N_st), element, dt, x
integer :: k
@ -50,7 +50,7 @@ subroutine update_pt2_and_variance_weights(pt2, variance, norm, N_st)
do k=1,N_st
! rPT2
rpt2(k) = pt2(k)/(1.d0 + norm(k))
rpt2(k) = pt2(k)/(1.d0 + norm2(k))
enddo
avg = sum(pt2(1:N_st)) / dble(N_st) - 1.d-32 ! Avoid future division by zero
@ -179,7 +179,7 @@ subroutine get_mask_phase(det1, pm, Nint)
end subroutine
subroutine select_connected(i_generator,E0,pt2,variance,norm,b,subset,csubset)
subroutine select_connected(i_generator,E0,pt2,variance,norm2,b,subset,csubset)
!todo: simplify for kpts
use bitmasks
use selection_types
@ -188,7 +188,7 @@ subroutine select_connected(i_generator,E0,pt2,variance,norm,b,subset,csubset)
type(selection_buffer), intent(inout) :: b
double precision, intent(inout) :: pt2(N_states)
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
double precision, intent(inout) :: norm2(N_states)
integer :: k,l
double precision, intent(in) :: E0(N_states)
@ -209,7 +209,7 @@ subroutine select_connected(i_generator,E0,pt2,variance,norm,b,subset,csubset)
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) )
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) )
enddo
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,variance,norm,b,subset,csubset)
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,variance,norm2,b,subset,csubset)
deallocate(fock_diag_tmp)
end subroutine
@ -258,7 +258,7 @@ double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint)
end
subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,variance,norm,buf,subset,csubset)
subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,variance,norm2,buf,subset,csubset)
use bitmasks
use selection_types
implicit none
@ -272,7 +272,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
double precision, intent(in) :: E0(N_states)
double precision, intent(inout) :: pt2(N_states)
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
double precision, intent(inout) :: norm2(N_states)
type(selection_buffer), intent(inout) :: buf
integer :: h1,h2,s1,s2,s3,i1,i2,ib,sp,k,i,j,nt,ii,sze
@ -746,19 +746,19 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
call splash_pq_complex(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat_complex, interesting)
if(.not.pert_2rdm)then
call fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat_complex, buf)
call fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm2, mat_complex, buf)
else
print*,irp_here,' not implemented for complex (fill_buffer_double_rdm_complex)'
stop -1
!call fill_buffer_double_rdm_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat_complex, buf,fullminilist, coef_fullminilist_rev_complex, fullinteresting(0))
!call fill_buffer_double_rdm_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm2, mat_complex, buf,fullminilist, coef_fullminilist_rev_complex, fullinteresting(0))
endif
else
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
if(.not.pert_2rdm)then
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf)
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm2, mat, buf)
else
call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm2, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
endif
endif!complex
end if
@ -787,7 +787,7 @@ end subroutine
subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf)
subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm2, mat, buf)
use bitmasks
use selection_types
implicit none
@ -799,7 +799,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
double precision, intent(in) :: E0(N_states)
double precision, intent(inout) :: pt2(N_states)
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
double precision, intent(inout) :: norm2(N_states)
type(selection_buffer), intent(inout) :: buf
logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate
@ -910,7 +910,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
endif
pt2(istate) = pt2(istate) + e_pert
variance(istate) = variance(istate) + alpha_h_psi * alpha_h_psi
norm(istate) = norm(istate) + coef * coef
norm2(istate) = norm2(istate) + coef * coef
!!!DEBUG
! pt2(istate) = pt2(istate) - e_pert + alpha_h_psi**2/delta_E
@ -2049,7 +2049,7 @@ end
! !
!==============================================================================!
subroutine fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf)
subroutine fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm2, mat, buf)
!todo: should be okay for complex
use bitmasks
use selection_types
@ -2062,7 +2062,7 @@ subroutine fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned
double precision, intent(in) :: E0(N_states)
double precision, intent(inout) :: pt2(N_states)
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
double precision, intent(inout) :: norm2(N_states)
type(selection_buffer), intent(inout) :: buf
logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate
@ -2174,7 +2174,7 @@ subroutine fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned
endif
pt2(istate) = pt2(istate) + e_pert
variance(istate) = variance(istate) + cdabs(alpha_h_psi * alpha_h_psi)
norm(istate) = norm(istate) + cdabs(coef * coef)
norm2(istate) = norm2(istate) + cdabs(coef * coef)
!!!DEBUG
! integer :: k

View File

@ -4,13 +4,13 @@ subroutine run_stochastic_cipsi
! Selected Full Configuration Interaction with Stochastic selection and PT2.
END_DOC
integer :: i,j,k
double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:), zeros(:)
double precision, allocatable :: pt2(:), variance(:), norm2(:), rpt2(:), zeros(:)
integer :: to_select
logical, external :: qp_stop
double precision :: rss
double precision, external :: memory_of_double
PROVIDE H_apply_buffer_allocated
PROVIDE H_apply_buffer_allocated
N_iter = 1
threshold_generators = 1.d0
@ -19,7 +19,7 @@ subroutine run_stochastic_cipsi
rss = memory_of_double(N_states)*4.d0
call check_mem(rss,irp_here)
allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states))
allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm2(N_states), variance(N_states))
double precision :: hf_energy_ref
logical :: has
@ -30,7 +30,7 @@ subroutine run_stochastic_cipsi
zeros = 0.d0
pt2 = -huge(1.e0)
rpt2 = -huge(1.e0)
norm = 0.d0
norm2 = 0.d0
variance = huge(1.e0)
if (s2_eig) then
@ -91,17 +91,12 @@ subroutine run_stochastic_cipsi
pt2 = 0.d0
variance = 0.d0
norm = 0.d0
! if (is_complex) then
! call zmq_pt2_complex(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, &
! norm, to_select) ! Stochastic PT2 and selection
! else
call zmq_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, &
norm, to_select) ! Stochastic PT2 and selection
! endif
norm2 = 0.d0
call ZMQ_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, &
norm2, to_select) ! Stochastic PT2 and selection
do k=1,N_states
rpt2(k) = pt2(k)/(1.d0 + norm(k))
rpt2(k) = pt2(k)/(1.d0 + norm2(k))
enddo
correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / &
@ -109,8 +104,7 @@ subroutine run_stochastic_cipsi
correlation_energy_ratio = min(1.d0,correlation_energy_ratio)
call write_double(6,correlation_energy_ratio, 'Correlation ratio')
call print_summary(psi_energy_with_nucl_rep,pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
!call print_debug_fci()
call print_summary(psi_energy_with_nucl_rep,pt2,error,variance,norm2,N_det,N_occ_pattern,N_states,psi_s2)
call save_energy(psi_energy_with_nucl_rep, rpt2)
@ -139,7 +133,7 @@ subroutine run_stochastic_cipsi
endif
call save_wavefunction
call save_energy(psi_energy_with_nucl_rep, zeros)
if (qp_stop()) exit
if (qp_stop()) exit
enddo
if (.not.qp_stop()) then
@ -155,21 +149,16 @@ subroutine run_stochastic_cipsi
pt2(:) = 0.d0
variance(:) = 0.d0
norm(:) = 0.d0
! if (is_complex) then
! call zmq_pt2_complex(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, &
! norm,0) ! Stochastic PT2
! else
call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, &
norm,0) ! Stochastic PT2
! endif
norm2(:) = 0.d0
call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, &
norm2,0) ! Stochastic PT2
do k=1,N_states
rpt2(k) = pt2(k)/(1.d0 + norm(k))
rpt2(k) = pt2(k)/(1.d0 + norm2(k))
enddo
call save_energy(psi_energy_with_nucl_rep, rpt2)
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm2,N_det,N_occ_pattern,N_states,psi_s2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det)
call print_extrapolated_energy()
endif

View File

@ -1,4 +1,4 @@
subroutine ZMQ_selection(N_in, pt2, variance, norm)
subroutine ZMQ_selection(N_in, pt2, variance, norm2)
use f77_zmq
use selection_types
@ -11,7 +11,7 @@ subroutine ZMQ_selection(N_in, pt2, variance, norm)
integer, external :: omp_get_thread_num
double precision, intent(out) :: pt2(N_states)
double precision, intent(out) :: variance(N_states)
double precision, intent(out) :: norm(N_states)
double precision, intent(out) :: norm2(N_states)
! PROVIDE psi_det psi_coef N_det qp_max_mem N_states pt2_F s2_eig N_det_generators
@ -120,10 +120,10 @@ subroutine ZMQ_selection(N_in, pt2, variance, norm)
endif
endif
!$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2, variance, norm) PRIVATE(i) NUM_THREADS(nproc_target+1)
!$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2, variance, norm2) PRIVATE(i) NUM_THREADS(nproc_target+1)
i = omp_get_thread_num()
if (i==0) then
call selection_collector(zmq_socket_pull, b, N, pt2, variance, norm)
call selection_collector(zmq_socket_pull, b, N, pt2, variance, norm2)
else
call selection_slave_inproc(i)
endif
@ -132,7 +132,7 @@ subroutine ZMQ_selection(N_in, pt2, variance, norm)
do i=N_det+1,N_states
pt2(i) = 0.d0
variance(i) = 0.d0
norm(i) = 0.d0
norm2(i) = 0.d0
enddo
if (N_in > 0) then
if (s2_eig) then
@ -144,10 +144,10 @@ subroutine ZMQ_selection(N_in, pt2, variance, norm)
do k=1,N_states
pt2(k) = pt2(k) * f(k)
variance(k) = variance(k) * f(k)
norm(k) = norm(k) * f(k)
norm2(k) = norm2(k) * f(k)
enddo
call update_pt2_and_variance_weights(pt2, variance, norm, N_states)
call update_pt2_and_variance_weights(pt2, variance, norm2, N_states)
end subroutine
@ -159,7 +159,7 @@ subroutine selection_slave_inproc(i)
call run_selection_slave(1,i,pt2_e0_denominator)
end
subroutine selection_collector(zmq_socket_pull, b, N, pt2, variance, norm)
subroutine selection_collector(zmq_socket_pull, b, N, pt2, variance, norm2)
use f77_zmq
use selection_types
use bitmasks
@ -171,10 +171,10 @@ subroutine selection_collector(zmq_socket_pull, b, N, pt2, variance, norm)
integer, intent(in) :: N
double precision, intent(out) :: pt2(N_states)
double precision, intent(out) :: variance(N_states)
double precision, intent(out) :: norm(N_states)
double precision, intent(out) :: norm2(N_states)
double precision :: pt2_mwen(N_states)
double precision :: variance_mwen(N_states)
double precision :: norm_mwen(N_states)
double precision :: norm2_mwen(N_states)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
@ -200,16 +200,16 @@ subroutine selection_collector(zmq_socket_pull, b, N, pt2, variance, norm)
more = 1
pt2(:) = 0d0
variance(:) = 0.d0
norm(:) = 0.d0
norm2(:) = 0.d0
pt2_mwen(:) = 0.d0
variance_mwen(:) = 0.d0
norm_mwen(:) = 0.d0
norm2_mwen(:) = 0.d0
do while (more == 1)
call pull_selection_results(zmq_socket_pull, pt2_mwen, variance_mwen, norm_mwen, b2%val(1), b2%det(1,1,1), b2%cur, task_id, ntask)
call pull_selection_results(zmq_socket_pull, pt2_mwen, variance_mwen, norm2_mwen, b2%val(1), b2%det(1,1,1), b2%cur, task_id, ntask)
pt2(:) += pt2_mwen(:)
variance(:) += variance_mwen(:)
norm(:) += norm_mwen(:)
norm2(:) += norm2_mwen(:)
do i=1, b2%cur
call add_to_selection_buffer(b, b2%det(1,1,i), b2%val(i))
if (b2%val(i) > b%mini) exit

View File

@ -457,7 +457,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
if (s2_eig) then
h_p = s_
do k=1,shift2
h_p(k,k) = h_p(k,k) + S_z2_Sz - expected_s2
h_p(k,k) = h_p(k,k) - expected_s2
enddo
if (only_expected_s2) then
alpha = 0.1d0
@ -503,7 +503,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
0.d0, s_, size(s_,1))
do k=1,shift2
s2(k) = s_(k,k) + S_z2_Sz
s2(k) = s_(k,k)
enddo
if (only_expected_s2) then

View File

@ -120,7 +120,7 @@ END_PROVIDER
H_prime(1:N_det,1:N_det) = H_matrix_all_dets(1:N_det,1:N_det) + &
alpha * S2_matrix_all_dets(1:N_det,1:N_det)
do j=1,N_det
H_prime(j,j) = H_prime(j,j) + alpha*(S_z2_Sz - expected_s2)
H_prime(j,j) = H_prime(j,j) - alpha*expected_s2
enddo
call lapack_diag(eigenvalues,eigenvectors,H_prime,size(H_prime,1),N_det)
CI_electronic_energy_real(:) = 0.d0

View File

@ -9,24 +9,35 @@ double precision function diag_S_mat_elem(key_i,Nint)
! Returns <i|S^2|i>
! returns <i|S_+ S_-|i> = <i|S^2|i> - S_z*(S_z-1)
END_DOC
integer :: nup, i
integer(bit_kind) :: xorvec(N_int_max)
integer :: nup, ntot, i
integer(bit_kind) :: xorvec(N_int_max), upvec(N_int_max)
do i=1,Nint
xorvec(i) = xor(key_i(i,1),key_i(i,2))
enddo
do i=1,Nint
xorvec(i) = iand(xorvec(i),key_i(i,1))
upvec(i) = iand(xorvec(i),key_i(i,1))
enddo
! nup is number of alpha unpaired
! ntot is total number of unpaired
nup = 0
ntot = 0
do i=1,Nint
if (xorvec(i) /= 0_bit_kind) then
nup += popcnt(xorvec(i))
ntot += popcnt(xorvec(i))
if (upvec(i) /= 0_bit_kind) then
nup += popcnt(upvec(i))
endif
endif
enddo
diag_S_mat_elem = dble(nup)
double precision :: sz
sz = nup - 0.5d0*ntot
!<S^2> = <S+ S-> + Sz(Sz-1)
diag_S_mat_elem = nup + sz*(sz-1)
end
@ -130,7 +141,7 @@ subroutine u_0_S2_u_0(e_0,u_0,n,keys_tmp,Nint,N_st,sze_8)
call S2_u_0_nstates(v_0,u_0,n,keys_tmp,Nint,N_st,sze_8)
do i=1,N_st
e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n)/u_dot_u(u_0(1,i),n) + S_z2_Sz
e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n)/u_dot_u(u_0(1,i),n)
enddo
end

View File

@ -36,7 +36,7 @@ subroutine run
integer :: n_det_before, to_select
double precision :: threshold_davidson_in
double precision :: E_CI_before(N_states), relative_error, error(N_states), variance(N_states), norm(N_states), rpt2(N_states)
double precision :: E_CI_before(N_states), relative_error, error(N_states), variance(N_states), norm2(N_states), rpt2(N_states)
pt2(:) = 0.d0
@ -45,16 +45,16 @@ subroutine run
if (do_pt2) then
call ZMQ_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, &
norm,0) ! Stochastic PT2
norm2,0) ! Stochastic PT2
else
call ZMQ_selection(0, pt2, variance, norm)
call ZMQ_selection(0, pt2, variance, norm2)
endif
do k=1,N_states
rpt2(k) = pt2(k)/(1.d0 + norm(k))
rpt2(k) = pt2(k)/(1.d0 + norm2(k))
enddo
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm2,N_det,N_occ_pattern,N_states,psi_s2)
call save_energy(E_CI_before,pt2)
end

16
travis/compilation.sh Executable file
View File

@ -0,0 +1,16 @@
#!/bin/bash
# Stage 2
# Extract cache from config stage
cd ../
tar -zxf $HOME/cache/config.tgz
# Configure QP2
cd qp2
source ./quantum_package.rc
ninja -j 1 -v
# Create cache
cd ..
tar -zcf $HOME/cache/compil.tgz qp2 && rm $HOME/cache/config.tgz

10
travis/configuration.sh Executable file
View File

@ -0,0 +1,10 @@
#!/bin/bash
# Stage 1
# Configure QP2
./configure --install all --config ./config/travis.cfg
# Create cache
cd ../
tar -zcf $HOME/cache/config.tgz qp2

16
travis/testing.sh Executable file
View File

@ -0,0 +1,16 @@
#!/bin/bash
# Stage 3
# Extract cache from compile stage
cd ../
tar -zxf $HOME/cache/compil.tgz
# Configure QP2
cd qp2
source ./quantum_package.rc
qp_test -a && rm $HOME/cache/compil.tgz