10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-24 05:13:48 +01:00

more work on complex mos; created separate file for complex mos

This commit is contained in:
Kevin Gasperich 2020-01-28 15:39:25 -06:00
parent b950e40df4
commit 79b75a11f7
2 changed files with 188 additions and 115 deletions

View File

@ -93,82 +93,6 @@ BEGIN_PROVIDER [ double precision, mo_coef, (ao_num,mo_num) ]
endif endif
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_coef_imag, (ao_num,mo_num) ]
implicit none
BEGIN_DOC
! Molecular orbital coefficients on |AO| basis set
!
! mo_coef_imag(i,j) = coefficient of the i-th |AO| on the jth |MO|
!
! mo_label : Label characterizing the |MOs| (local, canonical, natural, etc)
END_DOC
integer :: i, j
double precision, allocatable :: buffer(:,:)
logical :: exists
PROVIDE ezfio_filename
if (mpi_master) then
! Coefs
call ezfio_has_mo_basis_mo_coef_imag(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(exists, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_imag with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
call ezfio_get_mo_basis_mo_coef_imag(mo_coef_imag)
write(*,*) 'Read mo_coef_imag'
endif
IRP_IF MPI
call MPI_BCAST( mo_coef_imag, mo_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_imag with MPI'
endif
IRP_ENDIF
else
! Orthonormalized AO basis
do i=1,mo_num
do j=1,ao_num
mo_coef_imag(j,i) = 0.d0
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_complex, (ao_num,mo_num) ]
implicit none
BEGIN_DOC
! Molecular orbital coefficients on |AO| basis set
!
! mo_coef_complex(i,j) = coefficient of the i-th |AO| on the jth |MO|
!
! mo_label : Label characterizing the |MOs| (local, canonical, natural, etc)
END_DOC
integer :: i, j
double precision, allocatable :: buffer(:,:)
logical :: exists
PROVIDE ezfio_filename
provide mo_coef mo_coef_imag
do i=1,mo_num
do j=1,ao_num
mo_coef_complex(j,i) = dcmplx(mo_coef(j,i),mo_coef_imag(j,i))
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_coef_in_ao_ortho_basis, (ao_num, mo_num) ] BEGIN_PROVIDER [ double precision, mo_coef_in_ao_ortho_basis, (ao_num, mo_num) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -303,35 +227,6 @@ subroutine ao_to_mo(A_ao,LDA_ao,A_mo,LDA_mo)
deallocate(T) deallocate(T)
end end
subroutine ao_to_mo_complex(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the AO basis to the MO basis
! where A is complex in the AO basis
!
! Ct.A_ao.C
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
complex*16, intent(in) :: A_ao(LDA_ao,ao_num)
complex*16, intent(out) :: A_mo(LDA_mo,mo_num)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num,mo_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call zgemm('N','N', ao_num, mo_num, ao_num, &
(1.d0,0.d0), A_ao,LDA_ao, &
mo_coef_complex, size(mo_coef_complex,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('C','N', mo_num, mo_num, ao_num, &
(1.d0,0.d0), mo_coef_complex,size(mo_coef_complex,1), &
T, ao_num, &
(0.d0,0.d0), A_mo, size(A_mo,1))
deallocate(T)
end
subroutine mix_mo_jk(j,k) subroutine mix_mo_jk(j,k)
implicit none implicit none
@ -347,28 +242,43 @@ subroutine mix_mo_jk(j,k)
! by convention, the '+' |MO| is in the lowest index (min(j,k)) ! by convention, the '+' |MO| is in the lowest index (min(j,k))
! by convention, the '-' |MO| is in the highest index (max(j,k)) ! by convention, the '-' |MO| is in the highest index (max(j,k))
END_DOC END_DOC
double precision :: array_tmp(ao_num,2),dsqrt_2
if(j==k)then if(j==k)then
print*,'You want to mix two orbitals that are the same !' print*,'You want to mix two orbitals that are the same !'
print*,'It does not make sense ... ' print*,'It does not make sense ... '
print*,'Stopping ...' print*,'Stopping ...'
stop stop
endif endif
array_tmp = 0.d0 double precision :: dsqrt_2
dsqrt_2 = 1.d0/dsqrt(2.d0) dsqrt_2 = 1.d0/dsqrt(2.d0)
i_plus = min(j,k)
i_minus = max(j,k)
if (is_periodic) then
complex*16 :: array_tmp_c(ao_num,2)
array_tmp_c = (0.d0,0.d0)
do i = 1, ao_num
array_tmp_c(i,1) = dsqrt_2 * (mo_coef_complex(i,j) + mo_coef_complex(i,k))
array_tmp_c(i,2) = dsqrt_2 * (mo_coef_complex(i,j) - mo_coef_complex(i,k))
enddo
do i = 1, ao_num
mo_coef_complex(i,i_plus) = array_tmp_c(i,1)
mo_coef_complex(i,i_minus) = array_tmp_c(i,2)
enddo
else
double precision :: array_tmp(ao_num,2)
array_tmp = 0.d0
do i = 1, ao_num do i = 1, ao_num
array_tmp(i,1) = dsqrt_2 * (mo_coef(i,j) + mo_coef(i,k)) array_tmp(i,1) = dsqrt_2 * (mo_coef(i,j) + mo_coef(i,k))
array_tmp(i,2) = dsqrt_2 * (mo_coef(i,j) - mo_coef(i,k)) array_tmp(i,2) = dsqrt_2 * (mo_coef(i,j) - mo_coef(i,k))
enddo enddo
i_plus = min(j,k)
i_minus = max(j,k)
do i = 1, ao_num do i = 1, ao_num
mo_coef(i,i_plus) = array_tmp(i,1) mo_coef(i,i_plus) = array_tmp(i,1)
mo_coef(i,i_minus) = array_tmp(i,2) mo_coef(i,i_minus) = array_tmp(i,2)
enddo enddo
endif
end end
subroutine ao_ortho_cano_to_ao(A_ao,LDA_ao,A,LDA) subroutine ao_ortho_cano_to_ao(A_ao,LDA_ao,A,LDA)
implicit none implicit none
BEGIN_DOC BEGIN_DOC

View File

@ -0,0 +1,163 @@
BEGIN_PROVIDER [ double precision, mo_coef_imag, (ao_num,mo_num) ]
implicit none
BEGIN_DOC
! Molecular orbital coefficients on |AO| basis set
!
! mo_coef_imag(i,j) = coefficient of the i-th |AO| on the jth |MO|
!
! mo_label : Label characterizing the |MOs| (local, canonical, natural, etc)
END_DOC
integer :: i, j
double precision, allocatable :: buffer(:,:)
logical :: exists
PROVIDE ezfio_filename
if (mpi_master) then
! Coefs
call ezfio_has_mo_basis_mo_coef_imag(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(exists, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_imag with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
call ezfio_get_mo_basis_mo_coef_imag(mo_coef_imag)
write(*,*) 'Read mo_coef_imag'
endif
IRP_IF MPI
call MPI_BCAST( mo_coef_imag, mo_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_imag with MPI'
endif
IRP_ENDIF
else
! Orthonormalized AO basis
do i=1,mo_num
do j=1,ao_num
mo_coef_imag(j,i) = 0.d0
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_complex, (ao_num,mo_num) ]
implicit none
BEGIN_DOC
! Molecular orbital coefficients on |AO| basis set
!
! mo_coef_complex(i,j) = coefficient of the i-th |AO| on the jth |MO|
!
! mo_label : Label characterizing the |MOs| (local, canonical, natural, etc)
END_DOC
integer :: i, j
PROVIDE ezfio_filename
provide mo_coef mo_coef_imag
do i=1,mo_num
do j=1,ao_num
mo_coef_complex(j,i) = dcmplx(mo_coef(j,i),mo_coef_imag(j,i))
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_in_ao_ortho_basis_complex, (ao_num, mo_num) ]
implicit none
BEGIN_DOC
! |MO| coefficients in orthogonalized |AO| basis
!
! $C^{-1}.C_{mo}$
END_DOC
call zgemm('N','N',ao_num,mo_num,ao_num,(1.d0,0.d0), &
ao_ortho_canonical_coef_inv_complex, size(ao_ortho_canonical_coef_inv_complex,1),&
mo_coef_complex, size(mo_coef_complex,1), (0.d0,0.d0), &
mo_coef_in_ao_ortho_basis_complex, size(mo_coef_in_ao_ortho_basis_complex,1))
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_transp_complex, (mo_num,ao_num) ]
&BEGIN_PROVIDER [ complex*16, mo_coef_transp_complex_conjg, (mo_num,ao_num) ]
implicit none
BEGIN_DOC
! |MO| coefficients on |AO| basis set
END_DOC
integer :: i, j
do j=1,ao_num
do i=1,mo_num
mo_coef_transp_complex(i,j) = mo_coef_complex(j,i)
mo_coef_transp_complex_conjg(i,j) = dconjg(mo_coef_complex(j,i))
enddo
enddo
END_PROVIDER
subroutine ao_to_mo_complex(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the AO basis to the MO basis
! where A is complex in the AO basis
!
! Ct.A_ao.C
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
complex*16, intent(in) :: A_ao(LDA_ao,ao_num)
complex*16, intent(out) :: A_mo(LDA_mo,mo_num)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num,mo_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call zgemm('N','N', ao_num, mo_num, ao_num, &
(1.d0,0.d0), A_ao,LDA_ao, &
mo_coef_complex, size(mo_coef_complex,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('C','N', mo_num, mo_num, ao_num, &
(1.d0,0.d0), mo_coef_complex,size(mo_coef_complex,1), &
T, ao_num, &
(0.d0,0.d0), A_mo, size(A_mo,1))
deallocate(T)
end
subroutine ao_ortho_cano_to_ao_complex(A_ao,LDA_ao,A,LDA)
implicit none
BEGIN_DOC
! Transform A from the |AO| basis to the orthogonal |AO| basis
!
! $C^{-1}.A_{ao}.C^{\dagger-1}$
END_DOC
integer, intent(in) :: LDA_ao,LDA
complex*16, intent(in) :: A_ao(LDA_ao,*)
complex*16, intent(out) :: A(LDA,*)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num,ao_num) )
call zgemm('C','N', ao_num, ao_num, ao_num, &
(1.d0,0.d0), &
ao_ortho_canonical_coef_inv_complex, size(ao_ortho_canonical_coef_inv_complex,1),&
A_ao,size(A_ao,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('N','N', ao_num, ao_num, ao_num, (1.d0,0.d0), &
T, size(T,1), &
ao_ortho_canonical_coef_inv_complex,size(ao_ortho_canonical_coef_inv_complex,1),&
(0.d0,0.d0), A, size(A,1))
deallocate(T)
end