mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-14 10:03:47 +01:00
Merge pull request #17 from QuantumPackage/dev-stable-tc-scf
Dev stable tc scf
This commit is contained in:
commit
6e00c869c8
2
configure
vendored
2
configure
vendored
@ -215,7 +215,6 @@ EOF
|
||||
cd trexio-${VERSION}
|
||||
./configure --prefix=\${QP_ROOT} --without-hdf5
|
||||
make -j 8 && make -j 8 check && make -j 8 install
|
||||
cp ${QP_ROOT}/include/trexio_f.f90 ${QP_ROOT}/src/ezfio_files
|
||||
tar -zxvf "\${QP_ROOT}"/external/qp2-dependencies/${ARCHITECTURE}/ninja.tar.gz
|
||||
mv ninja "\${QP_ROOT}"/bin/
|
||||
EOF
|
||||
@ -229,7 +228,6 @@ EOF
|
||||
cd trexio-${VERSION}
|
||||
./configure --prefix=\${QP_ROOT}
|
||||
make -j 8 && make -j 8 check && make -j 8 install
|
||||
cp ${QP_ROOT}/include/trexio_f.f90 ${QP_ROOT}/src/ezfio_files
|
||||
EOF
|
||||
|
||||
|
||||
|
@ -44,8 +44,12 @@ end = struct
|
||||
let get_default = Qpackage.get_ezfio_default "ao_basis";;
|
||||
|
||||
let read_ao_basis () =
|
||||
Ezfio.get_ao_basis_ao_basis ()
|
||||
|> AO_basis_name.of_string
|
||||
let result =
|
||||
Ezfio.get_ao_basis_ao_basis ()
|
||||
in
|
||||
if result <> "None" then
|
||||
AO_basis_name.of_string result
|
||||
else failwith "No basis"
|
||||
;;
|
||||
|
||||
let read_ao_num () =
|
||||
@ -192,7 +196,7 @@ end = struct
|
||||
ao_expo ;
|
||||
ao_cartesian ;
|
||||
ao_normalized ;
|
||||
primitives_normalized ;
|
||||
primitives_normalized ;
|
||||
} = b
|
||||
in
|
||||
write_md5 b ;
|
||||
@ -207,7 +211,7 @@ end = struct
|
||||
Ezfio.set_ao_basis_ao_prim_num (Ezfio.ezfio_array_of_list
|
||||
~rank:1 ~dim:[| ao_num |] ~data:ao_prim_num) ;
|
||||
|
||||
let ao_nucl =
|
||||
let ao_nucl =
|
||||
Array.to_list ao_nucl
|
||||
|> list_map Nucl_number.to_int
|
||||
in
|
||||
@ -215,7 +219,7 @@ end = struct
|
||||
~rank:1 ~dim:[| ao_num |] ~data:ao_nucl) ;
|
||||
|
||||
let ao_power =
|
||||
let l = Array.to_list ao_power in
|
||||
let l = Array.to_list ao_power in
|
||||
List.concat [
|
||||
(list_map (fun a -> Positive_int.to_int a.Angmom.Xyz.x) l) ;
|
||||
(list_map (fun a -> Positive_int.to_int a.Angmom.Xyz.y) l) ;
|
||||
@ -227,7 +231,7 @@ end = struct
|
||||
Ezfio.set_ao_basis_ao_cartesian(ao_cartesian);
|
||||
Ezfio.set_ao_basis_ao_normalized(ao_normalized);
|
||||
Ezfio.set_ao_basis_primitives_normalized(primitives_normalized);
|
||||
|
||||
|
||||
let ao_coef =
|
||||
Array.to_list ao_coef
|
||||
|> list_map AO_coef.to_float
|
||||
@ -267,7 +271,10 @@ end = struct
|
||||
|> Ezfio.set_ao_basis_ao_md5 ;
|
||||
Some result
|
||||
with
|
||||
| _ -> (Ezfio.set_ao_basis_ao_md5 "None" ; None)
|
||||
| _ -> ( "None"
|
||||
|> Digest.string
|
||||
|> Digest.to_hex
|
||||
|> Ezfio.set_ao_basis_ao_md5 ; None)
|
||||
;;
|
||||
|
||||
|
||||
@ -276,7 +283,7 @@ end = struct
|
||||
to_basis b
|
||||
|> Long_basis.of_basis
|
||||
|> Array.of_list
|
||||
and unordered_basis =
|
||||
and unordered_basis =
|
||||
to_long_basis b
|
||||
|> Array.of_list
|
||||
in
|
||||
@ -289,15 +296,15 @@ end = struct
|
||||
(a.(i) <- None ; i)
|
||||
else
|
||||
find x a (i+1)
|
||||
and find2 (s,g,n) a i =
|
||||
and find2 (s,g,n) a i =
|
||||
if i = Array.length a then -1
|
||||
else
|
||||
match a.(i) with
|
||||
match a.(i) with
|
||||
| None -> find2 (s,g,n) a (i+1)
|
||||
| Some (s', g', n') ->
|
||||
if s <> s' || n <> n' then find2 (s,g,n) a (i+1)
|
||||
else
|
||||
let lc = list_map (fun (prim, _) -> prim) g.Gto.lc
|
||||
let lc = list_map (fun (prim, _) -> prim) g.Gto.lc
|
||||
and lc' = list_map (fun (prim, _) -> prim) g'.Gto.lc
|
||||
in
|
||||
if lc <> lc' then find2 (s,g,n) a (i+1) else (a.(i) <- None ; i)
|
||||
@ -313,13 +320,13 @@ end = struct
|
||||
let ao_num = List.length long_basis |> AO_number.of_int in
|
||||
let ao_prim_num =
|
||||
list_map (fun (_,g,_) -> List.length g.Gto.lc
|
||||
|> AO_prim_number.of_int ) long_basis
|
||||
|> AO_prim_number.of_int ) long_basis
|
||||
|> Array.of_list
|
||||
and ao_nucl =
|
||||
list_map (fun (_,_,n) -> n) long_basis
|
||||
list_map (fun (_,_,n) -> n) long_basis
|
||||
|> Array.of_list
|
||||
and ao_power =
|
||||
list_map (fun (x,_,_) -> x) long_basis
|
||||
list_map (fun (x,_,_) -> x) long_basis
|
||||
|> Array.of_list
|
||||
in
|
||||
let ao_prim_num_max = Array.fold_left (fun s x ->
|
||||
@ -329,16 +336,16 @@ end = struct
|
||||
in
|
||||
|
||||
let gtos =
|
||||
list_map (fun (_,x,_) -> x) long_basis
|
||||
list_map (fun (_,x,_) -> x) long_basis
|
||||
in
|
||||
let create_expo_coef ec =
|
||||
let coefs =
|
||||
begin match ec with
|
||||
| `Coefs -> list_map (fun x->
|
||||
list_map (fun (_,coef) -> AO_coef.to_float coef) x.Gto.lc ) gtos
|
||||
list_map (fun (_,coef) -> AO_coef.to_float coef) x.Gto.lc ) gtos
|
||||
| `Expos -> list_map (fun x->
|
||||
list_map (fun (prim,_) -> AO_expo.to_float
|
||||
prim.GaussianPrimitive.expo) x.Gto.lc ) gtos
|
||||
prim.GaussianPrimitive.expo) x.Gto.lc ) gtos
|
||||
end
|
||||
in
|
||||
let rec get_n n accu = function
|
||||
@ -360,7 +367,7 @@ end = struct
|
||||
let ao_coef = create_expo_coef `Coefs
|
||||
|> Array.of_list
|
||||
|> Array.map AO_coef.of_float
|
||||
and ao_expo = create_expo_coef `Expos
|
||||
and ao_expo = create_expo_coef `Expos
|
||||
|> Array.of_list
|
||||
|> Array.map AO_expo.of_float
|
||||
in
|
||||
@ -372,7 +379,7 @@ end = struct
|
||||
}
|
||||
;;
|
||||
|
||||
let reorder b =
|
||||
let reorder b =
|
||||
let order = ordering b in
|
||||
let f a = Array.init (Array.length a) (fun i -> a.(order.(i))) in
|
||||
let ao_prim_num_max = AO_prim_number.to_int b.ao_prim_num_max
|
||||
@ -464,7 +471,7 @@ Basis set (read-only) ::
|
||||
| line :: tail ->
|
||||
let line = String.trim line in
|
||||
if line = "Basis set (read-only) ::" then
|
||||
String.concat "\n" tail
|
||||
String.concat "\n" tail
|
||||
else
|
||||
extract_basis tail
|
||||
in
|
||||
|
@ -56,7 +56,10 @@ end = struct
|
||||
let read_ao_md5 () =
|
||||
let ao_md5 =
|
||||
match (Input_ao_basis.Ao_basis.read ()) with
|
||||
| None -> failwith "Unable to read AO basis"
|
||||
| None -> ("None"
|
||||
|> Digest.string
|
||||
|> Digest.to_hex
|
||||
|> MD5.of_string)
|
||||
| Some result -> Input_ao_basis.Ao_basis.to_md5 result
|
||||
in
|
||||
let result =
|
||||
|
@ -13,12 +13,17 @@ Options:
|
||||
|
||||
import sys
|
||||
import os
|
||||
import trexio
|
||||
import numpy as np
|
||||
from functools import reduce
|
||||
from ezfio import ezfio
|
||||
from docopt import docopt
|
||||
|
||||
try:
|
||||
import trexio
|
||||
except ImportError:
|
||||
print("Error: trexio python module is not found. Try python3 -m pip install trexio")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
try:
|
||||
QP_ROOT = os.environ["QP_ROOT"]
|
||||
@ -90,14 +95,15 @@ def write_ezfio(trexio_filename, filename):
|
||||
p = re.compile(r'(\d*)$')
|
||||
label = [p.sub("", x).capitalize() for x in label]
|
||||
ezfio.set_nuclei_nucl_label(label)
|
||||
print("OK")
|
||||
|
||||
else:
|
||||
ezfio.set_nuclei_nucl_num(1)
|
||||
ezfio.set_nuclei_nucl_charge([0.])
|
||||
ezfio.set_nuclei_nucl_coord([0.,0.,0.])
|
||||
ezfio.set_nuclei_nucl_label(["X"])
|
||||
print("None")
|
||||
|
||||
print("OK")
|
||||
|
||||
|
||||
print("Electrons\t...\t", end=' ')
|
||||
@ -105,12 +111,12 @@ def write_ezfio(trexio_filename, filename):
|
||||
try:
|
||||
num_beta = trexio.read_electron_dn_num(trexio_file)
|
||||
except:
|
||||
num_beta = sum(charge)//2
|
||||
num_beta = int(sum(charge))//2
|
||||
|
||||
try:
|
||||
num_alpha = trexio.read_electron_up_num(trexio_file)
|
||||
except:
|
||||
num_alpha = sum(charge) - num_beta
|
||||
num_alpha = int(sum(charge)) - num_beta
|
||||
|
||||
if num_alpha == 0:
|
||||
print("\n\nError: There are zero electrons in the TREXIO file.\n\n")
|
||||
@ -118,7 +124,7 @@ def write_ezfio(trexio_filename, filename):
|
||||
ezfio.set_electrons_elec_alpha_num(num_alpha)
|
||||
ezfio.set_electrons_elec_beta_num(num_beta)
|
||||
|
||||
print("OK")
|
||||
print(f"{num_alpha} {num_beta}")
|
||||
|
||||
print("Basis\t\t...\t", end=' ')
|
||||
|
||||
@ -126,60 +132,113 @@ def write_ezfio(trexio_filename, filename):
|
||||
try:
|
||||
basis_type = trexio.read_basis_type(trexio_file)
|
||||
|
||||
if basis_type.lower() not in ["gaussian", "slater"]:
|
||||
raise TypeError
|
||||
if basis_type.lower() in ["gaussian", "slater"]:
|
||||
shell_num = trexio.read_basis_shell_num(trexio_file)
|
||||
prim_num = trexio.read_basis_prim_num(trexio_file)
|
||||
ang_mom = trexio.read_basis_shell_ang_mom(trexio_file)
|
||||
nucl_index = trexio.read_basis_nucleus_index(trexio_file)
|
||||
exponent = trexio.read_basis_exponent(trexio_file)
|
||||
coefficient = trexio.read_basis_coefficient(trexio_file)
|
||||
shell_index = trexio.read_basis_shell_index(trexio_file)
|
||||
ao_shell = trexio.read_ao_shell(trexio_file)
|
||||
|
||||
shell_num = trexio.read_basis_shell_num(trexio_file)
|
||||
prim_num = trexio.read_basis_prim_num(trexio_file)
|
||||
ang_mom = trexio.read_basis_shell_ang_mom(trexio_file)
|
||||
nucl_index = trexio.read_basis_nucleus_index(trexio_file)
|
||||
exponent = trexio.read_basis_exponent(trexio_file)
|
||||
coefficient = trexio.read_basis_coefficient(trexio_file)
|
||||
shell_index = trexio.read_basis_shell_index(trexio_file)
|
||||
ao_shell = trexio.read_ao_shell(trexio_file)
|
||||
ezfio.set_basis_basis("Read from TREXIO")
|
||||
ezfio.set_ao_basis_ao_basis("Read from TREXIO")
|
||||
ezfio.set_basis_shell_num(shell_num)
|
||||
ezfio.set_basis_prim_num(prim_num)
|
||||
ezfio.set_basis_shell_ang_mom(ang_mom)
|
||||
ezfio.set_basis_basis_nucleus_index([ x+1 for x in nucl_index ])
|
||||
ezfio.set_basis_prim_expo(exponent)
|
||||
ezfio.set_basis_prim_coef(coefficient)
|
||||
|
||||
ezfio.set_basis_basis("Read from TREXIO")
|
||||
ezfio.set_basis_shell_num(shell_num)
|
||||
ezfio.set_basis_prim_num(prim_num)
|
||||
ezfio.set_basis_shell_ang_mom(ang_mom)
|
||||
ezfio.set_basis_basis_nucleus_index([ x+1 for x in nucl_index ])
|
||||
ezfio.set_basis_prim_expo(exponent)
|
||||
ezfio.set_basis_prim_coef(coefficient)
|
||||
nucl_shell_num = []
|
||||
prev = None
|
||||
m = 0
|
||||
for i in ao_shell:
|
||||
if i != prev:
|
||||
m += 1
|
||||
if prev is None or nucl_index[i] != nucl_index[prev]:
|
||||
nucl_shell_num.append(m)
|
||||
m = 0
|
||||
prev = i
|
||||
assert (len(nucl_shell_num) == nucl_num)
|
||||
|
||||
nucl_shell_num = []
|
||||
prev = None
|
||||
m = 0
|
||||
for i in ao_shell:
|
||||
if i != prev:
|
||||
m += 1
|
||||
if prev is None or nucl_index[i] != nucl_index[prev]:
|
||||
nucl_shell_num.append(m)
|
||||
m = 0
|
||||
prev = i
|
||||
assert (len(nucl_shell_num) == nucl_num)
|
||||
shell_prim_num = []
|
||||
prev = shell_index[0]
|
||||
count = 0
|
||||
for i in shell_index:
|
||||
if i != prev:
|
||||
shell_prim_num.append(count)
|
||||
count = 0
|
||||
count += 1
|
||||
prev = i
|
||||
shell_prim_num.append(count)
|
||||
|
||||
shell_prim_num = []
|
||||
prev = shell_index[0]
|
||||
count = 0
|
||||
for i in shell_index:
|
||||
if i != prev:
|
||||
shell_prim_num.append(count)
|
||||
count = 0
|
||||
count += 1
|
||||
prev = i
|
||||
shell_prim_num.append(count)
|
||||
assert (len(shell_prim_num) == shell_num)
|
||||
|
||||
assert (len(shell_prim_num) == shell_num)
|
||||
|
||||
ezfio.set_basis_shell_prim_num(shell_prim_num)
|
||||
ezfio.set_basis_shell_index([x+1 for x in shell_index])
|
||||
ezfio.set_basis_nucleus_shell_num(nucl_shell_num)
|
||||
ezfio.set_basis_shell_prim_num(shell_prim_num)
|
||||
ezfio.set_basis_shell_index([x+1 for x in shell_index])
|
||||
ezfio.set_basis_nucleus_shell_num(nucl_shell_num)
|
||||
|
||||
|
||||
shell_factor = trexio.read_basis_shell_factor(trexio_file)
|
||||
prim_factor = trexio.read_basis_prim_factor(trexio_file)
|
||||
shell_factor = trexio.read_basis_shell_factor(trexio_file)
|
||||
prim_factor = trexio.read_basis_prim_factor(trexio_file)
|
||||
|
||||
print("OK")
|
||||
elif basis_type.lower() == "numerical":
|
||||
|
||||
shell_num = trexio.read_basis_shell_num(trexio_file)
|
||||
prim_num = shell_num
|
||||
ang_mom = trexio.read_basis_shell_ang_mom(trexio_file)
|
||||
nucl_index = trexio.read_basis_nucleus_index(trexio_file)
|
||||
exponent = [1.]*prim_num
|
||||
coefficient = [1.]*prim_num
|
||||
shell_index = [i for i in range(shell_num)]
|
||||
ao_shell = trexio.read_ao_shell(trexio_file)
|
||||
|
||||
ezfio.set_basis_basis("None")
|
||||
ezfio.set_ao_basis_ao_basis("None")
|
||||
ezfio.set_basis_shell_num(shell_num)
|
||||
ezfio.set_basis_prim_num(prim_num)
|
||||
ezfio.set_basis_shell_ang_mom(ang_mom)
|
||||
ezfio.set_basis_basis_nucleus_index([ x+1 for x in nucl_index ])
|
||||
ezfio.set_basis_prim_expo(exponent)
|
||||
ezfio.set_basis_prim_coef(coefficient)
|
||||
|
||||
nucl_shell_num = []
|
||||
prev = None
|
||||
m = 0
|
||||
for i in ao_shell:
|
||||
if i != prev:
|
||||
m += 1
|
||||
if prev is None or nucl_index[i] != nucl_index[prev]:
|
||||
nucl_shell_num.append(m)
|
||||
m = 0
|
||||
prev = i
|
||||
assert (len(nucl_shell_num) == nucl_num)
|
||||
|
||||
shell_prim_num = []
|
||||
prev = shell_index[0]
|
||||
count = 0
|
||||
for i in shell_index:
|
||||
if i != prev:
|
||||
shell_prim_num.append(count)
|
||||
count = 0
|
||||
count += 1
|
||||
prev = i
|
||||
shell_prim_num.append(count)
|
||||
|
||||
assert (len(shell_prim_num) == shell_num)
|
||||
|
||||
ezfio.set_basis_shell_prim_num(shell_prim_num)
|
||||
ezfio.set_basis_shell_index([x+1 for x in shell_index])
|
||||
ezfio.set_basis_nucleus_shell_num(nucl_shell_num)
|
||||
|
||||
shell_factor = trexio.read_basis_shell_factor(trexio_file)
|
||||
prim_factor = [1.]*prim_num
|
||||
else:
|
||||
raise TypeError
|
||||
|
||||
print(basis_type)
|
||||
except:
|
||||
print("None")
|
||||
ezfio.set_ao_basis_ao_cartesian(True)
|
||||
@ -256,9 +315,11 @@ def write_ezfio(trexio_filename, filename):
|
||||
# ezfio.set_ao_basis_ao_prim_num_max(prim_num_max)
|
||||
ezfio.set_ao_basis_ao_coef(coef)
|
||||
ezfio.set_ao_basis_ao_expo(expo)
|
||||
ezfio.set_ao_basis_ao_basis("Read from TREXIO")
|
||||
|
||||
print("OK")
|
||||
print("OK")
|
||||
|
||||
else:
|
||||
print("None")
|
||||
|
||||
|
||||
# _
|
||||
@ -279,6 +340,7 @@ def write_ezfio(trexio_filename, filename):
|
||||
except:
|
||||
label = "None"
|
||||
ezfio.set_mo_basis_mo_label(label)
|
||||
ezfio.set_determinants_mo_label(label)
|
||||
|
||||
try:
|
||||
clss = trexio.read_mo_class(trexio_file)
|
||||
@ -303,10 +365,10 @@ def write_ezfio(trexio_filename, filename):
|
||||
for i in range(num_beta):
|
||||
mo_occ[i] += 1.
|
||||
ezfio.set_mo_basis_mo_occ(mo_occ)
|
||||
print("OK")
|
||||
except:
|
||||
pass
|
||||
print("None")
|
||||
|
||||
print("OK")
|
||||
|
||||
|
||||
print("Pseudos\t\t...\t", end=' ')
|
||||
@ -386,9 +448,10 @@ def write_ezfio(trexio_filename, filename):
|
||||
ezfio.set_pseudo_pseudo_n_kl(pseudo_n_kl)
|
||||
ezfio.set_pseudo_pseudo_v_kl(pseudo_v_kl)
|
||||
ezfio.set_pseudo_pseudo_dz_kl(pseudo_dz_kl)
|
||||
print("OK")
|
||||
|
||||
|
||||
print("OK")
|
||||
else:
|
||||
print("None")
|
||||
|
||||
|
||||
|
@ -67,3 +67,15 @@ doc: Use normalized primitive functions
|
||||
interface: ezfio, provider
|
||||
default: true
|
||||
|
||||
[ao_expoim_cosgtos]
|
||||
type: double precision
|
||||
doc: imag part for Exponents for each primitive of each cosGTOs |AO|
|
||||
size: (ao_basis.ao_num,ao_basis.ao_prim_num_max)
|
||||
interface: ezfio, provider
|
||||
|
||||
[use_cosgtos]
|
||||
type: logical
|
||||
doc: If true, use cosgtos for AO integrals
|
||||
interface: ezfio
|
||||
default: False
|
||||
|
||||
|
33
src/ao_basis/cosgtos.irp.f
Normal file
33
src/ao_basis/cosgtos.irp.f
Normal file
@ -0,0 +1,33 @@
|
||||
BEGIN_PROVIDER [ logical, use_cosgtos ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! If true, use cosgtos for AO integrals
|
||||
END_DOC
|
||||
|
||||
logical :: has
|
||||
PROVIDE ezfio_filename
|
||||
if (mpi_master) then
|
||||
call ezfio_has_ao_basis_use_cosgtos(has)
|
||||
if (has) then
|
||||
! write(6,'(A)') '.. >>>>> [ IO READ: use_cosgtos ] <<<<< ..'
|
||||
call ezfio_get_ao_basis_use_cosgtos(use_cosgtos)
|
||||
else
|
||||
use_cosgtos = .False.
|
||||
endif
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( use_cosgtos, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read use_cosgtos with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
! call write_time(6)
|
||||
|
||||
END_PROVIDER
|
@ -1,3 +1,2 @@
|
||||
ao_basis
|
||||
pseudo
|
||||
cosgtos_ao_int
|
||||
|
@ -455,10 +455,12 @@ recursive subroutine I_x1_pol_mult_one_e(a,c,R1x,R1xp,R2x,d,nd,n_pt_in)
|
||||
do ix=0,nx
|
||||
X(ix) *= dble(c)
|
||||
enddo
|
||||
call multiply_poly(X,nx,R2x,2,d,nd)
|
||||
! call multiply_poly(X,nx,R2x,2,d,nd)
|
||||
call multiply_poly_c2(X,nx,R2x,d,nd)
|
||||
ny=0
|
||||
call I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,Y,ny,n_pt_in)
|
||||
call multiply_poly(Y,ny,R1x,2,d,nd)
|
||||
! call multiply_poly(Y,ny,R1x,2,d,nd)
|
||||
call multiply_poly_c2(Y,ny,R1x,d,nd)
|
||||
else
|
||||
do ix=0,n_pt_in
|
||||
X(ix) = 0.d0
|
||||
@ -469,7 +471,8 @@ recursive subroutine I_x1_pol_mult_one_e(a,c,R1x,R1xp,R2x,d,nd,n_pt_in)
|
||||
do ix=0,nx
|
||||
X(ix) *= dble(a-1)
|
||||
enddo
|
||||
call multiply_poly(X,nx,R2x,2,d,nd)
|
||||
! call multiply_poly(X,nx,R2x,2,d,nd)
|
||||
call multiply_poly_c2(X,nx,R2x,d,nd)
|
||||
|
||||
nx = nd
|
||||
do ix=0,n_pt_in
|
||||
@ -479,10 +482,12 @@ recursive subroutine I_x1_pol_mult_one_e(a,c,R1x,R1xp,R2x,d,nd,n_pt_in)
|
||||
do ix=0,nx
|
||||
X(ix) *= dble(c)
|
||||
enddo
|
||||
call multiply_poly(X,nx,R2x,2,d,nd)
|
||||
! call multiply_poly(X,nx,R2x,2,d,nd)
|
||||
call multiply_poly_c2(X,nx,R2x,d,nd)
|
||||
ny=0
|
||||
call I_x1_pol_mult_one_e(a-1,c,R1x,R1xp,R2x,Y,ny,n_pt_in)
|
||||
call multiply_poly(Y,ny,R1x,2,d,nd)
|
||||
! call multiply_poly(Y,ny,R1x,2,d,nd)
|
||||
call multiply_poly_c2(Y,ny,R1x,d,nd)
|
||||
endif
|
||||
end
|
||||
|
||||
@ -519,7 +524,8 @@ recursive subroutine I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,d,nd,dim)
|
||||
do ix=0,nx
|
||||
X(ix) *= dble(c-1)
|
||||
enddo
|
||||
call multiply_poly(X,nx,R2x,2,d,nd)
|
||||
! call multiply_poly(X,nx,R2x,2,d,nd)
|
||||
call multiply_poly_c2(X,nx,R2x,d,nd)
|
||||
ny = 0
|
||||
do ix=0,dim
|
||||
Y(ix) = 0.d0
|
||||
@ -527,7 +533,8 @@ recursive subroutine I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,d,nd,dim)
|
||||
|
||||
call I_x1_pol_mult_one_e(0,c-1,R1x,R1xp,R2x,Y,ny,dim)
|
||||
if(ny.ge.0)then
|
||||
call multiply_poly(Y,ny,R1xp,2,d,nd)
|
||||
! call multiply_poly(Y,ny,R1xp,2,d,nd)
|
||||
call multiply_poly_c2(Y,ny,R1xp,d,nd)
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
@ -4,6 +4,19 @@ doc: Read/Write |AO| integrals from/to disk [ Write | Read | None ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: None
|
||||
|
||||
[ao_integrals_threshold]
|
||||
type: Threshold
|
||||
doc: If | (pq|rs) | < `ao_integrals_threshold` then (pq|rs) is zero
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-15
|
||||
ezfio_name: threshold_ao
|
||||
|
||||
[ao_cholesky_threshold]
|
||||
type: Threshold
|
||||
doc: If | (ii|jj) | < `ao_cholesky_threshold` then (ii|jj) is zero
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-12
|
||||
|
||||
[do_direct_integrals]
|
||||
type: logical
|
||||
doc: Compute integrals on the fly (very slow, only for debugging)
|
||||
|
@ -4,29 +4,7 @@ BEGIN_PROVIDER [ integer, cholesky_ao_num_guess ]
|
||||
! Number of Cholesky vectors in AO basis
|
||||
END_DOC
|
||||
|
||||
integer :: i,j,k,l
|
||||
double precision :: xnorm0, x, integral
|
||||
double precision, external :: ao_two_e_integral
|
||||
|
||||
cholesky_ao_num_guess = 0
|
||||
xnorm0 = 0.d0
|
||||
x = 0.d0
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
integral = ao_two_e_integral(i,i,j,j)
|
||||
if (integral > ao_integrals_threshold) then
|
||||
cholesky_ao_num_guess += 1
|
||||
else
|
||||
x += integral
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
print *, 'Cholesky decomposition of AO integrals'
|
||||
print *, '--------------------------------------'
|
||||
print *, ''
|
||||
print *, 'Estimated Error: ', x
|
||||
print *, 'Guess size: ', cholesky_ao_num_guess, '(', 100.d0*dble(cholesky_ao_num_guess)/dble(ao_num*ao_num), ' %)'
|
||||
|
||||
cholesky_ao_num_guess = ao_num*ao_num / 2
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, cholesky_ao_num ]
|
||||
@ -39,7 +17,7 @@ END_PROVIDER
|
||||
END_DOC
|
||||
|
||||
type(c_ptr) :: ptr
|
||||
integer :: fd, i,j,k,l, rank
|
||||
integer :: fd, i,j,k,l,m,rank
|
||||
double precision, pointer :: ao_integrals(:,:,:,:)
|
||||
double precision, external :: ao_two_e_integral
|
||||
|
||||
@ -49,28 +27,90 @@ END_PROVIDER
|
||||
8, fd, .False., ptr)
|
||||
call c_f_pointer(ptr, ao_integrals, (/ao_num, ao_num, ao_num, ao_num/))
|
||||
|
||||
double precision :: integral
|
||||
print*, 'Providing the AO integrals (Cholesky)'
|
||||
call wall_time(wall_1)
|
||||
call cpu_time(cpu_1)
|
||||
|
||||
ao_integrals = 0.d0
|
||||
|
||||
double precision :: integral, cpu_1, cpu_2, wall_1, wall_2
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,j,k,l, integral) SCHEDULE(dynamic)
|
||||
do l=1,ao_num
|
||||
do j=1,l
|
||||
do k=1,ao_num
|
||||
do i=1,k
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) cycle
|
||||
integral = ao_two_e_integral(i,k,j,l)
|
||||
ao_integrals(i,k,j,l) = integral
|
||||
ao_integrals(k,i,j,l) = integral
|
||||
ao_integrals(i,k,l,j) = integral
|
||||
ao_integrals(k,i,l,j) = integral
|
||||
enddo
|
||||
double precision, external :: get_ao_two_e_integral
|
||||
|
||||
if (read_ao_two_e_integrals) then
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
|
||||
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l, integral, wall_2)
|
||||
do m=0,9
|
||||
do l=1+m,ao_num,10
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do j=1,l
|
||||
do k=1,ao_num
|
||||
do i=1,min(k,j)
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) cycle
|
||||
integral = get_ao_two_e_integral(i,j,k,l, ao_integrals_map)
|
||||
ao_integrals(i,k,j,l) = integral
|
||||
ao_integrals(k,i,j,l) = integral
|
||||
ao_integrals(i,k,l,j) = integral
|
||||
ao_integrals(k,i,l,j) = integral
|
||||
ao_integrals(j,l,i,k) = integral
|
||||
ao_integrals(j,l,k,i) = integral
|
||||
ao_integrals(l,j,i,k) = integral
|
||||
ao_integrals(l,j,k,i) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
enddo
|
||||
!$OMP MASTER
|
||||
call wall_time(wall_2)
|
||||
print '(I10,'' % in'', 4X, F10.2, '' s.'')', (m+1) * 10, wall_2-wall_1
|
||||
!$OMP END MASTER
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
else
|
||||
|
||||
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l, integral, wall_2)
|
||||
do m=0,9
|
||||
do l=1+m,ao_num,10
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do j=1,l
|
||||
do k=1,ao_num
|
||||
do i=1,min(k,j)
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) cycle
|
||||
integral = ao_two_e_integral(i,k,j,l)
|
||||
ao_integrals(i,k,j,l) = integral
|
||||
ao_integrals(k,i,j,l) = integral
|
||||
ao_integrals(i,k,l,j) = integral
|
||||
ao_integrals(k,i,l,j) = integral
|
||||
ao_integrals(j,l,i,k) = integral
|
||||
ao_integrals(j,l,k,i) = integral
|
||||
ao_integrals(l,j,i,k) = integral
|
||||
ao_integrals(l,j,k,i) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
enddo
|
||||
!$OMP MASTER
|
||||
call wall_time(wall_2)
|
||||
print '(I10,'' % in'', 4X, F10.2, '' s.'')', (m+1) * 10, wall_2-wall_1
|
||||
!$OMP END MASTER
|
||||
enddo
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall_2)
|
||||
call cpu_time(cpu_2)
|
||||
print*, 'AO integrals provided:'
|
||||
print*, ' cpu time :',cpu_2 - cpu_1, 's'
|
||||
print*, ' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1+tiny(1.d0)), ' )'
|
||||
|
||||
endif
|
||||
|
||||
! Call Lapack
|
||||
cholesky_ao_num = cholesky_ao_num_guess
|
||||
call pivoted_cholesky(ao_integrals, cholesky_ao_num, ao_integrals_threshold, ao_num*ao_num, cholesky_ao)
|
||||
call pivoted_cholesky(ao_integrals, cholesky_ao_num, ao_cholesky_threshold, ao_num*ao_num, cholesky_ao)
|
||||
print *, 'Rank: ', cholesky_ao_num, '(', 100.d0*dble(cholesky_ao_num)/dble(ao_num*ao_num), ' %)'
|
||||
|
||||
! Remove mmap
|
||||
|
@ -590,8 +590,20 @@ double precision function general_primitive_integral(dim, &
|
||||
d_poly(i)=0.d0
|
||||
enddo
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp)
|
||||
! call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp)
|
||||
integer :: ib, ic
|
||||
if (ior(n_Ix,n_Iy) >= 0) then
|
||||
do ib=0,n_Ix
|
||||
do ic = 0,n_Iy
|
||||
d_poly(ib+ic) = d_poly(ib+ic) + Iy_pol(ic) * Ix_pol(ib)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do n_pt_tmp = n_Ix+n_Iy, 0, -1
|
||||
if (d_poly(n_pt_tmp) /= 0.d0) exit
|
||||
enddo
|
||||
endif
|
||||
|
||||
if (n_pt_tmp == -1) then
|
||||
return
|
||||
endif
|
||||
@ -600,8 +612,21 @@ double precision function general_primitive_integral(dim, &
|
||||
d1(i)=0.d0
|
||||
enddo
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
|
||||
! call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
|
||||
if (ior(n_pt_tmp,n_Iz) >= 0) then
|
||||
! Bottleneck here
|
||||
do ib=0,n_pt_tmp
|
||||
do ic = 0,n_Iz
|
||||
d1(ib+ic) = d1(ib+ic) + Iz_pol(ic) * d_poly(ib)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do n_pt_out = n_pt_tmp+n_Iz, 0, -1
|
||||
if (d1(n_pt_out) /= 0.d0) exit
|
||||
enddo
|
||||
endif
|
||||
|
||||
|
||||
double precision :: rint_sum
|
||||
accu = accu + rint_sum(n_pt_out,const,d1)
|
||||
|
||||
@ -948,8 +973,9 @@ recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt
|
||||
X(ix) *= dble(a-1)
|
||||
enddo
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(X,nx,B_10,2,d,nd)
|
||||
! !DIR$ FORCEINLINE
|
||||
! call multiply_poly(X,nx,B_10,2,d,nd)
|
||||
call multiply_poly_c2(X,nx,B_10,d,nd)
|
||||
|
||||
nx = nd
|
||||
!DIR$ LOOP COUNT(8)
|
||||
@ -970,8 +996,9 @@ recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt
|
||||
X(ix) *= c
|
||||
enddo
|
||||
endif
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(X,nx,B_00,2,d,nd)
|
||||
! !DIR$ FORCEINLINE
|
||||
! call multiply_poly(X,nx,B_00,2,d,nd)
|
||||
call multiply_poly_c2(X,nx,B_00,d,nd)
|
||||
endif
|
||||
|
||||
ny=0
|
||||
@ -988,9 +1015,9 @@ recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt
|
||||
call I_x1_pol_mult_recurs(a-1,c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
|
||||
endif
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(Y,ny,C_00,2,d,nd)
|
||||
|
||||
! !DIR$ FORCEINLINE
|
||||
! call multiply_poly(Y,ny,C_00,2,d,nd)
|
||||
call multiply_poly_c2(Y,ny,C_00,d,nd)
|
||||
end
|
||||
|
||||
recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||||
@ -1028,8 +1055,9 @@ recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||||
enddo
|
||||
endif
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(X,nx,B_00,2,d,nd)
|
||||
! !DIR$ FORCEINLINE
|
||||
! call multiply_poly(X,nx,B_00,2,d,nd)
|
||||
call multiply_poly_c2(X,nx,B_00,d,nd)
|
||||
|
||||
ny=0
|
||||
|
||||
@ -1039,8 +1067,9 @@ recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||||
enddo
|
||||
call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(Y,ny,C_00,2,d,nd)
|
||||
! !DIR$ FORCEINLINE
|
||||
! call multiply_poly(Y,ny,C_00,2,d,nd)
|
||||
call multiply_poly_c2(Y,ny,C_00,d,nd)
|
||||
|
||||
end
|
||||
|
||||
@ -1067,8 +1096,9 @@ recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||||
nx = 0
|
||||
call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in)
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(X,nx,B_10,2,d,nd)
|
||||
! !DIR$ FORCEINLINE
|
||||
! call multiply_poly(X,nx,B_10,2,d,nd)
|
||||
call multiply_poly_c2(X,nx,B_10,d,nd)
|
||||
|
||||
nx = nd
|
||||
!DIR$ LOOP COUNT(8)
|
||||
@ -1086,8 +1116,9 @@ recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||||
enddo
|
||||
endif
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(X,nx,B_00,2,d,nd)
|
||||
! !DIR$ FORCEINLINE
|
||||
! call multiply_poly(X,nx,B_00,2,d,nd)
|
||||
call multiply_poly_c2(X,nx,B_00,d,nd)
|
||||
|
||||
ny=0
|
||||
!DIR$ LOOP COUNT(8)
|
||||
@ -1097,9 +1128,9 @@ recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
|
||||
!DIR$ FORCEINLINE
|
||||
call I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in)
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(Y,ny,C_00,2,d,nd)
|
||||
|
||||
! !DIR$ FORCEINLINE
|
||||
! call multiply_poly(Y,ny,C_00,2,d,nd)
|
||||
call multiply_poly_c2(Y,ny,C_00,d,nd)
|
||||
end
|
||||
|
||||
recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
|
||||
@ -1146,8 +1177,10 @@ recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
|
||||
Y(1) = D_00(1)
|
||||
Y(2) = D_00(2)
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(Y,ny,D_00,2,d,nd)
|
||||
! !DIR$ FORCEINLINE
|
||||
! call multiply_poly(Y,ny,D_00,2,d,nd)
|
||||
call multiply_poly_c2(Y,ny,D_00,d,nd)
|
||||
|
||||
return
|
||||
|
||||
case default
|
||||
@ -1164,8 +1197,9 @@ recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
|
||||
X(ix) *= dble(c-1)
|
||||
enddo
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(X,nx,B_01,2,d,nd)
|
||||
! !DIR$ FORCEINLINE
|
||||
! call multiply_poly(X,nx,B_01,2,d,nd)
|
||||
call multiply_poly_c2(X,nx,B_01,d,nd)
|
||||
|
||||
ny = 0
|
||||
!DIR$ LOOP COUNT(6)
|
||||
@ -1174,8 +1208,9 @@ recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
|
||||
enddo
|
||||
call I_x2_pol_mult(c-1,B_10,B_01,B_00,C_00,D_00,Y,ny,dim)
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(Y,ny,D_00,2,d,nd)
|
||||
! !DIR$ FORCEINLINE
|
||||
! call multiply_poly(Y,ny,D_00,2,d,nd)
|
||||
call multiply_poly_c2(Y,ny,D_00,d,nd)
|
||||
|
||||
end select
|
||||
end
|
||||
@ -1233,3 +1268,34 @@ subroutine compute_ao_integrals_jl(j,l,n_integrals,buffer_i,buffer_value)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine multiply_poly_local(b,nb,c,nc,d,nd)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Multiply two polynomials
|
||||
! D(t) += B(t)*C(t)
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: nb, nc
|
||||
integer, intent(out) :: nd
|
||||
double precision, intent(in) :: b(0:nb), c(0:nc)
|
||||
double precision, intent(inout) :: d(0:nb+nc)
|
||||
|
||||
integer :: ndtmp
|
||||
integer :: ib, ic, id, k
|
||||
if(ior(nc,nb) < 0) return !False if nc>=0 and nb>=0
|
||||
|
||||
do ib=0,nb
|
||||
do ic = 0,nc
|
||||
d(ib+ic) = d(ib+ic) + c(ic) * b(ib)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do nd = nb+nc,0,-1
|
||||
if (d(nd) /= 0.d0) exit
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
@ -7,7 +7,13 @@ program bi_ort_ints
|
||||
my_n_pt_r_grid = 10
|
||||
my_n_pt_a_grid = 14
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
call test_3e
|
||||
! call test_3e
|
||||
call test_5idx
|
||||
! call test_5idx2
|
||||
end
|
||||
|
||||
subroutine test_5idx2
|
||||
PROVIDE three_e_5_idx_cycle_2_bi_ort
|
||||
end
|
||||
|
||||
subroutine test_3e
|
||||
@ -16,11 +22,12 @@ subroutine test_3e
|
||||
double precision :: accu, contrib,new,ref
|
||||
i = 1
|
||||
k = 1
|
||||
n = 0
|
||||
accu = 0.d0
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
do n = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(n, l, k, m, j, i, new)
|
||||
@ -31,6 +38,7 @@ subroutine test_3e
|
||||
print*,'pb !!'
|
||||
print*,i,k,j,l,m,n
|
||||
print*,ref,new,contrib
|
||||
stop
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
@ -42,3 +50,93 @@ subroutine test_3e
|
||||
|
||||
|
||||
end
|
||||
|
||||
subroutine test_5idx
|
||||
implicit none
|
||||
integer :: i,k,j,l,m,n,ipoint
|
||||
double precision :: accu, contrib,new,ref
|
||||
i = 1
|
||||
k = 1
|
||||
n = 0
|
||||
accu = 0.d0
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
|
||||
new = three_e_5_idx_direct_bi_ort(m,l,j,k,i)
|
||||
ref = three_e_5_idx_direct_bi_ort_old(m,l,j,k,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. 1.d-10)then
|
||||
print*,'direct'
|
||||
print*,i,k,j,l,m
|
||||
print*,ref,new,contrib
|
||||
stop
|
||||
endif
|
||||
|
||||
new = three_e_5_idx_exch12_bi_ort(m,l,j,k,i)
|
||||
ref = three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. 1.d-10)then
|
||||
print*,'exch12'
|
||||
print*,i,k,j,l,m
|
||||
print*,ref,new,contrib
|
||||
stop
|
||||
endif
|
||||
!
|
||||
new = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i)
|
||||
ref = three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. 1.d-10)then
|
||||
print*,'cycle1'
|
||||
print*,i,k,j,l,m
|
||||
print*,ref,new,contrib
|
||||
stop
|
||||
endif
|
||||
|
||||
new = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i)
|
||||
ref = three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. 1.d-10)then
|
||||
print*,'cycle2'
|
||||
print*,i,k,j,l,m
|
||||
print*,ref,new,contrib
|
||||
stop
|
||||
endif
|
||||
|
||||
new = three_e_5_idx_exch23_bi_ort(m,l,j,k,i)
|
||||
ref = three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. 1.d-10)then
|
||||
print*,'exch23'
|
||||
print*,i,k,j,l,m
|
||||
print*,ref,new,contrib
|
||||
stop
|
||||
endif
|
||||
|
||||
new = three_e_5_idx_exch13_bi_ort(m,l,j,k,i)
|
||||
ref = three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. 1.d-10)then
|
||||
print*,'exch13'
|
||||
print*,i,k,j,l,m
|
||||
print*,ref,new,contrib
|
||||
stop
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu = ',accu/dble(mo_num)**5
|
||||
|
||||
|
||||
end
|
||||
|
@ -1,7 +1,11 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
@ -14,289 +18,221 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num,
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_5_idx_direct_bi_ort = 0.d0
|
||||
print *, ' Providing the three_e_5_idx_direct_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
double precision :: wall1, wall0
|
||||
integer :: ipoint
|
||||
double precision, allocatable :: grad_mli(:,:,:), orb_mat(:,:,:)
|
||||
double precision, allocatable :: lk_grad_mi(:,:,:,:), rk_grad_im(:,:,:,:)
|
||||
double precision, allocatable :: lm_grad_ik(:,:,:,:), rm_grad_ik(:,:,:,:)
|
||||
double precision, allocatable :: tmp_mat(:,:,:,:)
|
||||
allocate(tmp_mat(mo_num,mo_num,mo_num,mo_num))
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
|
||||
|
||||
print *, ' Providing the three_e_5_idx_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
do m = 1, mo_num
|
||||
|
||||
allocate(grad_mli(n_points_final_grid,mo_num,mo_num))
|
||||
allocate(orb_mat(n_points_final_grid,mo_num,mo_num))
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
!$OMP PRIVATE (i,l,ipoint) &
|
||||
!$OMP SHARED (m,mo_num,n_points_final_grid, &
|
||||
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP grad_mli, orb_mat)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i=1,mo_num
|
||||
do l=1,mo_num
|
||||
do ipoint=1, n_points_final_grid
|
||||
|
||||
grad_mli(ipoint,l,i) = final_weight_at_r_vector(ipoint) * ( &
|
||||
int2_grad1_u12_bimo_t(ipoint,1,m,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) + &
|
||||
int2_grad1_u12_bimo_t(ipoint,2,m,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) + &
|
||||
int2_grad1_u12_bimo_t(ipoint,3,m,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i) )
|
||||
|
||||
orb_mat(ipoint,l,i) = mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,i)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, n_points_final_grid, 1.d0, &
|
||||
orb_mat, n_points_final_grid, &
|
||||
grad_mli, n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral)
|
||||
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = - tmp_mat(l,j,k,i) - tmp_mat(k,i,l,j)
|
||||
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = - tmp_mat(l,i,k,j) - tmp_mat(k,j,l,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_direct_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
deallocate(orb_mat,grad_mli)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_5_idx_cycle_1_bi_ort = 0.d0
|
||||
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
allocate(lm_grad_ik(n_points_final_grid,3,mo_num,mo_num))
|
||||
allocate(rm_grad_ik(n_points_final_grid,3,mo_num,mo_num))
|
||||
allocate(rk_grad_im(n_points_final_grid,3,mo_num,mo_num))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
!$OMP PRIVATE (i,l,ipoint) &
|
||||
!$OMP SHARED (m,mo_num,n_points_final_grid, &
|
||||
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP rm_grad_ik, lm_grad_ik, rk_grad_im, lk_grad_mi)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i=1,mo_num
|
||||
do l=1,mo_num
|
||||
do ipoint=1, n_points_final_grid
|
||||
|
||||
lm_grad_ik(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) * final_weight_at_r_vector(ipoint)
|
||||
lm_grad_ik(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) * final_weight_at_r_vector(ipoint)
|
||||
lm_grad_ik(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i) * final_weight_at_r_vector(ipoint)
|
||||
|
||||
rm_grad_ik(ipoint,1,l,i) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i)
|
||||
rm_grad_ik(ipoint,2,l,i) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i)
|
||||
rm_grad_ik(ipoint,3,l,i) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i)
|
||||
|
||||
rk_grad_im(ipoint,1,l,i) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,i,m)
|
||||
rk_grad_im(ipoint,2,l,i) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,i,m)
|
||||
rk_grad_im(ipoint,3,l,i) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,i,m)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, &
|
||||
lm_grad_ik, 3*n_points_final_grid, &
|
||||
rm_grad_ik, 3*n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
|
||||
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = three_e_5_idx_direct_bi_ort(m,l,j,k,i) - tmp_mat(l,j,k,i)
|
||||
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = three_e_5_idx_exch12_bi_ort(m,l,j,k,i) - tmp_mat(l,i,k,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, &
|
||||
lm_grad_ik, 3*n_points_final_grid, &
|
||||
rk_grad_im, 3*n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_5_idx_cycle_2_bi_ort = 0.d0
|
||||
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
|
||||
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_5_idx_exch23_bi_ort = 0.d0
|
||||
print *, ' Providing the three_e_5_idx_exch23_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
|
||||
three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = - tmp_mat(l,i,j,k)
|
||||
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = - tmp_mat(k,j,i,l)
|
||||
three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = - tmp_mat(k,i,j,l)
|
||||
three_e_5_idx_exch13_bi_ort (m,l,j,k,i) = - tmp_mat(l,j,i,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_exch23_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
deallocate(lm_grad_ik)
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_5_idx_exch13_bi_ort = 0.d0
|
||||
print *, ' Providing the three_e_5_idx_exch13_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
allocate(lk_grad_mi(n_points_final_grid,3,mo_num,mo_num))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
!$OMP PRIVATE (i,l,ipoint) &
|
||||
!$OMP SHARED (m,mo_num,n_points_final_grid, &
|
||||
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP lk_grad_mi)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i=1,mo_num
|
||||
do l=1,mo_num
|
||||
do ipoint=1, n_points_final_grid
|
||||
|
||||
lk_grad_mi(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,m,i) * final_weight_at_r_vector(ipoint)
|
||||
lk_grad_mi(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,m,i) * final_weight_at_r_vector(ipoint)
|
||||
lk_grad_mi(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,m,i) * final_weight_at_r_vector(ipoint)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, &
|
||||
lk_grad_mi, 3*n_points_final_grid, &
|
||||
rm_grad_ik, 3*n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
|
||||
three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) - tmp_mat(k,j,l,i)
|
||||
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) - tmp_mat(l,i,k,j)
|
||||
three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = three_e_5_idx_exch23_bi_ort (m,l,j,k,i) - tmp_mat(l,j,k,i)
|
||||
three_e_5_idx_exch13_bi_ort (m,l,j,k,i) = three_e_5_idx_exch13_bi_ort (m,l,j,k,i) - tmp_mat(k,i,l,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_exch13_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, &
|
||||
lk_grad_mi, 3*n_points_final_grid, &
|
||||
rk_grad_im, 3*n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_5_idx_exch12_bi_ort = 0.d0
|
||||
print *, ' Providing the three_e_5_idx_exch12_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
|
||||
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) - tmp_mat(l,j,i,k)
|
||||
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) - tmp_mat(k,i,j,l)
|
||||
three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = three_e_5_idx_exch23_bi_ort (m,l,j,k,i) - tmp_mat(k,j,i,l)
|
||||
three_e_5_idx_exch13_bi_ort (m,l,j,k,i) = three_e_5_idx_exch13_bi_ort (m,l,j,k,i) - tmp_mat(l,i,j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
deallocate(lk_grad_mi)
|
||||
deallocate(rm_grad_ik)
|
||||
deallocate(rk_grad_im)
|
||||
enddo
|
||||
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_exch12_bi_ort', wall1 - wall0
|
||||
print *, ' wall time for three_e_5_idx_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
END_PROVIDER
|
||||
|
||||
|
295
src/bi_ort_ints/three_body_ijmkl_old.irp.f
Normal file
295
src/bi_ort_ints/three_body_ijmkl_old.irp.f
Normal file
@ -0,0 +1,295 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_5_idx_direct_bi_ort_old = 0.d0
|
||||
print *, ' Providing the three_e_5_idx_direct_bi_ort_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort_old)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral)
|
||||
three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_direct_bi_ort_old', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_5_idx_cycle_1_bi_ort_old = 0.d0
|
||||
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort_old)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
|
||||
three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort_old', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_5_idx_cycle_2_bi_ort_old = 0.d0
|
||||
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort_old)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
|
||||
three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort_old', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_5_idx_exch23_bi_ort_old = 0.d0
|
||||
print *, ' Providing the three_e_5_idx_exch23_bi_ort_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort_old)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
|
||||
three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_exch23_bi_ort_old', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_5_idx_exch13_bi_ort_old = 0.d0
|
||||
print *, ' Providing the three_e_5_idx_exch13_bi_ort_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort_old)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
|
||||
three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_exch13_bi_ort_old', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
|
||||
|
||||
three_e_5_idx_exch12_bi_ort_old = 0.d0
|
||||
print *, ' Providing the three_e_5_idx_exch12_bi_ort_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort_old)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
|
||||
three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_exch12_bi_ort_old', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -4,7 +4,7 @@
|
||||
BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! matrix element of the -L three-body operator
|
||||
! matrix element of the -L three-body operator
|
||||
!
|
||||
! notice the -1 sign: in this way three_body_ints_bi_ort can be directly used to compute Slater rules :)
|
||||
END_DOC
|
||||
@ -12,7 +12,7 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n
|
||||
implicit none
|
||||
integer :: i, j, k, l, m, n
|
||||
double precision :: integral, wall1, wall0
|
||||
character*(128) :: name_file
|
||||
character*(128) :: name_file
|
||||
|
||||
three_body_ints_bi_ort = 0.d0
|
||||
print *, ' Providing the three_body_ints_bi_ort ...'
|
||||
@ -27,12 +27,12 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n
|
||||
! call read_array_6_index_tensor(mo_num,three_body_ints_bi_ort,name_file)
|
||||
! else
|
||||
|
||||
!provide x_W_ki_bi_ortho_erf_rk
|
||||
!provide x_W_ki_bi_ortho_erf_rk
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,l,m,n,integral) &
|
||||
!$OMP PRIVATE (i,j,k,l,m,n,integral) &
|
||||
!$OMP SHARED (mo_num,three_body_ints_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
@ -43,7 +43,7 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n
|
||||
do n = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral)
|
||||
|
||||
three_body_ints_bi_ort(n,l,k,m,j,i) = -1.d0 * integral
|
||||
three_body_ints_bi_ort(n,l,k,m,j,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -64,7 +64,7 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n
|
||||
! call ezfio_set_three_body_ints_bi_ort_io_three_body_ints_bi_ort("Read")
|
||||
! endif
|
||||
|
||||
END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
@ -72,7 +72,7 @@ subroutine give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! < n l k | -L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS
|
||||
! < n l k | -L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS
|
||||
!
|
||||
END_DOC
|
||||
|
||||
@ -86,22 +86,25 @@ subroutine give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral)
|
||||
PROVIDE int2_grad1_u12_bimo_t
|
||||
|
||||
integral = 0.d0
|
||||
! (n, l, k, m, j, i)
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
|
||||
integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
|
||||
tmp = mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
|
||||
* ( int2_grad1_u12_bimo_t(ipoint,1,n,m) * int2_grad1_u12_bimo_t(ipoint,1,l,j) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,2,n,m) * int2_grad1_u12_bimo_t(ipoint,2,l,j) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,3,n,m) * int2_grad1_u12_bimo_t(ipoint,3,l,j) )
|
||||
integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
|
||||
|
||||
tmp = tmp + mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
|
||||
* ( int2_grad1_u12_bimo_t(ipoint,1,n,m) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,2,n,m) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,3,n,m) * int2_grad1_u12_bimo_t(ipoint,3,k,i) )
|
||||
integral += weight * mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,m) &
|
||||
|
||||
tmp = tmp + mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,m) &
|
||||
* ( int2_grad1_u12_bimo_t(ipoint,1,l,j) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,2,l,j) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,3,l,j) * int2_grad1_u12_bimo_t(ipoint,3,k,i) )
|
||||
|
||||
integral = integral + tmp * final_weight_at_r_vector(ipoint)
|
||||
enddo
|
||||
|
||||
end subroutine give_integrals_3_body_bi_ort
|
||||
@ -112,7 +115,7 @@ subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! < n l k | -L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS
|
||||
! < n l k | -L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS
|
||||
!
|
||||
END_DOC
|
||||
|
||||
@ -124,13 +127,13 @@ subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral)
|
||||
|
||||
integral = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
! integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
|
||||
! integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
|
||||
! * ( x_W_ki_bi_ortho_erf_rk(ipoint,1,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,1,l,j) &
|
||||
! + x_W_ki_bi_ortho_erf_rk(ipoint,2,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,2,l,j) &
|
||||
! + x_W_ki_bi_ortho_erf_rk(ipoint,3,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,3,l,j) )
|
||||
! integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
|
||||
! integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
|
||||
! * ( x_W_ki_bi_ortho_erf_rk(ipoint,1,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,1,k,i) &
|
||||
! + x_W_ki_bi_ortho_erf_rk(ipoint,2,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,2,k,i) &
|
||||
! + x_W_ki_bi_ortho_erf_rk(ipoint,3,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,3,k,i) )
|
||||
@ -139,11 +142,11 @@ subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral)
|
||||
! + x_W_ki_bi_ortho_erf_rk(ipoint,2,l,j) * x_W_ki_bi_ortho_erf_rk(ipoint,2,k,i) &
|
||||
! + x_W_ki_bi_ortho_erf_rk(ipoint,3,l,j) * x_W_ki_bi_ortho_erf_rk(ipoint,3,k,i) )
|
||||
|
||||
! integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
|
||||
! integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
|
||||
! * ( int2_grad1_u12_bimo(1,n,m,ipoint) * int2_grad1_u12_bimo(1,l,j,ipoint) &
|
||||
! + int2_grad1_u12_bimo(2,n,m,ipoint) * int2_grad1_u12_bimo(2,l,j,ipoint) &
|
||||
! + int2_grad1_u12_bimo(3,n,m,ipoint) * int2_grad1_u12_bimo(3,l,j,ipoint) )
|
||||
! integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
|
||||
! integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
|
||||
! * ( int2_grad1_u12_bimo(1,n,m,ipoint) * int2_grad1_u12_bimo(1,k,i,ipoint) &
|
||||
! + int2_grad1_u12_bimo(2,n,m,ipoint) * int2_grad1_u12_bimo(2,k,i,ipoint) &
|
||||
! + int2_grad1_u12_bimo(3,n,m,ipoint) * int2_grad1_u12_bimo(3,k,i,ipoint) )
|
||||
@ -152,13 +155,13 @@ subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral)
|
||||
! + int2_grad1_u12_bimo(2,l,j,ipoint) * int2_grad1_u12_bimo(2,k,i,ipoint) &
|
||||
! + int2_grad1_u12_bimo(3,l,j,ipoint) * int2_grad1_u12_bimo(3,k,i,ipoint) )
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
|
||||
integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
|
||||
* ( int2_grad1_u12_bimo_transp(n,m,1,ipoint) * int2_grad1_u12_bimo_transp(l,j,1,ipoint) &
|
||||
+ int2_grad1_u12_bimo_transp(n,m,2,ipoint) * int2_grad1_u12_bimo_transp(l,j,2,ipoint) &
|
||||
+ int2_grad1_u12_bimo_transp(n,m,3,ipoint) * int2_grad1_u12_bimo_transp(l,j,3,ipoint) )
|
||||
integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
|
||||
integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
|
||||
* ( int2_grad1_u12_bimo_transp(n,m,1,ipoint) * int2_grad1_u12_bimo_transp(k,i,1,ipoint) &
|
||||
+ int2_grad1_u12_bimo_transp(n,m,2,ipoint) * int2_grad1_u12_bimo_transp(k,i,2,ipoint) &
|
||||
+ int2_grad1_u12_bimo_transp(n,m,3,ipoint) * int2_grad1_u12_bimo_transp(k,i,3,ipoint) )
|
||||
@ -177,7 +180,7 @@ subroutine give_integrals_3_body_bi_ort_ao(n, l, k, m, j, i, integral)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! < n l k | -L | m j i > with a BI-ORTHONORMAL ATOMIC ORBITALS
|
||||
! < n l k | -L | m j i > with a BI-ORTHONORMAL ATOMIC ORBITALS
|
||||
!
|
||||
END_DOC
|
||||
|
||||
@ -189,13 +192,13 @@ subroutine give_integrals_3_body_bi_ort_ao(n, l, k, m, j, i, integral)
|
||||
|
||||
integral = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
|
||||
integral += weight * aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,i) &
|
||||
integral += weight * aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,i) &
|
||||
* ( int2_grad1_u12_ao_t(ipoint,1,n,m) * int2_grad1_u12_ao_t(ipoint,1,l,j) &
|
||||
+ int2_grad1_u12_ao_t(ipoint,2,n,m) * int2_grad1_u12_ao_t(ipoint,2,l,j) &
|
||||
+ int2_grad1_u12_ao_t(ipoint,3,n,m) * int2_grad1_u12_ao_t(ipoint,3,l,j) )
|
||||
integral += weight * aos_in_r_array_transp(ipoint,l) * aos_in_r_array_transp(ipoint,j) &
|
||||
integral += weight * aos_in_r_array_transp(ipoint,l) * aos_in_r_array_transp(ipoint,j) &
|
||||
* ( int2_grad1_u12_ao_t(ipoint,1,n,m) * int2_grad1_u12_ao_t(ipoint,1,k,i) &
|
||||
+ int2_grad1_u12_ao_t(ipoint,2,n,m) * int2_grad1_u12_ao_t(ipoint,2,k,i) &
|
||||
+ int2_grad1_u12_ao_t(ipoint,3,n,m) * int2_grad1_u12_ao_t(ipoint,3,k,i) )
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -10,51 +10,43 @@ subroutine ccsd_par_t_space_v3(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energy)
|
||||
double precision, intent(in) :: v_vvvo(nV,nV,nV,nO), v_vvoo(nV,nV,nO,nO), v_vooo(nV,nO,nO,nO)
|
||||
double precision, intent(out) :: energy
|
||||
|
||||
double precision, allocatable :: W(:,:,:,:,:,:)
|
||||
double precision, allocatable :: V(:,:,:,:,:,:)
|
||||
double precision, allocatable :: W_abc(:,:,:), V_abc(:,:,:)
|
||||
double precision, allocatable :: W_cab(:,:,:), W_cba(:,:,:)
|
||||
double precision, allocatable :: W_bca(:,:,:), V_cba(:,:,:)
|
||||
double precision, allocatable :: X_vvvo(:,:,:,:), X_ovoo(:,:,:,:), X_vvoo(:,:,:,:)
|
||||
double precision, allocatable :: T_vvoo(:,:,:,:), T_ovvo(:,:,:,:), T_vo(:,:)
|
||||
double precision, allocatable :: X_vovv(:,:,:,:), X_ooov(:,:,:,:), X_oovv(:,:,:,:)
|
||||
double precision, allocatable :: T_voov(:,:,:,:), T_oovv(:,:,:,:)
|
||||
integer :: i,j,k,l,a,b,c,d
|
||||
double precision :: e,ta,tb, delta, delta_abc
|
||||
double precision :: e,ta,tb
|
||||
|
||||
!allocate(W(nV,nV,nV,nO,nO,nO))
|
||||
!allocate(V(nV,nV,nV,nO,nO,nO))
|
||||
allocate(W_abc(nO,nO,nO), V_abc(nO,nO,nO), W_cab(nO,nO,nO))
|
||||
allocate(W_bca(nO,nO,nO), V_cba(nO,nO,nO), W_cba(nO,nO,nO))
|
||||
allocate(X_vvvo(nV,nV,nV,nO), X_ovoo(nO,nV,nO,nO), X_vvoo(nV,nV,nO,nO))
|
||||
allocate(T_vvoo(nV,nV,nO,nO), T_ovvo(nO,nV,nV,nO), T_vo(nV,nO))
|
||||
call set_multiple_levels_omp(.False.)
|
||||
|
||||
allocate(X_vovv(nV,nO,nV,nV), X_ooov(nO,nO,nO,nV), X_oovv(nO,nO,nV,nV))
|
||||
allocate(T_voov(nV,nO,nO,nV),T_oovv(nO,nO,nV,nV))
|
||||
|
||||
! Temporary arrays
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(nO,nV,T_vvoo,T_ovvo,T_vo,X_vvvo,X_ovoo,X_vvoo, &
|
||||
!$OMP SHARED(nO,nV,T_voov,T_oovv,X_vovv,X_ooov,X_oovv, &
|
||||
!$OMP t1,t2,v_vvvo,v_vooo,v_vvoo) &
|
||||
!$OMP PRIVATE(a,b,c,d,i,j,k,l) &
|
||||
!$OMP DEFAULT(NONE)
|
||||
|
||||
!v_vvvo(b,a,d,i) * t2(k,j,c,d) &
|
||||
!X_vvvo(d,b,a,i) * T_vvoo(d,c,k,j)
|
||||
!X_vovv(d,i,b,a,i) * T_voov(d,j,c,k)
|
||||
|
||||
!$OMP DO collapse(3)
|
||||
do i = 1, nO
|
||||
do a = 1, nV
|
||||
do b = 1, nV
|
||||
!$OMP DO
|
||||
do a = 1, nV
|
||||
do b = 1, nV
|
||||
do i = 1, nO
|
||||
do d = 1, nV
|
||||
X_vvvo(d,b,a,i) = v_vvvo(b,a,d,i)
|
||||
X_vovv(d,i,b,a) = v_vvvo(b,a,d,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO nowait
|
||||
|
||||
!$OMP DO collapse(3)
|
||||
do j = 1, nO
|
||||
do k = 1, nO
|
||||
do c = 1, nV
|
||||
!$OMP DO
|
||||
do c = 1, nV
|
||||
do j = 1, nO
|
||||
do k = 1, nO
|
||||
do d = 1, nV
|
||||
T_vvoo(d,c,k,j) = t2(k,j,c,d)
|
||||
T_voov(d,k,j,c) = t2(k,j,c,d)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -62,191 +54,399 @@ subroutine ccsd_par_t_space_v3(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energy)
|
||||
!$OMP END DO nowait
|
||||
|
||||
!v_vooo(c,j,k,l) * t2(i,l,a,b) &
|
||||
!X_ovoo(l,c,j,k) * T_ovvo(l,a,b,i) &
|
||||
!X_ooov(l,j,k,c) * T_oovv(l,i,a,b) &
|
||||
|
||||
!$OMP DO collapse(3)
|
||||
do k = 1, nO
|
||||
do j = 1, nO
|
||||
do c = 1, nV
|
||||
do l = 1, nO
|
||||
X_ovoo(l,c,j,k) = v_vooo(c,j,k,l)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO nowait
|
||||
|
||||
!$OMP DO collapse(3)
|
||||
do i = 1, nO
|
||||
do b = 1, nV
|
||||
do a = 1, nV
|
||||
do l = 1, nO
|
||||
T_ovvo(l,a,b,i) = t2(i,l,a,b)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO nowait
|
||||
|
||||
!v_vvoo(b,c,j,k) * t1(i,a) &
|
||||
!X_vvoo(b,c,k,j) * T1_vo(a,i) &
|
||||
|
||||
!$OMP DO collapse(3)
|
||||
do j = 1, nO
|
||||
!$OMP DO
|
||||
do c = 1, nV
|
||||
do k = 1, nO
|
||||
do c = 1, nV
|
||||
do b = 1, nV
|
||||
X_vvoo(b,c,k,j) = v_vvoo(b,c,j,k)
|
||||
do j = 1, nO
|
||||
do l = 1, nO
|
||||
X_ooov(l,j,k,c) = v_vooo(c,j,k,l)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO nowait
|
||||
|
||||
!$OMP DO collapse(1)
|
||||
do i = 1, nO
|
||||
!$OMP DO
|
||||
do b = 1, nV
|
||||
do a = 1, nV
|
||||
T_vo(a,i) = t1(i,a)
|
||||
do i = 1, nO
|
||||
do l = 1, nO
|
||||
T_oovv(l,i,a,b) = t2(i,l,a,b)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
!$OMP END DO nowait
|
||||
|
||||
call wall_time(ta)
|
||||
energy = 0d0
|
||||
!X_oovv(j,k,b,c) * T1_vo(a,i) &
|
||||
|
||||
!$OMP DO
|
||||
do c = 1, nV
|
||||
do b = 1, nV
|
||||
do a = 1, nV
|
||||
delta_abc = f_v(a) + f_v(b) + f_v(c)
|
||||
call form_w_abc(nO,nV,a,b,c,T_vvoo,T_ovvo,X_vvvo,X_ovoo,W_abc)
|
||||
call form_w_abc(nO,nV,b,c,a,T_vvoo,T_ovvo,X_vvvo,X_ovoo,W_bca)
|
||||
call form_w_abc(nO,nV,c,a,b,T_vvoo,T_ovvo,X_vvvo,X_ovoo,W_cab)
|
||||
call form_w_abc(nO,nV,c,b,a,T_vvoo,T_ovvo,X_vvvo,X_ovoo,W_cba)
|
||||
|
||||
call form_v_abc(nO,nV,a,b,c,T_vo,X_vvoo,W_abc,V_abc)
|
||||
call form_v_abc(nO,nV,c,b,a,T_vo,X_vvoo,W_cba,V_cba)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(energy,nO,a,b,c,W_abc,W_cab,W_bca,V_abc,V_cba,f_o,f_v,delta_abc)&
|
||||
!$OMP PRIVATE(i,j,k,e,delta) &
|
||||
!$OMP DEFAULT(NONE)
|
||||
e = 0d0
|
||||
!$OMP DO
|
||||
do i = 1, nO
|
||||
do j = 1, nO
|
||||
do k = 1, nO
|
||||
delta = 1d0 / (f_o(i) + f_o(j) + f_o(k) - delta_abc)
|
||||
!energy = energy + (4d0 * W(i,j,k,a,b,c) + W(i,j,k,b,c,a) + W(i,j,k,c,a,b)) * (V(i,j,k,a,b,c) - V(i,j,k,c,b,a)) / (cc_space_f_o(i) + cc_space_f_o(j) + cc_space_f_o(k) - cc_space_f_v(a) - cc_space_f_v(b) - cc_space_f_v(c)) !delta_ooovvv(i,j,k,a,b,c)
|
||||
e = e + (4d0 * W_abc(i,j,k) + W_bca(i,j,k) + W_cab(i,j,k))&
|
||||
* (V_abc(i,j,k) - V_cba(i,j,k)) * delta
|
||||
enddo
|
||||
enddo
|
||||
do k = 1, nO
|
||||
do j = 1, nO
|
||||
X_oovv(j,k,b,c) = v_vvoo(b,c,j,k)
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP CRITICAL
|
||||
energy = energy + e
|
||||
!$OMP END CRITICAL
|
||||
!$OMP END PARALLEL
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(tb)
|
||||
write(*,'(F12.2,A5,F12.2,A2)') dble(i)/dble(nO)*100d0, '% in ', tb - ta, ' s'
|
||||
enddo
|
||||
!$OMP END DO nowait
|
||||
|
||||
energy = energy / 3d0
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(W_abc,V_abc,W_cab,V_cba,W_bca,X_vvvo,X_ovoo,T_vvoo,T_ovvo,T_vo)
|
||||
!deallocate(V,W)
|
||||
double precision, external :: ccsd_t_task_aba
|
||||
double precision, external :: ccsd_t_task_abc
|
||||
|
||||
!$OMP PARALLEL PRIVATE(a,b,c,e) DEFAULT(SHARED)
|
||||
e = 0d0
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do a = 1, nV
|
||||
do b = a+1, nV
|
||||
do c = b+1, nV
|
||||
e = e + ccsd_t_task_abc(a,b,c,nO,nV,t1,T_oovv,T_voov, &
|
||||
X_ooov,X_oovv,X_vovv,f_o,f_v)
|
||||
enddo
|
||||
|
||||
e = e + ccsd_t_task_aba(a,b,nO,nV,t1,T_oovv,T_voov, &
|
||||
X_ooov,X_oovv,X_vovv,f_o,f_v)
|
||||
|
||||
e = e + ccsd_t_task_aba(b,a,nO,nV,t1,T_oovv,T_voov, &
|
||||
X_ooov,X_oovv,X_vovv,f_o,f_v)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP CRITICAL
|
||||
energy = energy + e
|
||||
!$OMP END CRITICAL
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
energy = energy / 3.d0
|
||||
|
||||
deallocate(X_vovv,X_ooov,T_voov,T_oovv)
|
||||
end
|
||||
|
||||
|
||||
subroutine form_w_abc(nO,nV,a,b,c,T_vvoo,T_ovvo,X_vvvo,X_ovoo,W_abc)
|
||||
double precision function ccsd_t_task_abc(a,b,c,nO,nV,t1,T_oovv,T_voov,&
|
||||
X_ooov,X_oovv,X_vovv,f_o,f_v) result(e)
|
||||
implicit none
|
||||
integer, intent(in) :: nO,nV,a,b,c
|
||||
double precision, intent(in) :: t1(nO,nV), f_o(nO), f_v(nV)
|
||||
double precision, intent(in) :: X_oovv(nO,nO,nV,nV)
|
||||
double precision, intent(in) :: T_voov(nV,nO,nO,nV), T_oovv(nO,nO,nV,nV)
|
||||
double precision, intent(in) :: X_vovv(nV,nO,nV,nV), X_ooov(nO,nO,nO,nV)
|
||||
|
||||
double precision :: delta, delta_abc
|
||||
integer :: i,j,k
|
||||
|
||||
double precision, allocatable :: W_abc(:,:,:), W_cab(:,:,:), W_bca(:,:,:)
|
||||
double precision, allocatable :: W_bac(:,:,:), W_cba(:,:,:), W_acb(:,:,:)
|
||||
double precision, allocatable :: V_abc(:,:,:), V_cab(:,:,:), V_bca(:,:,:)
|
||||
double precision, allocatable :: V_bac(:,:,:), V_cba(:,:,:), V_acb(:,:,:)
|
||||
|
||||
allocate( W_abc(nO,nO,nO), W_cab(nO,nO,nO), W_bca(nO,nO,nO), &
|
||||
W_bac(nO,nO,nO), W_cba(nO,nO,nO), W_acb(nO,nO,nO), &
|
||||
V_abc(nO,nO,nO), V_cab(nO,nO,nO), V_bca(nO,nO,nO), &
|
||||
V_bac(nO,nO,nO), V_cba(nO,nO,nO), V_acb(nO,nO,nO) )
|
||||
|
||||
call form_w_abc(nO,nV,a,b,c,T_voov,T_oovv,X_vovv,X_ooov,W_abc,W_cba,W_bca,W_cab,W_bac,W_acb)
|
||||
|
||||
call form_v_abc(nO,nV,a,b,c,t1,X_oovv,W_abc,V_abc,W_cba,V_cba,W_bca,V_bca,W_cab,V_cab,W_bac,V_bac,W_acb,V_acb)
|
||||
|
||||
delta_abc = f_v(a) + f_v(b) + f_v(c)
|
||||
e = 0.d0
|
||||
|
||||
do k = 1, nO
|
||||
do j = 1, nO
|
||||
do i = 1, nO
|
||||
delta = 1.d0 / (f_o(i) + f_o(j) + f_o(k) - delta_abc)
|
||||
e = e + delta * ( &
|
||||
(4d0 * (W_abc(i,j,k) - W_cba(i,j,k)) + &
|
||||
W_bca(i,j,k) - W_bac(i,j,k) + &
|
||||
W_cab(i,j,k) - W_acb(i,j,k) ) * (V_abc(i,j,k) - V_cba(i,j,k)) +&
|
||||
(4d0 * (W_acb(i,j,k) - W_bca(i,j,k)) + &
|
||||
W_cba(i,j,k) - W_cab(i,j,k) + &
|
||||
W_bac(i,j,k) - W_abc(i,j,k) ) * (V_acb(i,j,k) - V_bca(i,j,k)) +&
|
||||
(4d0 * (W_bac(i,j,k) - W_cab(i,j,k)) + &
|
||||
W_acb(i,j,k) - W_abc(i,j,k) + &
|
||||
W_cba(i,j,k) - W_bca(i,j,k) ) * (V_bac(i,j,k) - V_cab(i,j,k)) )
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate(W_abc, W_cab, W_bca, W_bac, W_cba, W_acb, &
|
||||
V_abc, V_cab, V_bca, V_bac, V_cba, V_acb )
|
||||
|
||||
end
|
||||
|
||||
double precision function ccsd_t_task_aba(a,b,nO,nV,t1,T_oovv,T_voov,&
|
||||
X_ooov,X_oovv,X_vovv,f_o,f_v) result(e)
|
||||
implicit none
|
||||
integer, intent(in) :: nO,nV,a,b
|
||||
double precision, intent(in) :: t1(nO,nV), f_o(nO), f_v(nV)
|
||||
double precision, intent(in) :: X_oovv(nO,nO,nV,nV)
|
||||
double precision, intent(in) :: T_voov(nV,nO,nO,nV), T_oovv(nO,nO,nV,nV)
|
||||
double precision, intent(in) :: X_vovv(nV,nO,nV,nV), X_ooov(nO,nO,nO,nV)
|
||||
|
||||
double precision :: delta, delta_abc
|
||||
integer :: i,j,k
|
||||
|
||||
double precision, allocatable :: W_abc(:,:,:), W_cab(:,:,:), W_bca(:,:,:)
|
||||
double precision, allocatable :: W_bac(:,:,:), W_cba(:,:,:), W_acb(:,:,:)
|
||||
double precision, allocatable :: V_abc(:,:,:), V_cab(:,:,:), V_bca(:,:,:)
|
||||
double precision, allocatable :: V_bac(:,:,:), V_cba(:,:,:), V_acb(:,:,:)
|
||||
|
||||
allocate( W_abc(nO,nO,nO), W_cab(nO,nO,nO), W_bca(nO,nO,nO), &
|
||||
W_bac(nO,nO,nO), W_cba(nO,nO,nO), W_acb(nO,nO,nO), &
|
||||
V_abc(nO,nO,nO), V_cab(nO,nO,nO), V_bca(nO,nO,nO), &
|
||||
V_bac(nO,nO,nO), V_cba(nO,nO,nO), V_acb(nO,nO,nO) )
|
||||
|
||||
call form_w_abc(nO,nV,a,b,a,T_voov,T_oovv,X_vovv,X_ooov,W_abc,W_cba,W_bca,W_cab,W_bac,W_acb)
|
||||
|
||||
call form_v_abc(nO,nV,a,b,a,t1,X_oovv,W_abc,V_abc,W_cba,V_cba,W_bca,V_bca,W_cab,V_cab,W_bac,V_bac,W_acb,V_acb)
|
||||
|
||||
delta_abc = f_v(a) + f_v(b) + f_v(a)
|
||||
e = 0.d0
|
||||
|
||||
do k = 1, nO
|
||||
do j = 1, nO
|
||||
do i = 1, nO
|
||||
delta = 1.d0 / (f_o(i) + f_o(j) + f_o(k) - delta_abc)
|
||||
e = e + delta * ( &
|
||||
(4d0 * W_abc(i,j,k) + W_bca(i,j,k) + W_cab(i,j,k)) * (V_abc(i,j,k) - V_cba(i,j,k)) + &
|
||||
(4d0 * W_acb(i,j,k) + W_cba(i,j,k) + W_bac(i,j,k)) * (V_acb(i,j,k) - V_bca(i,j,k)) + &
|
||||
(4d0 * W_bac(i,j,k) + W_acb(i,j,k) + W_cba(i,j,k)) * (V_bac(i,j,k) - V_cab(i,j,k)) )
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate(W_abc, W_cab, W_bca, W_bac, W_cba, W_acb, &
|
||||
V_abc, V_cab, V_bca, V_bac, V_cba, V_acb )
|
||||
|
||||
end
|
||||
|
||||
subroutine form_w_abc(nO,nV,a,b,c,T_voov,T_oovv,X_vovv,X_ooov,W_abc,W_cba,W_bca,W_cab,W_bac,W_acb)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: nO,nV,a,b,c
|
||||
!double precision, intent(in) :: t2(nO,nO,nV,nV)
|
||||
double precision, intent(in) :: T_vvoo(nV,nV,nO,nO), T_ovvo(nO,nV,nV,nO)
|
||||
double precision, intent(in) :: X_vvvo(nV,nV,nV,nO), X_ovoo(nO,nV,nO,nO)
|
||||
double precision, intent(in) :: T_voov(nV,nO,nO,nV), T_oovv(nO,nO,nV,nV)
|
||||
double precision, intent(in) :: X_vovv(nV,nO,nV,nV), X_ooov(nO,nO,nO,nV)
|
||||
double precision, intent(out) :: W_abc(nO,nO,nO)
|
||||
double precision, intent(out) :: W_cba(nO,nO,nO)
|
||||
double precision, intent(out) :: W_bca(nO,nO,nO)
|
||||
double precision, intent(out) :: W_cab(nO,nO,nO)
|
||||
double precision, intent(out) :: W_bac(nO,nO,nO)
|
||||
double precision, intent(out) :: W_acb(nO,nO,nO)
|
||||
|
||||
integer :: l,i,j,k,d
|
||||
double precision, allocatable, dimension(:,:,:,:) :: W_ikj
|
||||
double precision, allocatable :: X(:,:,:,:)
|
||||
|
||||
allocate(W_ikj(nO,nO,nO,6))
|
||||
allocate(X(nV,nO,nO,3))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(nO,nV,a,b,c,T_vvoo,T_ovvo,X_vvvo,X_ovoo,W_abc) &
|
||||
!$OMP PRIVATE(i,j,k,d,l) &
|
||||
!$OMP DEFAULT(NONE)
|
||||
|
||||
!$OMP DO collapse(3)
|
||||
do k = 1, nO
|
||||
do j = 1, nO
|
||||
do i = 1, nO
|
||||
W_abc(i,j,k) = 0.d0
|
||||
|
||||
do d = 1, nV
|
||||
W_abc(i,j,k) = W_abc(i,j,k) &
|
||||
+ X_vvvo(d,b,a,i) * T_vvoo(d,c,k,j) &
|
||||
+ X_vvvo(d,c,a,i) * T_vvoo(d,b,j,k) &
|
||||
+ X_vvvo(d,a,c,k) * T_vvoo(d,b,j,i) &
|
||||
+ X_vvvo(d,b,c,k) * T_vvoo(d,a,i,j) &
|
||||
+ X_vvvo(d,c,b,j) * T_vvoo(d,a,i,k) &
|
||||
+ X_vvvo(d,a,b,j) * T_vvoo(d,c,k,i)
|
||||
|
||||
enddo
|
||||
|
||||
do l = 1, nO
|
||||
W_abc(i,j,k) = W_abc(i,j,k) &
|
||||
- T_ovvo(l,a,b,i) * X_ovoo(l,c,j,k) &
|
||||
- T_ovvo(l,a,c,i) * X_ovoo(l,b,k,j) & ! bc kj
|
||||
- T_ovvo(l,c,a,k) * X_ovoo(l,b,i,j) & ! prev ac ik
|
||||
- T_ovvo(l,c,b,k) * X_ovoo(l,a,j,i) & ! prev ab ij
|
||||
- T_ovvo(l,b,c,j) * X_ovoo(l,a,k,i) & ! prev bc kj
|
||||
- T_ovvo(l,b,a,j) * X_ovoo(l,c,i,k) ! prev ac ik
|
||||
enddo
|
||||
|
||||
do k=1,nO
|
||||
do i=1,nO
|
||||
do d=1,nV
|
||||
X(d,i,k,1) = T_voov(d,k,i,a)
|
||||
X(d,i,k,2) = T_voov(d,k,i,b)
|
||||
X(d,i,k,3) = T_voov(d,k,i,c)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
! X_vovv(d,i,c,a) * T_voov(d,j,k,b) : i jk
|
||||
|
||||
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,c,a), nV, T_voov(1,1,1,b), nV, 0.d0, W_abc, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,c,b), nV, T_voov(1,1,1,a), nV, 0.d0, W_bac, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,a,c), nV, T_voov(1,1,1,b), nV, 0.d0, W_cba, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,a,b), nV, T_voov(1,1,1,c), nV, 0.d0, W_bca, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,b,c), nV, T_voov(1,1,1,a), nV, 0.d0, W_cab, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,b,a), nV, T_voov(1,1,1,c), nV, 0.d0, W_acb, nO)
|
||||
|
||||
! T_voov(d,i,j,a) * X_vovv(d,k,b,c) : ij k
|
||||
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,a), nV, X_vovv(1,1,b,c), nV, 1.d0, W_abc, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,b), nV, X_vovv(1,1,a,c), nV, 1.d0, W_bac, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,c), nV, X_vovv(1,1,b,a), nV, 1.d0, W_cba, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,b), nV, X_vovv(1,1,c,a), nV, 1.d0, W_bca, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,c), nV, X_vovv(1,1,a,b), nV, 1.d0, W_cab, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,a), nV, X_vovv(1,1,c,b), nV, 1.d0, W_acb, nO*nO)
|
||||
|
||||
|
||||
! X_vovv(d,k,a,c) * T_voov(d,j,i,b) : k ji
|
||||
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,2), nV, X_vovv(1,1,a,c), nV, 1.d0, W_abc, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,1), nV, X_vovv(1,1,b,c), nV, 1.d0, W_bac, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,2), nV, X_vovv(1,1,c,a), nV, 1.d0, W_cba, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,3), nV, X_vovv(1,1,b,a), nV, 1.d0, W_bca, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,1), nV, X_vovv(1,1,c,b), nV, 1.d0, W_cab, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,3), nV, X_vovv(1,1,a,b), nV, 1.d0, W_acb, nO*nO)
|
||||
|
||||
! X_vovv(d,i,b,a) * T_voov(d,k,j,c) : i kj
|
||||
|
||||
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,b,a), nV, X(1,1,1,3), nV, 1.d0, W_abc, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,a,b), nV, X(1,1,1,3), nV, 1.d0, W_bac, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,b,c), nV, X(1,1,1,1), nV, 1.d0, W_cba, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,c,b), nV, X(1,1,1,1), nV, 1.d0, W_bca, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,a,c), nV, X(1,1,1,2), nV, 1.d0, W_cab, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nV, 1.d0, X_vovv(1,1,c,a), nV, X(1,1,1,2), nV, 1.d0, W_acb, nO)
|
||||
|
||||
! T_voov(d,k,i,c) * X_vovv(d,j,a,b) : ki j
|
||||
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,3), nV, X_vovv(1,1,a,b), nV, 0.d0, W_ikj(1,1,1,1), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,3), nV, X_vovv(1,1,b,a), nV, 0.d0, W_ikj(1,1,1,2), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,1), nV, X_vovv(1,1,c,b), nV, 0.d0, W_ikj(1,1,1,3), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,1), nV, X_vovv(1,1,b,c), nV, 0.d0, W_ikj(1,1,1,4), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,2), nV, X_vovv(1,1,c,a), nV, 0.d0, W_ikj(1,1,1,5), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, X(1,1,1,2), nV, X_vovv(1,1,a,c), nV, 0.d0, W_ikj(1,1,1,6), nO*nO)
|
||||
|
||||
! T_voov(d,i,k,a) * X_vovv(d,j,c,b) : ik j
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,a), nV, X_vovv(1,1,c,b), nV, 1.d0, W_ikj(1,1,1,1), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,b), nV, X_vovv(1,1,c,a), nV, 1.d0, W_ikj(1,1,1,2), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,c), nV, X_vovv(1,1,a,b), nV, 1.d0, W_ikj(1,1,1,3), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,b), nV, X_vovv(1,1,a,c), nV, 1.d0, W_ikj(1,1,1,4), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,c), nV, X_vovv(1,1,b,a), nV, 1.d0, W_ikj(1,1,1,5), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nV, 1.d0, T_voov(1,1,1,a), nV, X_vovv(1,1,b,c), nV, 1.d0, W_ikj(1,1,1,6), nO*nO)
|
||||
|
||||
deallocate(X)
|
||||
|
||||
allocate(X(nO,nO,nO,3))
|
||||
|
||||
do k=1,nO
|
||||
do j=1,nO
|
||||
do l=1,nO
|
||||
X(l,j,k,1) = X_ooov(l,k,j,a)
|
||||
X(l,j,k,2) = X_ooov(l,k,j,b)
|
||||
X(l,j,k,3) = X_ooov(l,k,j,c)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
! - T_oovv(l,i,a,b) * X_ooov(l,j,k,c) : i jk
|
||||
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,a,b), nO, X_ooov(1,1,1,c), nO, 1.d0, W_abc, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,b,a), nO, X_ooov(1,1,1,c), nO, 1.d0, W_bac, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,c,b), nO, X_ooov(1,1,1,a), nO, 1.d0, W_cba, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,b,c), nO, X_ooov(1,1,1,a), nO, 1.d0, W_bca, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,c,a), nO, X_ooov(1,1,1,b), nO, 1.d0, W_cab, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,a,c), nO, X_ooov(1,1,1,b), nO, 1.d0, W_acb, nO)
|
||||
|
||||
! - T_oovv(l,i,a,c) * X_ooov(l,k,j,b) : i kj
|
||||
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,a,c), nO, X(1,1,1,2), nO, 1.d0, W_abc, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,b,c), nO, X(1,1,1,1), nO, 1.d0, W_bac, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,c,a), nO, X(1,1,1,2), nO, 1.d0, W_cba, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,b,a), nO, X(1,1,1,3), nO, 1.d0, W_bca, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,c,b), nO, X(1,1,1,1), nO, 1.d0, W_cab, nO)
|
||||
call dgemm('T','N', nO, nO*nO, nO, -1.d0, T_oovv(1,1,a,b), nO, X(1,1,1,3), nO, 1.d0, W_acb, nO)
|
||||
|
||||
! - X_ooov(l,i,j,b) * T_oovv(l,k,c,a) : ij k
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,b), nO, T_oovv(1,1,c,a), nO, 1.d0, W_abc, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,a), nO, T_oovv(1,1,c,b), nO, 1.d0, W_bac, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,b), nO, T_oovv(1,1,a,c), nO, 1.d0, W_cba, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,c), nO, T_oovv(1,1,a,b), nO, 1.d0, W_bca, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,a), nO, T_oovv(1,1,b,c), nO, 1.d0, W_cab, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,c), nO, T_oovv(1,1,b,a), nO, 1.d0, W_acb, nO*nO)
|
||||
|
||||
! - X_ooov(l,j,i,a) * T_oovv(l,k,c,b) : ji k
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,1), nO, T_oovv(1,1,c,b), nO, 1.d0, W_abc, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,2), nO, T_oovv(1,1,c,a), nO, 1.d0, W_bac, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,3), nO, T_oovv(1,1,a,b), nO, 1.d0, W_cba, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,2), nO, T_oovv(1,1,a,c), nO, 1.d0, W_bca, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,3), nO, T_oovv(1,1,b,a), nO, 1.d0, W_cab, nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,1), nO, T_oovv(1,1,b,c), nO, 1.d0, W_acb, nO*nO)
|
||||
|
||||
! - X_ooov(l,k,i,a) * T_oovv(l,j,b,c) : ki j
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,1), nO, T_oovv(1,1,b,c), nO, 1.d0, W_ikj(1,1,1,1), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,2), nO, T_oovv(1,1,a,c), nO, 1.d0, W_ikj(1,1,1,2), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,3), nO, T_oovv(1,1,b,a), nO, 1.d0, W_ikj(1,1,1,3), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,2), nO, T_oovv(1,1,c,a), nO, 1.d0, W_ikj(1,1,1,4), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,3), nO, T_oovv(1,1,a,b), nO, 1.d0, W_ikj(1,1,1,5), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X(1,1,1,1), nO, T_oovv(1,1,c,b), nO, 1.d0, W_ikj(1,1,1,6), nO*nO)
|
||||
|
||||
! - X_ooov(l,i,k,c) * T_oovv(l,j,b,a) : ik j
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,c), nO, T_oovv(1,1,b,a), nO, 1.d0, W_ikj(1,1,1,1), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,c), nO, T_oovv(1,1,a,b), nO, 1.d0, W_ikj(1,1,1,2), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,a), nO, T_oovv(1,1,b,c), nO, 1.d0, W_ikj(1,1,1,3), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,a), nO, T_oovv(1,1,c,b), nO, 1.d0, W_ikj(1,1,1,4), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,b), nO, T_oovv(1,1,a,c), nO, 1.d0, W_ikj(1,1,1,5), nO*nO)
|
||||
call dgemm('T','N', nO*nO, nO, nO, -1.d0, X_ooov(1,1,1,b), nO, T_oovv(1,1,c,a), nO, 1.d0, W_ikj(1,1,1,6), nO*nO)
|
||||
|
||||
do k=1,nO
|
||||
do j=1,nO
|
||||
do i=1,nO
|
||||
W_abc(i,j,k) = W_abc(i,j,k) + W_ikj(i,k,j,1)
|
||||
W_bac(i,j,k) = W_bac(i,j,k) + W_ikj(i,k,j,2)
|
||||
W_cba(i,j,k) = W_cba(i,j,k) + W_ikj(i,k,j,3)
|
||||
W_bca(i,j,k) = W_bca(i,j,k) + W_ikj(i,k,j,4)
|
||||
W_cab(i,j,k) = W_cab(i,j,k) + W_ikj(i,k,j,5)
|
||||
W_acb(i,j,k) = W_acb(i,j,k) + W_ikj(i,k,j,6)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate(X,W_ikj)
|
||||
end
|
||||
|
||||
|
||||
! V_abc
|
||||
|
||||
subroutine form_v_abc(nO,nV,a,b,c,T_vo,X_vvoo,W,V)
|
||||
subroutine form_v_abc(nO,nV,a,b,c,T_ov,X_oovv,W_abc,V_abc,W_cba,V_cba,W_bca,V_bca,W_cab,V_cab,W_bac,V_bac,W_acb,V_acb)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: nO,nV,a,b,c
|
||||
!double precision, intent(in) :: t1(nO,nV)
|
||||
double precision, intent(in) :: T_vo(nV,nO)
|
||||
double precision, intent(in) :: X_vvoo(nV,nV,nO,nO)
|
||||
double precision, intent(in) :: W(nO,nO,nO)
|
||||
double precision, intent(out) :: V(nO,nO,nO)
|
||||
double precision, intent(in) :: T_ov(nO,nV)
|
||||
double precision, intent(in) :: X_oovv(nO,nO,nV,nV)
|
||||
double precision, intent(in) :: W_abc(nO,nO,nO), W_cab(nO,nO,nO), W_bca(nO,nO,nO)
|
||||
double precision, intent(in) :: W_bac(nO,nO,nO), W_cba(nO,nO,nO), W_acb(nO,nO,nO)
|
||||
double precision, intent(out) :: V_abc(nO,nO,nO), V_cab(nO,nO,nO), V_bca(nO,nO,nO)
|
||||
double precision, intent(out) :: V_bac(nO,nO,nO), V_cba(nO,nO,nO), V_acb(nO,nO,nO)
|
||||
|
||||
integer :: i,j,k
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(nO,nV,a,b,c,T_vo,X_vvoo,W,V) &
|
||||
!$OMP PRIVATE(i,j,k) &
|
||||
!$OMP DEFAULT(NONE)
|
||||
!$OMP DO collapse(2)
|
||||
do k = 1, nO
|
||||
do j = 1, nO
|
||||
do i = 1, nO
|
||||
!V(i,j,k,a,b,c) = V(i,j,k,a,b,c) + W(i,j,k,a,b,c) &
|
||||
V(i,j,k) = W(i,j,k) &
|
||||
+ X_vvoo(b,c,k,j) * T_vo(a,i) &
|
||||
+ X_vvoo(a,c,k,i) * T_vo(b,j) &
|
||||
+ X_vvoo(a,b,j,i) * T_vo(c,k)
|
||||
V_abc(i,j,k) = W_abc(i,j,k) &
|
||||
+ X_oovv(j,k,b,c) * T_ov(i,a) &
|
||||
+ X_oovv(i,k,a,c) * T_ov(j,b) &
|
||||
+ X_oovv(i,j,a,b) * T_ov(k,c)
|
||||
|
||||
V_cba(i,j,k) = W_cba(i,j,k) &
|
||||
+ X_oovv(j,k,b,a) * T_ov(i,c) &
|
||||
+ X_oovv(i,k,c,a) * T_ov(j,b) &
|
||||
+ X_oovv(i,j,c,b) * T_ov(k,a)
|
||||
|
||||
V_bca(i,j,k) = W_bca(i,j,k) &
|
||||
+ X_oovv(j,k,c,a) * T_ov(i,b) &
|
||||
+ X_oovv(i,k,b,a) * T_ov(j,c) &
|
||||
+ X_oovv(i,j,b,c) * T_ov(k,a)
|
||||
|
||||
V_cab(i,j,k) = W_cab(i,j,k) &
|
||||
+ X_oovv(j,k,a,b) * T_ov(i,c) &
|
||||
+ X_oovv(i,k,c,b) * T_ov(j,a) &
|
||||
+ X_oovv(i,j,c,a) * T_ov(k,b)
|
||||
|
||||
V_bac(i,j,k) = W_bac(i,j,k) &
|
||||
+ X_oovv(j,k,a,c) * T_ov(i,b) &
|
||||
+ X_oovv(i,k,b,c) * T_ov(j,a) &
|
||||
+ X_oovv(i,j,b,a) * T_ov(k,c)
|
||||
|
||||
V_acb(i,j,k) = W_acb(i,j,k) &
|
||||
+ X_oovv(j,k,c,b) * T_ov(i,a) &
|
||||
+ X_oovv(i,k,a,b) * T_ov(j,c) &
|
||||
+ X_oovv(i,j,a,c) * T_ov(k,b)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
end
|
||||
|
||||
|
363
src/ccsd/ccsd_t_space_orb_stoch.irp.f
Normal file
363
src/ccsd/ccsd_t_space_orb_stoch.irp.f
Normal file
@ -0,0 +1,363 @@
|
||||
! Main
|
||||
subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energy)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: nO,nV
|
||||
double precision, intent(in) :: t1(nO,nV), f_o(nO), f_v(nV)
|
||||
double precision, intent(in) :: t2(nO,nO,nV,nV)
|
||||
double precision, intent(in) :: v_vvvo(nV,nV,nV,nO), v_vvoo(nV,nV,nO,nO), v_vooo(nV,nO,nO,nO)
|
||||
double precision, intent(inout) :: energy
|
||||
|
||||
double precision, allocatable :: X_vovv(:,:,:,:), X_ooov(:,:,:,:), X_oovv(:,:,:,:)
|
||||
double precision, allocatable :: T_voov(:,:,:,:), T_oovv(:,:,:,:)
|
||||
integer :: i,j,k,l,a,b,c,d
|
||||
double precision :: e,ta,tb,eccsd
|
||||
|
||||
eccsd = energy
|
||||
call set_multiple_levels_omp(.False.)
|
||||
|
||||
allocate(X_vovv(nV,nO,nV,nV), X_ooov(nO,nO,nO,nV), X_oovv(nO,nO,nV,nV))
|
||||
allocate(T_voov(nV,nO,nO,nV),T_oovv(nO,nO,nV,nV))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(nO,nV,T_voov,T_oovv,X_vovv,X_ooov,X_oovv, &
|
||||
!$OMP t1,t2,v_vvvo,v_vooo,v_vvoo) &
|
||||
!$OMP PRIVATE(a,b,c,d,i,j,k,l) &
|
||||
!$OMP DEFAULT(NONE)
|
||||
|
||||
!v_vvvo(b,a,d,i) * t2(k,j,c,d) &
|
||||
!X_vovv(d,i,b,a,i) * T_voov(d,j,c,k)
|
||||
|
||||
!$OMP DO
|
||||
do a = 1, nV
|
||||
do b = 1, nV
|
||||
do i = 1, nO
|
||||
do d = 1, nV
|
||||
X_vovv(d,i,b,a) = v_vvvo(b,a,d,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO nowait
|
||||
|
||||
!$OMP DO
|
||||
do c = 1, nV
|
||||
do j = 1, nO
|
||||
do k = 1, nO
|
||||
do d = 1, nV
|
||||
T_voov(d,k,j,c) = t2(k,j,c,d)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO nowait
|
||||
|
||||
!v_vooo(c,j,k,l) * t2(i,l,a,b) &
|
||||
!X_ooov(l,j,k,c) * T_oovv(l,i,a,b) &
|
||||
|
||||
!$OMP DO
|
||||
do c = 1, nV
|
||||
do k = 1, nO
|
||||
do j = 1, nO
|
||||
do l = 1, nO
|
||||
X_ooov(l,j,k,c) = v_vooo(c,j,k,l)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO nowait
|
||||
|
||||
!$OMP DO
|
||||
do b = 1, nV
|
||||
do a = 1, nV
|
||||
do i = 1, nO
|
||||
do l = 1, nO
|
||||
T_oovv(l,i,a,b) = t2(i,l,a,b)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO nowait
|
||||
|
||||
!X_oovv(j,k,b,c) * T1_vo(a,i) &
|
||||
|
||||
!$OMP DO
|
||||
do c = 1, nV
|
||||
do b = 1, nV
|
||||
do k = 1, nO
|
||||
do j = 1, nO
|
||||
X_oovv(j,k,b,c) = v_vvoo(b,c,j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO nowait
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
double precision, external :: ccsd_t_task_aba
|
||||
double precision, external :: ccsd_t_task_abc
|
||||
! logical, external :: omp_test_lock
|
||||
|
||||
double precision, allocatable :: memo(:), Pabc(:), waccu(:)
|
||||
integer*8, allocatable :: sampled(:)
|
||||
! integer(omp_lock_kind), allocatable :: lock(:)
|
||||
integer*2 , allocatable :: abc(:,:)
|
||||
integer*8 :: Nabc, i8
|
||||
integer*8, allocatable :: iorder(:)
|
||||
double precision :: eocc
|
||||
double precision :: norm
|
||||
integer :: kiter, isample
|
||||
|
||||
|
||||
! Prepare table of triplets (a,b,c)
|
||||
|
||||
Nabc = (int(nV,8) * int(nV+1,8) * int(nV+2,8))/6_8 - nV
|
||||
allocate (memo(Nabc), sampled(Nabc), Pabc(Nabc), waccu(Nabc))
|
||||
allocate (abc(4,Nabc), iorder(Nabc)) !, lock(Nabc))
|
||||
|
||||
! eocc = 3.d0/dble(nO) * sum(f_o(1:nO))
|
||||
Nabc = 0_8
|
||||
do a = 1, nV
|
||||
do b = a+1, nV
|
||||
do c = b+1, nV
|
||||
Nabc = Nabc + 1_8
|
||||
Pabc(Nabc) = -1.d0/(f_v(a) + f_v(b) + f_v(c))
|
||||
abc(1,Nabc) = a
|
||||
abc(2,Nabc) = b
|
||||
abc(3,Nabc) = c
|
||||
enddo
|
||||
|
||||
Nabc = Nabc + 1_8
|
||||
abc(1,Nabc) = a
|
||||
abc(2,Nabc) = b
|
||||
abc(3,Nabc) = a
|
||||
Pabc(Nabc) = -1.d0/(2.d0*f_v(a) + f_v(b))
|
||||
|
||||
Nabc = Nabc + 1_8
|
||||
abc(1,Nabc) = b
|
||||
abc(2,Nabc) = a
|
||||
abc(3,Nabc) = b
|
||||
Pabc(Nabc) = -1.d0/(f_v(a) + 2.d0*f_v(b))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do i8=1,Nabc
|
||||
iorder(i8) = i8
|
||||
enddo
|
||||
|
||||
! Sort triplets in decreasing Pabc
|
||||
call dsort_big(Pabc, iorder, Nabc)
|
||||
|
||||
! Normalize
|
||||
norm = 0.d0
|
||||
do i8=Nabc,1,-1
|
||||
norm = norm + Pabc(i8)
|
||||
enddo
|
||||
norm = 1.d0/norm
|
||||
do i8=1,Nabc
|
||||
Pabc(i8) = Pabc(i8) * norm
|
||||
enddo
|
||||
|
||||
call i8set_order_big(abc, iorder, Nabc)
|
||||
|
||||
|
||||
! Cumulative distribution for sampling
|
||||
waccu(Nabc) = 0.d0
|
||||
do i8=Nabc-1,1,-1
|
||||
waccu(i8) = waccu(i8+1) - Pabc(i8+1)
|
||||
enddo
|
||||
waccu(:) = waccu(:) + 1.d0
|
||||
|
||||
logical :: converged, do_comp
|
||||
double precision :: eta, variance, error, sample
|
||||
double precision :: t00, t01
|
||||
integer*8 :: ieta, Ncomputed
|
||||
integer*8, external :: binary_search
|
||||
|
||||
integer :: nbuckets
|
||||
nbuckets = 100
|
||||
|
||||
double precision, allocatable :: wsum(:)
|
||||
allocate(wsum(nbuckets))
|
||||
|
||||
converged = .False.
|
||||
Ncomputed = 0_8
|
||||
|
||||
energy = 0.d0
|
||||
variance = 0.d0
|
||||
memo(:) = 0.d0
|
||||
sampled(:) = -1_8
|
||||
|
||||
integer*8 :: ileft, iright, imin
|
||||
ileft = 1_8
|
||||
iright = Nabc
|
||||
integer*8, allocatable :: bounds(:,:)
|
||||
|
||||
allocate (bounds(2,nbuckets))
|
||||
do isample=1,nbuckets
|
||||
eta = 1.d0/dble(nbuckets) * dble(isample)
|
||||
ieta = binary_search(waccu,eta,Nabc)
|
||||
bounds(1,isample) = ileft
|
||||
bounds(2,isample) = ieta
|
||||
ileft = ieta+1
|
||||
wsum(isample) = sum( Pabc(bounds(1,isample):bounds(2,isample) ) )
|
||||
enddo
|
||||
|
||||
Pabc(:) = 1.d0/Pabc(:)
|
||||
|
||||
print '(A)', ''
|
||||
print '(A)', ' +----------------------+--------------+----------+'
|
||||
print '(A)', ' | E(CCSD(T)) | Error | % |'
|
||||
print '(A)', ' +----------------------+--------------+----------+'
|
||||
|
||||
|
||||
call wall_time(t00)
|
||||
imin = 1_8
|
||||
!$OMP PARALLEL &
|
||||
!$OMP PRIVATE(ieta,eta,a,b,c,kiter,isample) &
|
||||
!$OMP DEFAULT(SHARED)
|
||||
|
||||
do kiter=1,Nabc
|
||||
|
||||
!$OMP MASTER
|
||||
do while ((imin <= Nabc).and.(sampled(imin)>-1_8))
|
||||
imin = imin+1
|
||||
enddo
|
||||
|
||||
! Deterministic part
|
||||
if (imin < Nabc) then
|
||||
ieta=imin
|
||||
sampled(ieta) = 0_8
|
||||
a = abc(1,ieta)
|
||||
b = abc(2,ieta)
|
||||
c = abc(3,ieta)
|
||||
Ncomputed += 1_8
|
||||
!$OMP TASK DEFAULT(SHARED) FIRSTPRIVATE(a,b,c,ieta)
|
||||
if (a/=c) then
|
||||
memo(ieta) = ccsd_t_task_abc(a,b,c,nO,nV,t1,T_oovv,T_voov, &
|
||||
X_ooov,X_oovv,X_vovv,f_o,f_v) / 3.d0
|
||||
else
|
||||
memo(ieta) = ccsd_t_task_aba(a,b,nO,nV,t1,T_oovv,T_voov, &
|
||||
X_ooov,X_oovv,X_vovv,f_o,f_v) / 3.d0
|
||||
endif
|
||||
!$OMP END TASK
|
||||
endif
|
||||
|
||||
! Stochastic part
|
||||
call random_number(eta)
|
||||
do isample=1,nbuckets
|
||||
if (imin >= bounds(2,isample)) then
|
||||
cycle
|
||||
endif
|
||||
ieta = binary_search(waccu,(eta + dble(isample-1))/dble(nbuckets),Nabc)
|
||||
|
||||
if (sampled(ieta) == -1_8) then
|
||||
sampled(ieta) = 0_8
|
||||
a = abc(1,ieta)
|
||||
b = abc(2,ieta)
|
||||
c = abc(3,ieta)
|
||||
Ncomputed += 1_8
|
||||
!$OMP TASK DEFAULT(SHARED) FIRSTPRIVATE(a,b,c,ieta)
|
||||
if (a/=c) then
|
||||
memo(ieta) = ccsd_t_task_abc(a,b,c,nO,nV,t1,T_oovv,T_voov, &
|
||||
X_ooov,X_oovv,X_vovv,f_o,f_v) / 3.d0
|
||||
else
|
||||
memo(ieta) = ccsd_t_task_aba(a,b,nO,nV,t1,T_oovv,T_voov, &
|
||||
X_ooov,X_oovv,X_vovv,f_o,f_v) / 3.d0
|
||||
endif
|
||||
!$OMP END TASK
|
||||
endif
|
||||
sampled(ieta) = sampled(ieta)+1_8
|
||||
|
||||
enddo
|
||||
|
||||
call wall_time(t01)
|
||||
if ((t01-t00 > 1.0d0).or.(imin >= Nabc)) then
|
||||
t00 = t01
|
||||
|
||||
!$OMP TASKWAIT
|
||||
|
||||
double precision :: ET, ET2
|
||||
double precision :: energy_stoch, energy_det
|
||||
double precision :: scale
|
||||
double precision :: w
|
||||
double precision :: tmp
|
||||
energy_stoch = 0.d0
|
||||
energy_det = 0.d0
|
||||
norm = 0.d0
|
||||
scale = 1.d0
|
||||
ET = 0.d0
|
||||
ET2 = 0.d0
|
||||
|
||||
|
||||
do isample=1,nbuckets
|
||||
if (imin >= bounds(2,isample)) then
|
||||
energy_det = energy_det + sum(memo(bounds(1,isample):bounds(2,isample)))
|
||||
scale = scale - wsum(isample)
|
||||
else
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
|
||||
do ieta=bounds(1,isample), Nabc
|
||||
w = dble(max(sampled(ieta),0_8))
|
||||
tmp = w * memo(ieta) * Pabc(ieta)
|
||||
ET = ET + tmp
|
||||
ET2 = ET2 + tmp * memo(ieta) * Pabc(ieta)
|
||||
norm = norm + w
|
||||
enddo
|
||||
norm = norm/scale
|
||||
if (norm > 0.d0) then
|
||||
energy_stoch = ET / norm
|
||||
variance = ET2 / norm - energy_stoch*energy_stoch
|
||||
endif
|
||||
|
||||
energy = energy_det + energy_stoch
|
||||
|
||||
print '('' | '',F20.8, '' | '', E12.4,'' | '', F8.2,'' |'')', eccsd+energy, dsqrt(variance/(norm-1.d0)), 100.*real(Ncomputed)/real(Nabc)
|
||||
endif
|
||||
!$OMP END MASTER
|
||||
if (imin >= Nabc) exit
|
||||
enddo
|
||||
|
||||
!$OMP END PARALLEL
|
||||
print '(A)', ' +----------------------+--------------+----------+'
|
||||
print '(A)', ''
|
||||
|
||||
deallocate(X_vovv,X_ooov,T_voov,T_oovv)
|
||||
end
|
||||
|
||||
|
||||
|
||||
integer*8 function binary_search(arr, key, size)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Searches the key in array arr(1:size) between l_in and r_in, and returns its index
|
||||
END_DOC
|
||||
integer*8 :: size, i, j, mid, l_in, r_in
|
||||
double precision, dimension(size) :: arr(1:size)
|
||||
double precision :: key
|
||||
|
||||
i = 1_8
|
||||
j = size
|
||||
|
||||
do while (j >= i)
|
||||
mid = i + (j - i) / 2
|
||||
if (arr(mid) >= key) then
|
||||
if (mid > 1 .and. arr(mid - 1) < key) then
|
||||
binary_search = mid
|
||||
return
|
||||
end if
|
||||
j = mid - 1
|
||||
else if (arr(mid) < key) then
|
||||
i = mid + 1
|
||||
else
|
||||
binary_search = mid + 1
|
||||
return
|
||||
end if
|
||||
end do
|
||||
binary_search = i
|
||||
end function binary_search
|
||||
|
@ -76,6 +76,8 @@ subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
|
||||
|
||||
double precision, allocatable :: fock_diag_tmp(:,:)
|
||||
|
||||
if (csubset == 0) return
|
||||
|
||||
allocate(fock_diag_tmp(2,mo_num+1))
|
||||
|
||||
call build_fock_tmp(fock_diag_tmp,psi_det_generators(1,1,i_generator),N_int)
|
||||
@ -177,6 +179,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
monoAdo = .true.
|
||||
monoBdo = .true.
|
||||
|
||||
if (csubset == 0) return
|
||||
|
||||
do k=1,N_int
|
||||
hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1))
|
||||
|
@ -868,7 +868,6 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
! <det|H(j)|psi_0> and transpose
|
||||
! -------------------------------------------
|
||||
|
||||
! call htilde_mu_mat_bi_ortho_tot(det, det, N_int, Hii)
|
||||
double precision :: hmono, htwoe, hthree
|
||||
call diag_htilde_mu_mat_fock_bi_ortho(N_int, det, hmono, htwoe, hthree, hii)
|
||||
do istate = 1,N_states
|
||||
@ -878,8 +877,8 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
psi_h_alpha = 0.d0
|
||||
alpha_h_psi = 0.d0
|
||||
do iii = 1, N_det_selectors
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
|
||||
call htilde_mu_mat_bi_ortho_tot(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
|
||||
call htilde_mu_mat_bi_ortho_tot_slow(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
|
||||
call htilde_mu_mat_bi_ortho_tot_slow(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
|
||||
call get_excitation_degree(psi_selectors(1,1,iii), det,degree,N_int)
|
||||
if(degree == 0)then
|
||||
print*,'problem !!!'
|
||||
|
@ -1,19 +0,0 @@
|
||||
[ao_expoim_cosgtos]
|
||||
type: double precision
|
||||
doc: imag part for Exponents for each primitive of each cosGTOs |AO|
|
||||
size: (ao_basis.ao_num,ao_basis.ao_prim_num_max)
|
||||
interface: ezfio, provider
|
||||
|
||||
[use_cosgtos]
|
||||
type: logical
|
||||
doc: If true, use cosgtos for AO integrals
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[ao_integrals_threshold]
|
||||
type: Threshold
|
||||
doc: If | (pq|rs) | < `ao_integrals_threshold` then (pq|rs) is zero
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-15
|
||||
ezfio_name: threshold_ao
|
||||
|
@ -1,2 +0,0 @@
|
||||
ezfio_files
|
||||
ao_basis
|
@ -1,4 +0,0 @@
|
||||
==============
|
||||
cosgtos_ao_int
|
||||
==============
|
||||
|
@ -1,7 +0,0 @@
|
||||
program cosgtos_ao_int
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
end
|
@ -39,7 +39,7 @@ subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
write(*,'(A28,X,I10,X,100(F16.8,X))')'Ndet,E,E+PT2,E+RPT2,|PT2|=',ndet,E_tc ,E_tc + pt2_tmp/norm,E_tc + rpt2_tmp/norm,abs_pt2
|
||||
print*,'*****'
|
||||
endif
|
||||
psi_energy(1:N_states) = eigval_right_tc_bi_orth(1:N_states)
|
||||
psi_energy(1:N_states) = eigval_right_tc_bi_orth(1:N_states) - nuclear_repulsion
|
||||
psi_s2(1:N_states) = s2_eigvec_tc_bi_orth(1:N_states)
|
||||
|
||||
E_tc = eigval_right_tc_bi_orth(1)
|
||||
|
@ -6,11 +6,42 @@ BEGIN_PROVIDER [ double precision, cholesky_mo, (mo_num, mo_num, cholesky_ao_num
|
||||
|
||||
integer :: k
|
||||
|
||||
call set_multiple_levels_omp(.False.)
|
||||
print *, 'AO->MO Transformation of Cholesky vectors'
|
||||
!$OMP PARALLEL DO PRIVATE(k)
|
||||
do k=1,cholesky_ao_num
|
||||
call ao_to_mo(cholesky_ao(1,1,k),ao_num,cholesky_mo(1,1,k),mo_num)
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
print *, ''
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, cholesky_mo_transp, (cholesky_ao_num, mo_num, mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Cholesky vectors in MO basis
|
||||
END_DOC
|
||||
|
||||
integer :: i,j,k
|
||||
double precision, allocatable :: buffer(:,:)
|
||||
|
||||
print *, 'AO->MO Transformation of Cholesky vectors .'
|
||||
!$OMP PARALLEL PRIVATE(i,j,k,buffer)
|
||||
allocate(buffer(mo_num,mo_num))
|
||||
!$OMP DO SCHEDULE(static)
|
||||
do k=1,cholesky_ao_num
|
||||
call ao_to_mo(cholesky_ao(1,1,k),ao_num,buffer,mo_num)
|
||||
do j=1,mo_num
|
||||
do i=1,mo_num
|
||||
cholesky_mo_transp(k,i,j) = buffer(i,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
deallocate(buffer)
|
||||
!$OMP END PARALLEL
|
||||
print *, ''
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -4,24 +4,68 @@
|
||||
BEGIN_DOC
|
||||
! big_array_coulomb_integrals(j,i,k) = <ij|kj> = (ik|jj)
|
||||
!
|
||||
! big_array_exchange_integrals(i,j,k) = <ij|jk> = (ij|kj)
|
||||
! big_array_exchange_integrals(j,i,k) = <ij|jk> = (ij|kj)
|
||||
END_DOC
|
||||
integer :: i,j,k,l
|
||||
integer :: i,j,k,l,a
|
||||
double precision :: get_two_e_integral
|
||||
double precision :: integral
|
||||
|
||||
do k = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
l = j
|
||||
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
|
||||
big_array_coulomb_integrals(j,i,k) = integral
|
||||
l = j
|
||||
integral = get_two_e_integral(i,j,l,k,mo_integrals_map)
|
||||
big_array_exchange_integrals(j,i,k) = integral
|
||||
if (do_ao_cholesky) then
|
||||
|
||||
double precision, allocatable :: buffer_jj(:,:), buffer(:,:,:)
|
||||
allocate(buffer_jj(cholesky_ao_num,mo_num), buffer(mo_num,mo_num,mo_num))
|
||||
do j=1,mo_num
|
||||
buffer_jj(:,j) = cholesky_mo_transp(:,j,j)
|
||||
enddo
|
||||
|
||||
call dgemm('T','N', mo_num*mo_num,mo_num,cholesky_ao_num, 1.d0, &
|
||||
cholesky_mo_transp, cholesky_ao_num, &
|
||||
buffer_jj, cholesky_ao_num, 0.d0, &
|
||||
buffer, mo_num*mo_num)
|
||||
|
||||
do k = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
big_array_coulomb_integrals(j,i,k) = buffer(i,k,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
deallocate(buffer_jj)
|
||||
|
||||
allocate(buffer_jj(mo_num,mo_num))
|
||||
|
||||
do j = 1, mo_num
|
||||
|
||||
call dgemm('T','N',mo_num,mo_num,cholesky_ao_num, 1.d0, &
|
||||
cholesky_mo_transp(1,1,j), cholesky_ao_num, &
|
||||
cholesky_mo_transp(1,1,j), cholesky_ao_num, 0.d0, &
|
||||
buffer_jj, mo_num)
|
||||
|
||||
do k=1,mo_num
|
||||
do i=1,mo_num
|
||||
big_array_exchange_integrals(j,i,k) = buffer_jj(i,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate(buffer_jj)
|
||||
|
||||
else
|
||||
|
||||
do k = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
l = j
|
||||
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
|
||||
big_array_coulomb_integrals(j,i,k) = integral
|
||||
l = j
|
||||
integral = get_two_e_integral(i,j,l,k,mo_integrals_map)
|
||||
big_array_exchange_integrals(j,i,k) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1353,15 +1353,30 @@ END_PROVIDER
|
||||
integer :: i,j
|
||||
double precision :: get_two_e_integral
|
||||
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
mo_two_e_integrals_jj = 0.d0
|
||||
mo_two_e_integrals_jj_exchange = 0.d0
|
||||
|
||||
if (do_ao_cholesky) then
|
||||
do j=1,mo_num
|
||||
do i=1,mo_num
|
||||
!TODO: use dgemm
|
||||
mo_two_e_integrals_jj(i,j) = sum(cholesky_mo_transp(:,i,i)*cholesky_mo_transp(:,j,j))
|
||||
mo_two_e_integrals_jj_exchange(i,j) = sum(cholesky_mo_transp(:,i,j)*cholesky_mo_transp(:,j,i))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
do j=1,mo_num
|
||||
do i=1,mo_num
|
||||
mo_two_e_integrals_jj(i,j) = get_two_e_integral(i,j,i,j,mo_integrals_map)
|
||||
mo_two_e_integrals_jj_exchange(i,j) = get_two_e_integral(i,j,j,i,mo_integrals_map)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
do j=1,mo_num
|
||||
do i=1,mo_num
|
||||
mo_two_e_integrals_jj(i,j) = get_two_e_integral(i,j,i,j,mo_integrals_map)
|
||||
mo_two_e_integrals_jj_exchange(i,j) = get_two_e_integral(i,j,j,i,mo_integrals_map)
|
||||
mo_two_e_integrals_jj_anti(i,j) = mo_two_e_integrals_jj(i,j) - mo_two_e_integrals_jj_exchange(i,j)
|
||||
mo_two_e_integrals_jj_anti(i,j) = mo_two_e_integrals_jj(i,j) - mo_two_e_integrals_jj_exchange(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
@ -187,6 +187,19 @@ end function j12_mu
|
||||
|
||||
subroutine grad1_j12_mu(r1, r2, grad)
|
||||
|
||||
BEGIN_DOC
|
||||
! gradient of j(mu(r1,r2),r12) form of jastrow.
|
||||
!
|
||||
! if mu(r1,r2) = cst ---> j1b_type < 200 and
|
||||
!
|
||||
! d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
|
||||
!
|
||||
! if mu(r1,r2) /= cst ---> 200 < j1b_type < 300 and
|
||||
!
|
||||
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
|
||||
!
|
||||
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
@ -515,6 +528,9 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
double precision :: r(3)
|
||||
double precision :: dm_a(1), dm_b(1), grad_dm_a(3,1), grad_dm_b(3,1)
|
||||
double precision :: dm_tot, tmp1, tmp2, tmp3
|
||||
double precision :: rho1, grad_rho1(3),rho2,rho_tot,inv_rho_tot
|
||||
double precision :: f_rho1, f_rho2, d_drho_f_rho1
|
||||
double precision :: d_dx1_f_rho1(3),d_dx_rho_f_rho(3),nume
|
||||
|
||||
if(j1b_type .eq. 200) then
|
||||
|
||||
@ -578,8 +594,84 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
||||
mu_der(2) = tmp3 * (grad_dm_a(2,1) + grad_dm_b(2,1))
|
||||
mu_der(3) = tmp3 * (grad_dm_a(3,1) + grad_dm_b(3,1))
|
||||
|
||||
else
|
||||
elseif(j1b_type .eq. 202) then
|
||||
|
||||
! mu(r1,r2) = {rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]} / RHO
|
||||
!
|
||||
! RHO = rho(r1) + rho(r2)
|
||||
!
|
||||
! f[rho] = alpha rho^beta + mu0 exp(-rho)
|
||||
!
|
||||
! d/dx1 mu(r1,r2) = 1/RHO^2 * {RHO * d/dx1 (rho(r1) f[rho(r1)])
|
||||
! - d/dx1 rho(r1) * [rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]] }
|
||||
!
|
||||
! d/dx1 f[rho(r1)] = [0.5 alpha / sqrt(rho(r1)) - mu0 exp(-rho(r1))] (d rho(r1) / dx1)
|
||||
!
|
||||
! d/dx1 (rho(r1) f[rho(r1)] = rho(r1) * d/dx1 f[rho(r1)] + f[rho(r1)] * d/dx1 rho(r1)
|
||||
|
||||
!!!!!!!!! rho1,rho2,rho1+rho2
|
||||
call get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
|
||||
rho_tot = rho1 + rho2
|
||||
if(rho_tot.lt.1.d-10)rho_tot = 1.d-10
|
||||
inv_rho_tot = 1.d0/rho_tot
|
||||
! f(rho) = mu_r_ct * rho**beta_rho_power + mu_erf * exp(-rho)
|
||||
call get_all_f_rho(rho1,rho2,mu_r_ct,mu_erf,beta_rho_power,f_rho1,d_drho_f_rho1,f_rho2)
|
||||
d_dx1_f_rho1(1:3) = d_drho_f_rho1 * grad_rho1(1:3)
|
||||
d_dx_rho_f_rho(1:3) = rho1 * d_dx1_f_rho1(1:3) + f_rho1 * grad_rho1(1:3)
|
||||
nume = rho1 * f_rho1 + rho2 * f_rho2
|
||||
mu_val = nume * inv_rho_tot
|
||||
mu_der(1:3) = inv_rho_tot*inv_rho_tot * (rho_tot * d_dx_rho_f_rho(1:3) - grad_rho1(1:3) * nume)
|
||||
elseif(j1b_type .eq. 203) then
|
||||
|
||||
! mu(r1,r2) = {rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]} / RHO
|
||||
!
|
||||
! RHO = rho(r1) + rho(r2)
|
||||
!
|
||||
! f[rho] = alpha rho^beta + mu0
|
||||
!
|
||||
! d/dx1 mu(r1,r2) = 1/RHO^2 * {RHO * d/dx1 (rho(r1) f[rho(r1)])
|
||||
! - d/dx1 rho(r1) * [rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]] }
|
||||
!
|
||||
! d/dx1 f[rho(r1)] = [0.5 alpha / sqrt(rho(r1)) ] (d rho(r1) / dx1)
|
||||
!
|
||||
! d/dx1 (rho(r1) f[rho(r1)] = rho(r1) * d/dx1 f[rho(r1)] + f[rho(r1)] * d/dx1 rho(r1)
|
||||
|
||||
!!!!!!!!! rho1,rho2,rho1+rho2
|
||||
call get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
|
||||
rho_tot = rho1 + rho2
|
||||
if(rho_tot.lt.1.d-10)rho_tot = 1.d-10
|
||||
inv_rho_tot = 1.d0/rho_tot
|
||||
! f(rho) = mu_r_ct * rho**beta_rho_power + mu_erf
|
||||
call get_all_f_rho_simple(rho1,rho2,mu_r_ct,mu_erf,beta_rho_power,f_rho1,d_drho_f_rho1,f_rho2)
|
||||
d_dx1_f_rho1(1:3) = d_drho_f_rho1 * grad_rho1(1:3)
|
||||
d_dx_rho_f_rho(1:3) = rho1 * d_dx1_f_rho1(1:3) + f_rho1 * grad_rho1(1:3)
|
||||
nume = rho1 * f_rho1 + rho2 * f_rho2
|
||||
mu_val = nume * inv_rho_tot
|
||||
mu_der(1:3) = inv_rho_tot*inv_rho_tot * (rho_tot * d_dx_rho_f_rho(1:3) - grad_rho1(1:3) * nume)
|
||||
elseif(j1b_type .eq. 204) then
|
||||
|
||||
! mu(r1,r2) = 1/2 * (f[rho(r1)] + f[rho(r2)]}
|
||||
!
|
||||
! f[rho] = alpha rho^beta + mu0
|
||||
!
|
||||
! d/dx1 mu(r1,r2) = 1/2 * d/dx1 (rho(r1) f[rho(r1)])
|
||||
!
|
||||
! d/dx1 f[rho(r1)] = [0.5 alpha / sqrt(rho(r1)) ] (d rho(r1) / dx1)
|
||||
!
|
||||
! d/dx1 (rho(r1) f[rho(r1)] = rho(r1) * d/dx1 f[rho(r1)] + f[rho(r1)] * d/dx1 rho(r1)
|
||||
|
||||
!!!!!!!!! rho1,rho2,rho1+rho2
|
||||
call get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
|
||||
rho_tot = rho1 + rho2
|
||||
if(rho_tot.lt.1.d-10)rho_tot = 1.d-10
|
||||
inv_rho_tot = 1.d0/rho_tot
|
||||
! f(rho) = mu_r_ct * rho**beta_rho_power + mu_erf
|
||||
call get_all_f_rho_simple(rho1,rho2,mu_r_ct,mu_erf,beta_rho_power,f_rho1,d_drho_f_rho1,f_rho2)
|
||||
d_dx1_f_rho1(1:3) = d_drho_f_rho1 * grad_rho1(1:3)
|
||||
d_dx_rho_f_rho(1:3) = rho1 * d_dx1_f_rho1(1:3) + f_rho1 * grad_rho1(1:3)
|
||||
mu_val = 0.5d0 * ( f_rho1 + f_rho2)
|
||||
mu_der(1:3) = d_dx_rho_f_rho(1:3)
|
||||
else
|
||||
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
|
||||
stop
|
||||
|
||||
@ -684,3 +776,76 @@ end function j12_mu_square
|
||||
|
||||
! ---
|
||||
|
||||
subroutine f_mu_and_deriv_mu(rho,alpha,mu0,beta,f_mu,d_drho_f_mu)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! function giving mu as a function of rho
|
||||
!
|
||||
! f_mu = alpha * rho**beta + mu0 * exp(-rho)
|
||||
!
|
||||
! and its derivative with respect to rho d_drho_f_mu
|
||||
END_DOC
|
||||
double precision, intent(in) :: rho,alpha,mu0,beta
|
||||
double precision, intent(out) :: f_mu,d_drho_f_mu
|
||||
f_mu = alpha * (rho)**beta + mu0 * dexp(-rho)
|
||||
d_drho_f_mu = alpha * beta * rho**(beta-1.d0) - mu0 * dexp(-rho)
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns the density in r1,r2 and grad_rho at r1
|
||||
END_DOC
|
||||
double precision, intent(in) :: r1(3),r2(3)
|
||||
double precision, intent(out):: grad_rho1(3),rho1,rho2
|
||||
double precision :: dm_a(1), dm_b(1), grad_dm_a(3,1), grad_dm_b(3,1)
|
||||
call density_and_grad_alpha_beta(r1, dm_a, dm_b, grad_dm_a, grad_dm_b)
|
||||
rho1 = dm_a(1) + dm_b(1)
|
||||
grad_rho1(1:3) = grad_dm_a(1:3,1) + grad_dm_b(1:3,1)
|
||||
call density_and_grad_alpha_beta(r2, dm_a, dm_b, grad_dm_a, grad_dm_b)
|
||||
rho2 = dm_a(1) + dm_b(1)
|
||||
end
|
||||
|
||||
subroutine get_all_f_rho(rho1,rho2,alpha,mu0,beta,f_rho1,d_drho_f_rho1,f_rho2)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns the values f(mu(r1)), f(mu(r2)) and d/drho(1) f(mu(r1))
|
||||
END_DOC
|
||||
double precision, intent(in) :: rho1,rho2,alpha,mu0,beta
|
||||
double precision, intent(out):: f_rho1,d_drho_f_rho1,f_rho2
|
||||
double precision :: tmp
|
||||
call f_mu_and_deriv_mu(rho1,alpha,mu0,beta,f_rho1,d_drho_f_rho1)
|
||||
call f_mu_and_deriv_mu(rho2,alpha,mu0,beta,f_rho2,tmp)
|
||||
end
|
||||
|
||||
|
||||
subroutine get_all_f_rho_simple(rho1,rho2,alpha,mu0,beta,f_rho1,d_drho_f_rho1,f_rho2)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns the values f(mu(r1)), f(mu(r2)) and d/drho(1) f(mu(r1))
|
||||
END_DOC
|
||||
double precision, intent(in) :: rho1,rho2,alpha,mu0,beta
|
||||
double precision, intent(out):: f_rho1,d_drho_f_rho1,f_rho2
|
||||
double precision :: tmp
|
||||
call f_mu_and_deriv_mu_simple(rho1,alpha,mu0,beta,f_rho1,d_drho_f_rho1)
|
||||
call f_mu_and_deriv_mu_simple(rho2,alpha,mu0,beta,f_rho2,tmp)
|
||||
end
|
||||
|
||||
subroutine f_mu_and_deriv_mu_simple(rho,alpha,mu0,beta,f_mu,d_drho_f_mu)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! function giving mu as a function of rho
|
||||
!
|
||||
! f_mu = alpha * rho**beta + mu0
|
||||
!
|
||||
! and its derivative with respect to rho d_drho_f_mu
|
||||
END_DOC
|
||||
double precision, intent(in) :: rho,alpha,mu0,beta
|
||||
double precision, intent(out) :: f_mu,d_drho_f_mu
|
||||
f_mu = alpha * (rho)**beta + mu0
|
||||
d_drho_f_mu = alpha * beta * rho**(beta-1.d0)
|
||||
|
||||
end
|
||||
|
||||
|
33
src/non_h_ints_mu/plot_mu_of_r.irp.f
Normal file
33
src/non_h_ints_mu/plot_mu_of_r.irp.f
Normal file
@ -0,0 +1,33 @@
|
||||
program plot_mu_of_r
|
||||
implicit none
|
||||
read_wf = .False.
|
||||
touch read_wf
|
||||
call routine_print
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine routine_print
|
||||
implicit none
|
||||
character*(128) :: output
|
||||
integer :: i_unit_output,getUnitAndOpen
|
||||
output=trim(ezfio_filename)//'.mu_of_r'
|
||||
i_unit_output = getUnitAndOpen(output,'w')
|
||||
integer :: ipoint,nx
|
||||
double precision :: xmax,xmin,r(3),dx
|
||||
double precision :: mu_val, mu_der(3),dm_a,dm_b,grad
|
||||
xmax = 5.D0
|
||||
xmin = -5.D0
|
||||
nx = 10000
|
||||
dx = (xmax - xmin)/dble(nx)
|
||||
r = 0.d0
|
||||
r(1) = xmin
|
||||
do ipoint = 1, nx
|
||||
call mu_r_val_and_grad(r, r, mu_val, mu_der)
|
||||
call dm_dft_alpha_beta_at_r(r,dm_a,dm_b)
|
||||
grad = mu_der(1)**2 + mu_der(2)**2 + mu_der(3)**2
|
||||
grad = dsqrt(grad)
|
||||
write(i_unit_output,'(100(F16.7,X))')r(1),mu_val,dm_a+dm_b,grad
|
||||
r(1) += dx
|
||||
enddo
|
||||
end
|
@ -27,7 +27,7 @@ subroutine get_delta_bitc_right(psidet, psicoef, ndet, Nint, delta)
|
||||
|
||||
i = 1
|
||||
j = 1
|
||||
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
call htilde_mu_mat_bi_ortho_slow(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
call hmat_bi_ortho (psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
|
||||
|
||||
delta = 0.d0
|
||||
@ -39,7 +39,7 @@ subroutine get_delta_bitc_right(psidet, psicoef, ndet, Nint, delta)
|
||||
do j = 1, ndet
|
||||
|
||||
! < I | Htilde | J >
|
||||
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
call htilde_mu_mat_bi_ortho_slow(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
! < I | H | J >
|
||||
call hmat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
|
||||
|
||||
@ -78,7 +78,7 @@ subroutine get_htc_bitc_right(psidet, psicoef, ndet, Nint, delta)
|
||||
|
||||
i = 1
|
||||
j = 1
|
||||
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
call htilde_mu_mat_bi_ortho_slow(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
|
||||
delta = 0.d0
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
|
||||
@ -88,7 +88,7 @@ subroutine get_htc_bitc_right(psidet, psicoef, ndet, Nint, delta)
|
||||
do j = 1, ndet
|
||||
|
||||
! < I | Htilde | J >
|
||||
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
call htilde_mu_mat_bi_ortho_slow(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
|
||||
delta(i) = delta(i) + psicoef(j) * htc_tot
|
||||
enddo
|
||||
|
@ -2,7 +2,7 @@
|
||||
BEGIN_PROVIDER [ double precision, e_tilde_00]
|
||||
implicit none
|
||||
double precision :: hmono,htwoe,hthree,htot
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,htot)
|
||||
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,htot)
|
||||
e_tilde_00 = htot
|
||||
END_PROVIDER
|
||||
|
||||
@ -18,11 +18,11 @@
|
||||
do i = 1, N_det
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
|
||||
if(degree == 1 .or. degree == 2)then
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
|
||||
delta_e = e_tilde_00 - e_i0
|
||||
coef_pt1 = htilde_ij / delta_e
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
e_pt2_tc_bi_orth += coef_pt1 * htilde_ij
|
||||
if(degree == 1)then
|
||||
e_pt2_tc_bi_orth_single += coef_pt1 * htilde_ij
|
||||
@ -37,7 +37,7 @@
|
||||
BEGIN_PROVIDER [ double precision, e_tilde_bi_orth_00]
|
||||
implicit none
|
||||
double precision :: hmono,htwoe,hthree,htilde_ij
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,e_tilde_bi_orth_00)
|
||||
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,e_tilde_bi_orth_00)
|
||||
e_tilde_bi_orth_00 += nuclear_repulsion
|
||||
END_PROVIDER
|
||||
|
||||
@ -57,7 +57,7 @@
|
||||
e_corr_double_bi_orth = 0.d0
|
||||
do i = 1, N_det
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
if(degree == 1)then
|
||||
e_corr_single_bi_orth += reigvec_tc_bi_orth(i,1) * htilde_ij/reigvec_tc_bi_orth(1,1)
|
||||
e_corr_single_bi_orth_abs += dabs(reigvec_tc_bi_orth(i,1) * htilde_ij/reigvec_tc_bi_orth(1,1))
|
||||
@ -80,7 +80,7 @@
|
||||
do i = 1, N_det
|
||||
accu += reigvec_tc_bi_orth(i,1) * leigvec_tc_bi_orth(i,1)
|
||||
do j = 1, N_det
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j),psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j),psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
e_tc_left_right += htilde_ij * reigvec_tc_bi_orth(i,1) * leigvec_tc_bi_orth(j,1)
|
||||
enddo
|
||||
enddo
|
||||
@ -99,8 +99,8 @@ BEGIN_PROVIDER [ double precision, coef_pt1_bi_ortho, (N_det)]
|
||||
if(degree==0)then
|
||||
coef_pt1_bi_ortho(i) = 1.d0
|
||||
else
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
|
||||
delta_e = e_tilde_00 - e_i0
|
||||
coef_pt1 = htilde_ij / delta_e
|
||||
coef_pt1_bi_ortho(i)= coef_pt1
|
||||
|
@ -1,4 +1,4 @@
|
||||
subroutine htc_bi_ortho_calc_tdav(v, u, N_st, sze)
|
||||
subroutine htc_bi_ortho_calc_tdav_slow(v, u, N_st, sze)
|
||||
|
||||
use bitmasks
|
||||
|
||||
@ -27,7 +27,7 @@ subroutine htc_bi_ortho_calc_tdav(v, u, N_st, sze)
|
||||
|
||||
i = 1
|
||||
j = 1
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
|
||||
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
|
||||
|
||||
v = 0.d0
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
|
||||
@ -36,7 +36,7 @@ subroutine htc_bi_ortho_calc_tdav(v, u, N_st, sze)
|
||||
do istate = 1, N_st
|
||||
do i = 1, sze
|
||||
do j = 1, sze
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
|
||||
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
|
||||
v(i,istate) = v(i,istate) + htot * u(j,istate)
|
||||
enddo
|
||||
enddo
|
||||
@ -45,7 +45,7 @@ subroutine htc_bi_ortho_calc_tdav(v, u, N_st, sze)
|
||||
|
||||
end
|
||||
|
||||
subroutine htcdag_bi_ortho_calc_tdav(v, u, N_st, sze)
|
||||
subroutine htcdag_bi_ortho_calc_tdav_slow(v, u, N_st, sze)
|
||||
|
||||
use bitmasks
|
||||
|
||||
@ -71,7 +71,7 @@ subroutine htcdag_bi_ortho_calc_tdav(v, u, N_st, sze)
|
||||
|
||||
i = 1
|
||||
j = 1
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
|
||||
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
|
||||
|
||||
v = 0.d0
|
||||
|
||||
@ -81,7 +81,7 @@ subroutine htcdag_bi_ortho_calc_tdav(v, u, N_st, sze)
|
||||
do istate = 1, N_st
|
||||
do i = 1, sze
|
||||
do j = 1, sze
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,j), psi_det(1,1,i), N_int, htot)
|
||||
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, htot)
|
||||
v(i,istate) = v(i,istate) + htot * u(j,istate)
|
||||
enddo
|
||||
enddo
|
||||
|
@ -49,12 +49,12 @@ subroutine routine
|
||||
do i = 1, N_det
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
|
||||
if(degree == 1 .or. degree == 2)then
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
|
||||
delta_e = e_tilde_00 - e_i0
|
||||
coef_pt1 = htilde_ij / delta_e
|
||||
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
contrib_pt = coef_pt1 * htilde_ij
|
||||
e_pt2 += contrib_pt
|
||||
|
||||
|
@ -36,11 +36,11 @@ subroutine routine
|
||||
e_corr_abs = 0.d0
|
||||
e_corr_pos = 0.d0
|
||||
e_corr_neg = 0.d0
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,1), psi_det(1,1,1), N_int, e00)
|
||||
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,1), psi_det(1,1,1), N_int, e00)
|
||||
do i = 2, N_det
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,1), N_int, hi0)
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,1), psi_det(1,1,i), N_int, h0i)
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, ei)
|
||||
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,1), N_int, hi0)
|
||||
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,1), psi_det(1,1,i), N_int, h0i)
|
||||
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,i), N_int, ei)
|
||||
call get_excitation_degree(psi_det(1,1,1), psi_det(1,1,i),degree,N_int)
|
||||
call get_excitation(psi_det(1,1,1), psi_det(1,1,i),exc,degree,phase,N_int)
|
||||
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
|
@ -1,23 +1,5 @@
|
||||
subroutine provide_all_three_ints_bi_ortho
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! routine that provides all necessary three-electron integrals
|
||||
END_DOC
|
||||
if(three_body_h_tc)then
|
||||
PROVIDE three_e_3_idx_direct_bi_ort three_e_3_idx_cycle_1_bi_ort three_e_3_idx_cycle_2_bi_ort
|
||||
PROVIDE three_e_3_idx_exch23_bi_ort three_e_3_idx_exch13_bi_ort three_e_3_idx_exch12_bi_ort
|
||||
PROVIDE three_e_4_idx_direct_bi_ort three_e_4_idx_cycle_1_bi_ort three_e_4_idx_cycle_2_bi_ort
|
||||
PROVIDE three_e_4_idx_exch23_bi_ort three_e_4_idx_exch13_bi_ort three_e_4_idx_exch12_bi_ort
|
||||
endif
|
||||
if(.not.double_normal_ord)then
|
||||
PROVIDE three_e_5_idx_direct_bi_ort three_e_5_idx_cycle_1_bi_ort three_e_5_idx_cycle_2_bi_ort
|
||||
PROVIDE three_e_5_idx_exch23_bi_ort three_e_5_idx_exch13_bi_ort three_e_5_idx_exch12_bi_ort
|
||||
else
|
||||
PROVIDE normal_two_body_bi_orth
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
|
||||
subroutine diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
|
||||
|
||||
BEGIN_DOC
|
||||
! diagonal element of htilde ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
|
||||
@ -108,7 +90,7 @@ subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
|
||||
end
|
||||
|
||||
|
||||
subroutine single_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
|
||||
subroutine single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
|
||||
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> for single excitation ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
|
||||
@ -203,7 +185,7 @@ end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine double_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
|
||||
subroutine double_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
|
||||
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> for double excitation ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
|
@ -1,3 +1,26 @@
|
||||
subroutine provide_all_three_ints_bi_ortho
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! routine that provides all necessary three-electron integrals
|
||||
END_DOC
|
||||
if(three_body_h_tc)then
|
||||
if(three_e_3_idx_term)then
|
||||
PROVIDE three_e_3_idx_direct_bi_ort three_e_3_idx_cycle_1_bi_ort three_e_3_idx_cycle_2_bi_ort
|
||||
PROVIDE three_e_3_idx_exch23_bi_ort three_e_3_idx_exch13_bi_ort three_e_3_idx_exch12_bi_ort
|
||||
endif
|
||||
if(three_e_4_idx_term)then
|
||||
PROVIDE three_e_4_idx_direct_bi_ort three_e_4_idx_cycle_1_bi_ort three_e_4_idx_cycle_2_bi_ort
|
||||
PROVIDE three_e_4_idx_exch23_bi_ort three_e_4_idx_exch13_bi_ort three_e_4_idx_exch12_bi_ort
|
||||
endif
|
||||
if(.not.double_normal_ord.and.three_e_5_idx_term)then
|
||||
PROVIDE three_e_5_idx_direct_bi_ort three_e_5_idx_cycle_1_bi_ort three_e_5_idx_cycle_2_bi_ort
|
||||
PROVIDE three_e_5_idx_exch23_bi_ort three_e_5_idx_exch13_bi_ort three_e_5_idx_exch12_bi_ort
|
||||
elseif (double_normal_ord .and. (.not. three_e_5_idx_term))then
|
||||
PROVIDE normal_two_body_bi_orth
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine htilde_mu_mat_opt_bi_ortho_tot(key_j, key_i, Nint, htot)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
|
@ -7,11 +7,11 @@
|
||||
! Various component of the TC energy for the reference "HF" Slater determinant
|
||||
END_DOC
|
||||
double precision :: hmono, htwoe, htot, hthree
|
||||
call diag_htilde_mu_mat_bi_ortho(N_int,HF_bitmask , hmono, htwoe, htot)
|
||||
call diag_htilde_mu_mat_bi_ortho_slow(N_int,HF_bitmask , hmono, htwoe, htot)
|
||||
ref_tc_energy_1e = hmono
|
||||
ref_tc_energy_2e = htwoe
|
||||
if(three_body_h_tc)then
|
||||
call diag_htilde_three_body_ints_bi_ort(N_int, HF_bitmask, hthree)
|
||||
call diag_htilde_three_body_ints_bi_ort_slow(N_int, HF_bitmask, hthree)
|
||||
ref_tc_energy_3e = hthree
|
||||
else
|
||||
ref_tc_energy_3e = 0.d0
|
||||
@ -156,7 +156,7 @@ subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
|
||||
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
|
||||
enddo
|
||||
|
||||
if(three_body_h_tc.and.elec_num.gt.2)then
|
||||
if(three_body_h_tc.and.elec_num.gt.2.and.three_e_3_idx_term)then
|
||||
!!!!! 3-e part
|
||||
!! same-spin/same-spin
|
||||
do j = 1, na
|
||||
@ -243,7 +243,7 @@ subroutine a_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
|
||||
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
|
||||
enddo
|
||||
|
||||
if(three_body_h_tc.and.elec_num.gt.2)then
|
||||
if(three_body_h_tc.and.elec_num.gt.2.and.three_e_3_idx_term)then
|
||||
!!!!! 3-e part
|
||||
!! same-spin/same-spin
|
||||
do j = 1, na
|
||||
|
@ -42,13 +42,13 @@ subroutine double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe,
|
||||
! opposite spin two-body
|
||||
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
|
||||
if(three_body_h_tc.and.elec_num.gt.2)then
|
||||
if(.not.double_normal_ord)then
|
||||
if(.not.double_normal_ord.and.three_e_5_idx_term)then
|
||||
if(degree_i>degree_j)then
|
||||
call three_comp_two_e_elem(key_j,h1,h2,p1,p2,s1,s2,hthree)
|
||||
else
|
||||
call three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
|
||||
endif
|
||||
elseif(double_normal_ord.and.elec_num.gt.2)then
|
||||
elseif(double_normal_ord)then
|
||||
htwoe += normal_two_body_bi_orth(p2,h2,p1,h1)
|
||||
endif
|
||||
endif
|
||||
@ -59,13 +59,13 @@ subroutine double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe,
|
||||
! exchange terms
|
||||
htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
|
||||
if(three_body_h_tc.and.elec_num.gt.2)then
|
||||
if(.not.double_normal_ord)then
|
||||
if(.not.double_normal_ord.and.three_e_5_idx_term)then
|
||||
if(degree_i>degree_j)then
|
||||
call three_comp_two_e_elem(key_j,h1,h2,p1,p2,s1,s2,hthree)
|
||||
else
|
||||
call three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
|
||||
endif
|
||||
elseif(double_normal_ord.and.elec_num.gt.2)then
|
||||
elseif(double_normal_ord)then
|
||||
htwoe -= normal_two_body_bi_orth(h2,p1,h1,p2)
|
||||
htwoe += normal_two_body_bi_orth(h1,p1,h2,p2)
|
||||
endif
|
||||
|
@ -106,7 +106,7 @@ subroutine get_single_excitation_from_fock_tc(key_i,key_j,h,p,spin,phase,hmono,h
|
||||
htwoe -= buffer_x(i)
|
||||
enddo
|
||||
hthree = 0.d0
|
||||
if (three_body_h_tc.and.elec_num.gt.2)then
|
||||
if (three_body_h_tc.and.elec_num.gt.2.and.three_e_4_idx_term)then
|
||||
call three_comp_fock_elem(key_i,h,p,spin,hthree)
|
||||
endif
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine htilde_mu_mat_bi_ortho_tot(key_j, key_i, Nint, htot)
|
||||
subroutine htilde_mu_mat_bi_ortho_tot_slow(key_j, key_i, Nint, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
|
||||
@ -24,14 +24,14 @@ subroutine htilde_mu_mat_bi_ortho_tot(key_j, key_i, Nint, htot)
|
||||
if(degree.gt.2)then
|
||||
htot = 0.d0
|
||||
else
|
||||
call htilde_mu_mat_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_bi_ortho_slow(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
|
||||
endif
|
||||
|
||||
end subroutine htilde_mu_mat_bi_ortho_tot
|
||||
end subroutine htilde_mu_mat_bi_ortho_tot_slow
|
||||
|
||||
! --
|
||||
|
||||
subroutine htilde_mu_mat_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
|
||||
subroutine htilde_mu_mat_bi_ortho_slow(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
@ -61,22 +61,22 @@ subroutine htilde_mu_mat_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot
|
||||
if(degree.gt.2) return
|
||||
|
||||
if(degree == 0)then
|
||||
call diag_htilde_mu_mat_bi_ortho(Nint, key_i, hmono, htwoe, htot)
|
||||
call diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot)
|
||||
else if (degree == 1)then
|
||||
call single_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
call single_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
else if(degree == 2)then
|
||||
call double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
call double_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
endif
|
||||
|
||||
if(three_body_h_tc) then
|
||||
if(degree == 2) then
|
||||
if(.not.double_normal_ord) then
|
||||
call double_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
|
||||
if(.not.double_normal_ord.and.elec_num.gt.2.and.three_e_5_idx_term) then
|
||||
call double_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
|
||||
endif
|
||||
else if(degree == 1) then
|
||||
call single_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
|
||||
else if(degree == 0) then
|
||||
call diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
|
||||
else if(degree == 1.and.elec_num.gt.2.and.three_e_4_idx_term) then
|
||||
call single_htilde_three_body_ints_bi_ort_slow(Nint, key_j, key_i, hthree)
|
||||
else if(degree == 0.and.elec_num.gt.2.and.three_e_3_idx_term) then
|
||||
call diag_htilde_three_body_ints_bi_ort_slow(Nint, key_i, hthree)
|
||||
endif
|
||||
endif
|
||||
|
||||
@ -89,7 +89,7 @@ end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine diag_htilde_mu_mat_bi_ortho(Nint, key_i, hmono, htwoe, htot)
|
||||
subroutine diag_htilde_mu_mat_bi_ortho_slow(Nint, key_i, hmono, htwoe, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
! diagonal element of htilde ONLY FOR ONE- AND TWO-BODY TERMS
|
||||
@ -188,7 +188,7 @@ end
|
||||
|
||||
|
||||
|
||||
subroutine double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
subroutine double_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> for double excitation ONLY FOR ONE- AND TWO-BODY TERMS
|
||||
@ -227,18 +227,7 @@ subroutine double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
return
|
||||
endif
|
||||
|
||||
! if(core_tc_op)then
|
||||
! print*,'core_tc_op not already taken into account for bi ortho'
|
||||
! print*,'stopping ...'
|
||||
! stop
|
||||
! do i = 1, Nint
|
||||
! key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
|
||||
! key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
|
||||
! enddo
|
||||
! call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
|
||||
! else
|
||||
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
||||
! endif
|
||||
call get_double_excitation(key_i, key_j, exc, phase, Nint)
|
||||
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
|
||||
|
||||
@ -246,7 +235,7 @@ subroutine double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
! opposite spin two-body
|
||||
! key_j, key_i
|
||||
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
|
||||
if(double_normal_ord.and.+Ne(1).gt.2)then
|
||||
if(three_body_h_tc.and.double_normal_ord.and.+Ne(1).gt.2)then
|
||||
htwoe += normal_two_body_bi_orth(p2,h2,p1,h1)!!! WTF ???
|
||||
endif
|
||||
else
|
||||
@ -255,7 +244,7 @@ subroutine double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
|
||||
! exchange terms
|
||||
htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
|
||||
if(double_normal_ord.and.+Ne(1).gt.2)then
|
||||
if(three_body_h_tc.and.double_normal_ord.and.+Ne(1).gt.2)then
|
||||
htwoe -= normal_two_body_bi_orth(h2,p1,h1,p2)!!! WTF ???
|
||||
htwoe += normal_two_body_bi_orth(h1,p1,h2,p2)!!! WTF ???
|
||||
endif
|
||||
@ -266,7 +255,7 @@ subroutine double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
end
|
||||
|
||||
|
||||
subroutine single_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
subroutine single_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> for single excitation ONLY FOR ONE- AND TWO-BODY TERMS
|
@ -11,10 +11,10 @@
|
||||
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag),eigval_tmp(N_states))
|
||||
dressing_dets = 0.d0
|
||||
do i = 1, N_det
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
|
||||
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
|
||||
if(degree == 1 .or. degree == 2)then
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,h0j(i))
|
||||
call htilde_mu_mat_bi_ortho_slow(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,h0j(i))
|
||||
endif
|
||||
enddo
|
||||
reigvec_tc_bi_orth_tmp = 0.d0
|
||||
@ -29,7 +29,7 @@
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
print*,'Diagonalizing the TC CISD '
|
||||
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
|
||||
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav_slow)
|
||||
do i = 1, N_det
|
||||
e_corr_dets(i) = reigvec_tc_bi_orth_tmp(i,1) * h0j(i)/reigvec_tc_bi_orth_tmp(1,1)
|
||||
enddo
|
||||
@ -41,8 +41,8 @@
|
||||
it = 0
|
||||
dressing_dets = 0.d0
|
||||
double precision, allocatable :: H_jj(:),vec_tmp(:,:),eigval_tmp(:)
|
||||
external htc_bi_ortho_calc_tdav
|
||||
external htcdag_bi_ortho_calc_tdav
|
||||
external htc_bi_ortho_calc_tdav_slow
|
||||
external htcdag_bi_ortho_calc_tdav_slow
|
||||
logical :: converged
|
||||
do while (dabs(E_before-E_current).gt.thr)
|
||||
it += 1
|
||||
@ -66,7 +66,7 @@
|
||||
do istate = N_states+1, n_states_diag
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
|
||||
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav_slow)
|
||||
print*,'outside Davidson'
|
||||
print*,'eigval_tmp(1) = ',eigval_tmp(1)
|
||||
do i = 1, N_det
|
||||
|
@ -207,8 +207,6 @@ end
|
||||
else ! n_det > N_det_max_full
|
||||
|
||||
double precision, allocatable :: H_jj(:),vec_tmp(:,:)
|
||||
external htc_bi_ortho_calc_tdav
|
||||
external htcdag_bi_ortho_calc_tdav
|
||||
external H_tc_u_0_opt
|
||||
external H_tc_dagger_u_0_opt
|
||||
external H_tc_s2_dagger_u_0_opt
|
||||
@ -217,7 +215,7 @@ end
|
||||
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag))
|
||||
|
||||
do i = 1, N_det
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
|
||||
enddo
|
||||
|
||||
print*,'---------------------------------'
|
||||
@ -259,7 +257,6 @@ end
|
||||
do istate = N_states+1, n_states_diag
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
!call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
|
||||
!call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_u_0_opt)
|
||||
converged = .False.
|
||||
i_it = 0
|
||||
|
@ -9,33 +9,25 @@
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
double precision :: hmono,htwoe,hthree,htot
|
||||
double precision :: htot
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
i = 1
|
||||
j = 1
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(psi_det(1,1,j), psi_det(1,1,i), N_int, htot)
|
||||
|
||||
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j,hmono, htwoe, hthree, htot) &
|
||||
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j, htot) &
|
||||
!$OMP SHARED (N_det, psi_det, N_int,htilde_matrix_elmt_bi_ortho)
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
! < J | Htilde | I >
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(psi_det(1,1,j), psi_det(1,1,i), N_int, htot)
|
||||
|
||||
!print *, ' hmono = ', hmono
|
||||
!print *, ' htwoe = ', htwoe
|
||||
!print *, ' hthree = ', hthree
|
||||
htilde_matrix_elmt_bi_ortho(j,i) = htot
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
! print*,'htilde_matrix_elmt_bi_ortho = '
|
||||
! do i = 1, min(100,N_det)
|
||||
! write(*,'(100(F16.10,X))')htilde_matrix_elmt_bi_ortho(1:min(100,N_det),i)
|
||||
! enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -56,8 +56,8 @@ subroutine main()
|
||||
U_SOM = 0.d0
|
||||
do i = 1, N_det
|
||||
if(i == i_HF) cycle
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i_HF), psi_det(1,1,i), N_int, hmono_1, htwoe_1, hthree_1, htot_1)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i), psi_det(1,1,i_HF), N_int, hmono_2, htwoe_2, hthree_2, htot_2)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i_HF), psi_det(1,1,i), N_int, hmono_1, htwoe_1, hthree_1, htot_1)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i), psi_det(1,1,i_HF), N_int, hmono_2, htwoe_2, hthree_2, htot_2)
|
||||
U_SOM += htot_1 * htot_2
|
||||
enddo
|
||||
U_SOM = 0.5d0 * U_SOM
|
||||
|
@ -12,7 +12,7 @@ subroutine write_tc_energy()
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
!htot = htilde_matrix_elmt_bi_ortho(i,j)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,i), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot)
|
||||
E_TC = E_TC + psi_l_coef_bi_ortho(i,k) * psi_r_coef_bi_ortho(j,k) * htot
|
||||
!E_TC = E_TC + leigvec_tc_bi_orth(i,k) * reigvec_tc_bi_orth(j,k) * htot
|
||||
enddo
|
||||
@ -45,7 +45,7 @@ subroutine write_tc_var()
|
||||
|
||||
SIGMA_TC = 0.d0
|
||||
do j = 2, N_det
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,1), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,1), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot)
|
||||
SIGMA_TC = SIGMA_TC + htot * htot
|
||||
enddo
|
||||
|
||||
|
@ -35,7 +35,7 @@ subroutine test
|
||||
det_i = ref_bitmask
|
||||
call do_single_excitation(det_i,h1,p1,s1,i_ok)
|
||||
call do_single_excitation(det_i,h2,p2,s2,i_ok)
|
||||
call htilde_mu_mat_bi_ortho(det_i,HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho_slow(det_i,HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
|
||||
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
|
||||
hthree *= phase
|
||||
@ -67,7 +67,7 @@ do h1 = 1, elec_alpha_num
|
||||
if(i_ok.ne.1)cycle
|
||||
call do_single_excitation(det_i,h2,p2,s2,i_ok)
|
||||
if(i_ok.ne.1)cycle
|
||||
call htilde_mu_mat_bi_ortho(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho_slow(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
|
||||
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
|
||||
integer :: hh1, pp1, hh2, pp2, ss1, ss2
|
||||
@ -103,7 +103,7 @@ do h1 = 1, elec_beta_num
|
||||
if(i_ok.ne.1)cycle
|
||||
call do_single_excitation(det_i,h2,p2,s2,i_ok)
|
||||
if(i_ok.ne.1)cycle
|
||||
call htilde_mu_mat_bi_ortho(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho_slow(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
|
||||
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
|
||||
call decode_exc(exc, 2, hh1, pp1, hh2, pp2, ss1, ss2)
|
||||
|
@ -91,7 +91,7 @@ subroutine routine_test_s2_davidson
|
||||
external H_tc_s2_u_0_opt
|
||||
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag),energies(n_states_diag), s2(n_states_diag))
|
||||
do i = 1, N_det
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
|
||||
call htilde_mu_mat_bi_ortho_tot_slow(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
|
||||
enddo
|
||||
! Preparing the left-eigenvector
|
||||
print*,'Computing the left-eigenvector '
|
||||
|
@ -31,7 +31,7 @@ subroutine test_h_u0
|
||||
u_0(i) = psi_r_coef_bi_ortho(i,1)
|
||||
enddo
|
||||
call H_tc_u_0_nstates_openmp(v_0_new,u_0,N_states,N_det, do_right)
|
||||
call htc_bi_ortho_calc_tdav (v_0_ref,u_0,N_states,N_det)
|
||||
call htc_bi_ortho_calc_tdav_slow (v_0_ref,u_0,N_states,N_det)
|
||||
print*,'difference right '
|
||||
accu = 0.d0
|
||||
do i = 1, N_det
|
||||
@ -42,7 +42,7 @@ subroutine test_h_u0
|
||||
do_right = .False.
|
||||
v_0_new = 0.d0
|
||||
call H_tc_u_0_nstates_openmp(v_0_new,u_0,N_states,N_det, do_right)
|
||||
call htcdag_bi_ortho_calc_tdav(v_0_ref_dagger,u_0,N_states,N_det, do_right)
|
||||
call htcdag_bi_ortho_calc_tdav_slow(v_0_ref_dagger,u_0,N_states,N_det, do_right)
|
||||
print*,'difference left'
|
||||
accu = 0.d0
|
||||
do i = 1, N_det
|
||||
@ -63,7 +63,7 @@ subroutine test_slater_tc_opt
|
||||
i_count = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1,N_det
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hnewmono, hnewtwoe, hnewthree, hnewtot)
|
||||
if(dabs(htot).gt.1.d-15)then
|
||||
i_count += 1.D0
|
||||
@ -99,7 +99,7 @@ subroutine timing_tot
|
||||
do j = 1, N_det
|
||||
! call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
|
||||
i_count += 1.d0
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
@ -146,7 +146,7 @@ subroutine timing_diag
|
||||
do i = 1, N_det
|
||||
do j = i,i
|
||||
i_count += 1.d0
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
@ -183,7 +183,7 @@ subroutine timing_single
|
||||
if(degree.ne.1)cycle
|
||||
i_count += 1.d0
|
||||
call wall_time(wall0)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call wall_time(wall1)
|
||||
accu += wall1 - wall0
|
||||
enddo
|
||||
@ -225,7 +225,7 @@ subroutine timing_double
|
||||
if(degree.ne.2)cycle
|
||||
i_count += 1.d0
|
||||
call wall_time(wall0)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call wall_time(wall1)
|
||||
accu += wall1 - wall0
|
||||
enddo
|
||||
|
@ -25,8 +25,7 @@ subroutine test_3e
|
||||
implicit none
|
||||
double precision :: integral_aaa,integral_aab,integral_abb,integral_bbb,accu
|
||||
double precision :: hmono, htwoe, hthree, htot
|
||||
call htilde_mu_mat_bi_ortho(ref_bitmask, ref_bitmask, N_int, hmono, htwoe, hthree, htot)
|
||||
! call diag_htilde_three_body_ints_bi_ort(N_int, ref_bitmask, hthree)
|
||||
call htilde_mu_mat_bi_ortho_slow(ref_bitmask, ref_bitmask, N_int, hmono, htwoe, hthree, htot)
|
||||
print*,'hmono = ',hmono
|
||||
print*,'htwoe = ',htwoe
|
||||
print*,'hthree= ',hthree
|
||||
@ -88,7 +87,7 @@ subroutine routine_3()
|
||||
print*, ' excited det'
|
||||
call debug_det(det_i, N_int)
|
||||
|
||||
call htilde_mu_mat_bi_ortho(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho_slow(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
|
||||
if(dabs(hthree).lt.1.d-10)cycle
|
||||
ref = hthree
|
||||
if(s1 == 1)then
|
||||
@ -156,7 +155,7 @@ subroutine routine_tot()
|
||||
stop
|
||||
endif
|
||||
|
||||
call htilde_mu_mat_bi_ortho(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho_slow(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
|
||||
print*,htilde_ij
|
||||
if(dabs(htilde_ij).lt.1.d-10)cycle
|
||||
print*, ' excited det'
|
||||
|
@ -16,6 +16,24 @@ doc: If |true|, three-body terms are included
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
[three_e_3_idx_term]
|
||||
type: logical
|
||||
doc: If |true|, the diagonal 3-idx terms of the 3-e interaction are taken
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
[three_e_4_idx_term]
|
||||
type: logical
|
||||
doc: If |true|, the off-diagonal 4-idx terms of the 3-e interaction are taken
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
[three_e_5_idx_term]
|
||||
type: logical
|
||||
doc: If |true|, the off-diagonal 5-idx terms of the 3-e interaction are taken
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
[pure_three_body_h_tc]
|
||||
type: logical
|
||||
doc: If |true|, pure triple excitation three-body terms are included
|
||||
@ -130,6 +148,12 @@ doc: a parameter used to define mu(r)
|
||||
interface: ezfio, provider, ocaml
|
||||
default: 6.203504908994001e-1
|
||||
|
||||
[beta_rho_power]
|
||||
type: double precision
|
||||
doc: a parameter used to define mu(r)
|
||||
interface: ezfio, provider, ocaml
|
||||
default: 0.5
|
||||
|
||||
[thr_degen_tc]
|
||||
type: Threshold
|
||||
doc: Threshold to determine if two orbitals are degenerate in TCSCF in order to avoid random quasi orthogonality between the right- and left-eigenvector for the same eigenvalue
|
||||
|
@ -10,11 +10,17 @@ doc: Name of the exported TREXIO file
|
||||
interface: ezfio, ocaml, provider
|
||||
default: None
|
||||
|
||||
[export_rdm]
|
||||
[export_basis]
|
||||
type: logical
|
||||
doc: If True, export two-body reduced density matrix
|
||||
doc: If True, export basis set and AOs
|
||||
interface: ezfio, ocaml, provider
|
||||
default: False
|
||||
default: True
|
||||
|
||||
[export_mos]
|
||||
type: logical
|
||||
doc: If True, export basis set and AOs
|
||||
interface: ezfio, ocaml, provider
|
||||
default: True
|
||||
|
||||
[export_ao_one_e_ints]
|
||||
type: logical
|
||||
@ -22,12 +28,6 @@ doc: If True, export one-electron integrals in AO basis
|
||||
interface: ezfio, ocaml, provider
|
||||
default: False
|
||||
|
||||
[export_mo_one_e_ints]
|
||||
type: logical
|
||||
doc: If True, export one-electron integrals in MO basis
|
||||
interface: ezfio, ocaml, provider
|
||||
default: False
|
||||
|
||||
[export_ao_two_e_ints]
|
||||
type: logical
|
||||
doc: If True, export two-electron integrals in AO basis
|
||||
@ -40,6 +40,12 @@ doc: If True, export Cholesky-decomposed two-electron integrals in AO basis
|
||||
interface: ezfio, ocaml, provider
|
||||
default: False
|
||||
|
||||
[export_mo_one_e_ints]
|
||||
type: logical
|
||||
doc: If True, export one-electron integrals in MO basis
|
||||
interface: ezfio, ocaml, provider
|
||||
default: False
|
||||
|
||||
[export_mo_two_e_ints]
|
||||
type: logical
|
||||
doc: If True, export two-electron integrals in MO basis
|
||||
@ -52,3 +58,9 @@ doc: If True, export Cholesky-decomposed two-electron integrals in MO basis
|
||||
interface: ezfio, ocaml, provider
|
||||
default: False
|
||||
|
||||
[export_rdm]
|
||||
type: logical
|
||||
doc: If True, export two-body reduced density matrix
|
||||
interface: ezfio, ocaml, provider
|
||||
default: False
|
||||
|
||||
|
@ -2,6 +2,6 @@ program export_trexio_prog
|
||||
implicit none
|
||||
read_wf = .True.
|
||||
SOFT_TOUCH read_wf
|
||||
call export_trexio
|
||||
call export_trexio(.False.)
|
||||
end
|
||||
|
||||
|
@ -1,15 +1,17 @@
|
||||
subroutine export_trexio
|
||||
subroutine export_trexio(update)
|
||||
use trexio
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Exports the wave function in TREXIO format
|
||||
END_DOC
|
||||
|
||||
logical, intent(in) :: update
|
||||
integer(trexio_t) :: f(N_states) ! TREXIO file handle
|
||||
integer(trexio_exit_code) :: rc
|
||||
integer :: k
|
||||
double precision, allocatable :: factor(:)
|
||||
character*(256) :: filenames(N_states)
|
||||
character :: rw
|
||||
|
||||
filenames(1) = trexio_filename
|
||||
do k=2,N_states
|
||||
@ -18,15 +20,26 @@ subroutine export_trexio
|
||||
|
||||
do k=1,N_states
|
||||
print *, 'TREXIO file : ', trim(filenames(k))
|
||||
call system('test -f '//trim(filenames(k))//' && mv '//trim(filenames(k))//' '//trim(filenames(k))//'.bak')
|
||||
if (update) then
|
||||
call system('test -f '//trim(filenames(k))//' && cp -r '//trim(filenames(k))//' '//trim(filenames(k))//'.bak')
|
||||
else
|
||||
call system('test -f '//trim(filenames(k))//' && mv '//trim(filenames(k))//' '//trim(filenames(k))//'.bak')
|
||||
endif
|
||||
enddo
|
||||
print *, ''
|
||||
|
||||
if (update) then
|
||||
rw = 'u'
|
||||
else
|
||||
rw = 'w'
|
||||
endif
|
||||
|
||||
|
||||
do k=1,N_states
|
||||
if (backend == 0) then
|
||||
f(k) = trexio_open(filenames(k), 'u', TREXIO_HDF5, rc)
|
||||
f(k) = trexio_open(filenames(k), rw, TREXIO_HDF5, rc)
|
||||
else if (backend == 1) then
|
||||
f(k) = trexio_open(filenames(k), 'u', TREXIO_TEXT, rc)
|
||||
f(k) = trexio_open(filenames(k), rw, TREXIO_TEXT, rc)
|
||||
endif
|
||||
if (f(k) == 0_8) then
|
||||
print *, 'Unable to open TREXIO file for writing'
|
||||
@ -171,92 +184,95 @@ subroutine export_trexio
|
||||
endif
|
||||
|
||||
|
||||
if (export_basis) then
|
||||
|
||||
! Basis
|
||||
! -----
|
||||
|
||||
print *, 'Basis'
|
||||
print *, 'Basis'
|
||||
|
||||
rc = trexio_write_basis_type(f(1), 'Gaussian', len('Gaussian'))
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
rc = trexio_write_basis_type(f(1), 'Gaussian', len('Gaussian'))
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
rc = trexio_write_basis_prim_num(f(1), prim_num)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
rc = trexio_write_basis_prim_num(f(1), prim_num)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
rc = trexio_write_basis_shell_num(f(1), shell_num)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
rc = trexio_write_basis_shell_num(f(1), shell_num)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
rc = trexio_write_basis_nucleus_index(f(1), basis_nucleus_index)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
rc = trexio_write_basis_nucleus_index(f(1), basis_nucleus_index)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
rc = trexio_write_basis_shell_ang_mom(f(1), shell_ang_mom)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
rc = trexio_write_basis_shell_ang_mom(f(1), shell_ang_mom)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
allocate(factor(shell_num))
|
||||
! if (ao_normalized) then
|
||||
! factor(1:shell_num) = shell_normalization_factor(1:shell_num)
|
||||
! else
|
||||
factor(1:shell_num) = 1.d0
|
||||
! endif
|
||||
rc = trexio_write_basis_shell_factor(f(1), factor)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
allocate(factor(shell_num))
|
||||
if (ao_normalized) then
|
||||
factor(1:shell_num) = shell_normalization_factor(1:shell_num)
|
||||
else
|
||||
factor(1:shell_num) = 1.d0
|
||||
endif
|
||||
rc = trexio_write_basis_shell_factor(f(1), factor)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
deallocate(factor)
|
||||
|
||||
deallocate(factor)
|
||||
rc = trexio_write_basis_shell_index(f(1), shell_index)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
rc = trexio_write_basis_shell_index(f(1), shell_index)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
rc = trexio_write_basis_exponent(f(1), prim_expo)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
rc = trexio_write_basis_exponent(f(1), prim_expo)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
rc = trexio_write_basis_coefficient(f(1), prim_coef)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
rc = trexio_write_basis_coefficient(f(1), prim_coef)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
allocate(factor(prim_num))
|
||||
if (primitives_normalized) then
|
||||
factor(1:prim_num) = prim_normalization_factor(1:prim_num)
|
||||
else
|
||||
factor(1:prim_num) = 1.d0
|
||||
endif
|
||||
rc = trexio_write_basis_prim_factor(f(1), factor)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
deallocate(factor)
|
||||
allocate(factor(prim_num))
|
||||
if (primitives_normalized) then
|
||||
factor(1:prim_num) = prim_normalization_factor(1:prim_num)
|
||||
else
|
||||
factor(1:prim_num) = 1.d0
|
||||
endif
|
||||
rc = trexio_write_basis_prim_factor(f(1), factor)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
deallocate(factor)
|
||||
|
||||
|
||||
! Atomic orbitals
|
||||
! ---------------
|
||||
|
||||
print *, 'AOs'
|
||||
print *, 'AOs'
|
||||
|
||||
rc = trexio_write_ao_num(f(1), ao_num)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
rc = trexio_write_ao_num(f(1), ao_num)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
rc = trexio_write_ao_cartesian(f(1), 1)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
rc = trexio_write_ao_cartesian(f(1), 1)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
rc = trexio_write_ao_shell(f(1), ao_shell)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
rc = trexio_write_ao_shell(f(1), ao_shell)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
integer :: i, pow0(3), powA(3), j, l, nz
|
||||
double precision :: normA, norm0, C_A(3), overlap_x, overlap_z, overlap_y, c
|
||||
nz=100
|
||||
integer :: i, pow0(3), powA(3), j, l, nz
|
||||
double precision :: normA, norm0, C_A(3), overlap_x, overlap_z, overlap_y, c
|
||||
nz=100
|
||||
|
||||
C_A(1) = 0.d0
|
||||
C_A(2) = 0.d0
|
||||
C_A(3) = 0.d0
|
||||
C_A(1) = 0.d0
|
||||
C_A(2) = 0.d0
|
||||
C_A(3) = 0.d0
|
||||
|
||||
allocate(factor(ao_num))
|
||||
if (ao_normalized) then
|
||||
do i=1,ao_num
|
||||
l = ao_first_of_shell(ao_shell(i))
|
||||
factor(i) = (ao_coef_normalized(i,1)+tiny(1.d0))/(ao_coef_normalized(l,1)+tiny(1.d0))
|
||||
enddo
|
||||
else
|
||||
factor(:) = 1.d0
|
||||
endif
|
||||
rc = trexio_write_ao_normalization(f(1), factor)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
deallocate(factor)
|
||||
|
||||
allocate(factor(ao_num))
|
||||
if (ao_normalized) then
|
||||
do i=1,ao_num
|
||||
l = ao_first_of_shell(ao_shell(i))
|
||||
factor(i) = (ao_coef_normalized(i,1)+tiny(1.d0))/(ao_coef_normalized(l,1)+tiny(1.d0))
|
||||
enddo
|
||||
else
|
||||
factor(:) = 1.d0
|
||||
endif
|
||||
rc = trexio_write_ao_normalization(f(1), factor)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
deallocate(factor)
|
||||
|
||||
! One-e AO integrals
|
||||
! ------------------
|
||||
@ -375,28 +391,30 @@ subroutine export_trexio
|
||||
! Molecular orbitals
|
||||
! ------------------
|
||||
|
||||
print *, 'MOs'
|
||||
if (export_mos) then
|
||||
print *, 'MOs'
|
||||
|
||||
rc = trexio_write_mo_type(f(1), mo_label, len(trim(mo_label)))
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
do k=1,N_states
|
||||
rc = trexio_write_mo_num(f(k), mo_num)
|
||||
rc = trexio_write_mo_type(f(1), mo_label, len(trim(mo_label)))
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
enddo
|
||||
|
||||
rc = trexio_write_mo_coefficient(f(1), mo_coef)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
do k=1,N_states
|
||||
rc = trexio_write_mo_num(f(k), mo_num)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
enddo
|
||||
|
||||
if ( (trim(mo_label) == 'Canonical').and. &
|
||||
(export_mo_two_e_ints_cholesky.or.export_mo_two_e_ints) ) then
|
||||
rc = trexio_write_mo_energy(f(1), fock_matrix_diag_mo)
|
||||
rc = trexio_write_mo_coefficient(f(1), mo_coef)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
if ( (trim(mo_label) == 'Canonical').and. &
|
||||
(export_mo_two_e_ints_cholesky.or.export_mo_two_e_ints) ) then
|
||||
rc = trexio_write_mo_energy(f(1), fock_matrix_diag_mo)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
endif
|
||||
|
||||
rc = trexio_write_mo_class(f(1), mo_class, len(mo_class(1)))
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
endif
|
||||
|
||||
rc = trexio_write_mo_class(f(1), mo_class, len(mo_class(1)))
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
|
||||
! One-e MO integrals
|
||||
! ------------------
|
||||
|
||||
|
@ -3,6 +3,7 @@ program import_integrals_ao
|
||||
implicit none
|
||||
integer(trexio_t) :: f ! TREXIO file handle
|
||||
integer(trexio_exit_code) :: rc
|
||||
PROVIDE mo_num
|
||||
|
||||
f = trexio_open(trexio_filename, 'r', TREXIO_AUTO, rc)
|
||||
if (f == 0_8) then
|
||||
@ -42,10 +43,10 @@ subroutine run(f)
|
||||
|
||||
if (trexio_has_nucleus_repulsion(f) == TREXIO_SUCCESS) then
|
||||
rc = trexio_read_nucleus_repulsion(f, s)
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
if (rc /= TREXIO_SUCCESS) then
|
||||
print *, irp_here, rc
|
||||
print *, 'Error reading nuclear repulsion'
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
stop -1
|
||||
endif
|
||||
call ezfio_set_nuclei_nuclear_repulsion(s)
|
||||
@ -63,6 +64,7 @@ subroutine run(f)
|
||||
if (rc /= TREXIO_SUCCESS) then
|
||||
print *, irp_here
|
||||
print *, 'Error reading AO overlap'
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
stop -1
|
||||
endif
|
||||
call ezfio_set_ao_one_e_ints_ao_integrals_overlap(A)
|
||||
@ -74,6 +76,7 @@ subroutine run(f)
|
||||
if (rc /= TREXIO_SUCCESS) then
|
||||
print *, irp_here
|
||||
print *, 'Error reading AO kinetic integrals'
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
stop -1
|
||||
endif
|
||||
call ezfio_set_ao_one_e_ints_ao_integrals_kinetic(A)
|
||||
@ -85,6 +88,7 @@ subroutine run(f)
|
||||
! if (rc /= TREXIO_SUCCESS) then
|
||||
! print *, irp_here
|
||||
! print *, 'Error reading AO ECP local integrals'
|
||||
! call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
! stop -1
|
||||
! endif
|
||||
! call ezfio_set_ao_one_e_ints_ao_integrals_pseudo(A)
|
||||
@ -96,6 +100,7 @@ subroutine run(f)
|
||||
if (rc /= TREXIO_SUCCESS) then
|
||||
print *, irp_here
|
||||
print *, 'Error reading AO potential N-e integrals'
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
stop -1
|
||||
endif
|
||||
call ezfio_set_ao_one_e_ints_ao_integrals_n_e(A)
|
||||
@ -106,41 +111,112 @@ subroutine run(f)
|
||||
|
||||
! AO 2e integrals
|
||||
! ---------------
|
||||
PROVIDE ao_integrals_map
|
||||
|
||||
integer*4 :: BUFSIZE
|
||||
BUFSIZE=ao_num**2
|
||||
allocate(buffer_i(BUFSIZE), buffer_values(BUFSIZE))
|
||||
allocate(Vi(4,BUFSIZE), V(BUFSIZE))
|
||||
rc = trexio_has_ao_2e_int(f)
|
||||
PROVIDE ao_num
|
||||
if (rc /= TREXIO_HAS_NOT) then
|
||||
PROVIDE ao_integrals_map
|
||||
|
||||
integer*8 :: offset, icount
|
||||
integer*4 :: BUFSIZE
|
||||
BUFSIZE=ao_num**2
|
||||
allocate(buffer_i(BUFSIZE), buffer_values(BUFSIZE))
|
||||
allocate(Vi(4,BUFSIZE), V(BUFSIZE))
|
||||
|
||||
offset = 0_8
|
||||
icount = BUFSIZE
|
||||
rc = TREXIO_SUCCESS
|
||||
do while (icount == size(V))
|
||||
rc = trexio_read_ao_2e_int_eri(f, offset, icount, Vi, V)
|
||||
do m=1,icount
|
||||
i = Vi(1,m)
|
||||
j = Vi(2,m)
|
||||
k = Vi(3,m)
|
||||
l = Vi(4,m)
|
||||
integral = V(m)
|
||||
call two_e_integrals_index(i, j, k, l, buffer_i(m) )
|
||||
buffer_values(m) = integral
|
||||
enddo
|
||||
call insert_into_ao_integrals_map(int(icount,4),buffer_i,buffer_values)
|
||||
offset = offset + icount
|
||||
integer*8 :: offset, icount
|
||||
|
||||
offset = 0_8
|
||||
icount = BUFSIZE
|
||||
rc = TREXIO_SUCCESS
|
||||
do while (icount == size(V))
|
||||
rc = trexio_read_ao_2e_int_eri(f, offset, icount, Vi, V)
|
||||
do m=1,icount
|
||||
i = Vi(1,m)
|
||||
j = Vi(2,m)
|
||||
k = Vi(3,m)
|
||||
l = Vi(4,m)
|
||||
integral = V(m)
|
||||
call two_e_integrals_index(i, j, k, l, buffer_i(m) )
|
||||
buffer_values(m) = integral
|
||||
enddo
|
||||
call insert_into_ao_integrals_map(int(icount,4),buffer_i,buffer_values)
|
||||
offset = offset + icount
|
||||
if (rc /= TREXIO_SUCCESS) then
|
||||
exit
|
||||
endif
|
||||
end do
|
||||
n_integrals = offset
|
||||
|
||||
call map_sort(ao_integrals_map)
|
||||
call map_unique(ao_integrals_map)
|
||||
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
|
||||
call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read')
|
||||
|
||||
deallocate(buffer_i, buffer_values, Vi, V)
|
||||
print *, 'AO integrals read from TREXIO file'
|
||||
else
|
||||
print *, 'AO integrals not found in TREXIO file'
|
||||
endif
|
||||
|
||||
! MO integrals
|
||||
! ------------
|
||||
|
||||
allocate(A(mo_num, mo_num))
|
||||
if (trexio_has_mo_1e_int_core_hamiltonian(f) == TREXIO_SUCCESS) then
|
||||
rc = trexio_read_mo_1e_int_core_hamiltonian(f, A)
|
||||
if (rc /= TREXIO_SUCCESS) then
|
||||
exit
|
||||
print *, irp_here
|
||||
print *, 'Error reading MO 1e integrals'
|
||||
call trexio_assert(rc, TREXIO_SUCCESS)
|
||||
stop -1
|
||||
endif
|
||||
end do
|
||||
n_integrals = offset
|
||||
call ezfio_set_mo_one_e_ints_mo_one_e_integrals(A)
|
||||
call ezfio_set_mo_one_e_ints_io_mo_one_e_integrals('Read')
|
||||
endif
|
||||
deallocate(A)
|
||||
|
||||
call map_sort(ao_integrals_map)
|
||||
call map_unique(ao_integrals_map)
|
||||
! MO 2e integrals
|
||||
! ---------------
|
||||
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
|
||||
call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read')
|
||||
rc = trexio_has_mo_2e_int(f)
|
||||
if (rc /= TREXIO_HAS_NOT) then
|
||||
|
||||
BUFSIZE=mo_num**2
|
||||
allocate(buffer_i(BUFSIZE), buffer_values(BUFSIZE))
|
||||
allocate(Vi(4,BUFSIZE), V(BUFSIZE))
|
||||
|
||||
|
||||
offset = 0_8
|
||||
icount = BUFSIZE
|
||||
rc = TREXIO_SUCCESS
|
||||
do while (icount == size(V))
|
||||
rc = trexio_read_mo_2e_int_eri(f, offset, icount, Vi, V)
|
||||
do m=1,icount
|
||||
i = Vi(1,m)
|
||||
j = Vi(2,m)
|
||||
k = Vi(3,m)
|
||||
l = Vi(4,m)
|
||||
integral = V(m)
|
||||
call two_e_integrals_index(i, j, k, l, buffer_i(m) )
|
||||
buffer_values(m) = integral
|
||||
enddo
|
||||
call map_append(mo_integrals_map, buffer_i, buffer_values, int(icount,4))
|
||||
offset = offset + icount
|
||||
if (rc /= TREXIO_SUCCESS) then
|
||||
exit
|
||||
endif
|
||||
end do
|
||||
n_integrals = offset
|
||||
|
||||
call map_sort(mo_integrals_map)
|
||||
call map_unique(mo_integrals_map)
|
||||
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_map)
|
||||
call ezfio_set_mo_two_e_ints_io_mo_two_e_integrals('Read')
|
||||
deallocate(buffer_i, buffer_values, Vi, V)
|
||||
print *, 'MO integrals read from TREXIO file'
|
||||
else
|
||||
print *, 'MO integrals not found in TREXIO file'
|
||||
endif
|
||||
|
||||
end
|
||||
|
@ -56,7 +56,7 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
|
||||
! * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
|
||||
! * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
|
||||
!
|
||||
! WARNING ::: IF fact_k is too smal then:
|
||||
! WARNING ::: IF fact_k is too smal then:
|
||||
! returns a "s" function centered in zero
|
||||
! with an inifinite exponent and a zero polynom coef
|
||||
END_DOC
|
||||
@ -86,7 +86,7 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
|
||||
!DIR$ FORCEINLINE
|
||||
call gaussian_product(alpha,A_center,beta,B_center,fact_k,p,P_center)
|
||||
if (fact_k < thresh) then
|
||||
! IF fact_k is too smal then:
|
||||
! IF fact_k is too smal then:
|
||||
! returns a "s" function centered in zero
|
||||
! with an inifinite exponent and a zero polynom coef
|
||||
P_center = 0.d0
|
||||
@ -468,8 +468,6 @@ end subroutine
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine multiply_poly(b,nb,c,nc,d,nd)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -484,33 +482,292 @@ subroutine multiply_poly(b,nb,c,nc,d,nd)
|
||||
|
||||
integer :: ndtmp
|
||||
integer :: ib, ic, id, k
|
||||
if(ior(nc,nb) >= 0) then ! True if nc>=0 and nb>=0
|
||||
continue
|
||||
else
|
||||
return
|
||||
endif
|
||||
ndtmp = nb+nc
|
||||
if(ior(nc,nb) < 0) return !False if nc>=0 and nb>=0
|
||||
|
||||
select case (nb)
|
||||
case (0)
|
||||
call multiply_poly_b0(b,c,nc,d,nd)
|
||||
return
|
||||
case (1)
|
||||
call multiply_poly_b1(b,c,nc,d,nd)
|
||||
return
|
||||
case (2)
|
||||
call multiply_poly_b2(b,c,nc,d,nd)
|
||||
return
|
||||
end select
|
||||
|
||||
select case (nc)
|
||||
case (0)
|
||||
call multiply_poly_c0(b,nb,c,d,nd)
|
||||
return
|
||||
case (1)
|
||||
call multiply_poly_c1(b,nb,c,d,nd)
|
||||
return
|
||||
case (2)
|
||||
call multiply_poly_c2(b,nb,c,d,nd)
|
||||
return
|
||||
end select
|
||||
|
||||
do ib=0,nb
|
||||
do ic = 0,nc
|
||||
d(ib+ic) = d(ib+ic) + c(ic) * b(ib)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do nd = nb+nc,0,-1
|
||||
if (d(nd) /= 0.d0) exit
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine multiply_poly_b0(b,c,nc,d,nd)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Multiply two polynomials
|
||||
! D(t) += B(t)*C(t)
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: nc
|
||||
integer, intent(out) :: nd
|
||||
double precision, intent(in) :: b(0:0), c(0:nc)
|
||||
double precision, intent(inout) :: d(0:nc)
|
||||
|
||||
integer :: ndtmp
|
||||
integer :: ic, id, k
|
||||
if(nc < 0) return !False if nc>=0
|
||||
|
||||
do ic = 0,nc
|
||||
d(ic) = d(ic) + c(ic) * b(0)
|
||||
enddo
|
||||
|
||||
do ib=1,nb
|
||||
d(ib) = d(ib) + c(0) * b(ib)
|
||||
do ic = 1,nc
|
||||
d(ib+ic) = d(ib+ic) + c(ic) * b(ib)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do nd = ndtmp,0,-1
|
||||
if (d(nd) == 0.d0) then
|
||||
cycle
|
||||
endif
|
||||
exit
|
||||
do nd = nc,0,-1
|
||||
if (d(nd) /= 0.d0) exit
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine multiply_poly_b1(b,c,nc,d,nd)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Multiply two polynomials
|
||||
! D(t) += B(t)*C(t)
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: nc
|
||||
integer, intent(out) :: nd
|
||||
double precision, intent(in) :: b(0:1), c(0:nc)
|
||||
double precision, intent(inout) :: d(0:1+nc)
|
||||
|
||||
integer :: ndtmp
|
||||
integer :: ib, ic, id, k
|
||||
if(nc < 0) return !False if nc>=0
|
||||
|
||||
|
||||
select case (nc)
|
||||
case (0)
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
d(1) = d(1) + c(0) * b(1)
|
||||
|
||||
case (1)
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
|
||||
d(2) = d(2) + c(1) * b(1)
|
||||
|
||||
case default
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
do ic = 1,nc
|
||||
d(ic) = d(ic) + c(ic) * b(0) + c(ic-1) * b(1)
|
||||
enddo
|
||||
d(nc+1) = d(nc+1) + c(nc) * b(1)
|
||||
|
||||
end select
|
||||
|
||||
do nd = 1+nc,0,-1
|
||||
if (d(nd) /= 0.d0) exit
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine multiply_poly_b2(b,c,nc,d,nd)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Multiply two polynomials
|
||||
! D(t) += B(t)*C(t)
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: nc
|
||||
integer, intent(out) :: nd
|
||||
double precision, intent(in) :: b(0:2), c(0:nc)
|
||||
double precision, intent(inout) :: d(0:2+nc)
|
||||
|
||||
integer :: ndtmp
|
||||
integer :: ib, ic, id, k
|
||||
if(nc < 0) return !False if nc>=0
|
||||
|
||||
select case (nc)
|
||||
case (0)
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
d(1) = d(1) + c(0) * b(1)
|
||||
d(2) = d(2) + c(0) * b(2)
|
||||
|
||||
case (1)
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
|
||||
d(2) = d(2) + c(0) * b(2) + c(1) * b(1)
|
||||
d(3) = d(3) + c(1) * b(2)
|
||||
|
||||
case (2)
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
|
||||
d(2) = d(2) + c(0) * b(2) + c(1) * b(1) + c(2) * b(0)
|
||||
d(3) = d(3) + c(2) * b(1) + c(1) * b(2)
|
||||
d(4) = d(4) + c(2) * b(2)
|
||||
|
||||
case default
|
||||
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
|
||||
do ic = 2,nc
|
||||
d(ic) = d(ic) + c(ic) * b(0) + c(ic-1) * b(1) + c(ic-2) * b(2)
|
||||
enddo
|
||||
d(nc+1) = d(nc+1) + c(nc) * b(1) + c(nc-1) * b(2)
|
||||
d(nc+2) = d(nc+2) + c(nc) * b(2)
|
||||
|
||||
end select
|
||||
|
||||
do nd = 2+nc,0,-1
|
||||
if (d(nd) /= 0.d0) exit
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine multiply_poly_c0(b,nb,c,d,nd)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Multiply two polynomials
|
||||
! D(t) += B(t)*C(t)
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: nb
|
||||
integer, intent(out) :: nd
|
||||
double precision, intent(in) :: b(0:nb), c(0:0)
|
||||
double precision, intent(inout) :: d(0:nb)
|
||||
|
||||
integer :: ndtmp
|
||||
integer :: ib, ic, id, k
|
||||
if(nb < 0) return !False if nb>=0
|
||||
|
||||
do ib=0,nb
|
||||
d(ib) = d(ib) + c(0) * b(ib)
|
||||
enddo
|
||||
|
||||
do nd = nb,0,-1
|
||||
if (d(nd) /= 0.d0) exit
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine multiply_poly_c1(b,nb,c,d,nd)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Multiply two polynomials
|
||||
! D(t) += B(t)*C(t)
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: nb
|
||||
integer, intent(out) :: nd
|
||||
double precision, intent(in) :: b(0:nb), c(0:1)
|
||||
double precision, intent(inout) :: d(0:nb+1)
|
||||
|
||||
integer :: ndtmp
|
||||
integer :: ib, ic, id, k
|
||||
if(nb < 0) return !False if nb>=0
|
||||
|
||||
select case (nb)
|
||||
case (0)
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
d(1) = d(1) + c(1) * b(0)
|
||||
|
||||
case (1)
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
|
||||
d(2) = d(2) + c(1) * b(1)
|
||||
|
||||
case default
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
do ib=1,nb
|
||||
d(ib) = d(ib) + c(0) * b(ib) + c(1) * b(ib-1)
|
||||
enddo
|
||||
d(nb+1) = d(nb+1) + c(1) * b(nb)
|
||||
|
||||
end select
|
||||
|
||||
do nd = nb+1,0,-1
|
||||
if (d(nd) /= 0.d0) exit
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine multiply_poly_c2(b,nb,c,d,nd)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Multiply two polynomials
|
||||
! D(t) += B(t)*C(t)
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: nb
|
||||
integer, intent(out) :: nd
|
||||
double precision, intent(in) :: b(0:nb), c(0:2)
|
||||
double precision, intent(inout) :: d(0:nb+2)
|
||||
|
||||
integer :: ndtmp
|
||||
integer :: ib, ic, id, k
|
||||
if(nb < 0) return !False if nb>=0
|
||||
|
||||
select case (nb)
|
||||
case (0)
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
d(1) = d(1) + c(1) * b(0)
|
||||
d(2) = d(2) + c(2) * b(0)
|
||||
|
||||
case (1)
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
|
||||
d(2) = d(2) + c(1) * b(1) + c(2) * b(0)
|
||||
d(3) = d(3) + c(2) * b(1)
|
||||
|
||||
case (2)
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
|
||||
d(2) = d(2) + c(0) * b(2) + c(1) * b(1) + c(2) * b(0)
|
||||
d(3) = d(3) + c(1) * b(2) + c(2) * b(1)
|
||||
d(4) = d(4) + c(2) * b(2)
|
||||
|
||||
case default
|
||||
d(0) = d(0) + c(0) * b(0)
|
||||
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
|
||||
do ib=2,nb
|
||||
d(ib) = d(ib) + c(0) * b(ib) + c(1) * b(ib-1) + c(2) * b(ib-2)
|
||||
enddo
|
||||
d(nb+1) = d(nb+1) + c(1) * b(nb) + c(2) * b(nb-1)
|
||||
d(nb+2) = d(nb+2) + c(2) * b(nb)
|
||||
|
||||
end select
|
||||
|
||||
do nd = nb+2,0,-1
|
||||
if (d(nd) /= 0.d0) exit
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine multiply_poly_v(b,nb,c,nc,d,nd,n_points)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -685,11 +942,11 @@ end subroutine recentered_poly2_v
|
||||
subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, n_points)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
!
|
||||
! Recenter two polynomials. Special case for b=(0,0,0)
|
||||
!
|
||||
!
|
||||
! (x - A)^a (x - B)^0 = (x - P + P - A)^a (x - Q + Q - B)^0
|
||||
! = (x - P + P - A)^a
|
||||
! = (x - P + P - A)^a
|
||||
!
|
||||
END_DOC
|
||||
|
||||
|
@ -1823,41 +1823,39 @@ subroutine pivoted_cholesky( A, rank, tol, ndim, U)
|
||||
! U is allocated inside this subroutine
|
||||
! rank is the number of Cholesky vectors depending on tol
|
||||
!
|
||||
integer :: ndim
|
||||
integer, intent(inout) :: rank
|
||||
double precision, dimension(ndim, ndim), intent(inout) :: A
|
||||
double precision, dimension(ndim, rank), intent(out) :: U
|
||||
double precision, intent(in) :: tol
|
||||
integer :: ndim
|
||||
integer, intent(inout) :: rank
|
||||
double precision, intent(inout) :: A(ndim, ndim)
|
||||
double precision, intent(out) :: U(ndim, rank)
|
||||
double precision, intent(in) :: tol
|
||||
|
||||
integer, dimension(:), allocatable :: piv
|
||||
double precision, dimension(:), allocatable :: work
|
||||
character, parameter :: uplo = "U"
|
||||
integer :: N, LDA
|
||||
integer :: LDA
|
||||
integer :: info
|
||||
integer :: k, l, rank0
|
||||
external :: dpstrf
|
||||
|
||||
rank0 = rank
|
||||
N = size(A, dim=1)
|
||||
LDA = N
|
||||
allocate(piv(N))
|
||||
allocate(work(2*N))
|
||||
call dpstrf(uplo, N, A, LDA, piv, rank, tol, work, info)
|
||||
LDA = ndim
|
||||
allocate(piv(ndim))
|
||||
allocate(work(2*ndim))
|
||||
call dpstrf(uplo, ndim, A, LDA, piv, rank, tol, work, info)
|
||||
|
||||
if (rank > rank0) then
|
||||
print *, 'Bug: rank > rank0 in pivoted cholesky. Increase rank before calling'
|
||||
stop
|
||||
end if
|
||||
|
||||
do k = 1, N
|
||||
A(k+1:, k) = 0.00D+0
|
||||
do k = 1, ndim
|
||||
A(k+1:ndim, k) = 0.00D+0
|
||||
end do
|
||||
! TODO: It should be possible to use only one vector of size (1:rank) as a buffer
|
||||
! to do the swapping in-place
|
||||
U(:,:) = 0.00D+0
|
||||
do k = 1, N
|
||||
do k = 1, ndim
|
||||
l = piv(k)
|
||||
U(l, :) = A(1:rank, k)
|
||||
U(l, 1:rank) = A(1:rank, k)
|
||||
end do
|
||||
|
||||
end subroutine pivoted_cholesky
|
||||
|
@ -5,9 +5,8 @@ subroutine det_energy(det,energy)
|
||||
integer(bit_kind), intent(in) :: det
|
||||
|
||||
double precision, intent(out) :: energy
|
||||
double precision, external :: diag_H_mat_elem
|
||||
|
||||
call i_H_j(det,det,N_int,energy)
|
||||
energy = diag_H_mat_elem(det,N_int) + nuclear_repulsion
|
||||
|
||||
energy = energy + nuclear_repulsion
|
||||
|
||||
end
|
||||
|
@ -13,7 +13,7 @@ subroutine gen_f_space(det,n1,n2,list1,list2,f)
|
||||
integer :: i1,i2,idx1,idx2
|
||||
|
||||
allocate(tmp_F(mo_num,mo_num))
|
||||
|
||||
|
||||
call get_fock_matrix_spin(det,1,tmp_F)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
@ -32,7 +32,7 @@ subroutine gen_f_space(det,n1,n2,list1,list2,f)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(tmp_F)
|
||||
|
||||
|
||||
end
|
||||
|
||||
! V
|
||||
@ -45,63 +45,66 @@ subroutine gen_v_space(n1,n2,n3,n4,list1,list2,list3,list4,v)
|
||||
integer, intent(in) :: list1(n1),list2(n2),list3(n3),list4(n4)
|
||||
double precision, intent(out) :: v(n1,n2,n3,n4)
|
||||
|
||||
integer :: i1,i2,i3,i4,idx1,idx2,idx3,idx4
|
||||
double precision :: get_two_e_integral
|
||||
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
integer :: i1,i2,i3,i4,idx1,idx2,idx3,idx4,k
|
||||
|
||||
double precision, allocatable :: buffer(:,:,:)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(n1,n2,n3,n4,list1,list2,list3,list4,v,mo_integrals_map) &
|
||||
!$OMP PRIVATE(i1,i2,i3,i4,idx1,idx2,idx3,idx4)&
|
||||
!$OMP SHARED(n1,n2,n3,n4,list1,list2,list3,list4,v,mo_num,cholesky_mo_transp,cholesky_ao_num) &
|
||||
!$OMP PRIVATE(i1,i2,i3,i4,idx1,idx2,idx3,idx4,k,buffer)&
|
||||
!$OMP DEFAULT(NONE)
|
||||
!$OMP DO collapse(3)
|
||||
allocate(buffer(mo_num,mo_num,mo_num))
|
||||
!$OMP DO
|
||||
do i4 = 1, n4
|
||||
do i3 = 1, n3
|
||||
do i2 = 1, n2
|
||||
idx4 = list4(i4)
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num, cholesky_ao_num, 1.d0, &
|
||||
cholesky_mo_transp, cholesky_ao_num, &
|
||||
cholesky_mo_transp(1,1,idx4), cholesky_ao_num, 0.d0, buffer, mo_num*mo_num)
|
||||
do i2 = 1, n2
|
||||
idx2 = list2(i2)
|
||||
do i3 = 1, n3
|
||||
idx3 = list3(i3)
|
||||
do i1 = 1, n1
|
||||
idx4 = list4(i4)
|
||||
idx3 = list3(i3)
|
||||
idx2 = list2(i2)
|
||||
idx1 = list1(i1)
|
||||
v(i1,i2,i3,i4) = get_two_e_integral(idx1,idx2,idx3,idx4,mo_integrals_map)
|
||||
v(i1,i2,i3,i4) = buffer(idx1,idx3,idx2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
deallocate(buffer)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
|
||||
end
|
||||
|
||||
! full
|
||||
|
||||
BEGIN_PROVIDER [double precision, cc_space_v, (mo_num,mo_num,mo_num,mo_num)]
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i,j,k,l
|
||||
double precision :: get_two_e_integral
|
||||
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
|
||||
integer :: i1,i2,i3,i4,k
|
||||
double precision, allocatable :: buffer(:,:,:)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(cc_space_v,mo_num,mo_integrals_map) &
|
||||
!$OMP PRIVATE(i,j,k,l) &
|
||||
!$OMP SHARED(cc_space_v,mo_num,cholesky_mo_transp,cholesky_ao_num) &
|
||||
!$OMP PRIVATE(i1,i2,i3,i4,k,buffer)&
|
||||
!$OMP DEFAULT(NONE)
|
||||
|
||||
!$OMP DO collapse(3)
|
||||
do l = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
cc_space_v(i,j,k,l) = get_two_e_integral(i,j,k,l,mo_integrals_map)
|
||||
allocate(buffer(mo_num,mo_num,mo_num))
|
||||
!$OMP DO
|
||||
do i4 = 1, mo_num
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num, cholesky_ao_num, 1.d0, &
|
||||
cholesky_mo_transp, cholesky_ao_num, &
|
||||
cholesky_mo_transp(1,1,i4), cholesky_ao_num, 0.d0, buffer, mo_num*mo_num)
|
||||
do i2 = 1, mo_num
|
||||
do i3 = 1, mo_num
|
||||
do i1 = 1, mo_num
|
||||
cc_space_v(i1,i2,i3,i4) = buffer(i1,i3,i2)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
deallocate(buffer)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! oooo
|
||||
@ -280,7 +283,7 @@ BEGIN_PROVIDER [double precision, cc_space_v_ppqq, (cc_n_mo, cc_n_mo)]
|
||||
allocate(tmp_v(cc_n_mo,cc_n_mo,cc_n_mo,cc_n_mo))
|
||||
|
||||
call gen_v_space(cc_n_mo,cc_n_mo,cc_n_mo,cc_n_mo, cc_list_gen,cc_list_gen,cc_list_gen,cc_list_gen, tmp_v)
|
||||
|
||||
|
||||
do q = 1, cc_n_mo
|
||||
do p = 1, cc_n_mo
|
||||
cc_space_v_ppqq(p,q) = tmp_v(p,p,q,q)
|
||||
@ -382,7 +385,7 @@ BEGIN_PROVIDER [double precision, cc_space_v_aabb, (cc_nVa,cc_nVa)]
|
||||
enddo
|
||||
|
||||
FREE cc_space_v_vvvv
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! iaia
|
||||
@ -467,7 +470,7 @@ BEGIN_PROVIDER [double precision, cc_space_w_oovv, (cc_nOa, cc_nOa, cc_nVa, cc_n
|
||||
integer :: i,j,a,b
|
||||
|
||||
allocate(tmp_v(cc_nOa,cc_nOa,cc_nVa,cc_nVa))
|
||||
|
||||
|
||||
call gen_v_space(cc_nOa,cc_nOa,cc_nVa,cc_nVa, cc_list_occ,cc_list_occ,cc_list_vir,cc_list_vir, tmp_v)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
@ -501,7 +504,7 @@ BEGIN_PROVIDER [double precision, cc_space_w_vvoo, (cc_nVa, cc_nVa, cc_nOa, cc_n
|
||||
integer :: i,j,a,b
|
||||
|
||||
allocate(tmp_v(cc_nVa,cc_nVa,cc_nOa,cc_nOa))
|
||||
|
||||
|
||||
call gen_v_space(cc_nVa,cc_nVa,cc_nOa,cc_nOa, cc_list_vir,cc_list_vir,cc_list_occ,cc_list_occ, tmp_v)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
@ -613,7 +616,7 @@ subroutine shift_idx_spin(s,n_S,shift)
|
||||
else
|
||||
shift = n_S(1)
|
||||
endif
|
||||
|
||||
|
||||
end
|
||||
|
||||
! F
|
||||
@ -626,21 +629,22 @@ subroutine gen_f_spin(det, n1,n2, n1_S,n2_S, list1,list2, dim1,dim2, f)
|
||||
! Compute the Fock matrix corresponding to two lists of spin orbitals.
|
||||
! Ex: occ/occ, occ/vir,...
|
||||
END_DOC
|
||||
|
||||
|
||||
integer(bit_kind), intent(in) :: det(N_int,2)
|
||||
integer, intent(in) :: n1,n2, n1_S(2), n2_S(2)
|
||||
integer, intent(in) :: list1(n1,2), list2(n2,2)
|
||||
integer, intent(in) :: dim1, dim2
|
||||
|
||||
|
||||
double precision, intent(out) :: f(dim1, dim2)
|
||||
|
||||
double precision, allocatable :: tmp_F(:,:)
|
||||
integer :: i,j, idx_i,idx_j,i_shift,j_shift
|
||||
integer :: tmp_i,tmp_j
|
||||
integer :: si,sj,s
|
||||
PROVIDE big_array_exchange_integrals big_array_coulomb_integrals
|
||||
|
||||
allocate(tmp_F(mo_num,mo_num))
|
||||
|
||||
|
||||
do sj = 1, 2
|
||||
call shift_idx_spin(sj,n2_S,j_shift)
|
||||
do si = 1, 2
|
||||
@ -669,9 +673,9 @@ subroutine gen_f_spin(det, n1,n2, n1_S,n2_S, list1,list2, dim1,dim2, f)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
deallocate(tmp_F)
|
||||
|
||||
|
||||
end
|
||||
|
||||
! Get F
|
||||
@ -683,12 +687,12 @@ subroutine get_fock_matrix_spin(det,s,f)
|
||||
BEGIN_DOC
|
||||
! Fock matrix alpha or beta of an arbitrary det
|
||||
END_DOC
|
||||
|
||||
|
||||
integer(bit_kind), intent(in) :: det(N_int,2)
|
||||
integer, intent(in) :: s
|
||||
|
||||
|
||||
double precision, intent(out) :: f(mo_num,mo_num)
|
||||
|
||||
|
||||
integer :: p,q,i,s1,s2
|
||||
integer(bit_kind) :: res(N_int,2)
|
||||
logical :: ok
|
||||
@ -701,9 +705,11 @@ subroutine get_fock_matrix_spin(det,s,f)
|
||||
s1 = 2
|
||||
s2 = 1
|
||||
endif
|
||||
|
||||
|
||||
PROVIDE big_array_coulomb_integrals big_array_exchange_integrals
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(f,mo_num,s1,s2,N_int,det,mo_one_e_integrals) &
|
||||
!$OMP SHARED(f,mo_num,s1,s2,N_int,det,mo_one_e_integrals,big_array_coulomb_integrals,big_array_exchange_integrals) &
|
||||
!$OMP PRIVATE(p,q,ok,i,res)&
|
||||
!$OMP DEFAULT(NONE)
|
||||
!$OMP DO collapse(1)
|
||||
@ -713,20 +719,21 @@ subroutine get_fock_matrix_spin(det,s,f)
|
||||
do i = 1, mo_num
|
||||
call apply_hole(det, s1, i, res, ok, N_int)
|
||||
if (ok) then
|
||||
f(p,q) = f(p,q) + mo_two_e_integral(p,i,q,i) - mo_two_e_integral(p,i,i,q)
|
||||
! f(p,q) = f(p,q) + mo_two_e_integral(p,i,q,i) - mo_two_e_integral(p,i,i,q)
|
||||
f(p,q) = f(p,q) + big_array_coulomb_integrals(i,p,q) - big_array_exchange_integrals(i,p,q)
|
||||
endif
|
||||
enddo
|
||||
do i = 1, mo_num
|
||||
call apply_hole(det, s2, i, res, ok, N_int)
|
||||
if (ok) then
|
||||
f(p,q) = f(p,q) + mo_two_e_integral(p,i,q,i)
|
||||
f(p,q) = f(p,q) + big_array_coulomb_integrals(i,p,q)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
end
|
||||
|
||||
! V
|
||||
@ -752,14 +759,14 @@ subroutine gen_v_spin(n1,n2,n3,n4, n1_S,n2_S,n3_S,n4_S, list1,list2,list3,list4,
|
||||
integer :: si,sj,sk,sl,s
|
||||
|
||||
PROVIDE cc_space_v
|
||||
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(cc_space_v,n1_S,n2_S,n3_S,n4_S,list1,list2,list3,list4,v) &
|
||||
!$OMP PRIVATE(s,si,sj,sk,sl,i_shift,j_shift,k_shift,l_shift, &
|
||||
!$OMP i,j,k,l,idx_i,idx_j,idx_k,idx_l,&
|
||||
!$OMP tmp_i,tmp_j,tmp_k,tmp_l)&
|
||||
!$OMP DEFAULT(NONE)
|
||||
|
||||
|
||||
do sl = 1, 2
|
||||
call shift_idx_spin(sl,n4_S,l_shift)
|
||||
do sk = 1, 2
|
||||
@ -768,7 +775,7 @@ subroutine gen_v_spin(n1,n2,n3,n4, n1_S,n2_S,n3_S,n4_S, list1,list2,list3,list4,
|
||||
call shift_idx_spin(sj,n2_S,j_shift)
|
||||
do si = 1, 2
|
||||
call shift_idx_spin(si,n1_S,i_shift)
|
||||
|
||||
|
||||
s = si+sj+sk+sl
|
||||
! <aa||aa> or <bb||bb>
|
||||
if (s == 4 .or. s == 8) then
|
||||
@ -776,7 +783,7 @@ subroutine gen_v_spin(n1,n2,n3,n4, n1_S,n2_S,n3_S,n4_S, list1,list2,list3,list4,
|
||||
do tmp_l = 1, n4_S(sl)
|
||||
do tmp_k = 1, n3_S(sk)
|
||||
do tmp_j = 1, n2_S(sj)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
l = list4(tmp_l,sl)
|
||||
idx_l = tmp_l + l_shift
|
||||
k = list3(tmp_k,sk)
|
||||
@ -792,14 +799,14 @@ subroutine gen_v_spin(n1,n2,n3,n4, n1_S,n2_S,n3_S,n4_S, list1,list2,list3,list4,
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
! <ab||ab> or <ba||ba>
|
||||
elseif (si == sk .and. sj == sl) then
|
||||
!$OMP DO collapse(3)
|
||||
do tmp_l = 1, n4_S(sl)
|
||||
do tmp_k = 1, n3_S(sk)
|
||||
do tmp_j = 1, n2_S(sj)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
l = list4(tmp_l,sl)
|
||||
idx_l = tmp_l + l_shift
|
||||
k = list3(tmp_k,sk)
|
||||
@ -815,14 +822,14 @@ subroutine gen_v_spin(n1,n2,n3,n4, n1_S,n2_S,n3_S,n4_S, list1,list2,list3,list4,
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
! <ab||ba> or <ba||ab>
|
||||
elseif (si == sl .and. sj == sk) then
|
||||
!$OMP DO collapse(3)
|
||||
do tmp_l = 1, n4_S(sl)
|
||||
do tmp_k = 1, n3_S(sk)
|
||||
do tmp_j = 1, n2_S(sj)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
l = list4(tmp_l,sl)
|
||||
idx_l = tmp_l + l_shift
|
||||
k = list3(tmp_k,sk)
|
||||
@ -843,7 +850,7 @@ subroutine gen_v_spin(n1,n2,n3,n4, n1_S,n2_S,n3_S,n4_S, list1,list2,list3,list4,
|
||||
do tmp_l = 1, n4_S(sl)
|
||||
do tmp_k = 1, n3_S(sk)
|
||||
do tmp_j = 1, n2_S(sj)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
l = list4(tmp_l,sl)
|
||||
idx_l = tmp_l + l_shift
|
||||
k = list3(tmp_k,sk)
|
||||
@ -859,13 +866,13 @@ subroutine gen_v_spin(n1,n2,n3,n4, n1_S,n2_S,n3_S,n4_S, list1,list2,list3,list4,
|
||||
enddo
|
||||
!$OMP END DO
|
||||
endif
|
||||
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
end
|
||||
|
||||
! V_3idx
|
||||
@ -900,28 +907,28 @@ subroutine gen_v_spin_3idx(n1,n2,n3,n4, idx_l, n1_S,n2_S,n3_S,n4_S, list1,list2,
|
||||
call shift_idx_spin(sl,n4_S,l_shift)
|
||||
tmp_l = idx_l - l_shift
|
||||
l = list4(tmp_l,sl)
|
||||
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(l,sl,idx_l,cc_space_v,n1_S,n2_S,n3_S,n4_S,list1,list2,list3,list4,v_l) &
|
||||
!$OMP PRIVATE(s,si,sj,sk,i_shift,j_shift,k_shift, &
|
||||
!$OMP i,j,k,idx_i,idx_j,idx_k,&
|
||||
!$OMP tmp_i,tmp_j,tmp_k)&
|
||||
!$OMP DEFAULT(NONE)
|
||||
|
||||
|
||||
do sk = 1, 2
|
||||
call shift_idx_spin(sk,n3_S,k_shift)
|
||||
do sj = 1, 2
|
||||
call shift_idx_spin(sj,n2_S,j_shift)
|
||||
do si = 1, 2
|
||||
call shift_idx_spin(si,n1_S,i_shift)
|
||||
|
||||
|
||||
s = si+sj+sk+sl
|
||||
! <aa||aa> or <bb||bb>
|
||||
if (s == 4 .or. s == 8) then
|
||||
!$OMP DO collapse(2)
|
||||
do tmp_k = 1, n3_S(sk)
|
||||
do tmp_j = 1, n2_S(sj)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
k = list3(tmp_k,sk)
|
||||
idx_k = tmp_k + k_shift
|
||||
j = list2(tmp_j,sj)
|
||||
@ -934,13 +941,13 @@ subroutine gen_v_spin_3idx(n1,n2,n3,n4, idx_l, n1_S,n2_S,n3_S,n4_S, list1,list2,
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
! <ab||ab> or <ba||ba>
|
||||
elseif (si == sk .and. sj == sl) then
|
||||
!$OMP DO collapse(2)
|
||||
do tmp_k = 1, n3_S(sk)
|
||||
do tmp_j = 1, n2_S(sj)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
k = list3(tmp_k,sk)
|
||||
idx_k = tmp_k + k_shift
|
||||
j = list2(tmp_j,sj)
|
||||
@ -953,13 +960,13 @@ subroutine gen_v_spin_3idx(n1,n2,n3,n4, idx_l, n1_S,n2_S,n3_S,n4_S, list1,list2,
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
! <ab||ba> or <ba||ab>
|
||||
elseif (si == sl .and. sj == sk) then
|
||||
!$OMP DO collapse(2)
|
||||
do tmp_k = 1, n3_S(sk)
|
||||
do tmp_j = 1, n2_S(sj)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
k = list3(tmp_k,sk)
|
||||
idx_k = tmp_k + k_shift
|
||||
j = list2(tmp_j,sj)
|
||||
@ -976,7 +983,7 @@ subroutine gen_v_spin_3idx(n1,n2,n3,n4, idx_l, n1_S,n2_S,n3_S,n4_S, list1,list2,
|
||||
!$OMP DO collapse(2)
|
||||
do tmp_k = 1, n3_S(sk)
|
||||
do tmp_j = 1, n2_S(sj)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
k = list3(tmp_k,sk)
|
||||
idx_k = tmp_k + k_shift
|
||||
j = list2(tmp_j,sj)
|
||||
@ -989,12 +996,12 @@ subroutine gen_v_spin_3idx(n1,n2,n3,n4, idx_l, n1_S,n2_S,n3_S,n4_S, list1,list2,
|
||||
enddo
|
||||
!$OMP END DO
|
||||
endif
|
||||
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
end
|
||||
|
||||
! V_3idx_ij_l
|
||||
@ -1029,28 +1036,28 @@ subroutine gen_v_spin_3idx_ij_l(n1,n2,n3,n4, idx_k, n1_S,n2_S,n3_S,n4_S, list1,l
|
||||
call shift_idx_spin(sk,n3_S,k_shift)
|
||||
tmp_k = idx_k - k_shift
|
||||
k = list3(tmp_k,sk)
|
||||
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(k,sk,idx_k,cc_space_v,n1_S,n2_S,n3_S,n4_S,list1,list2,list3,list4,v_k) &
|
||||
!$OMP PRIVATE(s,si,sj,sl,i_shift,j_shift,l_shift, &
|
||||
!$OMP i,j,l,idx_i,idx_j,idx_l,&
|
||||
!$OMP tmp_i,tmp_j,tmp_l)&
|
||||
!$OMP DEFAULT(NONE)
|
||||
|
||||
|
||||
do sl = 1, 2
|
||||
call shift_idx_spin(sl,n4_S,l_shift)
|
||||
do sj = 1, 2
|
||||
call shift_idx_spin(sj,n2_S,j_shift)
|
||||
do si = 1, 2
|
||||
call shift_idx_spin(si,n1_S,i_shift)
|
||||
|
||||
|
||||
s = si+sj+sk+sl
|
||||
! <aa||aa> or <bb||bb>
|
||||
if (s == 4 .or. s == 8) then
|
||||
!$OMP DO collapse(2)
|
||||
do tmp_l = 1, n4_S(sl)
|
||||
do tmp_j = 1, n2_S(sj)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
l = list4(tmp_l,sl)
|
||||
idx_l = tmp_l + l_shift
|
||||
j = list2(tmp_j,sj)
|
||||
@ -1063,13 +1070,13 @@ subroutine gen_v_spin_3idx_ij_l(n1,n2,n3,n4, idx_k, n1_S,n2_S,n3_S,n4_S, list1,l
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
! <ab||ab> or <ba||ba>
|
||||
elseif (si == sk .and. sj == sl) then
|
||||
!$OMP DO collapse(2)
|
||||
do tmp_l = 1, n4_S(sl)
|
||||
do tmp_j = 1, n2_S(sj)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
l = list4(tmp_l,sl)
|
||||
idx_l = tmp_l + l_shift
|
||||
j = list2(tmp_j,sj)
|
||||
@ -1082,13 +1089,13 @@ subroutine gen_v_spin_3idx_ij_l(n1,n2,n3,n4, idx_k, n1_S,n2_S,n3_S,n4_S, list1,l
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
! <ab||ba> or <ba||ab>
|
||||
elseif (si == sl .and. sj == sk) then
|
||||
!$OMP DO collapse(2)
|
||||
do tmp_l = 1, n4_S(sl)
|
||||
do tmp_j = 1, n2_S(sj)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
l = list4(tmp_l,sl)
|
||||
idx_l = tmp_l + l_shift
|
||||
j = list2(tmp_j,sj)
|
||||
@ -1105,7 +1112,7 @@ subroutine gen_v_spin_3idx_ij_l(n1,n2,n3,n4, idx_k, n1_S,n2_S,n3_S,n4_S, list1,l
|
||||
!$OMP DO collapse(2)
|
||||
do tmp_l = 1, n4_S(sl)
|
||||
do tmp_j = 1, n2_S(sj)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
l = list4(tmp_l,sl)
|
||||
idx_l = tmp_l + l_shift
|
||||
j = list2(tmp_j,sj)
|
||||
@ -1118,12 +1125,12 @@ subroutine gen_v_spin_3idx_ij_l(n1,n2,n3,n4, idx_k, n1_S,n2_S,n3_S,n4_S, list1,l
|
||||
enddo
|
||||
!$OMP END DO
|
||||
endif
|
||||
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
end
|
||||
|
||||
! V_3idx_i_kl
|
||||
@ -1158,28 +1165,28 @@ subroutine gen_v_spin_3idx_i_kl(n1,n2,n3,n4, idx_j, n1_S,n2_S,n3_S,n4_S, list1,l
|
||||
call shift_idx_spin(sj,n2_S,j_shift)
|
||||
tmp_j = idx_j - j_shift
|
||||
j = list2(tmp_j,sj)
|
||||
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP SHARED(j,sj,idx_j,cc_space_v,n1_S,n2_S,n3_S,n4_S,list1,list2,list3,list4,v_j) &
|
||||
!$OMP PRIVATE(s,si,sk,sl,i_shift,l_shift,k_shift, &
|
||||
!$OMP i,k,l,idx_i,idx_k,idx_l,&
|
||||
!$OMP tmp_i,tmp_k,tmp_l)&
|
||||
!$OMP DEFAULT(NONE)
|
||||
|
||||
|
||||
do sl = 1, 2
|
||||
call shift_idx_spin(sl,n4_S,l_shift)
|
||||
do sk = 1, 2
|
||||
call shift_idx_spin(sk,n3_S,k_shift)
|
||||
do si = 1, 2
|
||||
call shift_idx_spin(si,n1_S,i_shift)
|
||||
|
||||
|
||||
s = si+sj+sk+sl
|
||||
! <aa||aa> or <bb||bb>
|
||||
if (s == 4 .or. s == 8) then
|
||||
!$OMP DO collapse(2)
|
||||
do tmp_l = 1, n4_S(sl)
|
||||
do tmp_k = 1, n3_S(sk)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
l = list4(tmp_l,sl)
|
||||
idx_l = tmp_l + l_shift
|
||||
k = list3(tmp_k,sk)
|
||||
@ -1192,13 +1199,13 @@ subroutine gen_v_spin_3idx_i_kl(n1,n2,n3,n4, idx_j, n1_S,n2_S,n3_S,n4_S, list1,l
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
! <ab||ab> or <ba||ba>
|
||||
elseif (si == sk .and. sj == sl) then
|
||||
!$OMP DO collapse(2)
|
||||
do tmp_l = 1, n4_S(sl)
|
||||
do tmp_k = 1, n3_S(sk)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
l = list4(tmp_l,sl)
|
||||
idx_l = tmp_l + l_shift
|
||||
k = list3(tmp_k,sk)
|
||||
@ -1211,13 +1218,13 @@ subroutine gen_v_spin_3idx_i_kl(n1,n2,n3,n4, idx_j, n1_S,n2_S,n3_S,n4_S, list1,l
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
! <ab||ba> or <ba||ab>
|
||||
elseif (si == sl .and. sj == sk) then
|
||||
!$OMP DO collapse(2)
|
||||
do tmp_l = 1, n4_S(sl)
|
||||
do tmp_k = 1, n3_S(sk)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
l = list4(tmp_l,sl)
|
||||
idx_l = tmp_l + l_shift
|
||||
k = list3(tmp_k,sk)
|
||||
@ -1234,7 +1241,7 @@ subroutine gen_v_spin_3idx_i_kl(n1,n2,n3,n4, idx_j, n1_S,n2_S,n3_S,n4_S, list1,l
|
||||
!$OMP DO collapse(2)
|
||||
do tmp_l = 1, n4_S(sl)
|
||||
do tmp_k = 1, n3_S(sk)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
do tmp_i = 1, n1_S(si)
|
||||
l = list4(tmp_l,sl)
|
||||
idx_l = tmp_l + l_shift
|
||||
k = list3(tmp_k,sk)
|
||||
@ -1247,10 +1254,10 @@ subroutine gen_v_spin_3idx_i_kl(n1,n2,n3,n4, idx_j, n1_S,n2_S,n3_S,n4_S, list1,l
|
||||
enddo
|
||||
!$OMP END DO
|
||||
endif
|
||||
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
end
|
||||
|
@ -22,7 +22,7 @@ subroutine update_t1(nO,nV,f_o,f_v,r1,t1)
|
||||
!$OMP SHARED(nO,nV,t1,r1,cc_level_shift,f_o,f_v) &
|
||||
!$OMP PRIVATE(i,a) &
|
||||
!$OMP DEFAULT(NONE)
|
||||
!$OMP DO collapse(1)
|
||||
!$OMP DO
|
||||
do a = 1, nV
|
||||
do i = 1, nO
|
||||
t1(i,a) = t1(i,a) - r1(i,a) / (f_o(i) - f_v(a) - cc_level_shift)
|
||||
@ -57,7 +57,7 @@ subroutine update_t2(nO,nV,f_o,f_v,r2,t2)
|
||||
!$OMP SHARED(nO,nV,t2,r2,cc_level_shift,f_o,f_v) &
|
||||
!$OMP PRIVATE(i,j,a,b) &
|
||||
!$OMP DEFAULT(NONE)
|
||||
!$OMP DO collapse(3)
|
||||
!$OMP DO
|
||||
do b = 1, nV
|
||||
do a = 1, nV
|
||||
do j = 1, nO
|
||||
|
Loading…
Reference in New Issue
Block a user