10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-22 12:23:43 +01:00

Merge branch 'dev' into guix

This commit is contained in:
Anthony Scemama 2022-11-01 17:04:31 +01:00
commit 6d2f444536
16 changed files with 3562 additions and 389 deletions

View File

@ -46,6 +46,24 @@ module cfunctions
real (kind=C_DOUBLE ),intent(out) :: csftodetmatrix(rowsmax,colsmax)
end subroutine getCSFtoDETTransformationMatrix
end interface
interface
subroutine gramSchmidt(A, m, n, B) bind(C, name='gramSchmidt')
import C_INT32_T, C_INT64_T, C_DOUBLE
integer(kind=C_INT32_T),value,intent(in) :: m
integer(kind=C_INT32_T),value,intent(in) :: n
real (kind=C_DOUBLE ),intent(in) :: A(m,n)
real (kind=C_DOUBLE ),intent(out) :: B(m,n)
end subroutine gramSchmidt
end interface
interface
subroutine gramSchmidt_qp(A, m, n, B) bind(C, name='gramSchmidt_qp')
import C_INT32_T, C_INT64_T, C_DOUBLE
integer(kind=C_INT32_T),value,intent(in) :: m
integer(kind=C_INT32_T),value,intent(in) :: n
real (kind=C_DOUBLE ),intent(in) :: A(m,n)
real (kind=C_DOUBLE ),intent(out) :: B(m,n)
end subroutine gramSchmidt_qp
end interface
end module cfunctions
subroutine f_dgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC) &

View File

@ -1,5 +1,6 @@
#include <stdint.h>
#include <stdio.h>
#include <assert.h>
#include "tree_utils.h"
void int_to_bin_digit(int64_t in, int count, int* out)
@ -28,19 +29,19 @@ void getncsfs1(int *inpnsomo, int *inpms, int *outncsfs){
int nsomo = *inpnsomo;
int ms = *inpms;
int nparcoupl = (nsomo + ms)/2;
*outncsfs = binom(nsomo, nparcoupl);
*outncsfs = binom((double)nsomo, (double)nparcoupl);
}
void getncsfs(int NSOMO, int MS, int *outncsfs){
int nparcoupl = (NSOMO + MS)/2;
int nparcouplp1 = ((NSOMO + MS)/2)+1;
int nparcoupl = (NSOMO + MS)/2; // n_alpha
int nparcouplp1 = ((NSOMO + MS)/2)+1; // n_alpha + 1
double tmpndets=0.0;
if(NSOMO == 0){
(*outncsfs) = 1;
return;
}
tmpndets = binom(NSOMO, nparcoupl);
(*outncsfs) = round(tmpndets - binom(NSOMO, nparcouplp1));
tmpndets = binom((double)NSOMO, (double)nparcoupl);
(*outncsfs) = round(tmpndets - binom((double)NSOMO, (double)nparcouplp1));
}
#include <stdint.h>
@ -252,6 +253,26 @@ void generateAllBFs(int64_t Isomo, int64_t MS, Tree *bftree, int *NBF, int *NSOM
buildTreeDriver(bftree, *NSOMO, MS, NBF);
}
void ortho_qr_csf(double *overlapMatrix, int lda, double *orthoMatrix, int rows, int cols);
void gramSchmidt_qp(double *overlapMatrix, int rows, int cols, double *orthoMatrix){
int i,j;
//for(j=0;j<cols;++j){
// for(i=0;i<rows;++i){
// printf(" %3.2f ",overlapMatrix[j*rows + i]);
// }
// printf("\n");
//}
// Call the function ortho_qr from qp
ortho_qr_csf(overlapMatrix, rows, orthoMatrix, rows, cols);
//for(j=0;j<cols;++j){
// for(i=0;i<rows;++i){
// printf(" %3.2f ",orthoMatrix[j*rows + i]);
// }
// printf("\n");
//}
}
void gramSchmidt(double *overlapMatrix, int rows, int cols, double *orthoMatrix){
// vector
@ -341,8 +362,12 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
Get BFtoDeterminant Matrix
************************************/
printf("In convertcsftodet\n");
//printf(" --- In convet ----\n");
convertBFtoDetBasis(Isomo, MS, &bftodetmatrixI, &rowsbftodetI, &colsbftodetI);
//printf(" --- done bf det basis ---- row=%d col=%d\n",rowsbftodetI,colsbftodetI);
//printRealMatrix(bftodetmatrixI,rowsbftodetI,colsbftodetI);
int rowsI = 0;
int colsI = 0;
@ -350,6 +375,8 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
getOverlapMatrix_withDet(bftodetmatrixI, rowsbftodetI, colsbftodetI, Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
//printf("Overlap matrix\n");
//printRealMatrix(overlapMatrixI,rowsI,colsI);
/***********************************
Get Orthonormalization Matrix
@ -359,6 +386,9 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
gramSchmidt(overlapMatrixI, rowsI, colsI, orthoMatrixI);
//printf("Ortho matrix\n");
//printRealMatrix(orthoMatrixI,rowsI,colsI);
/***********************************
Get Final CSF to Det Matrix
************************************/
@ -1340,11 +1370,11 @@ void getbftodetfunction(Tree *dettree, int NSOMO, int MS, int *BF1, double *rowv
for(int i = 0; i < npairs; i++){
for(int j = 0; j < NSOMO; j++) {
inpdet[j] = detslist[i*NSOMO + j];
printf(" %d ",inpdet[j]);
//printf(" %d ",inpdet[j]);
}
printf("\n");
//printf("\n");
findAddofDetDriver(dettree, NSOMO, inpdet, &addr);
printf("(%d) - addr = %d\n",i,addr);
//printf("(%d) - addr = %d\n",i,addr);
// Calculate the phase for cfg to QP2 conversion
//get_phase_cfg_to_qp_inpList(inpdet, NSOMO, &phase_cfg_to_qp);
//rowvec[addr] = 1.0 * phaselist[i]*phase_cfg_to_qp/sqrt(fac);
@ -1363,12 +1393,23 @@ void getbftodetfunction(Tree *dettree, int NSOMO, int MS, int *BF1, double *rowv
void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *rows, int *cols){
int NSOMO=0;
//printf("before getSetBits Isomo=%ld, NSOMO=%ld\n",Isomo,NSOMO);
getSetBits(Isomo, &NSOMO);
//printf("Isomo=%ld, NSOMO=%ld\n",Isomo,NSOMO);
int ndets = 0;
int NBF = 0;
double dNSOMO = NSOMO*1.0;
double nalpha = (NSOMO + MS)/2.0;
ndets = (int)binom(dNSOMO, nalpha);
//double dNSOMO = NSOMO*1.0;
// MS = alpha_num - beta_num
int nalpha = (NSOMO + MS)/2;
//printf(" in convertbftodet : MS=%d nalpha=%3.2f\n",MS,nalpha);
//ndets = (int)binom(dNSOMO, nalpha);
if(NSOMO > 0){
ndets = (int)binom((double)NSOMO, (double)nalpha);
}
else if(NSOMO == 0){
ndets = 1;
}
else printf("Something is wrong in calcMEdetpair\n");
Tree dettree = (Tree){ .rootNode = NULL, .NBF = -1 };
dettree.rootNode = malloc(sizeof(Node));
@ -1389,16 +1430,6 @@ void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *
}
else{
//int addr = -1;
//int inpdet[NSOMO];
//inpdet[0] = 1;
//inpdet[1] = 1;
//inpdet[2] = 1;
//inpdet[3] = 0;
//inpdet[4] = 0;
//inpdet[5] = 0;
//findAddofDetDriver(&dettree, NSOMO, inpdet, &addr);
int detlist[ndets];
getDetlistDriver(&dettree, NSOMO, detlist);
@ -1411,6 +1442,9 @@ void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *
generateAllBFs(Isomo, MS, &bftree, &NBF, &NSOMO);
// Initialize transformation matrix
//printf("MS=%d NBF=%d ndets=%d NSOMO=%d\n",MS,NBF,ndets,NSOMO);
assert( NBF > 0);
assert( ndets > 0);
(*bftodetmatrixptr) = malloc(NBF*ndets*sizeof(double));
(*rows) = NBF;
(*cols) = ndets;
@ -1465,9 +1499,10 @@ void convertBFtoDetBasisWithArrayDims(int64_t Isomo, int MS, int rowsmax, int co
getSetBits(Isomo, &NSOMO);
int ndets = 0;
int NBF = 0;
double dNSOMO = NSOMO*1.0;
double nalpha = (NSOMO + MS)/2.0;
ndets = (int)binom(dNSOMO, nalpha);
//double dNSOMO = NSOMO*1.0;
//double nalpha = (NSOMO + MS)/2.0;
int nalpha = (NSOMO + MS)/2;
ndets = (int)binom((double)NSOMO, (double)nalpha);
Tree dettree = (Tree){ .rootNode = NULL, .NBF = -1 };
dettree.rootNode = malloc(sizeof(Node));
@ -1551,6 +1586,7 @@ void getApqIJMatrixDims(int64_t Isomo, int64_t Jsomo, int64_t MS, int32_t *rowso
getncsfs(NSOMOJ, MS, &NBFJ);
(*rowsout) = NBFI;
(*colsout) = NBFJ;
//exit(0);
}
void getApqIJMatrixDriver(int64_t Isomo, int64_t Jsomo, int orbp, int orbq, int64_t MS, int64_t NMO, double **CSFICSFJApqIJptr, int *rowsout, int *colsout){
@ -1669,6 +1705,7 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
int rowsbftodetI, colsbftodetI;
//printf(" 1Calling convertBFtoDetBasis Isomo=%ld MS=%ld\n",Isomo,MS);
convertBFtoDetBasis(Isomo, MS, &bftodetmatrixI, &rowsbftodetI, &colsbftodetI);
// Fill matrix
@ -1676,8 +1713,14 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
int colsI = 0;
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
//printf("Isomo=%ld\n",Isomo);
getOverlapMatrix_withDet(bftodetmatrixI, rowsbftodetI, colsbftodetI, Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
if(Isomo == 0){
rowsI = 1;
colsI = 1;
}
//printf("Isomo=%ld\n",Isomo);
orthoMatrixI = malloc(rowsI*colsI*sizeof(double));
@ -1689,6 +1732,7 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
int rowsbftodetJ, colsbftodetJ;
//printf(" 2Calling convertBFtoDetBasis Jsomo=%ld MS=%ld\n",Jsomo,MS);
convertBFtoDetBasis(Jsomo, MS, &bftodetmatrixJ, &rowsbftodetJ, &colsbftodetJ);
int rowsJ = 0;
@ -1696,6 +1740,10 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
// Fill matrix
//getOverlapMatrix(Jsomo, MS, &overlapMatrixJ, &rowsJ, &colsJ, &NSOMO);
getOverlapMatrix_withDet(bftodetmatrixJ, rowsbftodetJ, colsbftodetJ, Jsomo, MS, &overlapMatrixJ, &rowsJ, &colsJ, &NSOMO);
if(Jsomo == 0){
rowsJ = 1;
colsJ = 1;
}
orthoMatrixJ = malloc(rowsJ*colsJ*sizeof(double));
@ -1713,18 +1761,25 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
int transA=false;
int transB=false;
//printf("1Calling blas\n");
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsbftodetI,colsbftodetI,rowsA,colsA);
callBlasMatxMat(bftodetmatrixI, rowsbftodetI, colsbftodetI, ApqIJ, rowsA, colsA, bfIApqIJ, transA, transB);
//printf("done\n");
// now transform I in csf basis
double *CSFIApqIJ = malloc(rowsI*colsA*sizeof(double));
transA = false;
transB = false;
//printf("2Calling blas\n");
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,colsI,colsI,colsA);
callBlasMatxMat(orthoMatrixI, rowsI, colsI, bfIApqIJ, colsI, colsA, CSFIApqIJ, transA, transB);
// now transform J in BF basis
double *CSFIbfJApqIJ = malloc(rowsI*rowsbftodetJ*sizeof(double));
transA = false;
transB = true;
//printf("3Calling blas\n");
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,colsA,rowsbftodetJ,colsbftodetJ);
callBlasMatxMat(CSFIApqIJ, rowsI, colsA, bftodetmatrixJ, rowsbftodetJ, colsbftodetJ, CSFIbfJApqIJ, transA, transB);
// now transform J in CSF basis
@ -1735,13 +1790,14 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
double *tmpCSFICSFJApqIJ = malloc(rowsI*rowsJ*sizeof(double));
transA = false;
transB = true;
//printf("4Calling blas\n");
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,rowsbftodetJ,rowsJ,colsJ);
callBlasMatxMat(CSFIbfJApqIJ, rowsI, rowsbftodetJ, orthoMatrixJ, rowsJ, colsJ, tmpCSFICSFJApqIJ, transA, transB);
// Transfer to actual buffer in Fortran order
for(int i = 0; i < rowsI; i++)
for(int j = 0; j < rowsJ; j++)
CSFICSFJApqIJ[j*rowsI + i] = tmpCSFICSFJApqIJ[i*rowsJ + j];
// Garbage collection
free(overlapMatrixI);
free(overlapMatrixJ);

View File

@ -1,3 +1,592 @@
use bitmasks
BEGIN_PROVIDER [ integer(bit_kind), alphasIcfg_list , (N_int,2,N_configuration,mo_num*(mo_num))]
&BEGIN_PROVIDER [ integer, NalphaIcfg_list, (N_configuration) ]
implicit none
!use bitmasks
BEGIN_DOC
! Documentation for alphasI
! Returns the associated alpha's for
! the input configuration Icfg.
END_DOC
integer :: idxI ! The id of the Ith CFG
integer(bit_kind) :: Icfg(N_int,2)
integer :: NalphaIcfg
logical,dimension(:,:),allocatable :: tableUniqueAlphas
integer :: listholes(mo_num)
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
integer :: nholes
integer :: nvmos
integer :: listvmos(mo_num)
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
integer*8 :: Jsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer*8 :: xordiffSOMODOMO
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: nxordiffSOMODOMO
integer :: ndiffAll
integer :: i,ii
integer :: j,jj
integer :: k,kk
integer :: kstart
integer :: kend
integer :: Nsomo_I
integer :: hole
integer :: p
integer :: q
integer :: countalphas
logical :: pqAlreadyGenQ
logical :: pqExistsQ
logical :: ppExistsQ
integer*8 :: MS
double precision :: t0, t1
call wall_time(t0)
MS = elec_alpha_num-elec_beta_num
allocate(tableUniqueAlphas(mo_num,mo_num))
NalphaIcfg_list = 0
do idxI = 1, N_configuration
Icfg = psi_configuration(:,:,idxI)
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
! find out all pq holes possible
nholes = 0
! holes in SOMO
do ii = 1,n_act_orb
i = list_act(ii)
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = i
holetype(nholes) = 1
endif
end do
! holes in DOMO
do ii = 1,n_act_orb
i = list_act(ii)
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = i
holetype(nholes) = 2
endif
end do
! find vmos
listvmos = -1
vmotype = -1
nvmos = 0
do ii = 1,n_act_orb
i = list_act(ii)
if(IAND(Idomo,(IBSET(0_8,i-1))) .EQ. 0) then
if(IAND(Isomo,(IBSET(0_8,i-1))) .EQ. 0) then
nvmos += 1
listvmos(nvmos) = i
vmotype(nvmos) = 1
else if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 1) then
nvmos += 1
listvmos(nvmos) = i
vmotype(nvmos) = 2
end if
end if
end do
tableUniqueAlphas = .FALSE.
! Now find the allowed (p,q) excitations
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
Nsomo_I = POPCNT(Isomo)
if(Nsomo_I .EQ. 0) then
kstart = 1
else
kstart = cfg_seniority_index(max(NSOMOMin,Nsomo_I-2))
endif
kend = idxI-1
do i = 1,nholes
p = listholes(i)
do j = 1,nvmos
q = listvmos(j)
if(p .EQ. q) cycle
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
! SOMO -> VMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = Idomo
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
kend = idxI-1
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
! SOMO -> SOMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBSET(Idomo,q-1)
! Check for Minimal alpha electrons (MS)
if(POPCNT(Jsomo).ge.MS)then
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
kend = idxI-1
else
cycle
endif
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
! DOMO -> VMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
kstart = cfg_seniority_index(Nsomo_I)
kend = idxI-1
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
! DOMO -> SOMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
Jdomo = IBSET(Jdomo,q-1)
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
kend = idxI-1
else
print*,"Something went wrong in obtain_associated_alphaI"
endif
! Check for Minimal alpha electrons (MS)
if(POPCNT(Jsomo).lt.MS)then
cycle
endif
! Again, we don't have to search from 1
! we just use seniority to find the
! first index with NSOMO - 2 to NSOMO + 2
! this is what is done in kstart, kend
pqAlreadyGenQ = .FALSE.
! First check if it can be generated before
do k = kstart, kend
diffSOMO = IEOR(Jsomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)))
ndiffSOMO = POPCNT(diffSOMO)
if((ndiffSOMO .NE. 0) .AND. (ndiffSOMO .NE. 2)) cycle
diffDOMO = IEOR(Jdomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)))
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
if((ndiffSOMO+ndiffDOMO) .EQ. 0) then
pqAlreadyGenQ = .TRUE.
ppExistsQ = .TRUE.
EXIT
endif
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
pqAlreadyGenQ = .TRUE.
EXIT
endif
end do
if(pqAlreadyGenQ) cycle
pqExistsQ = .FALSE.
if(.NOT. pqExistsQ) then
tableUniqueAlphas(p,q) = .TRUE.
endif
end do
end do
!print *,tableUniqueAlphas(:,:)
! prune list of alphas
Isomo = Icfg(1,1)
Idomo = Icfg(1,2)
Jsomo = Icfg(1,1)
Jdomo = Icfg(1,2)
NalphaIcfg = 0
do i = 1, nholes
p = listholes(i)
do j = 1, nvmos
q = listvmos(j)
if(p .EQ. q) cycle
if(tableUniqueAlphas(p,q)) then
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
! SOMO -> VMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = Idomo
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
! SOMO -> SOMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBSET(Idomo,q-1)
if(POPCNT(Jsomo).ge.MS)then
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
kend = idxI-1
else
cycle
endif
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
! DOMO -> VMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
! DOMO -> SOMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
Jdomo = IBSET(Jdomo,q-1)
else
print*,"Something went wrong in obtain_associated_alphaI"
endif
! SOMO
!print *,i,j,"|",NalphaIcfg, Jsomo, IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
if(POPCNT(Jsomo) .ge. NSOMOMin) then
NalphaIcfg += 1
alphasIcfg_list(1,1,idxI,NalphaIcfg) = Jsomo
alphasIcfg_list(1,2,idxI,NalphaIcfg) = IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
NalphaIcfg_list(idxI) = NalphaIcfg
endif
endif
end do
end do
! Check if this Icfg has been previously generated as a mono
ppExistsQ = .False.
Isomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,1))
Idomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,2))
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
do k = kstart, idxI-1
diffSOMO = IEOR(Isomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
ndiffSOMO = POPCNT(diffSOMO)
if (ndiffSOMO /= 2) cycle
diffDOMO = IEOR(Idomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4)) then
ppExistsQ = .TRUE.
EXIT
endif
end do
! Diagonal part (pp,qq)
if(nholes > 0 .AND. (.NOT. ppExistsQ))then
! SOMO
if(POPCNT(Jsomo) .ge. NSOMOMin) then
NalphaIcfg += 1
alphasIcfg_list(1,1,idxI,NalphaIcfg) = Icfg(1,1)
alphasIcfg_list(1,2,idxI,NalphaIcfg) = Icfg(1,2)
NalphaIcfg_list(idxI) = NalphaIcfg
endif
endif
NalphaIcfg = 0
enddo ! end loop idxI
call wall_time(t1)
print *, 'Preparation : ', t1 - t0
END_PROVIDER
subroutine obtain_associated_alphaI(idxI, Icfg, alphasIcfg, NalphaIcfg)
implicit none
use bitmasks
BEGIN_DOC
! Documentation for alphasI
! Returns the associated alpha's for
! the input configuration Icfg.
END_DOC
integer,intent(in) :: idxI ! The id of the Ith CFG
integer(bit_kind),intent(in) :: Icfg(N_int,2)
integer,intent(out) :: NalphaIcfg
integer(bit_kind),intent(out) :: alphasIcfg(N_int,2,*)
logical,dimension(:,:),allocatable :: tableUniqueAlphas
integer :: listholes(mo_num)
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
integer :: nholes
integer :: nvmos
integer :: listvmos(mo_num)
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
integer*8 :: Jsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer*8 :: xordiffSOMODOMO
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: nxordiffSOMODOMO
integer :: ndiffAll
integer :: i, ii
integer :: j, jj
integer :: k, kk
integer :: kstart
integer :: kend
integer :: Nsomo_I
integer :: hole
integer :: p
integer :: q
integer :: countalphas
logical :: pqAlreadyGenQ
logical :: pqExistsQ
logical :: ppExistsQ
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
!print*,"Input cfg"
!call debug_spindet(Isomo,1)
!call debug_spindet(Idomo,1)
! find out all pq holes possible
nholes = 0
! holes in SOMO
do ii = 1,n_act_orb
i = list_act(ii)
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = i
holetype(nholes) = 1
endif
end do
! holes in DOMO
do ii = 1,n_act_orb
i = list_act(ii)
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = i
holetype(nholes) = 2
endif
end do
! find vmos
listvmos = -1
vmotype = -1
nvmos = 0
do ii = 1,n_act_orb
i = list_act(ii)
!print *,i,IBSET(0,i-1),POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))), POPCNT(IAND(Idomo,(IBSET(0_8,i-1))))
if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 0 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0) then
nvmos += 1
listvmos(nvmos) = i
vmotype(nvmos) = 1
else if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 1 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0 ) then
nvmos += 1
listvmos(nvmos) = i
vmotype(nvmos) = 2
end if
end do
!print *,"Nvmo=",nvmos
!print *,listvmos
!print *,vmotype
allocate(tableUniqueAlphas(mo_num,mo_num))
tableUniqueAlphas = .FALSE.
! Now find the allowed (p,q) excitations
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
Nsomo_I = POPCNT(Isomo)
if(Nsomo_I .EQ. 0) then
kstart = 1
else
kstart = cfg_seniority_index(max(NSOMOMin,Nsomo_I-2))
endif
kend = idxI-1
!print *,"Isomo"
!call debug_spindet(Isomo,1)
!call debug_spindet(Idomo,1)
!print *,"Nholes=",nholes," Nvmos=",nvmos, " idxi=",idxI
!do i = 1,nholes
! print *,i,"->",listholes(i)
!enddo
!do i = 1,nvmos
! print *,i,"->",listvmos(i)
!enddo
do i = 1,nholes
p = listholes(i)
do j = 1,nvmos
q = listvmos(j)
if(p .EQ. q) cycle
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
! SOMO -> VMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = Idomo
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
kend = idxI-1
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
! SOMO -> SOMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBSET(Idomo,q-1)
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
kend = idxI-1
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
! DOMO -> VMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
kstart = cfg_seniority_index(Nsomo_I)
kend = idxI-1
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
! DOMO -> SOMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
Jdomo = IBSET(Jdomo,q-1)
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
kend = idxI-1
else
print*,"Something went wrong in obtain_associated_alphaI"
endif
! Again, we don't have to search from 1
! we just use seniortiy to find the
! first index with NSOMO - 2 to NSOMO + 2
! this is what is done in kstart, kend
pqAlreadyGenQ = .FALSE.
! First check if it can be generated before
do k = kstart, kend
diffSOMO = IEOR(Jsomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
ndiffSOMO = POPCNT(diffSOMO)
if((ndiffSOMO .NE. 0) .AND. (ndiffSOMO .NE. 2)) cycle
diffDOMO = IEOR(Jdomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
if((ndiffSOMO+ndiffDOMO) .EQ. 0) then
pqAlreadyGenQ = .TRUE.
ppExistsQ = .TRUE.
EXIT
endif
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
pqAlreadyGenQ = .TRUE.
!EXIT
!ppExistsQ = .TRUE.
!print *,i,k,ndiffSOMO,ndiffDOMO
!call debug_spindet(Jsomo,1)
!call debug_spindet(Jdomo,1)
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)),1)
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)),1)
EXIT
endif
end do
!print *,"(,",p,",",q,")",pqAlreadyGenQ
if(pqAlreadyGenQ) cycle
pqExistsQ = .FALSE.
! now check if this exists in the selected list
!do k = idxI+1, N_configuration
! diffSOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jsomo),psi_configuration(1,1,k))
! diffDOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jdomo),psi_configuration(1,2,k))
! ndiffSOMO = POPCNT(diffSOMO)
! ndiffDOMO = POPCNT(diffDOMO)
! if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
! pqExistsQ = .TRUE.
! EXIT
! endif
!end do
if(.NOT. pqExistsQ) then
tableUniqueAlphas(p,q) = .TRUE.
!print *,p,q
!call debug_spindet(Jsomo,1)
!call debug_spindet(Jdomo,1)
endif
end do
end do
!print *,tableUniqueAlphas(:,:)
! prune list of alphas
Isomo = Icfg(1,1)
Idomo = Icfg(1,2)
Jsomo = Icfg(1,1)
Jdomo = Icfg(1,2)
NalphaIcfg = 0
do i = 1, nholes
p = listholes(i)
do j = 1, nvmos
q = listvmos(j)
if(p .EQ. q) cycle
if(tableUniqueAlphas(p,q)) then
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
! SOMO -> VMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = Idomo
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
! SOMO -> SOMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBSET(Idomo,q-1)
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
! DOMO -> VMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
! DOMO -> SOMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
Jdomo = IBSET(Jdomo,q-1)
else
print*,"Something went wrong in obtain_associated_alphaI"
endif
! SOMO
NalphaIcfg += 1
!print *,i,j,"|",NalphaIcfg
alphasIcfg(1,1,NalphaIcfg) = Jsomo
alphasIcfg(1,2,NalphaIcfg) = IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
!print *,"I = ",idxI, " Na=",NalphaIcfg," - ",Jsomo, IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
endif
end do
end do
! Check if this Icfg has been previously generated as a mono
ppExistsQ = .False.
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
do k = 1, idxI-1
diffSOMO = IEOR(Isomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
diffDOMO = IEOR(Idomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffSOMO = POPCNT(diffSOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
ppExistsQ = .TRUE.
EXIT
endif
end do
! Diagonal part (pp,qq)
if(nholes > 0 .AND. (.NOT. ppExistsQ))then
! SOMO
NalphaIcfg += 1
!print *,p,q,"|",holetype(i),vmotype(j),NalphaIcfg
!call debug_spindet(Idomo,1)
!call debug_spindet(Jdomo,1)
alphasIcfg(1,1,NalphaIcfg) = Icfg(1,1)
alphasIcfg(1,2,NalphaIcfg) = Icfg(1,2)
endif
end subroutine
function getNSOMO(Icfg) result(NSOMO)
implicit none
integer(bit_kind),intent(in) :: Icfg(N_int,2)
@ -8,98 +597,3 @@
NSOMO += POPCNT(Icfg(i,1))
enddo
end function getNSOMO
subroutine convertOrbIdsToModelSpaceIds(Ialpha, Jcfg, p, q, extype, pmodel, qmodel)
implicit none
BEGIN_DOC
! This function converts the orbital ids
! in real space to those used in model space
! in order to identify the matrices required
! for the calculation of MEs.
!
! The type of excitations are ordered as follows:
! Type 1 - SOMO -> SOMO
! Type 2 - DOMO -> VMO
! Type 3 - SOMO -> VMO
! Type 4 - DOMO -> SOMO
END_DOC
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
integer(bit_kind),intent(in) :: Jcfg(N_int,2)
integer,intent(in) :: p,q
integer,intent(in) :: extype
integer,intent(out) :: pmodel,qmodel
integer*8 :: Isomo
integer*8 :: Idomo
integer*8 :: Jsomo
integer*8 :: Jdomo
integer*8 :: mask
integer*8 :: Isomotmp
integer*8 :: Jsomotmp
integer :: pos0,pos0prev
! TODO Flag (print) when model space indices is > 64
Isomo = Ialpha(1,1)
Idomo = Ialpha(1,2)
Jsomo = Jcfg(1,1)
Jdomo = Jcfg(1,2)
pos0prev = 0
pmodel = p
qmodel = q
if(p .EQ. q) then
pmodel = 1
qmodel = 1
else
!print *,"input pq=",p,q,"extype=",extype
!call debug_spindet(Isomo,1)
!call debug_spindet(Idomo,1)
!call debug_spindet(Jsomo,1)
!call debug_spindet(Jdomo,1)
select case(extype)
case (1)
! SOMO -> SOMO
! remove all domos
!print *,"type -> SOMO -> SOMO"
mask = ISHFT(1_8,p) - 1
Isomotmp = IAND(Isomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
mask = ISHFT(1_8,q) - 1
Isomotmp = IAND(Isomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
case (2)
! DOMO -> VMO
! remove all domos except one at p
!print *,"type -> DOMO -> VMO"
mask = ISHFT(1_8,p) - 1
Jsomotmp = IAND(Jsomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
mask = ISHFT(1_8,q) - 1
Jsomotmp = IAND(Jsomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
case (3)
! SOMO -> VMO
!print *,"type -> SOMO -> VMO"
!Isomo = IEOR(Isomo,Jsomo)
mask = ISHFT(1_8,p) - 1
Isomo = IAND(Isomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
mask = ISHFT(1_8,q) - 1
Jsomo = IAND(Jsomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
case (4)
! DOMO -> SOMO
! remove all domos except one at p
!print *,"type -> DOMO -> SOMO"
!Isomo = IEOR(Isomo,Jsomo)
mask = ISHFT(1_8,p) - 1
Jsomo = IAND(Jsomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
mask = ISHFT(1_8,q) - 1
Isomo = IAND(Isomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
case default
print *,"something is wrong in convertOrbIdsToModelSpaceIds"
end select
endif
!print *,p,q,"model ids=",pmodel,qmodel
end subroutine convertOrbIdsToModelSpaceIds

View File

@ -458,8 +458,9 @@ end
END_PROVIDER
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num) ]
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num+2) ]
&BEGIN_PROVIDER [ integer, cfg_nsomo_max ]
&BEGIN_PROVIDER [ integer, cfg_nsomo_min ]
implicit none
BEGIN_DOC
! Returns the index in psi_configuration of the first cfg with
@ -467,9 +468,10 @@ END_PROVIDER
!
! cfg_nsomo_max : Max number of SOMO in the current wave function
END_DOC
integer :: i, k, s, sold
integer :: i, k, s, sold, soldmin
cfg_seniority_index(:) = -1
sold = -1
soldmin = 2000
cfg_nsomo_max = 0
do i=1,N_configuration
s = 0
@ -482,6 +484,10 @@ END_PROVIDER
cfg_seniority_index(s) = i
cfg_nsomo_max = s
endif
if (soldmin .GT. s ) then
soldmin = s
cfg_nsomo_min = s
endif
enddo
END_PROVIDER
@ -743,41 +749,112 @@ BEGIN_PROVIDER [ integer(bit_kind), dominant_dets_of_cfgs, (N_int,2,N_dominant_d
enddo
END_PROVIDER
subroutine binary_search_cfg(cfgInp,addcfg)
subroutine binary_search_cfg(cfgInp,addcfg,bit_tmp)
use bitmasks
implicit none
BEGIN_DOC
! Documentation for binary_search
!
! Does a binary search to find
!
! Does a binary search to find
! the address of a configuration in a list of
! configurations.
END_DOC
integer(bit_kind), intent(in) :: cfgInp(N_int,2)
integer , intent(out) :: addcfg
integer :: i,j,k,r,l
integer*8 :: key, key2
logical :: found
!integer*8, allocatable :: bit_tmp(:)
!integer*8, external :: configuration_search_key
integer*8, intent(in) :: bit_tmp(0:N_configuration+1)
!allocate(bit_tmp(0:N_configuration))
!bit_tmp(0) = 0
do i=1,N_configuration
!bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
found = .True.
do k=1,N_int
found = found .and. (psi_configuration(k,1,i) == cfgInp(k,1)) &
.and. (psi_configuration(k,2,i) == cfgInp(k,2))
enddo
if (found) then
addcfg = i
exit
logical :: found
integer :: l, r, j, k
integer*8 :: key
integer*8, external :: configuration_search_key
key = configuration_search_key(cfgInp,N_int)
! Binary search
l = 0
r = N_configuration+1
IRP_IF WITHOUT_SHIFTRL
j = ishft(r-l,-1)
IRP_ELSE
j = shiftr(r-l,1)
IRP_ENDIF
do while (j>=1)
j = j+l
if (bit_tmp(j) == key) then
! Find 1st element which matches the key
if (j > 1) then
do while (j>1 .and. bit_tmp(j-1) == key)
j = j-1
enddo
endif
! Find correct element matching the key
do while (bit_tmp(j) == key)
found = .True.
do k=1,N_int
found = found .and. (psi_configuration(k,1,j) == cfgInp(k,1))&
.and. (psi_configuration(k,2,j) == cfgInp(k,2))
enddo
if (found) then
addcfg = j
return
endif
j = j+1
enddo
addcfg = -1
return
else if (bit_tmp(j) > key) then
r = j
else
l = j
endif
IRP_IF WITHOUT_SHIFTRL
j = ishft(r-l,-1)
IRP_ELSE
j = shiftr(r-l,1)
IRP_ENDIF
enddo
addcfg = -1
return
end subroutine
!subroutine binary_search_cfg(cfgInp,addcfg)
! use bitmasks
! implicit none
! BEGIN_DOC
! ! Documentation for binary_search
! !
! ! Does a binary search to find
! ! the address of a configuration in a list of
! ! configurations.
! END_DOC
! integer(bit_kind), intent(in) :: cfgInp(N_int,2)
! integer , intent(out) :: addcfg
! integer :: i,j,k,r,l
! integer*8 :: key, key2
! logical :: found
! !integer*8, allocatable :: bit_tmp(:)
! !integer*8, external :: configuration_search_key
!
! !allocate(bit_tmp(0:N_configuration))
! !bit_tmp(0) = 0
! do i=1,N_configuration
! !bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
! found = .True.
! do k=1,N_int
! found = found .and. (psi_configuration(k,1,i) == cfgInp(k,1)) &
! .and. (psi_configuration(k,2,i) == cfgInp(k,2))
! enddo
! if (found) then
! addcfg = i
! exit
! endif
! enddo
!
!end subroutine
!
BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det, (2,N_configuration) ]
&BEGIN_PROVIDER [ integer, psi_configuration_n_det, (N_configuration) ]
&BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det_data, (N_det) ]

View File

@ -24,7 +24,7 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
double precision, intent(out) :: psi_coef_cfg_out(n_CSF,N_st)
integer*8 :: Isomo, Idomo, mask
integer(bit_kind) :: Ialpha(N_int) ,Ibeta(N_int)
integer :: rows, cols, i, j, k
integer :: rows, cols, i, j, k, salpha
integer :: startdet, enddet
integer :: ndetI
integer :: getNSOMO
@ -65,9 +65,11 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
enddo
if(iand(s,1) .EQ. 0) then
bfIcfg = max(1,nint((binom(s,s/2)-binom(s,(s/2)+1))))
salpha = (s + MS)/2
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
else
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
salpha = (s + MS)/2
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
endif
! perhaps blocking with CFGs of same seniority
@ -99,7 +101,7 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
double precision,intent(in) :: psi_coef_cfg_in(n_CSF,N_st)
double precision,intent(out) :: psi_coef_det(N_det,N_st)
double precision :: tmp_psi_coef_det(maxDetDimPerBF,N_st)
integer :: s, bfIcfg
integer :: s, bfIcfg, salpha
integer :: countcsf
integer(bit_kind) :: Ialpha(N_int), Ibeta(N_int)
integer :: rows, cols, i, j, k
@ -110,6 +112,8 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
double precision,allocatable :: tempCoeff (:,:)
double precision :: phasedet
integer :: idx
integer MS
MS = elec_alpha_num-elec_beta_num
countcsf = 0
@ -123,7 +127,8 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
s = s + popcnt(psi_configuration(k,1,i))
enddo
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
salpha = (s + MS)/2
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
allocate(tempCoeff(bfIcfg,N_st))

View File

@ -226,7 +226,7 @@ subroutine generate_all_singles_cfg(cfg,singles,n_singles,Nint)
enddo
end
subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_singles,ex_type_singles,n_singles,Nint)
subroutine generate_all_singles_cfg_with_type(bit_tmp,cfgInp,singles,idxs_singles,pq_singles,ex_type_singles,n_singles,Nint)
implicit none
use bitmasks
BEGIN_DOC
@ -238,6 +238,7 @@ subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_sin
! ex_type_singles : on output contains type of excitations :
!
END_DOC
integer*8, intent(in) :: bit_tmp(0:N_configuration+1)
integer, intent(in) :: Nint
integer, intent(inout) :: n_singles
integer, intent(out) :: idxs_singles(*)
@ -248,20 +249,26 @@ subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_sin
integer(bit_kind) :: Jdet(Nint,2)
integer :: i,k, n_singles_ma, i_hole, i_particle, ex_type, addcfg
integer :: ii,kk
integer(bit_kind) :: single(Nint,2)
logical :: i_ok
n_singles = 0
!TODO
!Make list of Somo and Domo for holes
!Make list of Unocc and Somo for particles
do i_hole = 1+n_core_orb, n_core_orb + n_act_orb
do i_particle = 1+n_core_orb, n_core_orb + n_act_orb
!do i_hole = 1+n_core_orb, n_core_orb + n_act_orb
do ii = 1, n_act_orb
i_hole = list_act(ii)
!do i_particle = 1+n_core_orb, n_core_orb + n_act_orb
do kk = 1, n_act_orb
i_particle = list_act(kk)
if(i_hole .EQ. i_particle) cycle
addcfg = -1
call do_single_excitation_cfg_with_type(cfgInp,single,i_hole,i_particle,ex_type,i_ok)
if (i_ok) then
call binary_search_cfg(single,addcfg)
call binary_search_cfg(single,addcfg,bit_tmp)
if(addcfg .EQ. -1) cycle
n_singles = n_singles + 1
do k=1,Nint

View File

@ -0,0 +1,397 @@
subroutine obtain_connected_J_givenI(idxI, givenI, connectedI, idxs_connectedI, nconnectedI,ntotalconnectedI)
implicit none
use bitmasks
BEGIN_DOC
! Documentation for obtain_connected_I_foralpha
! This function returns all those selected configurations
! which are connected to the input configuration
! givenI by a single excitation.
!
! The type of excitations are ordered as follows:
! Type 1 - SOMO -> SOMO
! Type 2 - DOMO -> VMO
! Type 3 - SOMO -> VMO
! Type 4 - DOMO -> SOMO
!
! Order of operators
! \alpha> = a^\dag_p a_q |I> = E_pq |I>
END_DOC
integer ,intent(in) :: idxI
integer(bit_kind),intent(in) :: givenI(N_int,2)
integer(bit_kind),intent(out) :: connectedI(N_int,2,*)
integer ,intent(out) :: idxs_connectedI(*)
integer,intent(out) :: nconnectedI
integer,intent(out) :: ntotalconnectedI
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
integer*8 :: Jsomo
integer*8 :: IJsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer*8 :: xordiffSOMODOMO
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: nxordiffSOMODOMO
integer :: iii,ii,i,j,k,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes
integer :: listholes(mo_num)
integer :: holetype(mo_num)
integer :: end_index
integer :: Nsomo_I
!
! 2 2 1 1 0 0 : 1 1 0 0 0 0
! 0 0 1 1 0 0
!
! 2 1 1 1 1 0 : 1 0 0 0 0 0
! 0 1 1 1 1 0
!xorS 0 1 0 0 1 0 : 2
!xorD 0 1 0 0 0 0 : 1
!xorSD 0 0 0 0 1 0 : 1
! -----
! 4
! 1 1 1 1 1 1 : 0 0 0 0 0 0
! 1 1 1 1 1 1
! 1 1 0 0 1 1 : 4
! 1 1 0 0 0 0 : 2
! 0 0 0 0 1 1 : 2
! -----
! 8
!
nconnectedI = 0
ntotalconnectedI = 0
end_index = N_configuration
! Since CFGs are sorted wrt to seniority
! we don't have to search the full CFG list
Isomo = givenI(1,1)
Idomo = givenI(1,2)
Nsomo_I = POPCNT(Isomo)
end_index = min(N_configuration,cfg_seniority_index(min(Nsomo_I+6,elec_num))-1)
if(end_index .LT. 0) end_index= N_configuration
!end_index = N_configuration
!print *,"Start and End = ",idxI, end_index
p = 0
q = 0
do i=idxI,end_index
!if(.True.) then
! nconnectedI += 1
! connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
! idxs_connectedI(nconnectedI)=i
! cycle
!endif
Isomo = givenI(1,1)
Idomo = givenI(1,2)
Jsomo = psi_configuration(1,1,i)
Jdomo = psi_configuration(1,2,i)
diffSOMO = IEOR(Isomo,Jsomo)
ndiffSOMO = POPCNT(diffSOMO)
diffDOMO = IEOR(Idomo,Jdomo)
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
!-------
! MONO |
!-------
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=i
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
else if((nxordiffSOMODOMO .EQ. 8) .AND. ndiffSOMO .EQ. 4) then
!----------------------------
! DOMO -> VMO + DOMO -> VMO |
!----------------------------
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=i
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
else if((nxordiffSOMODOMO .EQ. 6) .AND. ndiffSOMO .EQ. 2) then
!----------------------------
! DOUBLE
!----------------------------
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=i
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
else if((nxordiffSOMODOMO .EQ. 2) .AND. ndiffSOMO .EQ. 3) then
!-----------------
! DOUBLE
!-----------------
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=i
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
else if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 0) then
!-----------------
! DOUBLE
!-----------------
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=i
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1))
else if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
!--------
! I = I |
!--------
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)= i
! find out all pq holes possible
nholes = 0
! holes in SOMO
Isomo = psi_configuration(1,1,i)
Idomo = psi_configuration(1,2,i)
do iii = 1,n_act_orb
ii = list_act(iii)
if(POPCNT(IAND(Isomo,IBSET(0_8,ii-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = ii
holetype(nholes) = 1
endif
end do
! holes in DOMO
do iii = 1,n_act_orb
ii = list_act(iii)
if(POPCNT(IAND(Idomo,IBSET(0_8,ii-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = ii
holetype(nholes) = 2
endif
end do
ntotalconnectedI += max(1,(psi_config_data(i,2)-psi_config_data(i,1)+1)*nholes)
endif
end do
end subroutine obtain_connected_J_givenI
subroutine obtain_connected_I_foralpha(idxI, Ialpha, connectedI, idxs_connectedI, nconnectedI, excitationIds, excitationTypes, diagfactors)
implicit none
use bitmasks
BEGIN_DOC
! Documentation for obtain_connected_I_foralpha
! This function returns all those selected configurations
! which are connected to the input configuration
! Ialpha by a single excitation.
!
! The type of excitations are ordered as follows:
! Type 1 - SOMO -> SOMO
! Type 2 - DOMO -> VMO
! Type 3 - SOMO -> VMO
! Type 4 - DOMO -> SOMO
!
! Order of operators
! \alpha> = a^\dag_p a_q |I> = E_pq |I>
END_DOC
integer ,intent(in) :: idxI
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
integer(bit_kind),intent(out) :: connectedI(N_int,2,*)
integer ,intent(out) :: idxs_connectedI(*)
integer,intent(out) :: nconnectedI
integer,intent(out) :: excitationIds(2,*)
integer,intent(out) :: excitationTypes(*)
real*8 ,intent(out) :: diagfactors(*)
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
integer*8 :: Jsomo
integer*8 :: IJsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer*8 :: xordiffSOMODOMO
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: nxordiffSOMODOMO
integer :: iii,ii,i,j,k,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes
integer :: listholes(mo_num)
integer :: holetype(mo_num)
integer :: end_index
integer :: Nsomo_alpha
integer*8 :: MS
MS = elec_alpha_num-elec_beta_num
nconnectedI = 0
end_index = N_configuration
! Since CFGs are sorted wrt to seniority
! we don't have to search the full CFG list
Isomo = Ialpha(1,1)
Idomo = Ialpha(1,2)
Nsomo_alpha = POPCNT(Isomo)
end_index = min(N_configuration,cfg_seniority_index(min(Nsomo_alpha+4,elec_num))-1)
if(end_index .LT. 0) end_index= N_configuration
end_index = N_configuration
p = 0
q = 0
if (N_int > 1) stop 'obtain_connected_i_foralpha : N_int > 1'
do i=idxI,end_index
Isomo = Ialpha(1,1)
Idomo = Ialpha(1,2)
Jsomo = psi_configuration(1,1,i)
Jdomo = psi_configuration(1,2,i)
! Check for Minimal alpha electrons (MS)
if(POPCNT(Isomo).lt.MS)then
cycle
endif
diffSOMO = IEOR(Isomo,Jsomo)
ndiffSOMO = POPCNT(diffSOMO)
!if(idxI.eq.1)then
! print *," \t idxI=",i," diffS=",ndiffSOMO," popJs=", POPCNT(Jsomo)," popIs=",POPCNT(Isomo)
!endif
diffDOMO = IEOR(Idomo,Jdomo)
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
select case(ndiffDOMO)
case (0)
! SOMO -> VMO
!print *,"obt SOMO -> VMO"
extyp = 3
IJsomo = IEOR(Isomo, Jsomo)
!IRP_IF WITHOUT_TRAILZ
! p = (popcnt(ieor( IAND(Isomo,IJsomo) , IAND(Isomo,IJsomo) -1))-1) + 1
!IRP_ELSE
p = TRAILZ(IAND(Isomo,IJsomo)) + 1
!IRP_ENDIF
IJsomo = IBCLR(IJsomo,p-1)
!IRP_IF WITHOUT_TRAILZ
! q = (popcnt(ieor(IJsomo,IJsomo-1))-1) + 1
!IRP_ELSE
q = TRAILZ(IJsomo) + 1
!IRP_ENDIF
case (1)
! DOMO -> VMO
! or
! SOMO -> SOMO
nsomoJ = POPCNT(Jsomo)
nsomoalpha = POPCNT(Isomo)
if(nsomoJ .GT. nsomoalpha) then
! DOMO -> VMO
!print *,"obt DOMO -> VMO"
extyp = 2
!IRP_IF WITHOUT_TRAILZ
! p = (popcnt(ieor( IEOR(Idomo,Jdomo),IEOR(Idomo,Jdomo) -1))-1) + 1
!IRP_ELSE
p = TRAILZ(IEOR(Idomo,Jdomo)) + 1
!IRP_ENDIF
Isomo = IEOR(Isomo, Jsomo)
Isomo = IBCLR(Isomo,p-1)
!IRP_IF WITHOUT_TRAILZ
! q = (popcnt(ieor(Isomo,Isomo-1))-1) + 1
!IRP_ELSE
q = TRAILZ(Isomo) + 1
!IRP_ENDIF
else
! SOMO -> SOMO
!print *,"obt SOMO -> SOMO"
extyp = 1
!IRP_IF WITHOUT_TRAILZ
! q = (popcnt(ieor( IEOR(Idomo,Jdomo), IEOR(Idomo,Jdomo)-1))-1) + 1
!IRP_ELSE
q = TRAILZ(IEOR(Idomo,Jdomo)) + 1
!IRP_ENDIF
Isomo = IEOR(Isomo, Jsomo)
Isomo = IBCLR(Isomo,q-1)
!IRP_IF WITHOUT_TRAILZ
! p = (popcnt(ieor(Isomo,Isomo-1))-1) + 1
!IRP_ELSE
p = TRAILZ(Isomo) + 1
!IRP_ENDIF
! Check for Minimal alpha electrons (MS)
!if(POPCNT(Isomo).lt.MS)then
! cycle
!endif
end if
case (2)
! DOMO -> SOMO
!print *,"obt DOMO -> SOMO"
extyp = 4
IJsomo = IEOR(Isomo, Jsomo)
!IRP_IF WITHOUT_TRAILZ
! p = (popcnt(ieor( IAND(Jsomo,IJsomo), IAND(Jsomo,IJsomo)-1))-1) + 1
!IRP_ELSE
p = TRAILZ(IAND(Jsomo,IJsomo)) + 1
!IRP_ENDIF
IJsomo = IBCLR(IJsomo,p-1)
!IRP_IF WITHOUT_TRAILZ
! q = (popcnt(ieor( IJsomo , IJsomo -1))-1) + 1
!IRP_ELSE
q = TRAILZ(IJsomo) + 1
!IRP_ENDIF
case default
print *,"something went wront in get connectedI"
end select
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
nconnectedI += 1
do k=1,N_int
connectedI(k,1,nconnectedI) = psi_configuration(k,1,i)
connectedI(k,2,nconnectedI) = psi_configuration(k,2,i)
enddo
idxs_connectedI(nconnectedI)=starti
excitationIds(1,nconnectedI)=p
excitationIds(2,nconnectedI)=q
excitationTypes(nconnectedI) = extyp
diagfactors(nconnectedI) = 1.0d0
else if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
! find out all pq holes possible
nholes = 0
! holes in SOMO
Isomo = psi_configuration(1,1,i)
Idomo = psi_configuration(1,2,i)
do iii = 1,n_act_orb
ii = list_act(iii)
if(POPCNT(IAND(Isomo,IBSET(0_8,ii-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = ii
holetype(nholes) = 1
endif
end do
! holes in DOMO
do iii = 1,n_act_orb
ii = list_act(iii)
if(POPCNT(IAND(Idomo,IBSET(0_8,ii-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = ii
holetype(nholes) = 2
endif
end do
do k=1,nholes
p = listholes(k)
q = p
extyp = 1
if(holetype(k) .EQ. 1) then
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=starti
excitationIds(1,nconnectedI)=p
excitationIds(2,nconnectedI)=q
excitationTypes(nconnectedI) = extyp
diagfactors(nconnectedI) = 1.0d0
else
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=starti
excitationIds(1,nconnectedI)=p
excitationIds(2,nconnectedI)=q
excitationTypes(nconnectedI) = extyp
diagfactors(nconnectedI) = 2.0d0
endif
enddo
endif
end do
end subroutine obtain_connected_I_foralpha

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +1,4 @@
#include <assert.h>
#include "tree_utils.h"
void buildTree(Tree *bftree,
@ -52,6 +53,7 @@ void buildTreeDriver(Tree *bftree, int NSOMO, int MS, int *NBF){
int icpl = 0; // keep track of the ith ms (cannot be -ve)
int addr = 0; // Counts the total BF's
assert(bftree->rootNode->addr == 0);
buildTree(bftree, &(bftree->rootNode), isomo, izeros, icpl, NSOMO, MS);
*NBF = bftree->rootNode->addr;
@ -264,6 +266,8 @@ void genDetBasis(Tree *dettree, int Isomo, int MS, int *ndets){
int NSOMO=0;
getSetBits(Isomo, &NSOMO);
genDetsDriver(dettree, NSOMO, MS, ndets);
// Closed shell case
if(NSOMO==0) (*ndets) = 1;
}
@ -311,3 +315,13 @@ void callBlasMatxMat(double *A, int rowA, int colA, double *B, int rowB, int col
break;
}
}
void printRealMatrix(double *orthoMatrix, int rows, int cols){
int i,j;
for(i=0;i<rows;++i){
for(j=0;j<cols;++j){
printf(" %3.5f ",orthoMatrix[i*cols + j]);
}
printf("\n");
}
}

View File

@ -47,6 +47,7 @@ void generateAllBFs(int64_t Isomo, int64_t MS, Tree *bftree, int *NBF, int *NSOM
void getSetBits(int64_t n, int *nsetbits);
void getOverlapMatrix(int64_t Isomo, int64_t MS, double **overlapMatrixptr, int *rows, int *cols, int *NSOMOout);
void getOverlapMatrix_withDet(double *bftodetmatrixI, int rowsbftodetI, int colsbftodetI, int64_t Isomo, int64_t MS, double **overlapMatrixI, int *rowsI, int *colsI, int *NSOMO);
void gramSchmidt_qp(double *overlapMatrix, int rows, int cols, double *orthoMatrix);
void gramSchmidt(double *overlapMatrix, int rows, int cols, double *orthoMatrix);

View File

@ -0,0 +1,624 @@
subroutine davidson_diag_h_cfg(dets_in,u_in,dim_in,energies,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged)
use bitmasks
implicit none
BEGIN_DOC
! Davidson diagonalization.
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
END_DOC
integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(inout) :: u_in(dim_in,N_st_diag)
double precision, intent(out) :: energies(N_st_diag)
integer, intent(in) :: dressing_state
logical, intent(out) :: converged
double precision, allocatable :: H_jj(:)
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
integer :: i,k
ASSERT (N_st > 0)
ASSERT (sze > 0)
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
PROVIDE mo_two_e_integrals_in_map
allocate(H_jj(sze))
H_jj(1) = diag_h_mat_elem(dets_in(1,1,1),Nint)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(sze,H_jj, dets_in,Nint) &
!$OMP PRIVATE(i)
!$OMP DO SCHEDULE(static)
do i=2,sze
H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint)
enddo
!$OMP END DO
!$OMP END PARALLEL
if (dressing_state > 0) then
do k=1,N_st
do i=1,sze
H_jj(i) += u_in(i,k) * dressing_column_h(i,k)
enddo
enddo
endif
call davidson_diag_cfg_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged)
deallocate(H_jj)
end
subroutine davidson_diag_cfg_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag_in,Nint,dressing_state,converged)
use bitmasks
use mmap_module
implicit none
BEGIN_DOC
! Davidson diagonalization with specific diagonal elements of the H matrix
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
!
END_DOC
integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag_in, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
double precision, intent(in) :: H_jj(sze)
integer, intent(in) :: dressing_state
double precision, intent(inout) :: u_in(dim_in,N_st_diag_in)
double precision, intent(out) :: energies(N_st_diag_in)
integer :: iter, N_st_diag
integer :: i,j,k,l,m,kk,ii,ll
logical, intent(inout) :: converged
double precision, external :: u_dot_v, u_dot_u
integer :: k_pairs, kl
integer :: iter2, itertot
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: s_tmp(:,:)
double precision :: diag_h_mat_elem
double precision, allocatable :: residual_norm(:)
character*(16384) :: write_buffer
double precision :: to_print(2,N_st)
double precision :: cpu, wall
integer :: shift, shift2, itermax, istate
double precision :: r1, r2, alpha
logical :: state_ok(N_st_diag_in*davidson_sze_max)
integer :: nproc_target
integer :: order(N_st_diag_in)
double precision :: cmax
double precision, allocatable :: U(:,:), U_csf(:,:), overlap(:,:)
double precision, allocatable :: tmpU(:,:), tmpW(:,:)
double precision, pointer :: W(:,:), W_csf(:,:)
logical :: disk_based
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
include 'constants.include.F'
N_st_diag = N_st_diag_in
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
if (N_st_diag*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_full to ', N_st_diag*3
stop -1
endif
itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
itertot = 0
if (state_following) then
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
else
allocate(overlap(1,1)) ! avoid 'if' for deallocate
endif
overlap = 0.d0
PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse threshold_davidson_pt2 threshold_davidson_from_pt2
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
! Find max number of cores to fit in memory
! -----------------------------------------
nproc_target = nproc
double precision :: rss
integer :: maxab
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
m=1
disk_based = .False.
call resident_memory(rss)
do
r1 = 8.d0 * &! bytes
( dble(sze)*(N_st_diag) &! U
+ dble(sze_csf)*(N_st_diag*itermax) &! U_csf
+ dble(sze)*(N_st_diag) &! W
+ dble(sze_csf)*(N_st_diag*itermax) &! W_csf
+ 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp
+ 1.d0*(N_st_diag*itermax) &! lambda
+ 1.d0*(N_st_diag) &! residual_norm
! In H_u_0_nstates_zmq
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
+ nproc_target * &! In OMP section
( 1.d0*(N_int*maxab) &! buffer
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
) / 1024.d0**3
if (nproc_target == 0) then
call check_mem(r1,irp_here)
nproc_target = 1
exit
endif
if (r1+rss < qp_max_mem) then
exit
endif
if (itermax > 4) then
itermax = itermax - 1
else if (m==1.and.disk_based_davidson) then
m=0
disk_based = .True.
itermax = 6
else
nproc_target = nproc_target - 1
endif
enddo
nthreads_davidson = nproc_target
TOUCH nthreads_davidson
call write_int(6,N_st,'Number of states')
call write_int(6,N_st_diag,'Number of states in diagonalization')
call write_int(6,sze,'Number of determinants')
call write_int(6,sze_csf,'Number of CSFs')
call write_int(6,nproc_target,'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if (disk_based) then
print *, 'Using swap space to reduce RAM'
endif
!---------------
write(6,'(A)') ''
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = 'Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
if (disk_based) then
! Create memory-mapped files for W and S
type(c_ptr) :: ptr_w, ptr_s
integer :: fd_s, fd_w
call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
8, fd_w, .False., ptr_w)
call c_f_pointer(ptr_w, W_csf, (/sze_csf,N_st_diag*itermax/))
else
allocate(W(sze,N_st_diag),W_csf(sze_csf,N_st_diag*itermax))
endif
allocate( &
! Large
U(sze,N_st_diag), &
U_csf(sze_csf,N_st_diag*itermax), &
! Small
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
residual_norm(N_st_diag), &
lambda(N_st_diag*itermax))
h = 0.d0
U = 0.d0
y = 0.d0
s_tmp = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
! Davidson iterations
! ===================
converged = .False.
call convertWFfromDETtoCSF(N_st_diag,u_in(1,1),U_csf(1,1))
do k=N_st+1,N_st_diag
do i=1,sze_csf
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
U_csf(i,k) = r1*dcos(r2) * u_csf(i,k-N_st)
enddo
U_csf(k,k) = u_csf(k,k) + 10.d0
enddo
do k=1,N_st_diag
call normalize(U_csf(1,k),sze_csf)
enddo
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,1),U(1,1))
do while (.not.converged)
itertot = itertot+1
if (itertot == 8) then
exit
endif
do iter=1,itermax-1
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
! if ((iter > 1).or.(itertot == 1)) then
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
!call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift+1),U)
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
if ((sze > 100000).and.distributed_davidson) then
!call H_u_0_nstates_zmq (W,U,N_st_diag,sze)
allocate(tmpW(N_st_diag,sze_csf))
allocate(tmpU(N_st_diag,sze_csf))
do kk=1,N_st_diag
do ii=1,sze_csf
tmpU(kk,ii) = U_csf(ii,shift+kk)
enddo
enddo
call calculate_sigma_vector_cfg_nst_naive_store(tmpW,tmpU,N_st_diag,sze_csf,1,sze_csf,0,1)
do kk=1,N_st_diag
do ii=1,sze_csf
W_csf(ii,shift+kk)=tmpW(kk,ii)
enddo
enddo
deallocate(tmpW)
deallocate(tmpU)
else
!call H_u_0_nstates_openmp(W,U,N_st_diag,sze)
allocate(tmpW(N_st_diag,sze_csf))
allocate(tmpU(N_st_diag,sze_csf))
do kk=1,N_st_diag
do ii=1,sze_csf
tmpU(kk,ii) = U_csf(ii,shift+kk)
enddo
enddo
!tmpU =0.0d0
!tmpU(1,2)=1.0d0
double precision :: irp_rdtsc
double precision :: ticks_0, ticks_1
integer*8 :: irp_imax
irp_imax = 1
!ticks_0 = irp_rdtsc()
call calculate_sigma_vector_cfg_nst_naive_store(tmpW,tmpU,N_st_diag,sze_csf,1,sze_csf,0,1)
!ticks_1 = irp_rdtsc()
!print *,' ----Cycles:',(ticks_1-ticks_0)/dble(irp_imax)," ----"
do kk=1,N_st_diag
do ii=1,sze_csf
W_csf(ii,shift+kk)=tmpW(kk,ii)
enddo
enddo
!U_csf = 0.0d0
!U_csf(1,1) = 1.0d0
!u_in = 0.0d0
!call convertWFfromCSFtoDET(N_st_diag,tmpU,U2)
!call H_u_0_nstates_openmp(u_in,U2,N_st_diag,sze)
!call convertWFfromDETtoCSF(N_st_diag,u_in(1,1),W_csf2(1,1))
!do i=1,sze_csf
! print *,"I=",i," qp=",W_csf2(i,1)," my=",W_csf(i,1)," diff=",dabs(W_csf2(i,1))-dabs(W_csf(i,1))
! if(dabs(dabs(W_csf2(i,1))-dabs(W_csf(i,1))) .gt. 1.0e-10)then
! print *,"somo=",psi_configuration(1,1,i)," domo=",psi_configuration(1,2,i)," diff=",dabs(W_csf2(i,1))-dabs(W_csf(i,1))
! endif
!end do
!stop
deallocate(tmpW)
deallocate(tmpU)
endif
! else
! ! Already computed in update below
! continue
! endif
if (dressing_state > 0) then
if (N_st == 1) then
l = dressed_column_idx(1)
double precision :: f
f = 1.0d0/psi_coef(l,1)
do istate=1,N_st_diag
do i=1,sze
W(i,istate) += dressing_column_h(i,1) *f * U(l,istate)
W(l,istate) += dressing_column_h(i,1) *f * U(i,istate)
enddo
enddo
else
call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
psi_coef, size(psi_coef,1), &
U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
dressing_column_h, size(dressing_column_h,1), s_tmp, size(s_tmp,1), &
1.d0, W(1,1), size(W,1))
call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
dressing_column_h, size(dressing_column_h,1), &
U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
1.d0, W(1,1), size(W,1))
endif
endif
!call convertWFfromDETtoCSF(N_st_diag,W,W_csf(1,shift+1))
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
call dgemm('T','N', shift2, shift2, sze_csf, &
1.d0, U_csf, size(U_csf,1), W_csf, size(W_csf,1), &
0.d0, h, size(h,1))
call dgemm('T','N', shift2, shift2, sze_csf, &
1.d0, U_csf, size(U_csf,1), U_csf, size(U_csf,1), &
0.d0, s_tmp, size(s_tmp,1))
! Diagonalize h
! ---------------
integer :: lwork, info
double precision, allocatable :: work(:)
y = h
lwork = -1
allocate(work(1))
call dsygv(1,'V','U',shift2,y,size(y,1), &
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
lwork = int(work(1))
deallocate(work)
allocate(work(lwork))
call dsygv(1,'V','U',shift2,y,size(y,1), &
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
deallocate(work)
if (info /= 0) then
stop 'DSYGV Diagonalization failed'
endif
! Compute Energy for each eigenvector
! -----------------------------------
call dgemm('N','N',shift2,shift2,shift2, &
1.d0, h, size(h,1), y, size(y,1), &
0.d0, s_tmp, size(s_tmp,1))
call dgemm('T','N',shift2,shift2,shift2, &
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
0.d0, h, size(h,1))
do k=1,shift2
lambda(k) = h(k,k)
enddo
if (state_following) then
overlap = -1.d0
do i=1,shift2
do k=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo
do k=1,N_st
cmax = -1.d0
do i=1,N_st
if (overlap(i,k) > cmax) then
cmax = overlap(i,k)
order(k) = i
endif
enddo
do i=1,N_st_diag
overlap(order(k),i) = -1.d0
enddo
enddo
overlap = y
do k=1,N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
do k=1,N_st
overlap(k,1) = lambda(k)
enddo
endif
! Express eigenvectors of h in the csf basis
! ------------------------------------------
call dgemm('N','N', sze_csf, N_st_diag, shift2, &
1.d0, U_csf, size(U_csf,1), y, size(y,1), 0.d0, U_csf(1,shift2+1), size(U_csf,1))
call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift2+1),U)
call dgemm('N','N', sze_csf, N_st_diag, shift2, &
1.d0, W_csf, size(W_csf,1), y, size(y,1), 0.d0, W_csf(1,shift2+1), size(W_csf,1))
call convertWFfromCSFtoDET(N_st_diag,W_csf(1,shift2+1),W)
! Compute residual vector and davidson step
! -----------------------------------------
!if (without_diagonal) then
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
do k=1,N_st_diag
do i=1,sze
U(i,k) = (lambda(k) * U(i,k) - W(i,k) ) &
/max(H_jj(i) - lambda (k),1.d-2)
enddo
enddo
!$OMP END PARALLEL DO
!else
! !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
! do k=1,N_st_diag
! do i=1,sze
! U(i,k) = (lambda(k) * U(i,k) - W(i,k) )
! enddo
! enddo
! !$OMP END PARALLEL DO
!endif
do k=1,N_st
residual_norm(k) = u_dot_u(U(1,k),sze)
to_print(1,k) = lambda(k) + nuclear_repulsion
to_print(2,k) = residual_norm(k)
enddo
call convertWFfromDETtoCSF(N_st_diag,U,U_csf(1,shift2+1))
if ((itertot>1).and.(iter == 1)) then
!don't print
continue
else
write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
endif
! Check convergence
if (iter > 1) then
if (threshold_davidson_from_pt2) then
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson_pt2
else
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
endif
endif
do k=1,N_st
if (residual_norm(k) > 1.d8) then
print *, 'Davidson failed'
stop -1
endif
enddo
if (converged) then
exit
endif
logical, external :: qp_stop
if (qp_stop()) then
converged = .True.
exit
endif
enddo
! Re-contract U
! -------------
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
W_csf, size(W_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze_csf
W_csf(i,k) = u_in(i,k)
enddo
enddo
call convertWFfromCSFtoDET(N_st_diag,W_csf,W)
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
U_csf, size(U_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze_csf
U_csf(i,k) = u_in(i,k)
enddo
enddo
call convertWFfromCSFtoDET(N_st_diag,U_csf,U)
enddo
call nullify_small_elements(sze,N_st_diag,U,size(U,1),threshold_davidson_pt2)
do k=1,N_st_diag
do i=1,sze
u_in(i,k) = U(i,k)
enddo
enddo
do k=1,N_st_diag
energies(k) = lambda(k)
enddo
write_buffer = '======'
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
call write_time(6)
if (disk_based)then
! Remove temp files
integer, external :: getUnitAndOpen
call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w )
fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
close(fd_w,status='delete')
else
deallocate(W, W_csf)
endif
deallocate ( &
residual_norm, &
U, U_csf, overlap, &
h, y, s_tmp, &
lambda &
)
FREE nthreads_davidson
end

View File

@ -89,7 +89,7 @@ subroutine davidson_diag_csf_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N
double precision, intent(out) :: energies(N_st_diag_in)
integer :: iter, N_st_diag
integer :: i,j,k,l,m
integer :: i,j,k,l,m,kk
logical, intent(inout) :: converged
double precision, external :: u_dot_v, u_dot_u

View File

@ -149,7 +149,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
character*(16384) :: write_buffer
double precision :: to_print(3,N_st)
double precision :: cpu, wall
integer :: shift, shift2, itermax, istate
integer :: shift, shift2, itermax, istate, ii
double precision :: r1, r2, alpha
logical :: state_ok(N_st_diag_in*davidson_sze_max)
integer :: nproc_target
@ -356,7 +356,14 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
if ((sze > 100000).and.distributed_davidson) then
call H_S2_u_0_nstates_zmq (W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
else
double precision :: irp_rdtsc
double precision :: ticks_0, ticks_1
integer*8 :: irp_imax
irp_imax = 1
!ticks_0 = irp_rdtsc()
call H_S2_u_0_nstates_openmp(W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
!ticks_1 = irp_rdtsc()
!print *,' ----Cycles:',(ticks_1-ticks_0)/dble(irp_imax)," ----"
endif
S(1:sze,shift+1:shift+N_st_diag) = real(S_d(1:sze,1:N_st_diag))
! else

View File

@ -5,7 +5,8 @@ BEGIN_PROVIDER [ character*(3), sigma_vector_algorithm ]
!
! If 'cfg', use <Psi_csf|H|Psi_csf> in Davidson
END_DOC
sigma_vector_algorithm = 'det'
!sigma_vector_algorithm = 'det'
sigma_vector_algorithm = 'cfg'
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ]
@ -71,7 +72,7 @@ END_PROVIDER
if (diag_algorithm == 'Davidson') then
if (do_csf) then
! if (sigma_vector_algorithm == 'det') then
if (sigma_vector_algorithm == 'det') then
call davidson_diag_H_csf (psi_det, &
CI_eigenvectors, &
size(CI_eigenvectors,1), &
@ -83,14 +84,14 @@ END_PROVIDER
N_int, &
0, &
converged)
! else if (sigma_vector_algorithm == 'cfg') then
! call davidson_diag_H_csf(psi_det,CI_eigenvectors, &
! size(CI_eigenvectors,1),CI_electronic_energy, &
! N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged)
! else
! print *, irp_here
! stop 'bug'
! endif
else if (sigma_vector_algorithm == 'cfg') then
call davidson_diag_H_cfg(psi_det,CI_eigenvectors, &
size(CI_eigenvectors,1),CI_electronic_energy, &
N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged)
else
print *, irp_here
stop 'bug'
endif
else
call davidson_diag_HS2(psi_det, &
CI_eigenvectors, &

View File

@ -59,3 +59,45 @@ BEGIN_PROVIDER [ double precision, h_core_ri, (mo_num, mo_num) ]
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, h_act_ri, (mo_num, mo_num) ]
implicit none
BEGIN_DOC
! Active Hamiltonian with 3-index exchange integrals:
!
! $\tilde{h}{pq} = h_{pq} - \frac{1}{2}\sum_{k} g(pk,kq)$
END_DOC
integer :: i,j, k
integer :: p,q, r
! core-core contribution
h_act_ri = core_fock_operator
!print *,' Bef----hact(1,14)=',h_act_ri(4,14)
! act-act contribution
do p=1,n_act_orb
j=list_act(p)
do q=1,n_act_orb
i=list_act(q)
h_act_ri(i,j) = mo_one_e_integrals(i,j)
enddo
do r=1,n_act_orb
k=list_act(r)
do q=1,n_act_orb
i=list_act(q)
h_act_ri(i,j) = h_act_ri(i,j) - 0.5 * big_array_exchange_integrals(k,i,j)
enddo
enddo
enddo
! core-act contribution
!do p=1,n_act_orb
! j=list_core(p)
! do k=1,n_core_orb
! do q=1,n_act_orb
! i=list_act(q)
! h_act_ri(i,j) = h_act_ri(i,j) - 0.5 * big_array_exchange_integrals(k,i,j)
! enddo
! enddo
!enddo
!print *,' Aft----hact(1,14)=',h_act_ri(4,14), mo_one_e_integrals(4,14)
END_PROVIDER

View File

@ -1133,6 +1133,103 @@ subroutine ortho_svd(A,LDA,m,n)
end
subroutine ortho_qr_withB(A,LDA,B,m,n)
implicit none
BEGIN_DOC
! Orthogonalization using Q.R factorization
!
! A : Overlap Matrix
!
! LDA : leftmost dimension of A
!
! m : Number of rows of A
!
! n : Number of columns of A
!
! B : Output orthogonal basis
!
END_DOC
integer, intent(in) :: m,n, LDA
double precision, intent(inout) :: A(LDA,n)
double precision, intent(inout) :: B(LDA,n)
integer :: LWORK, INFO
integer, allocatable :: jpvt(:)
double precision, allocatable :: TAU(:), WORK(:)
double precision, allocatable :: C(:,:)
double precision :: norm
integer :: i,j
allocate (TAU(min(m,n)), WORK(1))
allocate (jpvt(n))
!print *," In function ortho"
B = A
jpvt(1:n)=1
LWORK=-1
call dgeqp3( m, n, A, LDA, jpvt, TAU, WORK, LWORK, INFO )
! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
LWORK=max(n,int(WORK(1)))
deallocate(WORK)
allocate(WORK(LWORK))
call dgeqp3(m, n, A, LDA, jpvt, TAU, WORK, LWORK, INFO )
print *,A
print *,jpvt
deallocate(WORK,TAU)
!stop
!LWORK=-1
!call dgeqrf( m, n, A, LDA, TAU, WORK, LWORK, INFO )
!! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
!LWORK=max(n,int(WORK(1)))
!deallocate(WORK)
!allocate(WORK(LWORK))
!call dgeqrf(m, n, A, LDA, TAU, WORK, LWORK, INFO )
!LWORK=-1
!call dorgqr(m, n, n, A, LDA, TAU, WORK, LWORK, INFO)
!! /!\ int(WORK(1)) becomes negative when WORK(1) > 2147483648
!LWORK=max(n,int(WORK(1)))
!deallocate(WORK)
!allocate(WORK(LWORK))
!call dorgqr(m, n, n, A, LDA, TAU, WORK, LWORK, INFO)
!
!allocate(C(LDA,n))
!call dgemm('N','N',m,n,n,1.0d0,B,LDA,A,LDA,0.0d0,C,LDA)
!norm = 0.0d0
!B = 0.0d0
!!print *,C
!do i=1,m
! norm = 0.0d0
! do j=1,n
! norm = norm + C(j,i)*C(j,i)
! end do
! norm = 1.0d0/dsqrt(norm)
! do j=1,n
! B(j,i) = C(j,i)
! end do
!end do
!print *,B
!deallocate(WORK,TAU)
end
subroutine ortho_qr_csf(A, LDA, B, m, n) bind(C, name="ortho_qr_csf")
use iso_c_binding
integer(c_int32_t), value :: LDA
integer(c_int32_t), value :: m
integer(c_int32_t), value :: n
integer(c_int16_t) :: A(LDA,n)
integer(c_int16_t) :: B(LDA,n)
call ortho_qr_withB(A,LDA,B,m,n)
end subroutine ortho_qr_csf
subroutine ortho_qr(A,LDA,m,n)
implicit none
BEGIN_DOC