From 6b3593bf745d2d0e7986622cf05bf046bac3e9eb Mon Sep 17 00:00:00 2001 From: Kevin Gasperich Date: Wed, 26 Feb 2020 13:14:25 -0600 Subject: [PATCH] complex diagonalize_ci --- src/davidson/diagonalize_ci.irp.f | 254 +++++++++++++++++++++++++++--- 1 file changed, 235 insertions(+), 19 deletions(-) diff --git a/src/davidson/diagonalize_ci.irp.f b/src/davidson/diagonalize_ci.irp.f index 8339406f..156d8521 100644 --- a/src/davidson/diagonalize_ci.irp.f +++ b/src/davidson/diagonalize_ci.irp.f @@ -20,8 +20,21 @@ BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ] END_PROVIDER BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ] -&BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_s2, (N_states_diag) ] + implicit none + if (is_complex) then + ci_s2(1:N_states_diag) = ci_s2_complex(1:N_states_diag) + ci_electronic_energy(1:N_states_diag) = ci_electronic_energy_complex(1:N_states_diag) + else + ci_s2(1:N_states_diag) = ci_s2_real(1:N_states_diag) + ci_electronic_energy(1:N_states_diag) = ci_electronic_energy_real(1:N_states_diag) + endif +END_PROVIDER + + + BEGIN_PROVIDER [ double precision, CI_electronic_energy_real, (N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_s2_real, (N_states_diag) ] BEGIN_DOC ! Eigenvectors/values of the |CI| matrix END_DOC @@ -57,8 +70,8 @@ END_PROVIDER if (diag_algorithm == "Davidson") then - call davidson_diag_HS2(psi_det,CI_eigenvectors, CI_s2, & - size(CI_eigenvectors,1),CI_electronic_energy, & + call davidson_diag_HS2(psi_det,CI_eigenvectors, CI_s2_real, & + size(CI_eigenvectors,1),CI_electronic_energy_real, & N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged) integer :: N_states_diag_save @@ -75,17 +88,17 @@ END_PROVIDER allocate (CI_eigenvectors_tmp (N_det,N_states_diag) ) allocate (CI_s2_tmp (N_states_diag) ) - CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy(1:N_states_diag_save) + CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy_real(1:N_states_diag_save) CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = CI_eigenvectors(1:N_det,1:N_states_diag_save) - CI_s2_tmp(1:N_states_diag_save) = CI_s2(1:N_states_diag_save) + CI_s2_tmp(1:N_states_diag_save) = CI_s2_real(1:N_states_diag_save) call davidson_diag_HS2(psi_det,CI_eigenvectors_tmp, CI_s2_tmp, & size(CI_eigenvectors_tmp,1),CI_electronic_energy_tmp, & N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged) - CI_electronic_energy(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save) + CI_electronic_energy_real(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save) CI_eigenvectors(1:N_det,1:N_states_diag_save) = CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) - CI_s2(1:N_states_diag_save) = CI_s2_tmp(1:N_states_diag_save) + CI_s2_real(1:N_states_diag_save) = CI_s2_tmp(1:N_states_diag_save) deallocate (CI_electronic_energy_tmp) deallocate (CI_eigenvectors_tmp) @@ -110,7 +123,7 @@ END_PROVIDER H_prime(j,j) = H_prime(j,j) + alpha*(S_z2_Sz - expected_s2) enddo call lapack_diag(eigenvalues,eigenvectors,H_prime,size(H_prime,1),N_det) - CI_electronic_energy(:) = 0.d0 + CI_electronic_energy_real(:) = 0.d0 i_state = 0 allocate (s2_eigvalues(N_det)) allocate(index_good_state_array(N_det),good_state_array(N_det)) @@ -141,8 +154,8 @@ END_PROVIDER do i=1,N_det CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j)) enddo - CI_electronic_energy(j) = eigenvalues(index_good_state_array(j)) - CI_s2(j) = s2_eigvalues(index_good_state_array(j)) + CI_electronic_energy_real(j) = eigenvalues(index_good_state_array(j)) + CI_s2_real(j) = s2_eigvalues(index_good_state_array(j)) enddo i_other_state = 0 do j = 1, N_det @@ -154,8 +167,8 @@ END_PROVIDER do i=1,N_det CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j) enddo - CI_electronic_energy(i_state+i_other_state) = eigenvalues(j) - CI_s2(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state) + CI_electronic_energy_real(i_state+i_other_state) = eigenvalues(j) + CI_s2_real(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state) enddo else @@ -172,8 +185,8 @@ END_PROVIDER do i=1,N_det CI_eigenvectors(i,j) = eigenvectors(i,j) enddo - CI_electronic_energy(j) = eigenvalues(j) - CI_s2(j) = s2_eigvalues(j) + CI_electronic_energy_real(j) = eigenvalues(j) + CI_s2_real(j) = s2_eigvalues(j) enddo endif deallocate(index_good_state_array,good_state_array) @@ -181,22 +194,22 @@ END_PROVIDER else call lapack_diag(eigenvalues,eigenvectors, & H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) - CI_electronic_energy(:) = 0.d0 - call u_0_S2_u_0(CI_s2,eigenvectors,N_det,psi_det,N_int,& + CI_electronic_energy_real(:) = 0.d0 + call u_0_S2_u_0(CI_s2_real,eigenvectors,N_det,psi_det,N_int,& min(N_det,N_states_diag),size(eigenvectors,1)) ! Select the "N_states_diag" states of lowest energy do j=1,min(N_det,N_states_diag) do i=1,N_det CI_eigenvectors(i,j) = eigenvectors(i,j) enddo - CI_electronic_energy(j) = eigenvalues(j) + CI_electronic_energy_real(j) = eigenvalues(j) enddo endif do k=1,N_states_diag - CI_electronic_energy(k) = 0.d0 + CI_electronic_energy_real(k) = 0.d0 do j=1,N_det do i=1,N_det - CI_electronic_energy(k) += & + CI_electronic_energy_real(k) += & CI_eigenvectors(i,k) * CI_eigenvectors(j,k) * & H_matrix_all_dets(i,j) enddo @@ -205,6 +218,196 @@ END_PROVIDER deallocate(eigenvectors,eigenvalues) endif +END_PROVIDER + + BEGIN_PROVIDER [ double precision, CI_electronic_energy_complex, (N_states_diag) ] +&BEGIN_PROVIDER [ complex*16, CI_eigenvectors_complex, (N_det,N_states_diag) ] +&BEGIN_PROVIDER [ double precision, CI_s2_complex, (N_states_diag) ] + BEGIN_DOC + ! Eigenvectors/values of the |CI| matrix + END_DOC + implicit none + double precision :: ovrlp + complex*16 :: u_dot_v_complex + integer :: i_good_state + integer, allocatable :: index_good_state_array(:) + logical, allocatable :: good_state_array(:) + double precision, allocatable :: s2_values_tmp(:) + integer :: i_other_state + double precision, allocatable :: eigenvalues(:) + complex*16, allocatable :: eigenvectors(:,:), H_prime(:,:) + integer :: i_state + double precision :: e_0 + integer :: i,j,k + double precision, allocatable :: s2_eigvalues(:) + double precision, allocatable :: e_array(:) + integer, allocatable :: iorder(:) + logical :: converged + + PROVIDE threshold_davidson nthreads_davidson + ! Guess values for the "N_states" states of the |CI| eigenvectors + do j=1,min(N_states,N_det) + do i=1,N_det + ci_eigenvectors_complex(i,j) = psi_coef_complex(i,j) + enddo + enddo + + do j=min(N_states,N_det)+1,N_states_diag + do i=1,N_det + ci_eigenvectors_complex(i,j) = (0.d0,0.d0) + enddo + enddo + + if (diag_algorithm == "Davidson") then + + call davidson_diag_hs2_complex(psi_det,ci_eigenvectors_complex, ci_s2_complex, & + size(ci_eigenvectors_complex,1),ci_electronic_energy_complex, & + N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged) + + integer :: N_states_diag_save + N_states_diag_save = N_states_diag + do while (.not.converged) + double precision, allocatable :: ci_electronic_energy_tmp (:) + complex*16, allocatable :: ci_eigenvectors_tmp (:,:) + double precision, allocatable :: ci_s2_tmp (:) + + N_states_diag *= 2 + TOUCH N_states_diag + + allocate (ci_electronic_energy_tmp (N_states_diag) ) + allocate (ci_eigenvectors_tmp (N_det,N_states_diag) ) + allocate (ci_s2_tmp (N_states_diag) ) + + ci_electronic_energy_tmp(1:N_states_diag_save) = ci_electronic_energy_complex(1:N_states_diag_save) + ci_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = ci_eigenvectors_complex(1:N_det,1:N_states_diag_save) + ci_s2_tmp(1:N_states_diag_save) = ci_s2_complex(1:N_states_diag_save) + + call davidson_diag_hs2_complex(psi_det,ci_eigenvectors_tmp, ci_s2_tmp, & + size(ci_eigenvectors_tmp,1),ci_electronic_energy_tmp, & + N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged) + + ci_electronic_energy_complex(1:N_states_diag_save) = ci_electronic_energy_tmp(1:N_states_diag_save) + ci_eigenvectors_complex(1:N_det,1:N_states_diag_save) = ci_eigenvectors_tmp(1:N_det,1:N_states_diag_save) + ci_s2_complex(1:N_states_diag_save) = ci_s2_tmp(1:N_states_diag_save) + + deallocate (ci_electronic_energy_tmp) + deallocate (ci_eigenvectors_tmp) + deallocate (ci_s2_tmp) + enddo + if (N_states_diag > N_states_diag_save) then + N_states_diag = N_states_diag_save + TOUCH N_states_diag + endif + + else if (diag_algorithm == "Lapack") then + + print *, 'Diagonalization of H using Lapack' + allocate (eigenvectors(size(h_matrix_all_dets_complex,1),N_det)) + allocate (eigenvalues(N_det)) + if (s2_eig) then + double precision, parameter :: alpha = 0.1d0 + allocate (H_prime(N_det,N_det) ) + H_prime(1:N_det,1:N_det) = h_matrix_all_dets_complex(1:N_det,1:N_det) + & + alpha * s2_matrix_all_dets(1:N_det,1:N_det) + do j=1,N_det + H_prime(j,j) = H_prime(j,j) + alpha*(s_z2_sz - expected_s2) + enddo + call lapack_diag(eigenvalues,eigenvectors,H_prime,size(H_prime,1),N_det) + ci_electronic_energy_complex(:) = 0.d0 + i_state = 0 + allocate (s2_eigvalues(N_det)) + allocate(index_good_state_array(N_det),good_state_array(N_det)) + good_state_array = .False. + call u_0_s2_u_0_complex(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,& + N_det,size(eigenvectors,1)) + if (only_expected_s2) then + do j=1,N_det + ! Select at least n_states states with S^2 values closed to "expected_s2" + if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then + i_state +=1 + index_good_state_array(i_state) = j + good_state_array(j) = .True. + endif + if(i_state.eq.N_states) then + exit + endif + enddo + else + do j=1,N_det + index_good_state_array(j) = j + good_state_array(j) = .True. + enddo + endif + if(i_state .ne.0)then + ! Fill the first "i_state" states that have a correct S^2 value + do j = 1, i_state + do i=1,N_det + ci_eigenvectors_complex(i,j) = eigenvectors(i,index_good_state_array(j)) + enddo + ci_electronic_energy_complex(j) = eigenvalues(index_good_state_array(j)) + ci_s2_complex(j) = s2_eigvalues(index_good_state_array(j)) + enddo + i_other_state = 0 + do j = 1, N_det + if(good_state_array(j))cycle + i_other_state +=1 + if(i_state+i_other_state.gt.n_states_diag)then + exit + endif + do i=1,N_det + ci_eigenvectors_complex(i,i_state+i_other_state) = eigenvectors(i,j) + enddo + ci_electronic_energy_complex(i_state+i_other_state) = eigenvalues(j) + ci_s2_complex(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state) + enddo + + else + print*,'' + print*,'!!!!!!!! WARNING !!!!!!!!!' + print*,' Within the ',N_det,'determinants selected' + print*,' and the ',N_states_diag,'states requested' + print*,' We did not find any state with S^2 values close to ',expected_s2 + print*,' We will then set the first N_states eigenvectors of the H matrix' + print*,' as the ci_eigenvectors_complex' + print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space' + print*,'' + do j=1,min(N_states_diag,N_det) + do i=1,N_det + ci_eigenvectors_complex(i,j) = eigenvectors(i,j) + enddo + ci_electronic_energy_complex(j) = eigenvalues(j) + ci_s2_complex(j) = s2_eigvalues(j) + enddo + endif + deallocate(index_good_state_array,good_state_array) + deallocate(s2_eigvalues) + else + call lapack_diag_complex(eigenvalues,eigenvectors, & + H_matrix_all_dets_complex,size(H_matrix_all_dets,1),N_det) + ci_electronic_energy_complex(:) = 0.d0 + call u_0_S2_u_0_complex(ci_s2_complex,eigenvectors,N_det,psi_det,N_int,& + min(N_det,N_states_diag),size(eigenvectors,1)) + ! Select the "N_states_diag" states of lowest energy + do j=1,min(N_det,N_states_diag) + do i=1,N_det + ci_eigenvectors_complex(i,j) = eigenvectors(i,j) + enddo + ci_electronic_energy_complex(j) = eigenvalues(j) + enddo + endif + do k=1,N_states_diag + ci_electronic_energy_complex(k) = 0.d0 + do j=1,N_det + do i=1,N_det + ci_electronic_energy_complex(k) += & + ci_eigenvectors_complex(i,k) * ci_eigenvectors_complex(j,k) * & + H_matrix_all_dets_complex(i,j) + enddo + enddo + enddo + deallocate(eigenvectors,eigenvalues) + endif + END_PROVIDER subroutine diagonalize_CI @@ -214,6 +417,17 @@ subroutine diagonalize_CI ! eigenstates of the |CI| matrix. END_DOC integer :: i,j + if (is_complex) then + do j=1,N_states + do i=1,N_det + psi_coef_complex(i,j) = ci_eigenvectors_complex(i,j) + enddo + enddo + psi_energy(1:N_states) = CI_electronic_energy(1:N_states) + psi_s2(1:N_states) = CI_s2(1:N_states) + !todo: touch complex? + SOFT_TOUCH psi_coef_complex CI_electronic_energy ci_energy CI_eigenvectors_complex CI_s2 psi_energy psi_s2 + else do j=1,N_states do i=1,N_det psi_coef(i,j) = CI_eigenvectors(i,j) @@ -222,5 +436,7 @@ subroutine diagonalize_CI psi_energy(1:N_states) = CI_electronic_energy(1:N_states) psi_s2(1:N_states) = CI_s2(1:N_states) + !todo: touch real? SOFT_TOUCH psi_coef CI_electronic_energy CI_energy CI_eigenvectors CI_s2 psi_energy psi_s2 + endif end