diff --git a/src/davidson/diagonalization_hs2_dressed.irp.f b/src/davidson/diagonalization_hs2_dressed.irp.f index 1ead9d78..3513f215 100644 --- a/src/davidson/diagonalization_hs2_dressed.irp.f +++ b/src/davidson/diagonalization_hs2_dressed.irp.f @@ -522,6 +522,84 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_ enddo endif + if (state_following) then + if (.not. only_expected_s2) then + print*,'' + print*,'!!! State following only available with only_expected_s2 = .True. !!!' + STOP + endif + endif + + if (state_following) then + + integer :: state(N_st), idx + double precision :: omax + logical :: used + logical, allocatable :: ok(:) + double precision, allocatable :: overlp(:,:) + + allocate(overlp(shift2,N_st),ok(shift2)) + + overlp = 0d0 + do j = 1, shift2-1, N_st_diag + + ! Computes some states from the guess vectors + ! Psi(:,j:j+N_st_diag) = U y(:,j:j+N_st_diag) and put them + ! in U(1,shift2+1:shift2+1+N_st_diag) as temporary array + call dgemm('N','N', sze, N_st_diag, shift2, & + 1.d0, U, size(U,1), y(1,j), size(y,1), 0.d0, U(1,shift2+1), size(U,1)) + + ! Overlap + do l = 1, N_st + do k = 1, N_st_diag + do i = 1, sze + overlp(k+j-1,l) += U(i,l) * U(i,shift2+k) + enddo + enddo + enddo + + enddo + + state = 0 + do l = 1, N_st + + omax = 0d0 + idx = 0 + do k = 1, shift2 + + ! Already used ? + used = .False. + do i = 1, N_st + if (state(i) == k) then + used = .True. + endif + enddo + + ! Maximum overlap + if (dabs(overlp(k,l)) > omax .and. .not. used .and. state_ok(k)) then + omax = dabs(overlp(k,l)) + idx = k + endif + enddo + + state(l) = idx + enddo + + ! tmp array before setting state_ok + ok = .False. + do l = 1, N_st + ok(state(l)) = .True. + enddo + + do k = 1, shift2 + if (.not. ok(k)) then + state_ok(k) = .False. + endif + enddo + + deallocate(overlp,ok) + endif + do k=1,shift2 if (.not. state_ok(k)) then do l=k+1,shift2 @@ -537,46 +615,46 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_ endif enddo - if (state_following) then - - overlap = -1.d0 - do k=1,shift2 - do i=1,shift2 - overlap(k,i) = dabs(y(k,i)) - enddo - enddo - do k=1,N_st - cmax = -1.d0 - do i=1,N_st - if (overlap(i,k) > cmax) then - cmax = overlap(i,k) - order(k) = i - endif - enddo - do i=1,N_st_diag - overlap(order(k),i) = -1.d0 - enddo - enddo - overlap = y - do k=1,N_st - l = order(k) - if (k /= l) then - y(1:shift2,k) = overlap(1:shift2,l) - endif - enddo - do k=1,N_st - overlap(k,1) = lambda(k) - overlap(k,2) = s2(k) - enddo - do k=1,N_st - l = order(k) - if (k /= l) then - lambda(k) = overlap(l,1) - s2(k) = overlap(l,2) - endif - enddo - - endif +! if (state_following) then +! +! overlap = -1.d0 +! do k=1,shift2 +! do i=1,shift2 +! overlap(k,i) = dabs(y(k,i)) +! enddo +! enddo +! do k=1,N_st +! cmax = -1.d0 +! do i=1,N_st +! if (overlap(i,k) > cmax) then +! cmax = overlap(i,k) +! order(k) = i +! endif +! enddo +! do i=1,N_st_diag +! overlap(order(k),i) = -1.d0 +! enddo +! enddo +! overlap = y +! do k=1,N_st +! l = order(k) +! if (k /= l) then +! y(1:shift2,k) = overlap(1:shift2,l) +! endif +! enddo +! do k=1,N_st +! overlap(k,1) = lambda(k) +! overlap(k,2) = s2(k) +! enddo +! do k=1,N_st +! l = order(k) +! if (k /= l) then +! lambda(k) = overlap(l,1) +! s2(k) = overlap(l,2) +! endif +! enddo +! +! endif ! Express eigenvectors of h in the determinant basis diff --git a/src/davidson/diagonalize_ci.irp.f b/src/davidson/diagonalize_ci.irp.f index 46ad8f78..59c8313a 100644 --- a/src/davidson/diagonalize_ci.irp.f +++ b/src/davidson/diagonalize_ci.irp.f @@ -123,6 +123,7 @@ END_PROVIDER endif enddo + if (N_states_diag > N_states_diag_save) then N_states_diag = N_states_diag_save TOUCH N_states_diag @@ -133,24 +134,101 @@ END_PROVIDER print *, 'Diagonalization of H using Lapack' allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) allocate (eigenvalues(N_det)) + if (s2_eig) then + double precision, parameter :: alpha = 0.1d0 allocate (H_prime(N_det,N_det) ) + H_prime(1:N_det,1:N_det) = H_matrix_all_dets(1:N_det,1:N_det) + & alpha * S2_matrix_all_dets(1:N_det,1:N_det) + do j=1,N_det H_prime(j,j) = H_prime(j,j) - alpha*expected_s2 enddo + call lapack_diag(eigenvalues,eigenvectors,H_prime,size(H_prime,1),N_det) call nullify_small_elements(N_det,N_det,eigenvectors,size(eigenvectors,1),1.d-12) + CI_electronic_energy(:) = 0.d0 i_state = 0 + allocate (s2_eigvalues(N_det)) allocate(index_good_state_array(N_det),good_state_array(N_det)) + good_state_array = .False. call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,& N_det,size(eigenvectors,1)) - if (only_expected_s2) then + + if (state_following) then + if (.not. only_expected_s2) then + print*,'' + print*,'!!! State following only available with only_expected_s2 = .True. !!!' + STOP + endif + if (N_det < N_states) then + print*,'' + print*,'!!! State following requires at least N_states determinants to be activated !!!' + STOP + endif + endif + + if (state_following .and. only_expected_s2) then + + integer :: state(N_states), idx,l + double precision :: omax + double precision, allocatable :: overlp(:) + logical :: used + logical, allocatable :: ok(:) + + allocate(overlp(N_det), ok(N_det)) + + i_state = 0 + state = 0 + do l = 1, N_states + + ! Overlap wrt each state + overlp = 0d0 + do k = 1, N_det + do i = 1, N_det + overlp(k) = overlp(k) + psi_coef(i,l) * eigenvectors(i,k) + enddo + enddo + + ! Idx of the state with the maximum overlap not already "used" + omax = 0d0 + idx = 0 + do k = 1, N_det + + ! Already used ? + used = .False. + do i = 1, N_states + if (state(i) == k) then + used = .True. + endif + enddo + + ! Maximum overlap + if (dabs(overlp(k)) > omax .and. .not. used) then + if (dabs(s2_eigvalues(k)-expected_s2) > 0.5d0) cycle + omax = dabs(overlp(k)) + idx = k + endif + enddo + + state(l) = idx + i_state +=1 + enddo + + deallocate(overlp, ok) + + do i = 1, i_state + index_good_state_array(i) = state(i) + good_state_array(i) = .True. + enddo + + else if (only_expected_s2) then + do j=1,N_det ! Select at least n_states states with S^2 values closed to "expected_s2" if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then @@ -158,17 +236,23 @@ END_PROVIDER index_good_state_array(i_state) = j good_state_array(j) = .True. endif + if(i_state.eq.N_states) then exit endif enddo + else + do j=1,N_det index_good_state_array(j) = j good_state_array(j) = .True. enddo + endif + if(i_state .ne.0)then + ! Fill the first "i_state" states that have a correct S^2 value do j = 1, i_state do i=1,N_det @@ -177,6 +261,7 @@ END_PROVIDER CI_electronic_energy(j) = eigenvalues(index_good_state_array(j)) CI_s2(j) = s2_eigvalues(index_good_state_array(j)) enddo + i_other_state = 0 do j = 1, N_det if(good_state_array(j))cycle @@ -201,6 +286,7 @@ END_PROVIDER print*,' as the CI_eigenvectors' print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space' print*,'' + do j=1,min(N_states_diag,N_det) do i=1,N_det CI_eigenvectors(i,j) = eigenvectors(i,j) @@ -209,14 +295,18 @@ END_PROVIDER CI_s2(j) = s2_eigvalues(j) enddo endif + deallocate(index_good_state_array,good_state_array) deallocate(s2_eigvalues) + else + call lapack_diag(eigenvalues,eigenvectors, & H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) CI_electronic_energy(:) = 0.d0 call u_0_S2_u_0(CI_s2,eigenvectors,N_det,psi_det,N_int, & min(N_det,N_states_diag),size(eigenvectors,1)) + ! Select the "N_states_diag" states of lowest energy do j=1,min(N_det,N_states_diag) do i=1,N_det @@ -224,7 +314,9 @@ END_PROVIDER enddo CI_electronic_energy(j) = eigenvalues(j) enddo + endif + do k=1,N_states_diag CI_electronic_energy(k) = 0.d0 do j=1,N_det @@ -235,6 +327,7 @@ END_PROVIDER enddo enddo enddo + deallocate(eigenvectors,eigenvalues) endif