mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-23 04:43:45 +01:00
Merge pull request #114 from QuantumPackage/cleaning_dft
Cleaning dft with minor bugs corrections for md_sr_pbe
This commit is contained in:
commit
68c9340690
@ -97,6 +97,7 @@ subroutine give_all_aos_at_r(r,aos_array)
|
||||
dz2 = dz**power_ao(3)
|
||||
do l = 1,ao_prim_num(k)
|
||||
beta = ao_expo_ordered_transp_per_nucl(l,j,i)
|
||||
if(dabs(beta*r2).gt.40.d0)cycle
|
||||
aos_array(k)+= ao_coef_normalized_ordered_transp_per_nucl(l,j,i) * dexp(-beta*r2)
|
||||
enddo
|
||||
aos_array(k) = aos_array(k) * dx2 * dy2 * dz2
|
||||
@ -162,6 +163,8 @@ subroutine give_all_aos_and_grad_at_r(r,aos_array,aos_grad_array)
|
||||
accu_2 = 0.d0
|
||||
do l = 1,ao_prim_num(k)
|
||||
beta = ao_expo_ordered_transp_per_nucl(l,j,i)
|
||||
contrib = 0.d0
|
||||
if(beta*r2.gt.50.d0)cycle
|
||||
contrib = ao_coef_normalized_ordered_transp_per_nucl(l,j,i) * dexp(-beta*r2)
|
||||
accu_1 += contrib
|
||||
accu_2 += contrib * beta
|
||||
|
@ -7,6 +7,7 @@ program basis_correction
|
||||
touch read_wf
|
||||
no_core_density = .True.
|
||||
touch no_core_density
|
||||
provide ao_two_e_integrals_in_map
|
||||
provide mo_two_e_integrals_in_map
|
||||
call print_basis_correction
|
||||
! call print_e_b
|
||||
|
104
src/becke_numerical_grid/angular_grid_pts.irp.f
Normal file
104
src/becke_numerical_grid/angular_grid_pts.irp.f
Normal file
@ -0,0 +1,104 @@
|
||||
|
||||
BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_integration_angular,3) ]
|
||||
&BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_integration_angular)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! weights and grid points for the integration on the angular variables on
|
||||
! the unit sphere centered on (0,0,0)
|
||||
! According to the LEBEDEV scheme
|
||||
END_DOC
|
||||
|
||||
include 'constants.include.F'
|
||||
integer :: i
|
||||
double precision :: accu
|
||||
double precision :: degre_rad
|
||||
double precision :: x(n_points_integration_angular)
|
||||
double precision :: y(n_points_integration_angular)
|
||||
double precision :: z(n_points_integration_angular)
|
||||
double precision :: w(n_points_integration_angular)
|
||||
|
||||
degre_rad = pi/180.d0
|
||||
accu = 0.d0
|
||||
|
||||
select case (n_points_integration_angular)
|
||||
|
||||
|
||||
case (0006)
|
||||
call LD0006(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0014)
|
||||
call LD0014(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0026)
|
||||
call LD0026(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0038)
|
||||
call LD0038(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0050)
|
||||
call LD0050(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0074)
|
||||
call LD0074(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0086)
|
||||
call LD0086(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0110)
|
||||
call LD0110(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0146)
|
||||
call LD0146(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0170)
|
||||
call LD0170(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0194)
|
||||
call LD0194(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0230)
|
||||
call LD0230(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0266)
|
||||
call LD0266(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0302)
|
||||
call LD0302(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0350)
|
||||
call LD0350(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0434)
|
||||
call LD0434(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0590)
|
||||
call LD0590(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0770)
|
||||
call LD0770(X,Y,Z,W,n_points_integration_angular)
|
||||
case (0974)
|
||||
call LD0974(X,Y,Z,W,n_points_integration_angular)
|
||||
case (1202)
|
||||
call LD1202(X,Y,Z,W,n_points_integration_angular)
|
||||
case (1454)
|
||||
call LD1454(X,Y,Z,W,n_points_integration_angular)
|
||||
case (1730)
|
||||
call LD1730(X,Y,Z,W,n_points_integration_angular)
|
||||
case (2030)
|
||||
call LD2030(X,Y,Z,W,n_points_integration_angular)
|
||||
case (2354)
|
||||
call LD2354(X,Y,Z,W,n_points_integration_angular)
|
||||
case (2702)
|
||||
call LD2702(X,Y,Z,W,n_points_integration_angular)
|
||||
case (3074)
|
||||
call LD3074(X,Y,Z,W,n_points_integration_angular)
|
||||
case (3470)
|
||||
call LD3470(X,Y,Z,W,n_points_integration_angular)
|
||||
case (3890)
|
||||
call LD3890(X,Y,Z,W,n_points_integration_angular)
|
||||
case (4334)
|
||||
call LD4334(X,Y,Z,W,n_points_integration_angular)
|
||||
case (4802)
|
||||
call LD4802(X,Y,Z,W,n_points_integration_angular)
|
||||
case (5294)
|
||||
call LD5294(X,Y,Z,W,n_points_integration_angular)
|
||||
case (5810)
|
||||
call LD5810(X,Y,Z,W,n_points_integration_angular)
|
||||
case default
|
||||
print *, irp_here//': wrong n_points_integration_angular. See in ${QP_ROOT}/src/becke_numerical_grid/list_angular_grid to see the possible angular grid points. Ex: '
|
||||
print *, '[ 50 | 74 | 170 | 194 | 266 | 302 | 590 | 1202 | 2030 | 5810 ]'
|
||||
stop -1
|
||||
end select
|
||||
|
||||
do i = 1, n_points_integration_angular
|
||||
angular_quadrature_points(i,1) = x(i)
|
||||
angular_quadrature_points(i,2) = y(i)
|
||||
angular_quadrature_points(i,3) = z(i)
|
||||
weights_angular_points(i) = w(i) * 4.d0 * pi
|
||||
accu += w(i)
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
@ -39,75 +39,6 @@ BEGIN_PROVIDER [integer, n_points_grid_per_atom]
|
||||
END_DOC
|
||||
n_points_grid_per_atom = n_points_integration_angular * n_points_radial_grid
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_integration_angular,3) ]
|
||||
&BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_integration_angular)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! weights and grid points for the integration on the angular variables on
|
||||
! the unit sphere centered on (0,0,0)
|
||||
! According to the LEBEDEV scheme
|
||||
END_DOC
|
||||
|
||||
include 'constants.include.F'
|
||||
integer :: i
|
||||
double precision :: accu
|
||||
double precision :: degre_rad
|
||||
double precision :: x(n_points_integration_angular)
|
||||
double precision :: y(n_points_integration_angular)
|
||||
double precision :: z(n_points_integration_angular)
|
||||
double precision :: w(n_points_integration_angular)
|
||||
|
||||
degre_rad = pi/180.d0
|
||||
accu = 0.d0
|
||||
|
||||
select case (n_points_integration_angular)
|
||||
|
||||
case (5810)
|
||||
call LD5810(X,Y,Z,W,n_points_integration_angular)
|
||||
|
||||
case (2030)
|
||||
call LD2030(X,Y,Z,W,n_points_integration_angular)
|
||||
|
||||
case (1202)
|
||||
call LD1202(X,Y,Z,W,n_points_integration_angular)
|
||||
|
||||
case (0590)
|
||||
call LD0590(X,Y,Z,W,n_points_integration_angular)
|
||||
|
||||
case (302)
|
||||
call LD0302(X,Y,Z,W,n_points_integration_angular)
|
||||
|
||||
case (266)
|
||||
call LD0266(X,Y,Z,W,n_points_integration_angular)
|
||||
|
||||
case (194)
|
||||
call LD0194(X,Y,Z,W,n_points_integration_angular)
|
||||
|
||||
case (170)
|
||||
call LD0170(X,Y,Z,W,n_points_integration_angular)
|
||||
|
||||
case (74)
|
||||
call LD0074(X,Y,Z,W,n_points_integration_angular)
|
||||
|
||||
case (50)
|
||||
call LD0050(X,Y,Z,W,n_points_integration_angular)
|
||||
|
||||
case default
|
||||
print *, irp_here//': wrong n_points_integration_angular. Expected:'
|
||||
print *, '[ 50 | 74 | 170 | 194 | 266 | 302 | 590 | 1202 | 2030 | 5810 ]'
|
||||
stop -1
|
||||
end select
|
||||
|
||||
do i = 1, n_points_integration_angular
|
||||
angular_quadrature_points(i,1) = x(i)
|
||||
angular_quadrature_points(i,2) = y(i)
|
||||
angular_quadrature_points(i,3) = z(i)
|
||||
weights_angular_points(i) = w(i) * 4.d0 * pi
|
||||
accu += w(i)
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer , m_knowles]
|
||||
|
@ -54,31 +54,22 @@ END_PROVIDER
|
||||
&BEGIN_PROVIDER [double precision, ao_effective_one_e_potential_without_kin, (ao_num, ao_num,N_states)]
|
||||
implicit none
|
||||
integer :: i,j,istate
|
||||
effective_one_e_potential = 0.d0
|
||||
ao_effective_one_e_potential = 0.d0
|
||||
ao_effective_one_e_potential_without_kin = 0.d0
|
||||
BEGIN_DOC
|
||||
! Effective_one_e_potential(i,j) = $\rangle i_{MO}| v_{H}^{sr} |j_{MO}\rangle + \rangle i_{MO}| h_{core} |j_{MO}\rangle + \rangle i_{MO}|v_{xc} |j_{MO}\rangle$
|
||||
! Effective_one_e_potential(i,j) = $\rangle i_{AO}| v_{H}^{sr} |j_{AO}\rangle + \rangle i_{AO}| h_{core} |j_{AO}\rangle + \rangle i_{AO}|v_{xc} |j_{AO}\rangle$
|
||||
!
|
||||
! on the |MO| basis
|
||||
!
|
||||
! Taking the expectation value does not provide any energy, but
|
||||
!
|
||||
! effective_one_e_potential(i,j) is the potential coupling DFT and WFT parts
|
||||
! ao_effective_one_e_potential(i,j) is the potential coupling DFT and WFT parts
|
||||
!
|
||||
! and it is used in any RS-DFT based calculations
|
||||
END_DOC
|
||||
do istate = 1, N_states
|
||||
do j = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
|
||||
effective_one_e_potential(i,j,istate) = short_range_Hartree_operator(i,j,istate) + mo_integrals_n_e(i,j) + mo_kinetic_integrals(i,j) &
|
||||
+ 0.5d0 * (potential_x_alpha_mo(i,j,istate) + potential_c_alpha_mo(i,j,istate) &
|
||||
+ potential_x_beta_mo(i,j,istate) + potential_c_beta_mo(i,j,istate) )
|
||||
|
||||
effective_one_e_potential_without_kin(i,j,istate) = short_range_Hartree_operator(i,j,istate) + mo_integrals_n_e(i,j) &
|
||||
+ 0.5d0 * (potential_x_alpha_mo(i,j,istate) + potential_c_alpha_mo(i,j,istate) &
|
||||
+ potential_x_beta_mo(i,j,istate) + potential_c_beta_mo(i,j,istate) )
|
||||
enddo
|
||||
enddo
|
||||
call mo_to_ao(effective_one_e_potential(1,1,istate),mo_num,ao_effective_one_e_potential(1,1,istate),ao_num)
|
||||
call mo_to_ao(effective_one_e_potential_without_kin(1,1,istate),mo_num,ao_effective_one_e_potential_without_kin(1,1,istate),ao_num)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -32,10 +32,15 @@ double precision function g0_UEG_mu_inf(rho_a,rho_b)
|
||||
C = 0.08193d0
|
||||
D = -0.01277d0
|
||||
E = 0.001859d0
|
||||
if (dabs(rho) > 1.d-12) then
|
||||
x = -d2*rs
|
||||
if (dabs(rho) > 1.d-20) then
|
||||
rs = (3d0 / (4d0*pi*rho))**(1d0/3d0) ! JT: serious bug fixed 20/03/19
|
||||
x = -d2*rs
|
||||
g0_UEG_mu_inf= 0.5d0 * (1d0- B*rs + C*rs**2 + D*rs**3 + E*rs**4)*exp(x)
|
||||
if(dabs(x).lt.50.d0)then
|
||||
g0_UEG_mu_inf= 0.5d0 * (1d0- B*rs + C*rs**2 + D*rs**3 + E*rs**4)*dexp(x)
|
||||
else
|
||||
g0_UEG_mu_inf= 0.d0
|
||||
endif
|
||||
else
|
||||
g0_UEG_mu_inf= 0.d0
|
||||
endif
|
||||
@ -63,11 +68,19 @@ double precision function g0_UEG_mu(mu,rho_a,rho_b)
|
||||
C = 0.08193d0
|
||||
D = -0.01277d0
|
||||
E = 0.001859d0
|
||||
rs = (3d0 / (4d0*pi*rho))**(1d0/3d0) ! JT: serious bug fixed 20/03/19
|
||||
if(rho.gt.1.d-20)then
|
||||
rs = (3d0 / (4d0*pi*rho))**(1d0/3d0) ! JT: serious bug fixed 20/03/19
|
||||
else
|
||||
rs = (3d0 / (4d0*pi*1.d-20))**(1d0/3d0)
|
||||
endif
|
||||
kf = (alpha*rs)**(-1d0)
|
||||
zeta = mu / kf
|
||||
x = -d2*rs*h_func(zeta)/ahd
|
||||
g0_UEG_mu = (exp(x)/2d0) * (1d0- B*(h_func(zeta)/ahd)*rs + C*((h_func(zeta)**2d0)/(ahd**2d0))*(rs**2d0) + D*((h_func(zeta)**3d0)/(ahd**3d0))*(rs**3d0) + E*((h_func(zeta)**4d0)/(ahd**4d0))*(rs**4d0) )
|
||||
if(dabs(x).lt.50.d0)then
|
||||
g0_UEG_mu = (dexp(x)/2d0) * (1d0- B*(h_func(zeta)/ahd)*rs + C*((h_func(zeta)**2d0)/(ahd**2d0))*(rs**2d0) + D*((h_func(zeta)**3d0)/(ahd**3d0))*(rs**3d0) + E*((h_func(zeta)**4d0)/(ahd**4d0))*(rs**4d0) )
|
||||
else
|
||||
g0_UEG_mu = 0.d0
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
@ -81,11 +94,11 @@ double precision function h_func(zeta)
|
||||
pi = 4d0 * datan(1d0)
|
||||
ahd = -0.36583d0
|
||||
alpha = (4d0/(9d0*pi))**(1d0/3d0)
|
||||
a1 = -(6d0*alpha/pi)*(1d0-log(2d0))
|
||||
a1 = -(6d0*alpha/pi)*(1d0-dlog(2d0))
|
||||
b1 = 1.4919d0
|
||||
b3 = 1.91528d0
|
||||
a2 = ahd * b3
|
||||
b2 = (a1 - (b3*alpha/sqrt(pi)))/ahd
|
||||
b2 = (a1 - (b3*alpha/dsqrt(pi)))/ahd
|
||||
|
||||
h_func = (a1*zeta**2d0 + a2*zeta**3d0) / (1d0 + b1*zeta + b2*zeta**2d0 + b3*zeta**3d0)
|
||||
end
|
||||
@ -111,11 +124,23 @@ end
|
||||
D1 = -0.0127713d0
|
||||
E1 = 0.00185898d0
|
||||
B1 = 0.7317d0 - F1
|
||||
rs = (3.d0 / (4.d0*pi*rho))**(1.d0/3.d0)
|
||||
if(dabs(rho).gt.1.d-20)then
|
||||
rs = (3.d0 / (4.d0*pi*rho))**(1.d0/3.d0)
|
||||
else
|
||||
rs = (3.d0 / (4.d0*pi*1.d-20))**(1.d0/3.d0)
|
||||
endif
|
||||
|
||||
g0 = g0_UEG_mu_inf(rho_a, rho_b)
|
||||
dg0drs = 0.5d0*((-B1 + 2.d0*C1*rs + 3.d0*D1*rs**2 + 4.d0*E1*rs**3)-F1*(1.d0 - B1*rs + C1*rs**2 + D1*rs**3 + E1*rs**4))*exp(-F1*rs)
|
||||
dg0drho = -((6.d0*dsqrt(pi)*rho**2)**(-2.d0/3.d0))*dg0drs
|
||||
if(dabs(F1*rs).lt.50.d0)then
|
||||
dg0drs = 0.5d0*((-B1 + 2.d0*C1*rs + 3.d0*D1*rs**2 + 4.d0*E1*rs**3)-F1*(1.d0 - B1*rs + C1*rs**2 + D1*rs**3 + E1*rs**4))*dexp(-F1*rs)
|
||||
else
|
||||
dg0drs = 0.d0
|
||||
endif
|
||||
if(dabs(rho).gt.1.d-20)then
|
||||
dg0drho = -((6.d0*dsqrt(pi)*rho**2)**(-2.d0/3.d0))*dg0drs
|
||||
else
|
||||
dg0drho = -((6.d0*dsqrt(pi)*1.d-40)**(-2.d0/3.d0))*dg0drs
|
||||
endif
|
||||
|
||||
end subroutine g0_dg0
|
||||
|
||||
|
@ -114,6 +114,7 @@ subroutine ex_lda_sr(mu,rho_a,rho_b,ex,vx_a,vx_b)
|
||||
double precision :: f12,f13,f14,f32,f23,f43,f16
|
||||
double precision :: ckf
|
||||
double precision :: a, akf,a2, a3
|
||||
double precision :: exp_f14a2
|
||||
|
||||
z0 = 0.D0
|
||||
z1 = 1.D0
|
||||
@ -153,8 +154,13 @@ subroutine ex_lda_sr(mu,rho_a,rho_b,ex,vx_a,vx_b)
|
||||
|
||||
!Intermediate values of a
|
||||
elseif (a.le.100d0) then
|
||||
ex_a = - (rho_a_2*(z24*rho_a_2/pi)**f13) * (z3/z8-a*(sqpi*derf(f12/a)+(z2*a-z4*a3)*dexp(-f14/a2)-z3*a+z4*a3))
|
||||
vx_a = -(z3*rho_a_2/pi)**f13 + z2*a*mu/pi*(dexp(-f14/a2)-z1)+mu/sqpi * derf(f12/a)
|
||||
if(dabs(f14/a2).lt.50.d0)then
|
||||
exp_f14a2 = dexp(-f14/a2)
|
||||
else
|
||||
exp_f14a2 = 0.d0
|
||||
endif
|
||||
ex_a = - (rho_a_2*(z24*rho_a_2/pi)**f13) * (z3/z8-a*(sqpi*derf(f12/a)+(z2*a-z4*a3)* exp_f14a2 -z3*a+z4*a3))
|
||||
vx_a = -(z3*rho_a_2/pi)**f13 + z2*a*mu/pi*(exp_f14a2 - z1)+mu/sqpi * derf(f12/a)
|
||||
|
||||
|
||||
!Expansion for large a
|
||||
@ -185,8 +191,13 @@ subroutine ex_lda_sr(mu,rho_a,rho_b,ex,vx_a,vx_b)
|
||||
|
||||
!Intermediate values of a
|
||||
elseif (a.le.100d0) then
|
||||
ex_b = - (rho_b_2*(z24*rho_b_2/pi)**f13)*(z3/z8-a*(sqpi*derf(f12/a)+(z2*a-z4*a3)*dexp(-f14/a2)-z3*a+z4*a3))
|
||||
vx_b = -(z3*rho_b_2/pi)**f13+ z2*a*mu/pi*(dexp(-f14/a2)-z1)+mu/sqpi* derf(f12/a)
|
||||
if(dabs(f14/a2).lt.50.d0)then
|
||||
exp_f14a2 = dexp(-f14/a2)
|
||||
else
|
||||
exp_f14a2 = 0.d0
|
||||
endif
|
||||
ex_b = - (rho_b_2*(z24*rho_b_2/pi)**f13)*(z3/z8-a*(sqpi*derf(f12/a)+(z2*a-z4*a3)*exp_f14a2-z3*a+z4*a3))
|
||||
vx_b = -(z3*rho_b_2/pi)**f13+ z2*a*mu/pi*(exp_f14a2-z1)+mu/sqpi* derf(f12/a)
|
||||
|
||||
!Expansion for large a
|
||||
elseif (a.lt.1.d+9) then
|
||||
@ -254,7 +265,11 @@ end
|
||||
double precision derf
|
||||
|
||||
eta=19.0d0
|
||||
fak=2.540118935556d0*dexp(-eta*a*a)
|
||||
if(dabs(eta*a*a).lt.50.d0)then
|
||||
fak=2.540118935556d0*dexp(-eta*a*a)
|
||||
else
|
||||
fak=0.d0
|
||||
endif
|
||||
|
||||
if(a .lt. 0.075d0) then
|
||||
! expansion for small mu to avoid numerical problems
|
||||
@ -301,7 +316,11 @@ end
|
||||
double precision t1,t2,tdexp,t3,t4,t5
|
||||
|
||||
eta=19.0d0
|
||||
fak=2.540118935556d0*dexp(-eta*a*a)
|
||||
if(dabs(eta*a*a).lt.50.d0)then
|
||||
fak=2.540118935556d0*dexp(-eta*a*a)
|
||||
else
|
||||
fak=0.d0
|
||||
endif
|
||||
dfakda=-2.0d0*eta*a*fak
|
||||
|
||||
if(a .lt. 0.075d0) then
|
||||
@ -373,17 +392,29 @@ subroutine ecorrlr(rs,z,mu,eclr)
|
||||
|
||||
b0=adib*rs
|
||||
|
||||
d2anti=(q1a*rs+q2a*rs**2)*exp(-abs(q3a)*rs)/rs**2
|
||||
d3anti=(t1a*rs+t2a*rs**2)*exp(-abs(t3a)*rs)/rs**3
|
||||
double precision :: exp_q3a_rs
|
||||
if(dabs(q3a*rs).lt.50.d0)then
|
||||
exp_q3a_rs = dexp(-dabs(q3a)*rs)
|
||||
else
|
||||
exp_q3a_rs = 0.d0
|
||||
endif
|
||||
d2anti=(q1a*rs+q2a*rs**2)*exp_q3a_rs/rs**2
|
||||
double precision :: exp_t3a_rs
|
||||
if(dabs(t3a*rs).lt.50.d0)then
|
||||
exp_t3a_rs = dexp(-dabs(t3a)*rs)
|
||||
else
|
||||
exp_t3a_rs = 0.d0
|
||||
endif
|
||||
d3anti=(t1a*rs+t2a*rs**2)*exp_t3a_rs/rs**3
|
||||
|
||||
coe2=-3.d0/8.d0/rs**3*(1.d0-z**2)*(g0f(rs)-0.5d0)
|
||||
|
||||
coe3=-(1.d0-z**2)*g0f(rs)/(sqrt(2.d0*pi)*rs**3)
|
||||
coe3=-(1.d0-z**2)*g0f(rs)/(dsqrt(2.d0*pi)*rs**3)
|
||||
|
||||
if(abs(z).eq.1.d0) then
|
||||
if(dabs(z).eq.1.d0) then
|
||||
|
||||
coe4=-9.d0/64.d0/rs**3*(dpol(rs) -cf**2*2d0**(5.d0/3.d0)/5.d0/rs**2)
|
||||
coe5=-9.d0/40.d0/(sqrt(2.d0*pi)*rs**3)*dpol(rs)
|
||||
coe5=-9.d0/40.d0/(dsqrt(2.d0*pi)*rs**3)*dpol(rs)
|
||||
|
||||
else
|
||||
|
||||
@ -393,7 +424,7 @@ subroutine ecorrlr(rs,z,mu,eclr)
|
||||
(1.-z**2)*d2anti-cf**2/10.d0*((1.d0+z)**(8.d0/3.d0) &
|
||||
+(1.-z)**(8.d0/3.d0))/rs**2)
|
||||
|
||||
coe5=-9.d0/40.d0/(sqrt(2.d0*pi)*rs**3)*(((1.d0+z)/2.d0)**2 &
|
||||
coe5=-9.d0/40.d0/(dsqrt(2.d0*pi)*rs**3)*(((1.d0+z)/2.d0)**2 &
|
||||
*dpol(rs*(2.d0/(1.d0+z))**(1.d0/3.d0))+((1.d0-z)/2.d0)**2 &
|
||||
*dpol(rs*(2.d0/(1.d0-z))**(1.d0/3.d0))+(1.d0-z**2)* &
|
||||
d3anti)
|
||||
@ -409,13 +440,13 @@ subroutine ecorrlr(rs,z,mu,eclr)
|
||||
a3=b0**8*coe3
|
||||
a4=b0**6*(b0**2*coe2+4.d0*ec)
|
||||
|
||||
if(mu*sqrt(rs)/phi.lt.0.d0)then
|
||||
if(mu*dsqrt(rs)/phi.lt.0.d0)then
|
||||
print*,'phi',phi
|
||||
print*,'mu ',mu
|
||||
print*,'rs ',rs
|
||||
stop -1
|
||||
endif
|
||||
eclr=(phi**3*Qrpa(mu*sqrt(rs)/phi)+a1*mu**3+a2*mu**4+a3*mu**5+ &
|
||||
eclr=(phi**3*Qrpa(mu*dsqrt(rs)/phi)+a1*mu**3+a2*mu**4+a3*mu**5+ &
|
||||
a4*mu**6+b0**8*mu**8*ec)/((1.d0+b0**2*mu**2)**4)
|
||||
|
||||
return
|
||||
@ -467,18 +498,29 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
|
||||
!SCF
|
||||
|
||||
b0=adib*rs
|
||||
double precision :: exp_q3a_rs,exp_t3a_rs
|
||||
if(dabs(q3a*rs).lt.50.d0)then
|
||||
exp_q3a_rs = dexp(-q3a*rs)
|
||||
else
|
||||
exp_q3a_rs = 0.d0
|
||||
endif
|
||||
if(dabs(t3a*rs).lt.50.d0)then
|
||||
exp_t3a_rs = dexp(-t3a*rs)
|
||||
else
|
||||
exp_t3a_rs = 0.d0
|
||||
endif
|
||||
|
||||
d2anti=(q1a+q2a*rs)*exp(-q3a*rs)/rs
|
||||
d3anti=(t1a+t2a*rs)*exp(-t3a*rs)/rs**2
|
||||
d2anti=(q1a+q2a*rs)*exp_q3a_rs/rs
|
||||
d3anti=(t1a+t2a*rs)*exp_t3a_rs/rs**2
|
||||
|
||||
d2antid=-((q1a + q1a*q3a*rs + q2a*q3a*rs**2)/rs**2)*exp(-q3a*rs)
|
||||
d3antid=-((rs*t2a*(1d0 + rs*t3a) + t1a*(2d0 + rs*t3a))/rs**3)*exp(-rs*t3a)
|
||||
d2antid=-((q1a + q1a*q3a*rs + q2a*q3a*rs**2)/rs**2)*exp_q3a_rs
|
||||
d3antid=-((rs*t2a*(1d0 + rs*t3a) + t1a*(2d0 + rs*t3a))/rs**3)*exp_t3a_rs
|
||||
|
||||
!SCD
|
||||
d2antidd = exp(-q3a*rs)/rs**3*( &
|
||||
d2antidd = exp_q3a_rs/rs**3*( &
|
||||
q3a**2*q1a*rs**2+q2a*q3a**2*rs**3 &
|
||||
+2.d0*q3a*q1a*rs+2.d0*q1a)
|
||||
d3antidd = exp(-t3a*rs)/rs**4* &
|
||||
d3antidd = exp_t3a_rs/rs**4* &
|
||||
(2.d0*t3a*t2a*rs**2 + 2.d0*t2a*rs &
|
||||
+ t1a*t3a**2*rs**2 + t2a*t3a**2*rs**3 &
|
||||
+ 4.d0*t1a*t3a*rs + 6.d0*t1a)
|
||||
@ -526,7 +568,7 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
|
||||
+dpoldd(rs)*rs**4)
|
||||
coe4zd = 0.d0
|
||||
|
||||
coe5rsd = -9.d0/40.d0/sqrt(2.d0/pi)/rs**5* &
|
||||
coe5rsd = -9.d0/40.d0/dsqrt(2.d0/pi)/rs**5* &
|
||||
(12.d0*dpol(rs)-6.d0*rs*dpold(rs) &
|
||||
+rs**2*dpoldd(rs))
|
||||
coe5zd = 0.d0
|
||||
@ -670,7 +712,7 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
|
||||
a5zd= 0.d0
|
||||
!SCF
|
||||
|
||||
x=mu*sqrt(rs)/phi
|
||||
x=mu*dsqrt(rs)/phi
|
||||
|
||||
eclr=(phi**3*Qrpa(x)+a1*mu**3+a2*mu**4+a3*mu**5+ &
|
||||
a4*mu**6+a5*mu**8)/((1.d0+b0**2*mu**2)**4)
|
||||
@ -759,8 +801,14 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
|
||||
D0f = 0.752411d0
|
||||
E0f = -0.0127713d0
|
||||
F0f = 0.00185898d0
|
||||
double precision :: exp_d0fx
|
||||
if(dabs(D0f*x).lt.50.d0)then
|
||||
exp_d0fx = dexp(-dabs(D0f)*x)
|
||||
else
|
||||
exp_d0fx = 0.d0
|
||||
endif
|
||||
g0f=(1.d0-(0.7317d0-D0f)*x+C0f*x**2+E0f*x**3+ &
|
||||
F0f*x**4)*exp(-abs(D0f)*x)/2.d0
|
||||
F0f*x**4)*exp_d0fx/2.d0
|
||||
return
|
||||
end
|
||||
|
||||
@ -774,7 +822,11 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
|
||||
Dg0 = -0.0127713d0
|
||||
Eg0 = 0.00185898d0
|
||||
Bg0 =0.7317d0-Fg0
|
||||
expsum=exp(-Fg0*rs)
|
||||
if(dabs(Fg0*rs).lt.50.d0)then
|
||||
expsum=dexp(-Fg0*rs)
|
||||
else
|
||||
expsum = 0.d0
|
||||
endif
|
||||
g0d=(-Bg0+2d0*Cg0*rs+3d0*Dg0*rs**2+4d0*Eg0*rs**3)/2.d0 &
|
||||
*expsum &
|
||||
- (Fg0*(1d0 - Bg0*rs + Cg0*rs**2 + Dg0*rs**3 + Eg0*rs**4))/ &
|
||||
@ -791,7 +843,11 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
|
||||
Dg0 = -0.0127713d0
|
||||
Eg0 = 0.00185898d0
|
||||
Bg0 = 0.7317d0-Fg0
|
||||
expsum=exp(-Fg0*rs)
|
||||
if(dabs(Fg0*rs).lt.50.d0)then
|
||||
expsum=dexp(-Fg0*rs)
|
||||
else
|
||||
expsum=0.d0
|
||||
endif
|
||||
g0dd = (2.d0*Cg0+6.d0*Dg0*rs+12.d0*Eg0*rs**2)/2.d0* &
|
||||
expsum &
|
||||
- (-Bg0+2.d0*Cg0*rs+3.d0*Dg0*rs**2+4.d0*Eg0*rs**3)*Fg0* &
|
||||
@ -856,19 +912,12 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
|
||||
implicit none
|
||||
double precision pi,a2,b2,c2,d2,x,Acoul
|
||||
pi=dacos(-1.d0)
|
||||
Acoul=2.d0*(log(2.d0)-1.d0)/pi**2
|
||||
Acoul=2.d0*(dlog(2.d0)-1.d0)/pi**2
|
||||
a2 = 5.84605d0
|
||||
c2 = 3.91744d0
|
||||
d2 = 3.44851d0
|
||||
b2=d2-3.d0/(2.d0*pi*Acoul)*(4.d0/(9.d0*pi))**(1.d0/3.d0)
|
||||
!if(((1.d0+a2*x+b2*x**2+c2*x**3)/(1.d0+a2*x+d2*x**2)).le.0.d0)then
|
||||
! print*,(1.d0+a2*x+b2*x**2+c2*x**3)/(1.d0+a2*x+d2*x**2)
|
||||
! print*,(1.d0+a2*x+b2*x**2+c2*x**3),(1.d0+a2*x+d2*x**2)
|
||||
! print*,x
|
||||
! pause
|
||||
!endif
|
||||
!Qrpa=Acoul*log(dabs((1.d0+a2*x+b2*x**2+c2*x**3)/(1.d0+a2*x+d2*x**2)))
|
||||
Qrpa=Acoul*log((1.d0+a2*x+b2*x**2+c2*x**3)/(1.d0+a2*x+d2*x**2))
|
||||
Qrpa=Acoul*dlog((1.d0+a2*x+b2*x**2+c2*x**3)/(1.d0+a2*x+d2*x**2))
|
||||
return
|
||||
end
|
||||
|
||||
@ -876,7 +925,7 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
|
||||
implicit none
|
||||
double precision pi,a2,b2,c2,d2,x,Acoul
|
||||
pi=dacos(-1.d0)
|
||||
Acoul=2.d0*(log(2.d0)-1.d0)/pi**2
|
||||
Acoul=2.d0*(dlog(2.d0)-1.d0)/pi**2
|
||||
a2 = 5.84605d0
|
||||
c2 = 3.91744d0
|
||||
d2 = 3.44851d0
|
||||
@ -894,7 +943,7 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
|
||||
double precision pi,a2,b2,c2,d2,x,Acoul
|
||||
double precision uQ,duQ,dduQ,vQ,dvQ,ddvQ
|
||||
pi=dacos(-1.d0)
|
||||
Acoul=2.d0*(log(2.d0)-1.d0)/pi**2
|
||||
Acoul=2.d0*(dlog(2.d0)-1.d0)/pi**2
|
||||
a2 = 5.84605d0
|
||||
c2 = 3.91744d0
|
||||
d2 = 3.44851d0
|
||||
@ -934,7 +983,7 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
|
||||
ff=((1.d0+y)**(4.d0/3.d0)+(1.d0-y)**(4.d0/3.d0)- &
|
||||
2.d0)/(2.d0**(4.d0/3.d0)-2.d0)
|
||||
|
||||
aaa=(1.d0-log(2.d0))/pi**2
|
||||
aaa=(1.d0-dlog(2.d0))/pi**2
|
||||
call GPW(x,aaa,0.21370d0,7.5957d0,3.5876d0, &
|
||||
1.6382d0,0.49294d0,G,Gd,Gdd)
|
||||
ec0=G
|
||||
@ -969,8 +1018,6 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
|
||||
return
|
||||
end
|
||||
|
||||
! subroutine GPW(x,Ac,alfa1,beta1,beta2,beta3,beta4,G,Gd)
|
||||
!SCD
|
||||
subroutine GPW(x,Ac,alfa1,beta1,beta2,beta3,beta4,G,Gd,Gdd)
|
||||
!SCF
|
||||
!cc Gd is d/drs G
|
||||
@ -982,7 +1029,7 @@ subroutine vcorrlr(rs,z,mu,vclrup,vclrdown,vclrupd,vclrdownd)
|
||||
double precision A,dA,ddA,B
|
||||
!SCF
|
||||
double precision sqrtx
|
||||
sqrtx=sqrt(x)
|
||||
sqrtx=dsqrt(x)
|
||||
G=-2.d0*Ac*(1.d0+alfa1*x)*dlog(1.d0+1.d0/(2.d0* &
|
||||
Ac*(beta1*x**0.5d0+ &
|
||||
beta2*x+beta3*x**1.5d0+beta4*x**2)))
|
||||
|
Loading…
Reference in New Issue
Block a user