10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-11 05:28:24 +01:00

complex determinants

This commit is contained in:
Kevin Gasperich 2020-02-19 17:59:27 -06:00
parent c0ee3714e6
commit 5c66e4b99f
5 changed files with 171 additions and 2 deletions

View File

@ -529,7 +529,11 @@ subroutine make_s2_eigenfunction
if (update) then
call copy_H_apply_buffer_to_wf
if (is_complex) then
TOUCH N_det psi_coef_complex psi_det psi_occ_pattern N_occ_pattern
else
TOUCH N_det psi_coef psi_det psi_occ_pattern N_occ_pattern
endif
endif
call write_time(6)

View File

@ -25,7 +25,11 @@ BEGIN_PROVIDER [ logical, pruned, (N_det) ]
else
ndet_new = max(1,int( dble(N_det) * (1.d0 - pruning) + 0.5d0 ))
if (is_complex) then
thr = psi_average_norm_contrib_sorted_complex(ndet_new)
else
thr = psi_average_norm_contrib_sorted(ndet_new)
endif
do i=1, N_det
pruned(i) = psi_average_norm_contrib(i) < thr
enddo

View File

@ -150,7 +150,20 @@ END_PROVIDER
double precision :: hij,norm,u_dot_v
psi_cas_energy = 0.d0
if (is_complex) then
complex*16 :: hij_c
do k = 1, N_states
norm = 0.d0
do i = 1, N_det_cas_complex
norm += cdabs(psi_cas_coef_complex(i,k) * psi_cas_coef_complex(i,k))
do j = 1, N_det_cas_complex
!TODO: accum imag parts to ensure that sum is zero?
psi_cas_energy(k) += dble(dconjg(psi_cas_coef_complex(i,k)) * psi_cas_coef_complex(j,k) * H_matrix_cas_complex(i,j))
enddo
enddo
psi_cas_energy(k) = psi_cas_energy(k) /norm
enddo
else
do k = 1, N_states
norm = 0.d0
do i = 1, N_det_cas
@ -161,6 +174,7 @@ END_PROVIDER
enddo
psi_cas_energy(k) = psi_cas_energy(k) /norm
enddo
endif
END_PROVIDER

View File

@ -0,0 +1,145 @@
use bitmasks
BEGIN_PROVIDER [ integer(bit_kind), psi_cas_complex, (N_int,2,psi_det_size) ]
&BEGIN_PROVIDER [ complex*16, psi_cas_coef_complex, (psi_det_size,n_states) ]
&BEGIN_PROVIDER [ integer, idx_cas_complex, (psi_det_size) ]
&BEGIN_PROVIDER [ integer, N_det_cas_complex ]
implicit none
BEGIN_DOC
! |CAS| wave function, defined from the application of the |CAS| bitmask on the
! determinants. idx_cas gives the indice of the |CAS| determinant in psi_det.
END_DOC
integer :: i, k, l
logical :: good
n_det_cas_complex = 0
do i=1,N_det
do l = 1, N_states
psi_cas_coef_complex(i,l) = (0.d0,0.d0)
enddo
good = .True.
do k=1,N_int
good = good .and. ( &
iand(not(act_bitmask(k,1)), psi_det(k,1,i)) == &
iand(not(act_bitmask(k,1)), hf_bitmask(k,1)) ) .and. ( &
iand(not(act_bitmask(k,2)), psi_det(k,2,i)) == &
iand(not(act_bitmask(k,2)), hf_bitmask(k,2)) )
enddo
if (good) then
exit
endif
if (good) then
n_det_cas_complex = n_det_cas_complex+1
do k=1,N_int
psi_cas_complex(k,1,n_det_cas_complex) = psi_det(k,1,i)
psi_cas_complex(k,2,n_det_cas_complex) = psi_det(k,2,i)
enddo
idx_cas(n_det_cas_complex) = i
do k=1,N_states
psi_cas_coef_complex(n_det_cas_complex,k) = psi_coef_complex(i,k)
enddo
endif
enddo
call write_int(6,n_det_cas_complex, 'Number of determinants in the CAS')
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_cas_sorted_bit_complex, (N_int,2,psi_det_size) ]
&BEGIN_PROVIDER [ complex*16, psi_cas_coef_sorted_bit_complex, (psi_det_size,N_states) ]
implicit none
BEGIN_DOC
! |CAS| determinants sorted to accelerate the search of a random determinant in the wave
! function.
END_DOC
call sort_dets_by_det_search_key_complex(n_det_cas_complex, psi_cas_complex, psi_cas_coef_complex, size(psi_cas_coef_complex,1), &
psi_cas_sorted_bit_complex, psi_cas_coef_sorted_bit_complex, N_states)
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_non_cas_complex, (N_int,2,psi_det_size) ]
&BEGIN_PROVIDER [ complex*16, psi_non_cas_coef,_complex (psi_det_size,n_states) ]
&BEGIN_PROVIDER [ integer, idx_non_cas_complex, (psi_det_size) ]
&BEGIN_PROVIDER [ integer, N_det_non_cas_complex ]
implicit none
BEGIN_DOC
! Set of determinants which are not part of the |CAS|, defined from the application
! of the |CAS| bitmask on the determinants.
! idx_non_cas gives the indice of the determinant in psi_det.
END_DOC
integer :: i_non_cas,j,k
integer :: degree
logical :: in_cas
i_non_cas =0
do k=1,N_det
in_cas = .False.
do j=1,N_det_cas_complex
call get_excitation_degree(psi_cas_complex(1,1,j), psi_det(1,1,k), degree, N_int)
if (degree == 0) then
in_cas = .True.
exit
endif
enddo
if (.not.in_cas) then
double precision :: hij
i_non_cas += 1
do j=1,N_int
psi_non_cas_complex(j,1,i_non_cas) = psi_det(j,1,k)
psi_non_cas_complex(j,2,i_non_cas) = psi_det(j,2,k)
enddo
do j=1,N_states
psi_non_cas_coef_complex(i_non_cas,j) = psi_coef_complex(k,j)
enddo
idx_non_cas_complex(i_non_cas) = k
endif
enddo
N_det_non_cas_complex = i_non_cas
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_non_cas_sorted_bit_complex, (N_int,2,psi_det_size) ]
&BEGIN_PROVIDER [ complex*16, psi_non_cas_coef_sorted_bit_complex, (psi_det_size,N_states) ]
implicit none
BEGIN_DOC
! |CAS| determinants sorted to accelerate the search of a random determinant in the wave
! function.
END_DOC
!TODO: should this be n_det_non_cas_complex?
call sort_dets_by_det_search_key_complex(N_det_cas_complex, psi_non_cas_complex, psi_non_cas_coef_complex, size(psi_non_cas_coef_complex,1), &
psi_non_cas_sorted_bit_complex, psi_non_cas_coef_sorted_bit_complex, N_states)
END_PROVIDER
BEGIN_PROVIDER [complex*16, H_matrix_cas_complex, (N_det_cas_complex,N_det_cas_complex)]
implicit none
integer :: i,j
complex*16 :: hij
do i = 1, N_det_cas_complex
do j = 1, N_det_cas_complex
call i_h_j_complex(psi_cas_complex(1,1,i),psi_cas_complex(1,1,j),N_int,hij)
H_matrix_cas_complex(i,j) = hij
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [complex*16, psi_coef_cas_diagonalized_complex, (N_det_cas_complex,N_states)]
&BEGIN_PROVIDER [double precision, psi_cas_energy_diagonalized_complex, (N_states)]
implicit none
integer :: i,j
double precision, allocatable :: eigenvalues(:)
complex*16, allocatable :: eigenvectors(:,:)
allocate (eigenvectors(size(H_matrix_cas,1),N_det_cas))
allocate (eigenvalues(N_det_cas))
call lapack_diag_complex(eigenvalues,eigenvectors, &
H_matrix_cas_complex,size(H_matrix_cas_complex,1),N_det_cas_complex)
do i = 1, N_states
psi_cas_energy_diagonalized_complex(i) = eigenvalues(i)
do j = 1, N_det_cas_complex
psi_coef_cas_diagonalized_complex(j,i) = eigenvectors(j,i)
enddo
enddo
END_PROVIDER

View File

@ -13,12 +13,14 @@ determinants:
ezfio_set_determinants_psi_coef_complex_qp_edit? (need ocaml?)
psi_coef_{max,min}?
save_wavefunction_specified{,_complex} qp_edit save?
psi_energy_mono_elec
diag_h_mat_elem for complex
...
DONE
create_excitations
build_singly_excited_wavefunction{_complex}
...
-------------------------------------------------------------------------------------