mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-10 13:08:19 +01:00
Merge branch 'cleaning_dft' of https://github.com/QuantumPackage/qp2 into cleaning_dft
This commit is contained in:
commit
5b67fbd810
@ -1,9 +1,3 @@
|
|||||||
[pert_2rdm]
|
|
||||||
type: logical
|
|
||||||
doc: If true, computes the one- and two-body rdms with perturbation theory
|
|
||||||
interface: ezfio,provider,ocaml
|
|
||||||
default: False
|
|
||||||
|
|
||||||
[save_wf_after_selection]
|
[save_wf_after_selection]
|
||||||
type: logical
|
type: logical
|
||||||
doc: If true, saves the wave function after the selection, before the diagonalization
|
doc: If true, saves the wave function after the selection, before the diagonalization
|
||||||
|
@ -2,5 +2,4 @@ perturbation
|
|||||||
zmq
|
zmq
|
||||||
mpi
|
mpi
|
||||||
iterations
|
iterations
|
||||||
two_body_rdm
|
|
||||||
csf
|
csf
|
||||||
|
@ -1,183 +0,0 @@
|
|||||||
|
|
||||||
use bitmasks
|
|
||||||
use omp_lib
|
|
||||||
|
|
||||||
BEGIN_PROVIDER [ integer(omp_lock_kind), pert_2rdm_lock]
|
|
||||||
use f77_zmq
|
|
||||||
implicit none
|
|
||||||
call omp_init_lock(pert_2rdm_lock)
|
|
||||||
END_PROVIDER
|
|
||||||
|
|
||||||
BEGIN_PROVIDER [integer, n_orb_pert_rdm]
|
|
||||||
implicit none
|
|
||||||
n_orb_pert_rdm = n_act_orb
|
|
||||||
END_PROVIDER
|
|
||||||
|
|
||||||
BEGIN_PROVIDER [integer, list_orb_reverse_pert_rdm, (mo_num)]
|
|
||||||
implicit none
|
|
||||||
list_orb_reverse_pert_rdm = list_act_reverse
|
|
||||||
|
|
||||||
END_PROVIDER
|
|
||||||
|
|
||||||
BEGIN_PROVIDER [integer, list_orb_pert_rdm, (n_orb_pert_rdm)]
|
|
||||||
implicit none
|
|
||||||
list_orb_pert_rdm = list_act
|
|
||||||
|
|
||||||
END_PROVIDER
|
|
||||||
|
|
||||||
BEGIN_PROVIDER [double precision, pert_2rdm_provider, (n_orb_pert_rdm,n_orb_pert_rdm,n_orb_pert_rdm,n_orb_pert_rdm)]
|
|
||||||
implicit none
|
|
||||||
pert_2rdm_provider = 0.d0
|
|
||||||
|
|
||||||
END_PROVIDER
|
|
||||||
|
|
||||||
subroutine fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf, psi_det_connection, psi_coef_connection_reverse, n_det_connection)
|
|
||||||
use bitmasks
|
|
||||||
use selection_types
|
|
||||||
implicit none
|
|
||||||
|
|
||||||
integer, intent(in) :: n_det_connection
|
|
||||||
double precision, intent(in) :: psi_coef_connection_reverse(N_states,n_det_connection)
|
|
||||||
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
|
|
||||||
integer, intent(in) :: i_generator, sp, h1, h2
|
|
||||||
double precision, intent(in) :: mat(N_states, mo_num, mo_num)
|
|
||||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
|
|
||||||
double precision, intent(in) :: fock_diag_tmp(mo_num)
|
|
||||||
double precision, intent(in) :: E0(N_states)
|
|
||||||
type(pt2_type), intent(inout) :: pt2_data
|
|
||||||
type(selection_buffer), intent(inout) :: buf
|
|
||||||
logical :: ok
|
|
||||||
integer :: s1, s2, p1, p2, ib, j, istate, jstate
|
|
||||||
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
|
|
||||||
double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp, alpha_h_psi, coef(N_states)
|
|
||||||
double precision, external :: diag_H_mat_elem_fock
|
|
||||||
double precision :: E_shift
|
|
||||||
|
|
||||||
logical, external :: detEq
|
|
||||||
double precision, allocatable :: values(:)
|
|
||||||
integer, allocatable :: keys(:,:)
|
|
||||||
integer :: nkeys
|
|
||||||
integer :: sze_buff
|
|
||||||
sze_buff = 5 * mo_num ** 2
|
|
||||||
allocate(keys(4,sze_buff),values(sze_buff))
|
|
||||||
nkeys = 0
|
|
||||||
if(sp == 3) then
|
|
||||||
s1 = 1
|
|
||||||
s2 = 2
|
|
||||||
else
|
|
||||||
s1 = sp
|
|
||||||
s2 = sp
|
|
||||||
end if
|
|
||||||
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
|
|
||||||
E_shift = 0.d0
|
|
||||||
|
|
||||||
if (h0_type == 'CFG') then
|
|
||||||
j = det_to_configuration(i_generator)
|
|
||||||
E_shift = psi_det_Hii(i_generator) - psi_configuration_Hii(j)
|
|
||||||
endif
|
|
||||||
|
|
||||||
do p1=1,mo_num
|
|
||||||
if(bannedOrb(p1, s1)) cycle
|
|
||||||
ib = 1
|
|
||||||
if(sp /= 3) ib = p1+1
|
|
||||||
|
|
||||||
do p2=ib,mo_num
|
|
||||||
|
|
||||||
! -----
|
|
||||||
! /!\ Generating only single excited determinants doesn't work because a
|
|
||||||
! determinant generated by a single excitation may be doubly excited wrt
|
|
||||||
! to a determinant of the future. In that case, the determinant will be
|
|
||||||
! detected as already generated when generating in the future with a
|
|
||||||
! double excitation.
|
|
||||||
!
|
|
||||||
! if (.not.do_singles) then
|
|
||||||
! if ((h1 == p1) .or. (h2 == p2)) then
|
|
||||||
! cycle
|
|
||||||
! endif
|
|
||||||
! endif
|
|
||||||
!
|
|
||||||
! if (.not.do_doubles) then
|
|
||||||
! if ((h1 /= p1).and.(h2 /= p2)) then
|
|
||||||
! cycle
|
|
||||||
! endif
|
|
||||||
! endif
|
|
||||||
! -----
|
|
||||||
|
|
||||||
if(bannedOrb(p2, s2)) cycle
|
|
||||||
if(banned(p1,p2)) cycle
|
|
||||||
|
|
||||||
|
|
||||||
if( sum(abs(mat(1:N_states, p1, p2))) == 0d0) cycle
|
|
||||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
|
||||||
|
|
||||||
if (do_only_cas) then
|
|
||||||
integer, external :: number_of_holes, number_of_particles
|
|
||||||
if (number_of_particles(det)>0) then
|
|
||||||
cycle
|
|
||||||
endif
|
|
||||||
if (number_of_holes(det)>0) then
|
|
||||||
cycle
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
|
|
||||||
if (do_ddci) then
|
|
||||||
logical, external :: is_a_two_holes_two_particles
|
|
||||||
if (is_a_two_holes_two_particles(det)) then
|
|
||||||
cycle
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
|
|
||||||
if (do_only_1h1p) then
|
|
||||||
logical, external :: is_a_1h1p
|
|
||||||
if (.not.is_a_1h1p(det)) cycle
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
|
|
||||||
|
|
||||||
sum_e_pert = 0d0
|
|
||||||
integer :: degree
|
|
||||||
call get_excitation_degree(det,HF_bitmask,degree,N_int)
|
|
||||||
if(degree == 2)cycle
|
|
||||||
do istate=1,N_states
|
|
||||||
delta_E = E0(istate) - Hii + E_shift
|
|
||||||
alpha_h_psi = mat(istate, p1, p2)
|
|
||||||
val = alpha_h_psi + alpha_h_psi
|
|
||||||
tmp = dsqrt(delta_E * delta_E + val * val)
|
|
||||||
if (delta_E < 0.d0) then
|
|
||||||
tmp = -tmp
|
|
||||||
endif
|
|
||||||
e_pert = 0.5d0 * (tmp - delta_E)
|
|
||||||
coef(istate) = e_pert / alpha_h_psi
|
|
||||||
print*,e_pert,coef,alpha_h_psi
|
|
||||||
pt2_data % pt2(istate) += e_pert
|
|
||||||
pt2_data % variance(istate) += alpha_h_psi * alpha_h_psi
|
|
||||||
enddo
|
|
||||||
|
|
||||||
do istate=1,N_states
|
|
||||||
alpha_h_psi = mat(istate, p1, p2)
|
|
||||||
e_pert = coef(istate) * alpha_h_psi
|
|
||||||
do jstate=1,N_states
|
|
||||||
pt2_data % overlap(jstate,jstate) = coef(istate) * coef(jstate)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
if (weight_selection /= 5) then
|
|
||||||
! Energy selection
|
|
||||||
sum_e_pert = sum_e_pert + e_pert * selection_weight(istate)
|
|
||||||
|
|
||||||
else
|
|
||||||
! Variance selection
|
|
||||||
sum_e_pert = sum_e_pert - alpha_h_psi * alpha_h_psi * selection_weight(istate)
|
|
||||||
endif
|
|
||||||
end do
|
|
||||||
call give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection_reverse,n_det_connection,nkeys,keys,values,sze_buff)
|
|
||||||
|
|
||||||
if(sum_e_pert <= buf%mini) then
|
|
||||||
call add_to_selection_buffer(buf, det, sum_e_pert)
|
|
||||||
end if
|
|
||||||
end do
|
|
||||||
end do
|
|
||||||
call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
@ -133,7 +133,7 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
|
|||||||
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted
|
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted
|
||||||
PROVIDE psi_det_hii selection_weight pseudo_sym
|
PROVIDE psi_det_hii selection_weight pseudo_sym
|
||||||
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
|
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
|
||||||
PROVIDE pert_2rdm excitation_beta_max excitation_alpha_max excitation_max
|
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
|
||||||
|
|
||||||
if (h0_type == 'CFG') then
|
if (h0_type == 'CFG') then
|
||||||
PROVIDE psi_configuration_hii det_to_configuration
|
PROVIDE psi_configuration_hii det_to_configuration
|
||||||
|
@ -464,14 +464,14 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
|||||||
|
|
||||||
allocate (fullminilist (N_int, 2, fullinteresting(0)), &
|
allocate (fullminilist (N_int, 2, fullinteresting(0)), &
|
||||||
minilist (N_int, 2, interesting(0)) )
|
minilist (N_int, 2, interesting(0)) )
|
||||||
if(pert_2rdm)then
|
! if(pert_2rdm)then
|
||||||
allocate(coef_fullminilist_rev(N_states,fullinteresting(0)))
|
! allocate(coef_fullminilist_rev(N_states,fullinteresting(0)))
|
||||||
do i=1,fullinteresting(0)
|
! do i=1,fullinteresting(0)
|
||||||
do j = 1, N_states
|
! do j = 1, N_states
|
||||||
coef_fullminilist_rev(j,i) = psi_coef_sorted(fullinteresting(i),j)
|
! coef_fullminilist_rev(j,i) = psi_coef_sorted(fullinteresting(i),j)
|
||||||
enddo
|
! enddo
|
||||||
enddo
|
! enddo
|
||||||
endif
|
! endif
|
||||||
|
|
||||||
do i=1,fullinteresting(0)
|
do i=1,fullinteresting(0)
|
||||||
do k=1,N_int
|
do k=1,N_int
|
||||||
@ -531,19 +531,19 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
|||||||
|
|
||||||
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
|
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
|
||||||
|
|
||||||
if(.not.pert_2rdm)then
|
! if(.not.pert_2rdm)then
|
||||||
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
|
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
|
||||||
else
|
! else
|
||||||
call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
|
! call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
|
||||||
endif
|
! endif
|
||||||
end if
|
end if
|
||||||
enddo
|
enddo
|
||||||
if(s1 /= s2) monoBdo = .false.
|
if(s1 /= s2) monoBdo = .false.
|
||||||
enddo
|
enddo
|
||||||
deallocate(fullminilist,minilist)
|
deallocate(fullminilist,minilist)
|
||||||
if(pert_2rdm)then
|
! if(pert_2rdm)then
|
||||||
deallocate(coef_fullminilist_rev)
|
! deallocate(coef_fullminilist_rev)
|
||||||
endif
|
! endif
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
|
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
|
||||||
|
@ -1,223 +0,0 @@
|
|||||||
use bitmasks
|
|
||||||
|
|
||||||
subroutine give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection_reverse,n_det_connection,nkeys,keys,values,sze_buff)
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: n_det_connection,sze_buff
|
|
||||||
double precision, intent(in) :: coef(N_states)
|
|
||||||
integer(bit_kind), intent(in) :: det(N_int,2)
|
|
||||||
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
|
|
||||||
double precision, intent(in) :: psi_coef_connection_reverse(N_states,n_det_connection)
|
|
||||||
integer, intent(inout) :: keys(4,sze_buff),nkeys
|
|
||||||
double precision, intent(inout) :: values(sze_buff)
|
|
||||||
integer :: i,j
|
|
||||||
integer :: exc(0:2,2,2)
|
|
||||||
integer :: degree
|
|
||||||
double precision :: phase, contrib
|
|
||||||
do i = 1, n_det_connection
|
|
||||||
call get_excitation(det,psi_det_connection(1,1,i),exc,degree,phase,N_int)
|
|
||||||
if(degree.gt.2)cycle
|
|
||||||
contrib = 0.d0
|
|
||||||
do j = 1, N_states
|
|
||||||
contrib += state_average_weight(j) * psi_coef_connection_reverse(j,i) * phase * coef(j)
|
|
||||||
enddo
|
|
||||||
! case of single excitations
|
|
||||||
if(degree == 1)then
|
|
||||||
if (nkeys + 6 * elec_alpha_num .ge. sze_buff)then
|
|
||||||
call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
|
|
||||||
nkeys = 0
|
|
||||||
endif
|
|
||||||
call update_buffer_single_exc_rdm(det,psi_det_connection(1,1,i),exc,phase,contrib,nkeys,keys,values,sze_buff)
|
|
||||||
else
|
|
||||||
!! case of double excitations
|
|
||||||
! if (nkeys + 4 .ge. sze_buff)then
|
|
||||||
! call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
|
|
||||||
! nkeys = 0
|
|
||||||
! endif
|
|
||||||
! call update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
!call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
|
|
||||||
!nkeys = 0
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
subroutine update_buffer_single_exc_rdm(det1,det2,exc,phase,contrib,nkeys,keys,values,sze_buff)
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: sze_buff
|
|
||||||
integer(bit_kind), intent(in) :: det1(N_int,2)
|
|
||||||
integer(bit_kind), intent(in) :: det2(N_int,2)
|
|
||||||
integer,intent(in) :: exc(0:2,2,2)
|
|
||||||
double precision,intent(in) :: phase, contrib
|
|
||||||
integer, intent(inout) :: nkeys, keys(4,sze_buff)
|
|
||||||
double precision, intent(inout):: values(sze_buff)
|
|
||||||
|
|
||||||
integer :: occ(N_int*bit_kind_size,2)
|
|
||||||
integer :: n_occ_ab(2),ispin,other_spin
|
|
||||||
integer :: h1,h2,p1,p2,i
|
|
||||||
call bitstring_to_list_ab(det1, occ, n_occ_ab, N_int)
|
|
||||||
|
|
||||||
if (exc(0,1,1) == 1) then
|
|
||||||
! Mono alpha
|
|
||||||
h1 = exc(1,1,1)
|
|
||||||
p1 = exc(1,2,1)
|
|
||||||
ispin = 1
|
|
||||||
other_spin = 2
|
|
||||||
else
|
|
||||||
! Mono beta
|
|
||||||
h1 = exc(1,1,2)
|
|
||||||
p1 = exc(1,2,2)
|
|
||||||
ispin = 2
|
|
||||||
other_spin = 1
|
|
||||||
endif
|
|
||||||
if(list_orb_reverse_pert_rdm(h1).lt.0)return
|
|
||||||
h1 = list_orb_reverse_pert_rdm(h1)
|
|
||||||
if(list_orb_reverse_pert_rdm(p1).lt.0)return
|
|
||||||
p1 = list_orb_reverse_pert_rdm(p1)
|
|
||||||
!update the alpha/beta part
|
|
||||||
do i = 1, n_occ_ab(other_spin)
|
|
||||||
h2 = occ(i,other_spin)
|
|
||||||
if(list_orb_reverse_pert_rdm(h2).lt.0)return
|
|
||||||
h2 = list_orb_reverse_pert_rdm(h2)
|
|
||||||
|
|
||||||
nkeys += 1
|
|
||||||
values(nkeys) = 0.5d0 * contrib * phase
|
|
||||||
keys(1,nkeys) = h1
|
|
||||||
keys(2,nkeys) = h2
|
|
||||||
keys(3,nkeys) = p1
|
|
||||||
keys(4,nkeys) = h2
|
|
||||||
nkeys += 1
|
|
||||||
values(nkeys) = 0.5d0 * contrib * phase
|
|
||||||
keys(1,nkeys) = h2
|
|
||||||
keys(2,nkeys) = h1
|
|
||||||
keys(3,nkeys) = h2
|
|
||||||
keys(4,nkeys) = p1
|
|
||||||
enddo
|
|
||||||
!update the same spin part
|
|
||||||
!do i = 1, n_occ_ab(ispin)
|
|
||||||
! h2 = occ(i,ispin)
|
|
||||||
! if(list_orb_reverse_pert_rdm(h2).lt.0)return
|
|
||||||
! h2 = list_orb_reverse_pert_rdm(h2)
|
|
||||||
|
|
||||||
! nkeys += 1
|
|
||||||
! values(nkeys) = 0.5d0 * contrib * phase
|
|
||||||
! keys(1,nkeys) = h1
|
|
||||||
! keys(2,nkeys) = h2
|
|
||||||
! keys(3,nkeys) = p1
|
|
||||||
! keys(4,nkeys) = h2
|
|
||||||
|
|
||||||
! nkeys += 1
|
|
||||||
! values(nkeys) = - 0.5d0 * contrib * phase
|
|
||||||
! keys(1,nkeys) = h1
|
|
||||||
! keys(2,nkeys) = h2
|
|
||||||
! keys(3,nkeys) = h2
|
|
||||||
! keys(4,nkeys) = p1
|
|
||||||
!
|
|
||||||
! nkeys += 1
|
|
||||||
! values(nkeys) = 0.5d0 * contrib * phase
|
|
||||||
! keys(1,nkeys) = h2
|
|
||||||
! keys(2,nkeys) = h1
|
|
||||||
! keys(3,nkeys) = h2
|
|
||||||
! keys(4,nkeys) = p1
|
|
||||||
|
|
||||||
! nkeys += 1
|
|
||||||
! values(nkeys) = - 0.5d0 * contrib * phase
|
|
||||||
! keys(1,nkeys) = h2
|
|
||||||
! keys(2,nkeys) = h1
|
|
||||||
! keys(3,nkeys) = p1
|
|
||||||
! keys(4,nkeys) = h2
|
|
||||||
!enddo
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
subroutine update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: sze_buff
|
|
||||||
integer,intent(in) :: exc(0:2,2,2)
|
|
||||||
double precision,intent(in) :: phase, contrib
|
|
||||||
integer, intent(inout) :: nkeys, keys(4,sze_buff)
|
|
||||||
double precision, intent(inout):: values(sze_buff)
|
|
||||||
integer :: h1,h2,p1,p2
|
|
||||||
|
|
||||||
if (exc(0,1,1) == 1) then
|
|
||||||
! Double alpha/beta
|
|
||||||
h1 = exc(1,1,1)
|
|
||||||
h2 = exc(1,1,2)
|
|
||||||
p1 = exc(1,2,1)
|
|
||||||
p2 = exc(1,2,2)
|
|
||||||
! check if the orbitals involved are within the orbital range
|
|
||||||
if(list_orb_reverse_pert_rdm(h1).lt.0)return
|
|
||||||
h1 = list_orb_reverse_pert_rdm(h1)
|
|
||||||
if(list_orb_reverse_pert_rdm(h2).lt.0)return
|
|
||||||
h2 = list_orb_reverse_pert_rdm(h2)
|
|
||||||
if(list_orb_reverse_pert_rdm(p1).lt.0)return
|
|
||||||
p1 = list_orb_reverse_pert_rdm(p1)
|
|
||||||
if(list_orb_reverse_pert_rdm(p2).lt.0)return
|
|
||||||
p2 = list_orb_reverse_pert_rdm(p2)
|
|
||||||
nkeys += 1
|
|
||||||
values(nkeys) = 0.5d0 * contrib * phase
|
|
||||||
keys(1,nkeys) = h1
|
|
||||||
keys(2,nkeys) = h2
|
|
||||||
keys(3,nkeys) = p1
|
|
||||||
keys(4,nkeys) = p2
|
|
||||||
nkeys += 1
|
|
||||||
values(nkeys) = 0.5d0 * contrib * phase
|
|
||||||
keys(1,nkeys) = p1
|
|
||||||
keys(2,nkeys) = p2
|
|
||||||
keys(3,nkeys) = h1
|
|
||||||
keys(4,nkeys) = h2
|
|
||||||
|
|
||||||
else
|
|
||||||
if (exc(0,1,1) == 2) then
|
|
||||||
! Double alpha/alpha
|
|
||||||
h1 = exc(1,1,1)
|
|
||||||
h2 = exc(2,1,1)
|
|
||||||
p1 = exc(1,2,1)
|
|
||||||
p2 = exc(2,2,1)
|
|
||||||
else if (exc(0,1,2) == 2) then
|
|
||||||
! Double beta
|
|
||||||
h1 = exc(1,1,2)
|
|
||||||
h2 = exc(2,1,2)
|
|
||||||
p1 = exc(1,2,2)
|
|
||||||
p2 = exc(2,2,2)
|
|
||||||
endif
|
|
||||||
! check if the orbitals involved are within the orbital range
|
|
||||||
if(list_orb_reverse_pert_rdm(h1).lt.0)return
|
|
||||||
h1 = list_orb_reverse_pert_rdm(h1)
|
|
||||||
if(list_orb_reverse_pert_rdm(h2).lt.0)return
|
|
||||||
h2 = list_orb_reverse_pert_rdm(h2)
|
|
||||||
if(list_orb_reverse_pert_rdm(p1).lt.0)return
|
|
||||||
p1 = list_orb_reverse_pert_rdm(p1)
|
|
||||||
if(list_orb_reverse_pert_rdm(p2).lt.0)return
|
|
||||||
p2 = list_orb_reverse_pert_rdm(p2)
|
|
||||||
nkeys += 1
|
|
||||||
values(nkeys) = 0.5d0 * contrib * phase
|
|
||||||
keys(1,nkeys) = h1
|
|
||||||
keys(2,nkeys) = h2
|
|
||||||
keys(3,nkeys) = p1
|
|
||||||
keys(4,nkeys) = p2
|
|
||||||
|
|
||||||
nkeys += 1
|
|
||||||
values(nkeys) = - 0.5d0 * contrib * phase
|
|
||||||
keys(1,nkeys) = h1
|
|
||||||
keys(2,nkeys) = h2
|
|
||||||
keys(3,nkeys) = p2
|
|
||||||
keys(4,nkeys) = p1
|
|
||||||
|
|
||||||
nkeys += 1
|
|
||||||
values(nkeys) = 0.5d0 * contrib * phase
|
|
||||||
keys(1,nkeys) = h2
|
|
||||||
keys(2,nkeys) = h1
|
|
||||||
keys(3,nkeys) = p2
|
|
||||||
keys(4,nkeys) = p1
|
|
||||||
|
|
||||||
nkeys += 1
|
|
||||||
values(nkeys) = - 0.5d0 * contrib * phase
|
|
||||||
keys(1,nkeys) = h2
|
|
||||||
keys(2,nkeys) = h1
|
|
||||||
keys(3,nkeys) = p1
|
|
||||||
keys(4,nkeys) = p2
|
|
||||||
endif
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
@ -22,7 +22,7 @@ subroutine ZMQ_selection(N_in, pt2_data)
|
|||||||
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
||||||
PROVIDE psi_bilinear_matrix_transp_order selection_weight pseudo_sym
|
PROVIDE psi_bilinear_matrix_transp_order selection_weight pseudo_sym
|
||||||
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
|
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
|
||||||
PROVIDE pert_2rdm excitation_beta_max excitation_alpha_max excitation_max
|
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
|
||||||
|
|
||||||
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'selection')
|
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'selection')
|
||||||
|
|
||||||
|
481
src/dav_general_mat/dav_diag_dressed_ext_rout.irp.f
Normal file
481
src/dav_general_mat/dav_diag_dressed_ext_rout.irp.f
Normal file
@ -0,0 +1,481 @@
|
|||||||
|
|
||||||
|
subroutine davidson_general_ext_rout(u_in,H_jj,Dress_jj,energies,sze,N_st,N_st_diag_in,converged,hcalc)
|
||||||
|
use mmap_module
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! Generic Davidson diagonalization with ONE DIAGONAL DRESSING OPERATOR
|
||||||
|
!
|
||||||
|
! Dress_jj : DIAGONAL DRESSING of the Hamiltonian
|
||||||
|
!
|
||||||
|
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||||
|
!
|
||||||
|
! u_in : guess coefficients on the various states. Overwritten on exit
|
||||||
|
!
|
||||||
|
! sze : leftmost dimension of u_in
|
||||||
|
!
|
||||||
|
! sze : Number of determinants
|
||||||
|
!
|
||||||
|
! N_st : Number of eigenstates
|
||||||
|
!
|
||||||
|
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
|
||||||
|
!
|
||||||
|
! Initial guess vectors are not necessarily orthonormal
|
||||||
|
!
|
||||||
|
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
|
||||||
|
END_DOC
|
||||||
|
integer, intent(in) :: sze, N_st, N_st_diag_in
|
||||||
|
double precision, intent(in) :: H_jj(sze),Dress_jj(sze)
|
||||||
|
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
|
||||||
|
double precision, intent(out) :: energies(N_st)
|
||||||
|
external hcalc
|
||||||
|
|
||||||
|
integer :: iter, N_st_diag
|
||||||
|
integer :: i,j,k,l,m
|
||||||
|
logical, intent(inout) :: converged
|
||||||
|
|
||||||
|
double precision, external :: u_dot_v, u_dot_u
|
||||||
|
|
||||||
|
integer :: k_pairs, kl
|
||||||
|
|
||||||
|
integer :: iter2, itertot
|
||||||
|
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||||
|
double precision, allocatable :: residual_norm(:)
|
||||||
|
character*(16384) :: write_buffer
|
||||||
|
double precision :: to_print(2,N_st)
|
||||||
|
double precision :: cpu, wall
|
||||||
|
integer :: shift, shift2, itermax, istate
|
||||||
|
double precision :: r1, r2, alpha
|
||||||
|
integer :: nproc_target
|
||||||
|
integer :: order(N_st_diag_in)
|
||||||
|
double precision :: cmax
|
||||||
|
double precision, allocatable :: U(:,:), overlap(:,:)!, S_d(:,:)
|
||||||
|
double precision, pointer :: W(:,:)
|
||||||
|
logical :: disk_based
|
||||||
|
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
|
||||||
|
|
||||||
|
include 'constants.include.F'
|
||||||
|
|
||||||
|
N_st_diag = N_st_diag_in
|
||||||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
||||||
|
if (N_st_diag*3 > sze) then
|
||||||
|
print *, 'error in Davidson :'
|
||||||
|
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
||||||
|
stop -1
|
||||||
|
endif
|
||||||
|
|
||||||
|
itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
|
||||||
|
itertot = 0
|
||||||
|
|
||||||
|
if (state_following) then
|
||||||
|
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
|
||||||
|
else
|
||||||
|
allocate(overlap(1,1)) ! avoid 'if' for deallocate
|
||||||
|
endif
|
||||||
|
overlap = 0.d0
|
||||||
|
|
||||||
|
provide threshold_davidson !nthreads_davidson
|
||||||
|
call write_time(6)
|
||||||
|
write(6,'(A)') ''
|
||||||
|
write(6,'(A)') 'Davidson Diagonalization'
|
||||||
|
write(6,'(A)') '------------------------'
|
||||||
|
write(6,'(A)') ''
|
||||||
|
|
||||||
|
! Find max number of cores to fit in memory
|
||||||
|
! -----------------------------------------
|
||||||
|
|
||||||
|
nproc_target = nproc
|
||||||
|
double precision :: rss
|
||||||
|
integer :: maxab
|
||||||
|
maxab = sze
|
||||||
|
|
||||||
|
m=1
|
||||||
|
disk_based = .False.
|
||||||
|
call resident_memory(rss)
|
||||||
|
do
|
||||||
|
r1 = 8.d0 * &! bytes
|
||||||
|
( dble(sze)*(N_st_diag*itermax) &! U
|
||||||
|
+ 1.d0*dble(sze*m)*(N_st_diag*itermax) &! W
|
||||||
|
+ 2.0d0*(N_st_diag*itermax)**2 &! h,y
|
||||||
|
+ 2.d0*(N_st_diag*itermax) &! s2,lambda
|
||||||
|
+ 1.d0*(N_st_diag) &! residual_norm
|
||||||
|
! In H_S2_u_0_nstates_zmq
|
||||||
|
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
|
||||||
|
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
|
||||||
|
+ 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
|
||||||
|
+ nproc_target * &! In OMP section
|
||||||
|
( 1.d0*(N_int*maxab) &! buffer
|
||||||
|
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||||
|
) / 1024.d0**3
|
||||||
|
|
||||||
|
if (nproc_target == 0) then
|
||||||
|
call check_mem(r1,irp_here)
|
||||||
|
nproc_target = 1
|
||||||
|
exit
|
||||||
|
endif
|
||||||
|
|
||||||
|
if (r1+rss < qp_max_mem) then
|
||||||
|
exit
|
||||||
|
endif
|
||||||
|
|
||||||
|
if (itermax > 4) then
|
||||||
|
itermax = itermax - 1
|
||||||
|
else if (m==1.and.disk_based_davidson) then
|
||||||
|
m=0
|
||||||
|
disk_based = .True.
|
||||||
|
itermax = 6
|
||||||
|
else
|
||||||
|
nproc_target = nproc_target - 1
|
||||||
|
endif
|
||||||
|
|
||||||
|
enddo
|
||||||
|
nthreads_davidson = nproc_target
|
||||||
|
TOUCH nthreads_davidson
|
||||||
|
call write_int(6,N_st,'Number of states')
|
||||||
|
call write_int(6,N_st_diag,'Number of states in diagonalization')
|
||||||
|
call write_int(6,sze,'Number of basis functions')
|
||||||
|
call write_int(6,nproc_target,'Number of threads for diagonalization')
|
||||||
|
call write_double(6, r1, 'Memory(Gb)')
|
||||||
|
if (disk_based) then
|
||||||
|
print *, 'Using swap space to reduce RAM'
|
||||||
|
endif
|
||||||
|
|
||||||
|
double precision, allocatable :: H_jj_tmp(:)
|
||||||
|
ASSERT (N_st > 0)
|
||||||
|
ASSERT (sze > 0)
|
||||||
|
allocate(H_jj_tmp(sze))
|
||||||
|
|
||||||
|
do i=1,sze
|
||||||
|
H_jj_tmp(i) = H_jj(i) + Dress_jj(i)
|
||||||
|
enddo
|
||||||
|
|
||||||
|
!---------------
|
||||||
|
|
||||||
|
write(6,'(A)') ''
|
||||||
|
write_buffer = '====='
|
||||||
|
do i=1,N_st
|
||||||
|
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||||
|
enddo
|
||||||
|
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||||
|
write_buffer = 'Iter'
|
||||||
|
do i=1,N_st
|
||||||
|
write_buffer = trim(write_buffer)//' Energy Residual '
|
||||||
|
enddo
|
||||||
|
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||||
|
write_buffer = '====='
|
||||||
|
do i=1,N_st
|
||||||
|
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||||
|
enddo
|
||||||
|
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||||
|
|
||||||
|
|
||||||
|
allocate(W(sze,N_st_diag*itermax))
|
||||||
|
|
||||||
|
allocate( &
|
||||||
|
! Large
|
||||||
|
U(sze,N_st_diag*itermax), &
|
||||||
|
! Small
|
||||||
|
h(N_st_diag*itermax,N_st_diag*itermax), &
|
||||||
|
y(N_st_diag*itermax,N_st_diag*itermax), &
|
||||||
|
residual_norm(N_st_diag), &
|
||||||
|
lambda(N_st_diag*itermax))
|
||||||
|
|
||||||
|
h = 0.d0
|
||||||
|
U = 0.d0
|
||||||
|
y = 0.d0
|
||||||
|
|
||||||
|
|
||||||
|
ASSERT (N_st > 0)
|
||||||
|
ASSERT (N_st_diag >= N_st)
|
||||||
|
ASSERT (sze > 0)
|
||||||
|
|
||||||
|
! Davidson iterations
|
||||||
|
! ===================
|
||||||
|
|
||||||
|
converged = .False.
|
||||||
|
|
||||||
|
! Initialize from N_st to N_st_diat with gaussian random numbers
|
||||||
|
! to be sure to have overlap with any eigenvectors
|
||||||
|
do k=N_st+1,N_st_diag
|
||||||
|
u_in(k,k) = 10.d0
|
||||||
|
do i=1,sze
|
||||||
|
call random_number(r1)
|
||||||
|
call random_number(r2)
|
||||||
|
r1 = dsqrt(-2.d0*dlog(r1))
|
||||||
|
r2 = dtwo_pi*r2
|
||||||
|
u_in(i,k) = r1*dcos(r2)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
! Normalize all states
|
||||||
|
do k=1,N_st_diag
|
||||||
|
call normalize(u_in(1,k),sze)
|
||||||
|
enddo
|
||||||
|
|
||||||
|
! Copy from the guess input "u_in" to the working vectors "U"
|
||||||
|
do k=1,N_st_diag
|
||||||
|
do i=1,sze
|
||||||
|
U(i,k) = u_in(i,k)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
|
||||||
|
do while (.not.converged)
|
||||||
|
itertot = itertot+1
|
||||||
|
if (itertot == 8) then
|
||||||
|
exit
|
||||||
|
endif
|
||||||
|
|
||||||
|
do iter=1,itermax-1
|
||||||
|
|
||||||
|
shift = N_st_diag*(iter-1)
|
||||||
|
shift2 = N_st_diag*iter
|
||||||
|
|
||||||
|
if ((iter > 1).or.(itertot == 1)) then
|
||||||
|
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||||
|
! -----------------------------------
|
||||||
|
|
||||||
|
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
||||||
|
call ortho_qr(U,size(U,1),sze,shift2)
|
||||||
|
call ortho_qr(U,size(U,1),sze,shift2)
|
||||||
|
! it does W = H U with W(sze,N_st_diag),U(sze,N_st_diag)
|
||||||
|
! where sze is the size of the vector, N_st_diag is the number of states
|
||||||
|
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag,sze)
|
||||||
|
! Compute then the DIAGONAL PART OF THE DRESSING
|
||||||
|
! <i|W_k> += Dress_jj(i) * <i|U>
|
||||||
|
call dressing_diag_uv(W(1,shift+1),U(1,shift+1),Dress_jj,N_st_diag_in,sze)
|
||||||
|
else
|
||||||
|
! Already computed in update below
|
||||||
|
continue
|
||||||
|
endif
|
||||||
|
|
||||||
|
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||||
|
! -------------------------------------------
|
||||||
|
|
||||||
|
call dgemm('T','N', shift2, shift2, sze, &
|
||||||
|
1.d0, U, size(U,1), W, size(W,1), &
|
||||||
|
0.d0, h, size(h,1))
|
||||||
|
|
||||||
|
! Diagonalize h y = lambda y
|
||||||
|
! ---------------
|
||||||
|
|
||||||
|
call lapack_diag(lambda,y,h,size(h,1),shift2)
|
||||||
|
|
||||||
|
if (state_following) then
|
||||||
|
|
||||||
|
overlap = -1.d0
|
||||||
|
do k=1,shift2
|
||||||
|
do i=1,shift2
|
||||||
|
overlap(k,i) = dabs(y(k,i))
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
do k=1,N_st
|
||||||
|
cmax = -1.d0
|
||||||
|
do i=1,N_st
|
||||||
|
if (overlap(i,k) > cmax) then
|
||||||
|
cmax = overlap(i,k)
|
||||||
|
order(k) = i
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
do i=1,N_st_diag
|
||||||
|
overlap(order(k),i) = -1.d0
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
overlap = y
|
||||||
|
do k=1,N_st
|
||||||
|
l = order(k)
|
||||||
|
if (k /= l) then
|
||||||
|
y(1:shift2,k) = overlap(1:shift2,l)
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
do k=1,N_st
|
||||||
|
overlap(k,1) = lambda(k)
|
||||||
|
enddo
|
||||||
|
do k=1,N_st
|
||||||
|
l = order(k)
|
||||||
|
if (k /= l) then
|
||||||
|
lambda(k) = overlap(l,1)
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
|
||||||
|
endif
|
||||||
|
|
||||||
|
|
||||||
|
! Express eigenvectors of h in the determinant basis
|
||||||
|
! --------------------------------------------------
|
||||||
|
|
||||||
|
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||||
|
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
|
||||||
|
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||||
|
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
|
||||||
|
|
||||||
|
! Compute residual vector and davidson step
|
||||||
|
! -----------------------------------------
|
||||||
|
|
||||||
|
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||||
|
do k=1,N_st_diag
|
||||||
|
do i=1,sze
|
||||||
|
U(i,shift2+k) = &
|
||||||
|
(lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
|
||||||
|
/max(H_jj_tmp(i) - lambda (k),1.d-2)
|
||||||
|
enddo
|
||||||
|
|
||||||
|
if (k <= N_st) then
|
||||||
|
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
|
||||||
|
to_print(1,k) = lambda(k)
|
||||||
|
to_print(2,k) = residual_norm(k)
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
!$OMP END PARALLEL DO
|
||||||
|
|
||||||
|
|
||||||
|
if ((itertot>1).and.(iter == 1)) then
|
||||||
|
!don't print
|
||||||
|
continue
|
||||||
|
else
|
||||||
|
write(*,'(1X,I3,1X,100(1X,F16.10,1X,F11.6,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
|
||||||
|
endif
|
||||||
|
|
||||||
|
! Check convergence
|
||||||
|
if (iter > 1) then
|
||||||
|
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
|
||||||
|
endif
|
||||||
|
|
||||||
|
|
||||||
|
do k=1,N_st
|
||||||
|
if (residual_norm(k) > 1.e8) then
|
||||||
|
print *, 'Davidson failed'
|
||||||
|
stop -1
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
if (converged) then
|
||||||
|
exit
|
||||||
|
endif
|
||||||
|
|
||||||
|
logical, external :: qp_stop
|
||||||
|
if (qp_stop()) then
|
||||||
|
converged = .True.
|
||||||
|
exit
|
||||||
|
endif
|
||||||
|
|
||||||
|
|
||||||
|
enddo
|
||||||
|
|
||||||
|
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
|
||||||
|
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||||
|
do k=1,N_st_diag
|
||||||
|
do i=1,sze
|
||||||
|
W(i,k) = u_in(i,k)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
|
||||||
|
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||||
|
do k=1,N_st_diag
|
||||||
|
do i=1,sze
|
||||||
|
U(i,k) = u_in(i,k)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
call ortho_qr(U,size(U,1),sze,N_st_diag)
|
||||||
|
call ortho_qr(U,size(U,1),sze,N_st_diag)
|
||||||
|
do j=1,N_st_diag
|
||||||
|
k=1
|
||||||
|
do while ((k<sze).and.(U(k,j) == 0.d0))
|
||||||
|
k = k+1
|
||||||
|
enddo
|
||||||
|
if (U(k,j) * u_in(k,j) < 0.d0) then
|
||||||
|
do i=1,sze
|
||||||
|
W(i,j) = -W(i,j)
|
||||||
|
enddo
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
do k=1,N_st
|
||||||
|
energies(k) = lambda(k)
|
||||||
|
enddo
|
||||||
|
write_buffer = '====='
|
||||||
|
do i=1,N_st
|
||||||
|
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||||
|
enddo
|
||||||
|
write(6,'(A)') trim(write_buffer)
|
||||||
|
write(6,'(A)') ''
|
||||||
|
call write_time(6)
|
||||||
|
|
||||||
|
deallocate(W)
|
||||||
|
|
||||||
|
deallocate ( &
|
||||||
|
residual_norm, &
|
||||||
|
U, h, &
|
||||||
|
y, &
|
||||||
|
lambda &
|
||||||
|
)
|
||||||
|
deallocate(overlap)
|
||||||
|
FREE nthreads_davidson
|
||||||
|
end
|
||||||
|
|
||||||
|
subroutine hcalc_template(v,u,N_st,sze)
|
||||||
|
use bitmasks
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! Template of routine for the application of H
|
||||||
|
!
|
||||||
|
! Here, it is done with the Hamiltonian matrix
|
||||||
|
!
|
||||||
|
! on the set of determinants of psi_det
|
||||||
|
!
|
||||||
|
! Computes $v = H | u \rangle$
|
||||||
|
!
|
||||||
|
END_DOC
|
||||||
|
integer, intent(in) :: N_st,sze
|
||||||
|
double precision, intent(in) :: u(sze,N_st)
|
||||||
|
double precision, intent(inout) :: v(sze,N_st)
|
||||||
|
integer :: i,j,istate
|
||||||
|
v = 0.d0
|
||||||
|
do istate = 1, N_st
|
||||||
|
do i = 1, sze
|
||||||
|
do j = 1, sze
|
||||||
|
v(i,istate) += H_matrix_all_dets(j,i) * u(j,istate)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
do i = 1, sze
|
||||||
|
v(i,istate) += u(i,istate) * nuclear_repulsion
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
end
|
||||||
|
|
||||||
|
subroutine dressing_diag_uv(v,u,dress_diag,N_st,sze)
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! Routine that computes the diagonal part of the dressing
|
||||||
|
!
|
||||||
|
! v(i) += u(i) * dress_diag(i)
|
||||||
|
!
|
||||||
|
! !!!!!!!! WARNING !!!!!!!! the vector v is not initialized
|
||||||
|
!
|
||||||
|
! !!!!!!!! SO MAKE SURE THERE ARE SOME MEANINGFUL VALUES IN THERE
|
||||||
|
END_DOC
|
||||||
|
integer, intent(in) :: N_st,sze
|
||||||
|
double precision, intent(in) :: u(sze,N_st),dress_diag(sze)
|
||||||
|
double precision, intent(inout) :: v(sze,N_st)
|
||||||
|
integer :: i,istate
|
||||||
|
do istate = 1, N_st
|
||||||
|
do i = 1, sze
|
||||||
|
v(i,istate) += dress_diag(i) * u(i,istate)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
518
src/dav_general_mat/dav_double_dress_ext_rout.irp.f
Normal file
518
src/dav_general_mat/dav_double_dress_ext_rout.irp.f
Normal file
@ -0,0 +1,518 @@
|
|||||||
|
subroutine dav_double_dressed(u_in,H_jj,Dress_jj,Dressing_vec,idx_dress,energies,sze,N_st,N_st_diag,converged,hcalc)
|
||||||
|
use mmap_module
|
||||||
|
BEGIN_DOC
|
||||||
|
! Generic Davidson diagonalization with TWO DRESSING VECTORS
|
||||||
|
!
|
||||||
|
! Dress_jj : DIAGONAL DRESSING of the Hamiltonian
|
||||||
|
!
|
||||||
|
! Dressing_vec : COLUMN / LINE DRESSING VECTOR
|
||||||
|
!
|
||||||
|
! idx_dress : position of the basis function used to use the Dressing_vec (usually the largest coeff)
|
||||||
|
!
|
||||||
|
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||||
|
!
|
||||||
|
! u_in : guess coefficients on the various states. Overwritten on exit
|
||||||
|
!
|
||||||
|
! sze : leftmost dimension of u_in
|
||||||
|
!
|
||||||
|
! sze : Number of determinants
|
||||||
|
!
|
||||||
|
! N_st : Number of eigenstates
|
||||||
|
!
|
||||||
|
! N_st_diag : Number of states in which H is diagonalized. Assumed > sze
|
||||||
|
!
|
||||||
|
! Initial guess vectors are not necessarily orthonormal
|
||||||
|
!
|
||||||
|
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
|
||||||
|
END_DOC
|
||||||
|
implicit none
|
||||||
|
integer, intent(in) :: sze, N_st, N_st_diag, idx_dress
|
||||||
|
double precision, intent(in) :: H_jj(sze),Dress_jj(sze),Dressing_vec(sze,N_st)
|
||||||
|
double precision, intent(inout) :: u_in(sze,N_st_diag)
|
||||||
|
double precision, intent(out) :: energies(N_st_diag)
|
||||||
|
logical, intent(out) :: converged
|
||||||
|
external hcalc
|
||||||
|
|
||||||
|
double precision, allocatable :: H_jj_tmp(:)
|
||||||
|
ASSERT (N_st > 0)
|
||||||
|
ASSERT (sze > 0)
|
||||||
|
allocate(H_jj_tmp(sze))
|
||||||
|
|
||||||
|
do i=1,sze
|
||||||
|
H_jj_tmp(i) = H_jj(i) + Dress_jj(i)
|
||||||
|
enddo
|
||||||
|
do k=1,N_st
|
||||||
|
do i=1,sze
|
||||||
|
H_jj_tmp(i) += u_in(i,k) * Dressing_vec(i,k)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
integer :: iter
|
||||||
|
integer :: i,j,k,l,m
|
||||||
|
|
||||||
|
double precision, external :: u_dot_v, u_dot_u
|
||||||
|
|
||||||
|
integer :: k_pairs, kl
|
||||||
|
|
||||||
|
integer :: iter2, itertot
|
||||||
|
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||||
|
double precision, allocatable :: s_tmp(:,:)
|
||||||
|
double precision, allocatable :: residual_norm(:),inv_c_idx_dress_vec(:)
|
||||||
|
character*(16384) :: write_buffer
|
||||||
|
double precision :: to_print(2,N_st),inv_c_idx_dress
|
||||||
|
double precision :: cpu, wall
|
||||||
|
integer :: shift, shift2, itermax, istate
|
||||||
|
double precision :: r1, r2, alpha
|
||||||
|
logical :: state_ok(N_st_diag*davidson_sze_max)
|
||||||
|
integer :: nproc_target
|
||||||
|
integer :: order(N_st_diag)
|
||||||
|
double precision :: cmax
|
||||||
|
double precision, allocatable :: U(:,:), overlap(:,:)
|
||||||
|
double precision, pointer :: W(:,:)
|
||||||
|
logical :: disk_based
|
||||||
|
double precision :: energy_shift(N_st_diag*davidson_sze_max)
|
||||||
|
|
||||||
|
|
||||||
|
allocate(inv_c_idx_dress_vec(N_st))
|
||||||
|
inv_c_idx_dress = 1.d0/u_in(idx_dress,1)
|
||||||
|
do i = 1, N_st
|
||||||
|
inv_c_idx_dress_vec(i) = 1.d0/u_in(idx_dress,i)
|
||||||
|
enddo
|
||||||
|
include 'constants.include.F'
|
||||||
|
|
||||||
|
integer :: N_st_diag_in
|
||||||
|
N_st_diag_in = N_st_diag
|
||||||
|
|
||||||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
||||||
|
if (N_st_diag_in*3 > sze) then
|
||||||
|
print *, 'error in Davidson :'
|
||||||
|
print *, 'Increase n_det_max_full to ', N_st_diag_in*3
|
||||||
|
stop -1
|
||||||
|
endif
|
||||||
|
|
||||||
|
itermax = max(2,min(davidson_sze_max, sze/N_st_diag_in))+1
|
||||||
|
itertot = 0
|
||||||
|
|
||||||
|
if (state_following) then
|
||||||
|
allocate(overlap(N_st_diag_in*itermax, N_st_diag_in*itermax))
|
||||||
|
else
|
||||||
|
allocate(overlap(1,1)) ! avoid 'if' for deallocate
|
||||||
|
endif
|
||||||
|
overlap = 0.d0
|
||||||
|
|
||||||
|
call write_time(6)
|
||||||
|
write(6,'(A)') ''
|
||||||
|
write(6,'(A)') 'Davidson Diagonalization'
|
||||||
|
write(6,'(A)') '------------------------'
|
||||||
|
write(6,'(A)') ''
|
||||||
|
|
||||||
|
! Find max number of cores to fit in memory
|
||||||
|
! -----------------------------------------
|
||||||
|
|
||||||
|
nproc_target = nproc
|
||||||
|
double precision :: rss
|
||||||
|
integer :: maxab
|
||||||
|
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||||
|
|
||||||
|
m=1
|
||||||
|
disk_based = .False.
|
||||||
|
call resident_memory(rss)
|
||||||
|
do
|
||||||
|
r1 = 8.d0 * &! bytes
|
||||||
|
( dble(sze)*(N_st_diag_in*itermax) &! U
|
||||||
|
+ 1.0d0*dble(sze*m)*(N_st_diag_in*itermax) &! W
|
||||||
|
+ 3.0d0*(N_st_diag_in*itermax)**2 &! h,y,s_tmp
|
||||||
|
+ 1.d0*(N_st_diag_in*itermax) &! lambda
|
||||||
|
+ 1.d0*(N_st_diag_in) &! residual_norm
|
||||||
|
! In H_u_0_nstates_zmq
|
||||||
|
+ 2.d0*(N_st_diag_in*N_det) &! u_t, v_t, on collector
|
||||||
|
+ 2.d0*(N_st_diag_in*N_det) &! u_t, v_t, on slave
|
||||||
|
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
|
||||||
|
+ nproc_target * &! In OMP section
|
||||||
|
( 1.d0*(N_int*maxab) &! buffer
|
||||||
|
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||||
|
) / 1024.d0**3
|
||||||
|
|
||||||
|
if (nproc_target == 0) then
|
||||||
|
call check_mem(r1,irp_here)
|
||||||
|
nproc_target = 1
|
||||||
|
exit
|
||||||
|
endif
|
||||||
|
|
||||||
|
if (r1+rss < qp_max_mem) then
|
||||||
|
exit
|
||||||
|
endif
|
||||||
|
|
||||||
|
if (itermax > 4) then
|
||||||
|
itermax = itermax - 1
|
||||||
|
else if (m==1.and.disk_based_davidson) then
|
||||||
|
m=0
|
||||||
|
disk_based = .True.
|
||||||
|
itermax = 6
|
||||||
|
else
|
||||||
|
nproc_target = nproc_target - 1
|
||||||
|
endif
|
||||||
|
|
||||||
|
enddo
|
||||||
|
nthreads_davidson = nproc_target
|
||||||
|
TOUCH nthreads_davidson
|
||||||
|
call write_int(6,N_st,'Number of states')
|
||||||
|
call write_int(6,N_st_diag_in,'Number of states in diagonalization')
|
||||||
|
call write_int(6,sze,'Number of basis functions ')
|
||||||
|
call write_int(6,nproc_target,'Number of threads for diagonalization')
|
||||||
|
call write_double(6, r1, 'Memory(Gb)')
|
||||||
|
if (disk_based) then
|
||||||
|
print *, 'Using swap space to reduce RAM'
|
||||||
|
endif
|
||||||
|
|
||||||
|
!---------------
|
||||||
|
|
||||||
|
write(6,'(A)') ''
|
||||||
|
write_buffer = '====='
|
||||||
|
do i=1,N_st
|
||||||
|
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||||
|
enddo
|
||||||
|
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||||
|
write_buffer = 'Iter'
|
||||||
|
do i=1,N_st
|
||||||
|
write_buffer = trim(write_buffer)//' Energy Residual '
|
||||||
|
enddo
|
||||||
|
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||||
|
write_buffer = '====='
|
||||||
|
do i=1,N_st
|
||||||
|
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||||
|
enddo
|
||||||
|
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||||
|
|
||||||
|
|
||||||
|
allocate(W(sze,N_st_diag_in*itermax))
|
||||||
|
|
||||||
|
allocate( &
|
||||||
|
! Large
|
||||||
|
U(sze,N_st_diag_in*itermax), &
|
||||||
|
|
||||||
|
! Small
|
||||||
|
h(N_st_diag_in*itermax,N_st_diag_in*itermax), &
|
||||||
|
y(N_st_diag_in*itermax,N_st_diag_in*itermax), &
|
||||||
|
s_tmp(N_st_diag_in*itermax,N_st_diag_in*itermax), &
|
||||||
|
residual_norm(N_st_diag_in), &
|
||||||
|
lambda(N_st_diag_in*itermax))
|
||||||
|
|
||||||
|
h = 0.d0
|
||||||
|
U = 0.d0
|
||||||
|
y = 0.d0
|
||||||
|
s_tmp = 0.d0
|
||||||
|
|
||||||
|
|
||||||
|
ASSERT (N_st > 0)
|
||||||
|
ASSERT (N_st_diag_in >= N_st)
|
||||||
|
ASSERT (sze > 0)
|
||||||
|
|
||||||
|
! Davidson iterations
|
||||||
|
! ===================
|
||||||
|
|
||||||
|
converged = .False.
|
||||||
|
|
||||||
|
do k=N_st+1,N_st_diag_in
|
||||||
|
do i=1,sze
|
||||||
|
call random_number(r1)
|
||||||
|
call random_number(r2)
|
||||||
|
r1 = dsqrt(-2.d0*dlog(r1))
|
||||||
|
r2 = dtwo_pi*r2
|
||||||
|
u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st)
|
||||||
|
enddo
|
||||||
|
u_in(k,k) = u_in(k,k) + 10.d0
|
||||||
|
enddo
|
||||||
|
do k=1,N_st_diag_in
|
||||||
|
call normalize(u_in(1,k),sze)
|
||||||
|
enddo
|
||||||
|
|
||||||
|
do k=1,N_st_diag_in
|
||||||
|
do i=1,sze
|
||||||
|
U(i,k) = u_in(i,k)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
|
||||||
|
do while (.not.converged)
|
||||||
|
itertot = itertot+1
|
||||||
|
if (itertot == 2) then
|
||||||
|
exit
|
||||||
|
endif
|
||||||
|
|
||||||
|
do iter=1,itermax-1
|
||||||
|
|
||||||
|
shift = N_st_diag_in*(iter-1)
|
||||||
|
shift2 = N_st_diag_in*iter
|
||||||
|
|
||||||
|
if ((iter > 1).or.(itertot == 1)) then
|
||||||
|
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||||
|
! -----------------------------------
|
||||||
|
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag_in,sze)
|
||||||
|
! Compute then the DIAGONAL PART OF THE DRESSING
|
||||||
|
! <i|W_k> += Dress_jj(i) * <i|U>
|
||||||
|
call dressing_diag_uv(W(1,shift+1),U(1,shift+1),Dress_jj,N_st_diag_in,sze)
|
||||||
|
else
|
||||||
|
! Already computed in update below
|
||||||
|
continue
|
||||||
|
endif
|
||||||
|
|
||||||
|
|
||||||
|
if (N_st == 1) then
|
||||||
|
|
||||||
|
l = idx_dress
|
||||||
|
double precision :: f
|
||||||
|
f = inv_c_idx_dress
|
||||||
|
do istate=1,N_st_diag_in
|
||||||
|
do i=1,sze
|
||||||
|
W(i,shift+istate) += Dressing_vec(i,1) *f * U(l,shift+istate)
|
||||||
|
W(l,shift+istate) += Dressing_vec(i,1) *f * U(i,shift+istate)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
else
|
||||||
|
print*,'dav_double_dressed routine not yet implemented for N_st > 1'
|
||||||
|
!
|
||||||
|
! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, &
|
||||||
|
! psi_coef, size(psi_coef,1), &
|
||||||
|
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||||
|
!
|
||||||
|
! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, &
|
||||||
|
! Dressing_vec, size(Dressing_vec,1), s_tmp, size(s_tmp,1), &
|
||||||
|
! 1.d0, W(1,shift+1), size(W,1))
|
||||||
|
!
|
||||||
|
!
|
||||||
|
! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, &
|
||||||
|
! Dressing_vec, size(Dressing_vec,1), &
|
||||||
|
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||||
|
!
|
||||||
|
! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, &
|
||||||
|
! psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
|
||||||
|
! 1.d0, W(1,shift+1), size(W,1))
|
||||||
|
!
|
||||||
|
endif
|
||||||
|
|
||||||
|
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||||
|
! -------------------------------------------
|
||||||
|
|
||||||
|
call dgemm('T','N', shift2, shift2, sze, &
|
||||||
|
1.d0, U, size(U,1), W, size(W,1), &
|
||||||
|
0.d0, h, size(h,1))
|
||||||
|
call dgemm('T','N', shift2, shift2, sze, &
|
||||||
|
1.d0, U, size(U,1), U, size(U,1), &
|
||||||
|
0.d0, s_tmp, size(s_tmp,1))
|
||||||
|
|
||||||
|
! Diagonalize h
|
||||||
|
! ---------------
|
||||||
|
|
||||||
|
integer :: lwork, info
|
||||||
|
double precision, allocatable :: work(:)
|
||||||
|
|
||||||
|
y = h
|
||||||
|
lwork = -1
|
||||||
|
allocate(work(1))
|
||||||
|
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
||||||
|
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
|
||||||
|
lwork = int(work(1))
|
||||||
|
deallocate(work)
|
||||||
|
allocate(work(lwork))
|
||||||
|
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
||||||
|
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
|
||||||
|
deallocate(work)
|
||||||
|
if (info /= 0) then
|
||||||
|
stop 'DSYGV Diagonalization failed'
|
||||||
|
endif
|
||||||
|
|
||||||
|
! Compute Energy for each eigenvector
|
||||||
|
! -----------------------------------
|
||||||
|
|
||||||
|
call dgemm('N','N',shift2,shift2,shift2, &
|
||||||
|
1.d0, h, size(h,1), y, size(y,1), &
|
||||||
|
0.d0, s_tmp, size(s_tmp,1))
|
||||||
|
|
||||||
|
call dgemm('T','N',shift2,shift2,shift2, &
|
||||||
|
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
|
||||||
|
0.d0, h, size(h,1))
|
||||||
|
|
||||||
|
do k=1,shift2
|
||||||
|
lambda(k) = h(k,k)
|
||||||
|
enddo
|
||||||
|
|
||||||
|
if (state_following) then
|
||||||
|
|
||||||
|
overlap = -1.d0
|
||||||
|
do k=1,shift2
|
||||||
|
do i=1,shift2
|
||||||
|
overlap(k,i) = dabs(y(k,i))
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
do k=1,N_st
|
||||||
|
cmax = -1.d0
|
||||||
|
do i=1,N_st
|
||||||
|
if (overlap(i,k) > cmax) then
|
||||||
|
cmax = overlap(i,k)
|
||||||
|
order(k) = i
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
do i=1,N_st_diag_in
|
||||||
|
overlap(order(k),i) = -1.d0
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
overlap = y
|
||||||
|
do k=1,N_st
|
||||||
|
l = order(k)
|
||||||
|
if (k /= l) then
|
||||||
|
y(1:shift2,k) = overlap(1:shift2,l)
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
do k=1,N_st
|
||||||
|
overlap(k,1) = lambda(k)
|
||||||
|
enddo
|
||||||
|
|
||||||
|
endif
|
||||||
|
|
||||||
|
|
||||||
|
! Express eigenvectors of h in the determinant basis
|
||||||
|
! --------------------------------------------------
|
||||||
|
|
||||||
|
call dgemm('N','N', sze, N_st_diag_in, shift2, &
|
||||||
|
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
|
||||||
|
call dgemm('N','N', sze, N_st_diag_in, shift2, &
|
||||||
|
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
|
||||||
|
|
||||||
|
! Compute residual vector and davidson step
|
||||||
|
! -----------------------------------------
|
||||||
|
|
||||||
|
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||||
|
do k=1,N_st_diag_in
|
||||||
|
do i=1,sze
|
||||||
|
U(i,shift2+k) = &
|
||||||
|
(lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
|
||||||
|
/max(H_jj_tmp(i) - lambda (k),1.d-2)
|
||||||
|
enddo
|
||||||
|
|
||||||
|
if (k <= N_st) then
|
||||||
|
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
|
||||||
|
to_print(1,k) = lambda(k)
|
||||||
|
to_print(2,k) = residual_norm(k)
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
!$OMP END PARALLEL DO
|
||||||
|
|
||||||
|
|
||||||
|
if ((itertot>1).and.(iter == 1)) then
|
||||||
|
!don't print
|
||||||
|
continue
|
||||||
|
else
|
||||||
|
write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
|
||||||
|
endif
|
||||||
|
|
||||||
|
! Check convergence
|
||||||
|
if (iter > 1) then
|
||||||
|
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
|
||||||
|
endif
|
||||||
|
|
||||||
|
do k=1,N_st
|
||||||
|
if (residual_norm(k) > 1.d8) then
|
||||||
|
print *, 'Davidson failed'
|
||||||
|
stop -1
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
if (converged) then
|
||||||
|
exit
|
||||||
|
endif
|
||||||
|
|
||||||
|
logical, external :: qp_stop
|
||||||
|
if (qp_stop()) then
|
||||||
|
converged = .True.
|
||||||
|
exit
|
||||||
|
endif
|
||||||
|
|
||||||
|
|
||||||
|
enddo
|
||||||
|
|
||||||
|
! Re-contract U and update W
|
||||||
|
! --------------------------------
|
||||||
|
|
||||||
|
call dgemm('N','N', sze, N_st_diag_in, shift2, 1.d0, &
|
||||||
|
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||||
|
do k=1,N_st_diag_in
|
||||||
|
do i=1,sze
|
||||||
|
W(i,k) = u_in(i,k)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
call dgemm('N','N', sze, N_st_diag_in, shift2, 1.d0, &
|
||||||
|
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||||
|
|
||||||
|
do k=1,N_st_diag_in
|
||||||
|
do i=1,sze
|
||||||
|
U(i,k) = u_in(i,k)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
enddo
|
||||||
|
|
||||||
|
|
||||||
|
call nullify_small_elements(sze,N_st_diag_in,U,size(U,1),threshold_davidson_pt2)
|
||||||
|
do k=1,N_st_diag_in
|
||||||
|
do i=1,sze
|
||||||
|
u_in(i,k) = U(i,k)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
do k=1,N_st_diag_in
|
||||||
|
energies(k) = lambda(k)
|
||||||
|
enddo
|
||||||
|
write_buffer = '======'
|
||||||
|
do i=1,N_st
|
||||||
|
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||||
|
enddo
|
||||||
|
write(6,'(A)') trim(write_buffer)
|
||||||
|
write(6,'(A)') ''
|
||||||
|
call write_time(6)
|
||||||
|
|
||||||
|
deallocate(W)
|
||||||
|
|
||||||
|
deallocate ( &
|
||||||
|
residual_norm, &
|
||||||
|
U, overlap, &
|
||||||
|
h, y, s_tmp, &
|
||||||
|
lambda &
|
||||||
|
)
|
||||||
|
FREE nthreads_davidson
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
subroutine dressing_diag_uv(v,u,dress_diag,N_st,sze)
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! Routine that computes the diagonal part of the dressing
|
||||||
|
!
|
||||||
|
! v(i) += u(i) * dress_diag(i)
|
||||||
|
!
|
||||||
|
! !!!!!!!! WARNING !!!!!!!! the vector v is not initialized
|
||||||
|
!
|
||||||
|
! !!!!!!!! SO MAKE SURE THERE ARE SOME MEANINGFUL VALUES IN THERE
|
||||||
|
END_DOC
|
||||||
|
integer, intent(in) :: N_st,sze
|
||||||
|
double precision, intent(in) :: u(sze,N_st),dress_diag(sze)
|
||||||
|
double precision, intent(inout) :: v(sze,N_st)
|
||||||
|
integer :: i,istate
|
||||||
|
do istate = 1, N_st
|
||||||
|
do i = 1, sze
|
||||||
|
v(i,istate) += dress_diag(i) * u(i,istate)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -147,7 +147,7 @@ subroutine davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_di
|
|||||||
TOUCH nthreads_davidson
|
TOUCH nthreads_davidson
|
||||||
call write_int(6,N_st,'Number of states')
|
call write_int(6,N_st,'Number of states')
|
||||||
call write_int(6,N_st_diag,'Number of states in diagonalization')
|
call write_int(6,N_st_diag,'Number of states in diagonalization')
|
||||||
call write_int(6,sze,'Number of determinants')
|
call write_int(6,sze,'Number of basis function')
|
||||||
call write_int(6,nproc_target,'Number of threads for diagonalization')
|
call write_int(6,nproc_target,'Number of threads for diagonalization')
|
||||||
call write_double(6, r1, 'Memory(Gb)')
|
call write_double(6, r1, 'Memory(Gb)')
|
||||||
if (disk_based) then
|
if (disk_based) then
|
||||||
@ -387,7 +387,7 @@ subroutine davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_di
|
|||||||
|
|
||||||
if (k <= N_st) then
|
if (k <= N_st) then
|
||||||
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
|
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
|
||||||
to_print(1,k) = lambda(k) + nuclear_repulsion
|
to_print(1,k) = lambda(k)
|
||||||
to_print(2,k) = residual_norm(k)
|
to_print(2,k) = residual_norm(k)
|
||||||
endif
|
endif
|
||||||
enddo
|
enddo
|
||||||
|
@ -3,7 +3,7 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,co
|
|||||||
use mmap_module
|
use mmap_module
|
||||||
implicit none
|
implicit none
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
! Davidson diagonalization with specific diagonal elements of the H matrix
|
! Generic Davidson diagonalization
|
||||||
!
|
!
|
||||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||||
!
|
!
|
||||||
@ -221,7 +221,6 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,co
|
|||||||
if ((iter > 1).or.(itertot == 1)) then
|
if ((iter > 1).or.(itertot == 1)) then
|
||||||
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||||
! -----------------------------------
|
! -----------------------------------
|
||||||
|
|
||||||
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
||||||
call ortho_qr(U,size(U,1),sze,shift2)
|
call ortho_qr(U,size(U,1),sze,shift2)
|
||||||
call ortho_qr(U,size(U,1),sze,shift2)
|
call ortho_qr(U,size(U,1),sze,shift2)
|
||||||
@ -345,6 +344,9 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,co
|
|||||||
|
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
! Re-contract U and update W
|
||||||
|
! --------------------------------
|
||||||
|
|
||||||
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
|
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
|
||||||
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||||
do k=1,N_st_diag
|
do k=1,N_st_diag
|
||||||
|
@ -12,7 +12,7 @@ BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
|
|||||||
enddo
|
enddo
|
||||||
do j=1,min(N_det,N_states)
|
do j=1,min(N_det,N_states)
|
||||||
write(st,'(I4)') j
|
write(st,'(I4)') j
|
||||||
call write_double(6,CI_energy_dressed(j),'Energy of state '//trim(st))
|
call write_double(6,CI_energy_dressed(j),'Energy dressed of state '//trim(st))
|
||||||
call write_double(6,CI_eigenvectors_s2_dressed(j),'S^2 of state '//trim(st))
|
call write_double(6,CI_eigenvectors_s2_dressed(j),'S^2 of state '//trim(st))
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
@ -8,6 +8,7 @@ BEGIN_PROVIDER [ double precision, H_matrix_all_dets,(N_det,N_det) ]
|
|||||||
double precision :: hij
|
double precision :: hij
|
||||||
integer :: degree(N_det),idx(0:N_det)
|
integer :: degree(N_det),idx(0:N_det)
|
||||||
call i_H_j(psi_det(1,1,1),psi_det(1,1,1),N_int,hij)
|
call i_H_j(psi_det(1,1,1),psi_det(1,1,1),N_int,hij)
|
||||||
|
print*,'Providing the H_matrix_all_dets ...'
|
||||||
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j,hij,degree,idx,k) &
|
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j,hij,degree,idx,k) &
|
||||||
!$OMP SHARED (N_det, psi_det, N_int,H_matrix_all_dets)
|
!$OMP SHARED (N_det, psi_det, N_int,H_matrix_all_dets)
|
||||||
do i =1,N_det
|
do i =1,N_det
|
||||||
@ -18,6 +19,26 @@ BEGIN_PROVIDER [ double precision, H_matrix_all_dets,(N_det,N_det) ]
|
|||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
!$OMP END PARALLEL DO
|
!$OMP END PARALLEL DO
|
||||||
|
print*,'H_matrix_all_dets done '
|
||||||
|
END_PROVIDER
|
||||||
|
|
||||||
|
BEGIN_PROVIDER [ double precision, H_matrix_diag_all_dets,(N_det) ]
|
||||||
|
use bitmasks
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! |H| matrix on the basis of the Slater determinants defined by psi_det
|
||||||
|
END_DOC
|
||||||
|
integer :: i
|
||||||
|
double precision :: hij
|
||||||
|
integer :: degree(N_det)
|
||||||
|
call i_H_j(psi_det(1,1,1),psi_det(1,1,1),N_int,hij)
|
||||||
|
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,hij,degree) &
|
||||||
|
!$OMP SHARED (N_det, psi_det, N_int,H_matrix_diag_all_dets)
|
||||||
|
do i =1,N_det
|
||||||
|
call i_H_j(psi_det(1,1,i),psi_det(1,1,i),N_int,hij)
|
||||||
|
H_matrix_diag_all_dets(i) = hij
|
||||||
|
enddo
|
||||||
|
!$OMP END PARALLEL DO
|
||||||
END_PROVIDER
|
END_PROVIDER
|
||||||
|
|
||||||
|
|
||||||
|
@ -72,6 +72,7 @@ BEGIN_PROVIDER [double precision, mu_of_r_dft_average]
|
|||||||
r(3) = final_grid_points(3,i)
|
r(3) = final_grid_points(3,i)
|
||||||
call dm_dft_alpha_beta_at_r(r,dm_a,dm_b)
|
call dm_dft_alpha_beta_at_r(r,dm_a,dm_b)
|
||||||
rho = dm_a + dm_b
|
rho = dm_a + dm_b
|
||||||
|
if(mu_of_r_dft(i).gt.1.d+3)cycle
|
||||||
mu_of_r_dft_average += rho * mu_of_r_dft(i) * final_weight_at_r_vector(i)
|
mu_of_r_dft_average += rho * mu_of_r_dft(i) * final_weight_at_r_vector(i)
|
||||||
enddo
|
enddo
|
||||||
mu_of_r_dft_average = mu_of_r_dft_average / dble(elec_alpha_num + elec_beta_num)
|
mu_of_r_dft_average = mu_of_r_dft_average / dble(elec_alpha_num + elec_beta_num)
|
||||||
|
39
src/dft_utils_in_r/ints_grad.irp.f
Normal file
39
src/dft_utils_in_r/ints_grad.irp.f
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
BEGIN_PROVIDER [ double precision, mo_grad_ints, (mo_num, mo_num,3)]
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! mo_grad_ints(i,j,m) = <phi_i^MO | d/dx | phi_j^MO>
|
||||||
|
END_DOC
|
||||||
|
integer :: i,j,ipoint,m
|
||||||
|
double precision :: weight
|
||||||
|
mo_grad_ints = 0.d0
|
||||||
|
do m = 1, 3
|
||||||
|
do ipoint = 1, n_points_final_grid
|
||||||
|
weight = final_weight_at_r_vector(ipoint)
|
||||||
|
do j = 1, mo_num
|
||||||
|
do i = 1, mo_num
|
||||||
|
mo_grad_ints(i,j,m) += mos_grad_in_r_array(j,ipoint,m) * mos_in_r_array(i,ipoint) * weight
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
|
||||||
|
END_PROVIDER
|
||||||
|
|
||||||
|
BEGIN_PROVIDER [ double precision, mo_grad_ints_transp, (3,mo_num, mo_num)]
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! mo_grad_ints(i,j,m) = <phi_i^MO | d/dx | phi_j^MO>
|
||||||
|
END_DOC
|
||||||
|
integer :: i,j,ipoint,m
|
||||||
|
double precision :: weight
|
||||||
|
do m = 1, 3
|
||||||
|
do j = 1, mo_num
|
||||||
|
do i = 1, mo_num
|
||||||
|
mo_grad_ints_transp(m,i,j) = mo_grad_ints(i,j,m)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
|
||||||
|
END_PROVIDER
|
@ -98,7 +98,7 @@ subroutine print_summary(e_,pt2_data,pt2_data_err,n_det_,n_configuration_,n_st,s
|
|||||||
enddo
|
enddo
|
||||||
endif
|
endif
|
||||||
|
|
||||||
call print_energy_components()
|
! call print_energy_components()
|
||||||
|
|
||||||
end subroutine
|
end subroutine
|
||||||
|
|
||||||
|
@ -302,21 +302,21 @@ end
|
|||||||
integer(key_kind) :: idx
|
integer(key_kind) :: idx
|
||||||
double precision :: tmp
|
double precision :: tmp
|
||||||
|
|
||||||
icount = 1 ! Avoid division by zero
|
!icount = 1 ! Avoid division by zero
|
||||||
do j=1,mo_num
|
!do j=1,mo_num
|
||||||
do i=1,j-1
|
! do i=1,j-1
|
||||||
call two_e_integrals_index(i,j,j,i,idx)
|
! call two_e_integrals_index(i,j,j,i,idx)
|
||||||
!DIR$ FORCEINLINE
|
! !DIR$ FORCEINLINE
|
||||||
call map_get(mo_integrals_map,idx,tmp)
|
! call map_get(mo_integrals_map,idx,tmp)
|
||||||
banned_excitation(i,j) = dabs(tmp) < 1.d-14
|
! banned_excitation(i,j) = dabs(tmp) < 1.d-14
|
||||||
banned_excitation(j,i) = banned_excitation(i,j)
|
! banned_excitation(j,i) = banned_excitation(i,j)
|
||||||
if (banned_excitation(i,j)) icount = icount+2
|
! if (banned_excitation(i,j)) icount = icount+2
|
||||||
enddo
|
! enddo
|
||||||
enddo
|
!enddo
|
||||||
use_banned_excitation = (mo_num*mo_num) / icount <= 100 !1%
|
!use_banned_excitation = (mo_num*mo_num) / icount <= 100 !1%
|
||||||
if (use_banned_excitation) then
|
!if (use_banned_excitation) then
|
||||||
print *, 'Using sparsity of exchange integrals'
|
! print *, 'Using sparsity of exchange integrals'
|
||||||
endif
|
!endif
|
||||||
|
|
||||||
END_PROVIDER
|
END_PROVIDER
|
||||||
|
|
||||||
|
@ -2,3 +2,4 @@ fci
|
|||||||
mo_two_e_erf_ints
|
mo_two_e_erf_ints
|
||||||
aux_quantities
|
aux_quantities
|
||||||
hartree_fock
|
hartree_fock
|
||||||
|
two_body_rdm
|
||||||
|
Loading…
Reference in New Issue
Block a user