10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-22 20:34:58 +01:00

Merge branch 'cleaning_dft' of https://github.com/QuantumPackage/qp2 into cleaning_dft

This commit is contained in:
FiletoRodriguez 2021-11-09 15:48:58 +01:00
commit 5b67fbd810
19 changed files with 1103 additions and 453 deletions

View File

@ -1,9 +1,3 @@
[pert_2rdm]
type: logical
doc: If true, computes the one- and two-body rdms with perturbation theory
interface: ezfio,provider,ocaml
default: False
[save_wf_after_selection]
type: logical
doc: If true, saves the wave function after the selection, before the diagonalization

View File

@ -2,5 +2,4 @@ perturbation
zmq
mpi
iterations
two_body_rdm
csf

View File

@ -1,183 +0,0 @@
use bitmasks
use omp_lib
BEGIN_PROVIDER [ integer(omp_lock_kind), pert_2rdm_lock]
use f77_zmq
implicit none
call omp_init_lock(pert_2rdm_lock)
END_PROVIDER
BEGIN_PROVIDER [integer, n_orb_pert_rdm]
implicit none
n_orb_pert_rdm = n_act_orb
END_PROVIDER
BEGIN_PROVIDER [integer, list_orb_reverse_pert_rdm, (mo_num)]
implicit none
list_orb_reverse_pert_rdm = list_act_reverse
END_PROVIDER
BEGIN_PROVIDER [integer, list_orb_pert_rdm, (n_orb_pert_rdm)]
implicit none
list_orb_pert_rdm = list_act
END_PROVIDER
BEGIN_PROVIDER [double precision, pert_2rdm_provider, (n_orb_pert_rdm,n_orb_pert_rdm,n_orb_pert_rdm,n_orb_pert_rdm)]
implicit none
pert_2rdm_provider = 0.d0
END_PROVIDER
subroutine fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf, psi_det_connection, psi_coef_connection_reverse, n_det_connection)
use bitmasks
use selection_types
implicit none
integer, intent(in) :: n_det_connection
double precision, intent(in) :: psi_coef_connection_reverse(N_states,n_det_connection)
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
integer, intent(in) :: i_generator, sp, h1, h2
double precision, intent(in) :: mat(N_states, mo_num, mo_num)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states)
type(pt2_type), intent(inout) :: pt2_data
type(selection_buffer), intent(inout) :: buf
logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate, jstate
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp, alpha_h_psi, coef(N_states)
double precision, external :: diag_H_mat_elem_fock
double precision :: E_shift
logical, external :: detEq
double precision, allocatable :: values(:)
integer, allocatable :: keys(:,:)
integer :: nkeys
integer :: sze_buff
sze_buff = 5 * mo_num ** 2
allocate(keys(4,sze_buff),values(sze_buff))
nkeys = 0
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
E_shift = 0.d0
if (h0_type == 'CFG') then
j = det_to_configuration(i_generator)
E_shift = psi_det_Hii(i_generator) - psi_configuration_Hii(j)
endif
do p1=1,mo_num
if(bannedOrb(p1, s1)) cycle
ib = 1
if(sp /= 3) ib = p1+1
do p2=ib,mo_num
! -----
! /!\ Generating only single excited determinants doesn't work because a
! determinant generated by a single excitation may be doubly excited wrt
! to a determinant of the future. In that case, the determinant will be
! detected as already generated when generating in the future with a
! double excitation.
!
! if (.not.do_singles) then
! if ((h1 == p1) .or. (h2 == p2)) then
! cycle
! endif
! endif
!
! if (.not.do_doubles) then
! if ((h1 /= p1).and.(h2 /= p2)) then
! cycle
! endif
! endif
! -----
if(bannedOrb(p2, s2)) cycle
if(banned(p1,p2)) cycle
if( sum(abs(mat(1:N_states, p1, p2))) == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_only_cas) then
integer, external :: number_of_holes, number_of_particles
if (number_of_particles(det)>0) then
cycle
endif
if (number_of_holes(det)>0) then
cycle
endif
endif
if (do_ddci) then
logical, external :: is_a_two_holes_two_particles
if (is_a_two_holes_two_particles(det)) then
cycle
endif
endif
if (do_only_1h1p) then
logical, external :: is_a_1h1p
if (.not.is_a_1h1p(det)) cycle
endif
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
sum_e_pert = 0d0
integer :: degree
call get_excitation_degree(det,HF_bitmask,degree,N_int)
if(degree == 2)cycle
do istate=1,N_states
delta_E = E0(istate) - Hii + E_shift
alpha_h_psi = mat(istate, p1, p2)
val = alpha_h_psi + alpha_h_psi
tmp = dsqrt(delta_E * delta_E + val * val)
if (delta_E < 0.d0) then
tmp = -tmp
endif
e_pert = 0.5d0 * (tmp - delta_E)
coef(istate) = e_pert / alpha_h_psi
print*,e_pert,coef,alpha_h_psi
pt2_data % pt2(istate) += e_pert
pt2_data % variance(istate) += alpha_h_psi * alpha_h_psi
enddo
do istate=1,N_states
alpha_h_psi = mat(istate, p1, p2)
e_pert = coef(istate) * alpha_h_psi
do jstate=1,N_states
pt2_data % overlap(jstate,jstate) = coef(istate) * coef(jstate)
enddo
if (weight_selection /= 5) then
! Energy selection
sum_e_pert = sum_e_pert + e_pert * selection_weight(istate)
else
! Variance selection
sum_e_pert = sum_e_pert - alpha_h_psi * alpha_h_psi * selection_weight(istate)
endif
end do
call give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection_reverse,n_det_connection,nkeys,keys,values,sze_buff)
if(sum_e_pert <= buf%mini) then
call add_to_selection_buffer(buf, det, sum_e_pert)
end if
end do
end do
call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
end

View File

@ -133,7 +133,7 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted
PROVIDE psi_det_hii selection_weight pseudo_sym
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
PROVIDE pert_2rdm excitation_beta_max excitation_alpha_max excitation_max
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
if (h0_type == 'CFG') then
PROVIDE psi_configuration_hii det_to_configuration

View File

@ -464,14 +464,14 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
allocate (fullminilist (N_int, 2, fullinteresting(0)), &
minilist (N_int, 2, interesting(0)) )
if(pert_2rdm)then
allocate(coef_fullminilist_rev(N_states,fullinteresting(0)))
do i=1,fullinteresting(0)
do j = 1, N_states
coef_fullminilist_rev(j,i) = psi_coef_sorted(fullinteresting(i),j)
enddo
enddo
endif
! if(pert_2rdm)then
! allocate(coef_fullminilist_rev(N_states,fullinteresting(0)))
! do i=1,fullinteresting(0)
! do j = 1, N_states
! coef_fullminilist_rev(j,i) = psi_coef_sorted(fullinteresting(i),j)
! enddo
! enddo
! endif
do i=1,fullinteresting(0)
do k=1,N_int
@ -531,19 +531,19 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
if(.not.pert_2rdm)then
! if(.not.pert_2rdm)then
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
else
call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
endif
! else
! call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
! endif
end if
enddo
if(s1 /= s2) monoBdo = .false.
enddo
deallocate(fullminilist,minilist)
if(pert_2rdm)then
deallocate(coef_fullminilist_rev)
endif
! if(pert_2rdm)then
! deallocate(coef_fullminilist_rev)
! endif
enddo
enddo
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)

View File

@ -1,223 +0,0 @@
use bitmasks
subroutine give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection_reverse,n_det_connection,nkeys,keys,values,sze_buff)
implicit none
integer, intent(in) :: n_det_connection,sze_buff
double precision, intent(in) :: coef(N_states)
integer(bit_kind), intent(in) :: det(N_int,2)
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
double precision, intent(in) :: psi_coef_connection_reverse(N_states,n_det_connection)
integer, intent(inout) :: keys(4,sze_buff),nkeys
double precision, intent(inout) :: values(sze_buff)
integer :: i,j
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase, contrib
do i = 1, n_det_connection
call get_excitation(det,psi_det_connection(1,1,i),exc,degree,phase,N_int)
if(degree.gt.2)cycle
contrib = 0.d0
do j = 1, N_states
contrib += state_average_weight(j) * psi_coef_connection_reverse(j,i) * phase * coef(j)
enddo
! case of single excitations
if(degree == 1)then
if (nkeys + 6 * elec_alpha_num .ge. sze_buff)then
call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
nkeys = 0
endif
call update_buffer_single_exc_rdm(det,psi_det_connection(1,1,i),exc,phase,contrib,nkeys,keys,values,sze_buff)
else
!! case of double excitations
! if (nkeys + 4 .ge. sze_buff)then
! call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
! nkeys = 0
! endif
! call update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
endif
enddo
!call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
!nkeys = 0
end
subroutine update_buffer_single_exc_rdm(det1,det2,exc,phase,contrib,nkeys,keys,values,sze_buff)
implicit none
integer, intent(in) :: sze_buff
integer(bit_kind), intent(in) :: det1(N_int,2)
integer(bit_kind), intent(in) :: det2(N_int,2)
integer,intent(in) :: exc(0:2,2,2)
double precision,intent(in) :: phase, contrib
integer, intent(inout) :: nkeys, keys(4,sze_buff)
double precision, intent(inout):: values(sze_buff)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2),ispin,other_spin
integer :: h1,h2,p1,p2,i
call bitstring_to_list_ab(det1, occ, n_occ_ab, N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
p1 = exc(1,2,1)
ispin = 1
other_spin = 2
else
! Mono beta
h1 = exc(1,1,2)
p1 = exc(1,2,2)
ispin = 2
other_spin = 1
endif
if(list_orb_reverse_pert_rdm(h1).lt.0)return
h1 = list_orb_reverse_pert_rdm(h1)
if(list_orb_reverse_pert_rdm(p1).lt.0)return
p1 = list_orb_reverse_pert_rdm(p1)
!update the alpha/beta part
do i = 1, n_occ_ab(other_spin)
h2 = occ(i,other_spin)
if(list_orb_reverse_pert_rdm(h2).lt.0)return
h2 = list_orb_reverse_pert_rdm(h2)
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p1
keys(4,nkeys) = h2
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = h2
keys(4,nkeys) = p1
enddo
!update the same spin part
!do i = 1, n_occ_ab(ispin)
! h2 = occ(i,ispin)
! if(list_orb_reverse_pert_rdm(h2).lt.0)return
! h2 = list_orb_reverse_pert_rdm(h2)
! nkeys += 1
! values(nkeys) = 0.5d0 * contrib * phase
! keys(1,nkeys) = h1
! keys(2,nkeys) = h2
! keys(3,nkeys) = p1
! keys(4,nkeys) = h2
! nkeys += 1
! values(nkeys) = - 0.5d0 * contrib * phase
! keys(1,nkeys) = h1
! keys(2,nkeys) = h2
! keys(3,nkeys) = h2
! keys(4,nkeys) = p1
!
! nkeys += 1
! values(nkeys) = 0.5d0 * contrib * phase
! keys(1,nkeys) = h2
! keys(2,nkeys) = h1
! keys(3,nkeys) = h2
! keys(4,nkeys) = p1
! nkeys += 1
! values(nkeys) = - 0.5d0 * contrib * phase
! keys(1,nkeys) = h2
! keys(2,nkeys) = h1
! keys(3,nkeys) = p1
! keys(4,nkeys) = h2
!enddo
end
subroutine update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
implicit none
integer, intent(in) :: sze_buff
integer,intent(in) :: exc(0:2,2,2)
double precision,intent(in) :: phase, contrib
integer, intent(inout) :: nkeys, keys(4,sze_buff)
double precision, intent(inout):: values(sze_buff)
integer :: h1,h2,p1,p2
if (exc(0,1,1) == 1) then
! Double alpha/beta
h1 = exc(1,1,1)
h2 = exc(1,1,2)
p1 = exc(1,2,1)
p2 = exc(1,2,2)
! check if the orbitals involved are within the orbital range
if(list_orb_reverse_pert_rdm(h1).lt.0)return
h1 = list_orb_reverse_pert_rdm(h1)
if(list_orb_reverse_pert_rdm(h2).lt.0)return
h2 = list_orb_reverse_pert_rdm(h2)
if(list_orb_reverse_pert_rdm(p1).lt.0)return
p1 = list_orb_reverse_pert_rdm(p1)
if(list_orb_reverse_pert_rdm(p2).lt.0)return
p2 = list_orb_reverse_pert_rdm(p2)
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p1
keys(4,nkeys) = p2
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = p1
keys(2,nkeys) = p2
keys(3,nkeys) = h1
keys(4,nkeys) = h2
else
if (exc(0,1,1) == 2) then
! Double alpha/alpha
h1 = exc(1,1,1)
h2 = exc(2,1,1)
p1 = exc(1,2,1)
p2 = exc(2,2,1)
else if (exc(0,1,2) == 2) then
! Double beta
h1 = exc(1,1,2)
h2 = exc(2,1,2)
p1 = exc(1,2,2)
p2 = exc(2,2,2)
endif
! check if the orbitals involved are within the orbital range
if(list_orb_reverse_pert_rdm(h1).lt.0)return
h1 = list_orb_reverse_pert_rdm(h1)
if(list_orb_reverse_pert_rdm(h2).lt.0)return
h2 = list_orb_reverse_pert_rdm(h2)
if(list_orb_reverse_pert_rdm(p1).lt.0)return
p1 = list_orb_reverse_pert_rdm(p1)
if(list_orb_reverse_pert_rdm(p2).lt.0)return
p2 = list_orb_reverse_pert_rdm(p2)
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p1
keys(4,nkeys) = p2
nkeys += 1
values(nkeys) = - 0.5d0 * contrib * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p2
keys(4,nkeys) = p1
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = p2
keys(4,nkeys) = p1
nkeys += 1
values(nkeys) = - 0.5d0 * contrib * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = p1
keys(4,nkeys) = p2
endif
end

View File

@ -22,7 +22,7 @@ subroutine ZMQ_selection(N_in, pt2_data)
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order selection_weight pseudo_sym
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
PROVIDE pert_2rdm excitation_beta_max excitation_alpha_max excitation_max
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'selection')

View File

@ -0,0 +1,481 @@
subroutine davidson_general_ext_rout(u_in,H_jj,Dress_jj,energies,sze,N_st,N_st_diag_in,converged,hcalc)
use mmap_module
implicit none
BEGIN_DOC
! Generic Davidson diagonalization with ONE DIAGONAL DRESSING OPERATOR
!
! Dress_jj : DIAGONAL DRESSING of the Hamiltonian
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! u_in : guess coefficients on the various states. Overwritten on exit
!
! sze : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
!
! Initial guess vectors are not necessarily orthonormal
!
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
END_DOC
integer, intent(in) :: sze, N_st, N_st_diag_in
double precision, intent(in) :: H_jj(sze),Dress_jj(sze)
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
double precision, intent(out) :: energies(N_st)
external hcalc
integer :: iter, N_st_diag
integer :: i,j,k,l,m
logical, intent(inout) :: converged
double precision, external :: u_dot_v, u_dot_u
integer :: k_pairs, kl
integer :: iter2, itertot
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: residual_norm(:)
character*(16384) :: write_buffer
double precision :: to_print(2,N_st)
double precision :: cpu, wall
integer :: shift, shift2, itermax, istate
double precision :: r1, r2, alpha
integer :: nproc_target
integer :: order(N_st_diag_in)
double precision :: cmax
double precision, allocatable :: U(:,:), overlap(:,:)!, S_d(:,:)
double precision, pointer :: W(:,:)
logical :: disk_based
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
include 'constants.include.F'
N_st_diag = N_st_diag_in
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
if (N_st_diag*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_full to ', N_st_diag*3
stop -1
endif
itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
itertot = 0
if (state_following) then
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
else
allocate(overlap(1,1)) ! avoid 'if' for deallocate
endif
overlap = 0.d0
provide threshold_davidson !nthreads_davidson
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
! Find max number of cores to fit in memory
! -----------------------------------------
nproc_target = nproc
double precision :: rss
integer :: maxab
maxab = sze
m=1
disk_based = .False.
call resident_memory(rss)
do
r1 = 8.d0 * &! bytes
( dble(sze)*(N_st_diag*itermax) &! U
+ 1.d0*dble(sze*m)*(N_st_diag*itermax) &! W
+ 2.0d0*(N_st_diag*itermax)**2 &! h,y
+ 2.d0*(N_st_diag*itermax) &! s2,lambda
+ 1.d0*(N_st_diag) &! residual_norm
! In H_S2_u_0_nstates_zmq
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
+ 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
+ nproc_target * &! In OMP section
( 1.d0*(N_int*maxab) &! buffer
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
) / 1024.d0**3
if (nproc_target == 0) then
call check_mem(r1,irp_here)
nproc_target = 1
exit
endif
if (r1+rss < qp_max_mem) then
exit
endif
if (itermax > 4) then
itermax = itermax - 1
else if (m==1.and.disk_based_davidson) then
m=0
disk_based = .True.
itermax = 6
else
nproc_target = nproc_target - 1
endif
enddo
nthreads_davidson = nproc_target
TOUCH nthreads_davidson
call write_int(6,N_st,'Number of states')
call write_int(6,N_st_diag,'Number of states in diagonalization')
call write_int(6,sze,'Number of basis functions')
call write_int(6,nproc_target,'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if (disk_based) then
print *, 'Using swap space to reduce RAM'
endif
double precision, allocatable :: H_jj_tmp(:)
ASSERT (N_st > 0)
ASSERT (sze > 0)
allocate(H_jj_tmp(sze))
do i=1,sze
H_jj_tmp(i) = H_jj(i) + Dress_jj(i)
enddo
!---------------
write(6,'(A)') ''
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = 'Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
allocate(W(sze,N_st_diag*itermax))
allocate( &
! Large
U(sze,N_st_diag*itermax), &
! Small
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
residual_norm(N_st_diag), &
lambda(N_st_diag*itermax))
h = 0.d0
U = 0.d0
y = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
! Davidson iterations
! ===================
converged = .False.
! Initialize from N_st to N_st_diat with gaussian random numbers
! to be sure to have overlap with any eigenvectors
do k=N_st+1,N_st_diag
u_in(k,k) = 10.d0
do i=1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2)
enddo
enddo
! Normalize all states
do k=1,N_st_diag
call normalize(u_in(1,k),sze)
enddo
! Copy from the guess input "u_in" to the working vectors "U"
do k=1,N_st_diag
do i=1,sze
U(i,k) = u_in(i,k)
enddo
enddo
do while (.not.converged)
itertot = itertot+1
if (itertot == 8) then
exit
endif
do iter=1,itermax-1
shift = N_st_diag*(iter-1)
shift2 = N_st_diag*iter
if ((iter > 1).or.(itertot == 1)) then
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
call ortho_qr(U,size(U,1),sze,shift2)
call ortho_qr(U,size(U,1),sze,shift2)
! it does W = H U with W(sze,N_st_diag),U(sze,N_st_diag)
! where sze is the size of the vector, N_st_diag is the number of states
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag,sze)
! Compute then the DIAGONAL PART OF THE DRESSING
! <i|W_k> += Dress_jj(i) * <i|U>
call dressing_diag_uv(W(1,shift+1),U(1,shift+1),Dress_jj,N_st_diag_in,sze)
else
! Already computed in update below
continue
endif
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
call dgemm('T','N', shift2, shift2, sze, &
1.d0, U, size(U,1), W, size(W,1), &
0.d0, h, size(h,1))
! Diagonalize h y = lambda y
! ---------------
call lapack_diag(lambda,y,h,size(h,1),shift2)
if (state_following) then
overlap = -1.d0
do k=1,shift2
do i=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo
do k=1,N_st
cmax = -1.d0
do i=1,N_st
if (overlap(i,k) > cmax) then
cmax = overlap(i,k)
order(k) = i
endif
enddo
do i=1,N_st_diag
overlap(order(k),i) = -1.d0
enddo
enddo
overlap = y
do k=1,N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
do k=1,N_st
overlap(k,1) = lambda(k)
enddo
do k=1,N_st
l = order(k)
if (k /= l) then
lambda(k) = overlap(l,1)
endif
enddo
endif
! Express eigenvectors of h in the determinant basis
! --------------------------------------------------
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
! Compute residual vector and davidson step
! -----------------------------------------
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
do k=1,N_st_diag
do i=1,sze
U(i,shift2+k) = &
(lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
/max(H_jj_tmp(i) - lambda (k),1.d-2)
enddo
if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k)
to_print(2,k) = residual_norm(k)
endif
enddo
!$OMP END PARALLEL DO
if ((itertot>1).and.(iter == 1)) then
!don't print
continue
else
write(*,'(1X,I3,1X,100(1X,F16.10,1X,F11.6,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
endif
! Check convergence
if (iter > 1) then
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
endif
do k=1,N_st
if (residual_norm(k) > 1.e8) then
print *, 'Davidson failed'
stop -1
endif
enddo
if (converged) then
exit
endif
logical, external :: qp_stop
if (qp_stop()) then
converged = .True.
exit
endif
enddo
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze
W(i,k) = u_in(i,k)
enddo
enddo
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
do i=1,sze
U(i,k) = u_in(i,k)
enddo
enddo
call ortho_qr(U,size(U,1),sze,N_st_diag)
call ortho_qr(U,size(U,1),sze,N_st_diag)
do j=1,N_st_diag
k=1
do while ((k<sze).and.(U(k,j) == 0.d0))
k = k+1
enddo
if (U(k,j) * u_in(k,j) < 0.d0) then
do i=1,sze
W(i,j) = -W(i,j)
enddo
endif
enddo
enddo
do k=1,N_st
energies(k) = lambda(k)
enddo
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
call write_time(6)
deallocate(W)
deallocate ( &
residual_norm, &
U, h, &
y, &
lambda &
)
deallocate(overlap)
FREE nthreads_davidson
end
subroutine hcalc_template(v,u,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! Template of routine for the application of H
!
! Here, it is done with the Hamiltonian matrix
!
! on the set of determinants of psi_det
!
! Computes $v = H | u \rangle$
!
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u(sze,N_st)
double precision, intent(inout) :: v(sze,N_st)
integer :: i,j,istate
v = 0.d0
do istate = 1, N_st
do i = 1, sze
do j = 1, sze
v(i,istate) += H_matrix_all_dets(j,i) * u(j,istate)
enddo
enddo
do i = 1, sze
v(i,istate) += u(i,istate) * nuclear_repulsion
enddo
enddo
end
subroutine dressing_diag_uv(v,u,dress_diag,N_st,sze)
implicit none
BEGIN_DOC
! Routine that computes the diagonal part of the dressing
!
! v(i) += u(i) * dress_diag(i)
!
! !!!!!!!! WARNING !!!!!!!! the vector v is not initialized
!
! !!!!!!!! SO MAKE SURE THERE ARE SOME MEANINGFUL VALUES IN THERE
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u(sze,N_st),dress_diag(sze)
double precision, intent(inout) :: v(sze,N_st)
integer :: i,istate
do istate = 1, N_st
do i = 1, sze
v(i,istate) += dress_diag(i) * u(i,istate)
enddo
enddo
end

View File

@ -0,0 +1,518 @@
subroutine dav_double_dressed(u_in,H_jj,Dress_jj,Dressing_vec,idx_dress,energies,sze,N_st,N_st_diag,converged,hcalc)
use mmap_module
BEGIN_DOC
! Generic Davidson diagonalization with TWO DRESSING VECTORS
!
! Dress_jj : DIAGONAL DRESSING of the Hamiltonian
!
! Dressing_vec : COLUMN / LINE DRESSING VECTOR
!
! idx_dress : position of the basis function used to use the Dressing_vec (usually the largest coeff)
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! u_in : guess coefficients on the various states. Overwritten on exit
!
! sze : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! N_st_diag : Number of states in which H is diagonalized. Assumed > sze
!
! Initial guess vectors are not necessarily orthonormal
!
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
END_DOC
implicit none
integer, intent(in) :: sze, N_st, N_st_diag, idx_dress
double precision, intent(in) :: H_jj(sze),Dress_jj(sze),Dressing_vec(sze,N_st)
double precision, intent(inout) :: u_in(sze,N_st_diag)
double precision, intent(out) :: energies(N_st_diag)
logical, intent(out) :: converged
external hcalc
double precision, allocatable :: H_jj_tmp(:)
ASSERT (N_st > 0)
ASSERT (sze > 0)
allocate(H_jj_tmp(sze))
do i=1,sze
H_jj_tmp(i) = H_jj(i) + Dress_jj(i)
enddo
do k=1,N_st
do i=1,sze
H_jj_tmp(i) += u_in(i,k) * Dressing_vec(i,k)
enddo
enddo
integer :: iter
integer :: i,j,k,l,m
double precision, external :: u_dot_v, u_dot_u
integer :: k_pairs, kl
integer :: iter2, itertot
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: s_tmp(:,:)
double precision, allocatable :: residual_norm(:),inv_c_idx_dress_vec(:)
character*(16384) :: write_buffer
double precision :: to_print(2,N_st),inv_c_idx_dress
double precision :: cpu, wall
integer :: shift, shift2, itermax, istate
double precision :: r1, r2, alpha
logical :: state_ok(N_st_diag*davidson_sze_max)
integer :: nproc_target
integer :: order(N_st_diag)
double precision :: cmax
double precision, allocatable :: U(:,:), overlap(:,:)
double precision, pointer :: W(:,:)
logical :: disk_based
double precision :: energy_shift(N_st_diag*davidson_sze_max)
allocate(inv_c_idx_dress_vec(N_st))
inv_c_idx_dress = 1.d0/u_in(idx_dress,1)
do i = 1, N_st
inv_c_idx_dress_vec(i) = 1.d0/u_in(idx_dress,i)
enddo
include 'constants.include.F'
integer :: N_st_diag_in
N_st_diag_in = N_st_diag
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
if (N_st_diag_in*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_full to ', N_st_diag_in*3
stop -1
endif
itermax = max(2,min(davidson_sze_max, sze/N_st_diag_in))+1
itertot = 0
if (state_following) then
allocate(overlap(N_st_diag_in*itermax, N_st_diag_in*itermax))
else
allocate(overlap(1,1)) ! avoid 'if' for deallocate
endif
overlap = 0.d0
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
! Find max number of cores to fit in memory
! -----------------------------------------
nproc_target = nproc
double precision :: rss
integer :: maxab
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
m=1
disk_based = .False.
call resident_memory(rss)
do
r1 = 8.d0 * &! bytes
( dble(sze)*(N_st_diag_in*itermax) &! U
+ 1.0d0*dble(sze*m)*(N_st_diag_in*itermax) &! W
+ 3.0d0*(N_st_diag_in*itermax)**2 &! h,y,s_tmp
+ 1.d0*(N_st_diag_in*itermax) &! lambda
+ 1.d0*(N_st_diag_in) &! residual_norm
! In H_u_0_nstates_zmq
+ 2.d0*(N_st_diag_in*N_det) &! u_t, v_t, on collector
+ 2.d0*(N_st_diag_in*N_det) &! u_t, v_t, on slave
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
+ nproc_target * &! In OMP section
( 1.d0*(N_int*maxab) &! buffer
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
) / 1024.d0**3
if (nproc_target == 0) then
call check_mem(r1,irp_here)
nproc_target = 1
exit
endif
if (r1+rss < qp_max_mem) then
exit
endif
if (itermax > 4) then
itermax = itermax - 1
else if (m==1.and.disk_based_davidson) then
m=0
disk_based = .True.
itermax = 6
else
nproc_target = nproc_target - 1
endif
enddo
nthreads_davidson = nproc_target
TOUCH nthreads_davidson
call write_int(6,N_st,'Number of states')
call write_int(6,N_st_diag_in,'Number of states in diagonalization')
call write_int(6,sze,'Number of basis functions ')
call write_int(6,nproc_target,'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if (disk_based) then
print *, 'Using swap space to reduce RAM'
endif
!---------------
write(6,'(A)') ''
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = 'Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
allocate(W(sze,N_st_diag_in*itermax))
allocate( &
! Large
U(sze,N_st_diag_in*itermax), &
! Small
h(N_st_diag_in*itermax,N_st_diag_in*itermax), &
y(N_st_diag_in*itermax,N_st_diag_in*itermax), &
s_tmp(N_st_diag_in*itermax,N_st_diag_in*itermax), &
residual_norm(N_st_diag_in), &
lambda(N_st_diag_in*itermax))
h = 0.d0
U = 0.d0
y = 0.d0
s_tmp = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag_in >= N_st)
ASSERT (sze > 0)
! Davidson iterations
! ===================
converged = .False.
do k=N_st+1,N_st_diag_in
do i=1,sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st)
enddo
u_in(k,k) = u_in(k,k) + 10.d0
enddo
do k=1,N_st_diag_in
call normalize(u_in(1,k),sze)
enddo
do k=1,N_st_diag_in
do i=1,sze
U(i,k) = u_in(i,k)
enddo
enddo
do while (.not.converged)
itertot = itertot+1
if (itertot == 2) then
exit
endif
do iter=1,itermax-1
shift = N_st_diag_in*(iter-1)
shift2 = N_st_diag_in*iter
if ((iter > 1).or.(itertot == 1)) then
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag_in,sze)
! Compute then the DIAGONAL PART OF THE DRESSING
! <i|W_k> += Dress_jj(i) * <i|U>
call dressing_diag_uv(W(1,shift+1),U(1,shift+1),Dress_jj,N_st_diag_in,sze)
else
! Already computed in update below
continue
endif
if (N_st == 1) then
l = idx_dress
double precision :: f
f = inv_c_idx_dress
do istate=1,N_st_diag_in
do i=1,sze
W(i,shift+istate) += Dressing_vec(i,1) *f * U(l,shift+istate)
W(l,shift+istate) += Dressing_vec(i,1) *f * U(i,shift+istate)
enddo
enddo
else
print*,'dav_double_dressed routine not yet implemented for N_st > 1'
!
! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, &
! psi_coef, size(psi_coef,1), &
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, &
! Dressing_vec, size(Dressing_vec,1), s_tmp, size(s_tmp,1), &
! 1.d0, W(1,shift+1), size(W,1))
!
!
! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, &
! Dressing_vec, size(Dressing_vec,1), &
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, &
! psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
! 1.d0, W(1,shift+1), size(W,1))
!
endif
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
call dgemm('T','N', shift2, shift2, sze, &
1.d0, U, size(U,1), W, size(W,1), &
0.d0, h, size(h,1))
call dgemm('T','N', shift2, shift2, sze, &
1.d0, U, size(U,1), U, size(U,1), &
0.d0, s_tmp, size(s_tmp,1))
! Diagonalize h
! ---------------
integer :: lwork, info
double precision, allocatable :: work(:)
y = h
lwork = -1
allocate(work(1))
call dsygv(1,'V','U',shift2,y,size(y,1), &
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
lwork = int(work(1))
deallocate(work)
allocate(work(lwork))
call dsygv(1,'V','U',shift2,y,size(y,1), &
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
deallocate(work)
if (info /= 0) then
stop 'DSYGV Diagonalization failed'
endif
! Compute Energy for each eigenvector
! -----------------------------------
call dgemm('N','N',shift2,shift2,shift2, &
1.d0, h, size(h,1), y, size(y,1), &
0.d0, s_tmp, size(s_tmp,1))
call dgemm('T','N',shift2,shift2,shift2, &
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
0.d0, h, size(h,1))
do k=1,shift2
lambda(k) = h(k,k)
enddo
if (state_following) then
overlap = -1.d0
do k=1,shift2
do i=1,shift2
overlap(k,i) = dabs(y(k,i))
enddo
enddo
do k=1,N_st
cmax = -1.d0
do i=1,N_st
if (overlap(i,k) > cmax) then
cmax = overlap(i,k)
order(k) = i
endif
enddo
do i=1,N_st_diag_in
overlap(order(k),i) = -1.d0
enddo
enddo
overlap = y
do k=1,N_st
l = order(k)
if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l)
endif
enddo
do k=1,N_st
overlap(k,1) = lambda(k)
enddo
endif
! Express eigenvectors of h in the determinant basis
! --------------------------------------------------
call dgemm('N','N', sze, N_st_diag_in, shift2, &
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
call dgemm('N','N', sze, N_st_diag_in, shift2, &
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
! Compute residual vector and davidson step
! -----------------------------------------
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
do k=1,N_st_diag_in
do i=1,sze
U(i,shift2+k) = &
(lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
/max(H_jj_tmp(i) - lambda (k),1.d-2)
enddo
if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k)
to_print(2,k) = residual_norm(k)
endif
enddo
!$OMP END PARALLEL DO
if ((itertot>1).and.(iter == 1)) then
!don't print
continue
else
write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
endif
! Check convergence
if (iter > 1) then
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
endif
do k=1,N_st
if (residual_norm(k) > 1.d8) then
print *, 'Davidson failed'
stop -1
endif
enddo
if (converged) then
exit
endif
logical, external :: qp_stop
if (qp_stop()) then
converged = .True.
exit
endif
enddo
! Re-contract U and update W
! --------------------------------
call dgemm('N','N', sze, N_st_diag_in, shift2, 1.d0, &
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag_in
do i=1,sze
W(i,k) = u_in(i,k)
enddo
enddo
call dgemm('N','N', sze, N_st_diag_in, shift2, 1.d0, &
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag_in
do i=1,sze
U(i,k) = u_in(i,k)
enddo
enddo
enddo
call nullify_small_elements(sze,N_st_diag_in,U,size(U,1),threshold_davidson_pt2)
do k=1,N_st_diag_in
do i=1,sze
u_in(i,k) = U(i,k)
enddo
enddo
do k=1,N_st_diag_in
energies(k) = lambda(k)
enddo
write_buffer = '======'
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
call write_time(6)
deallocate(W)
deallocate ( &
residual_norm, &
U, overlap, &
h, y, s_tmp, &
lambda &
)
FREE nthreads_davidson
end
subroutine dressing_diag_uv(v,u,dress_diag,N_st,sze)
implicit none
BEGIN_DOC
! Routine that computes the diagonal part of the dressing
!
! v(i) += u(i) * dress_diag(i)
!
! !!!!!!!! WARNING !!!!!!!! the vector v is not initialized
!
! !!!!!!!! SO MAKE SURE THERE ARE SOME MEANINGFUL VALUES IN THERE
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u(sze,N_st),dress_diag(sze)
double precision, intent(inout) :: v(sze,N_st)
integer :: i,istate
do istate = 1, N_st
do i = 1, sze
v(i,istate) += dress_diag(i) * u(i,istate)
enddo
enddo
end

View File

@ -147,7 +147,7 @@ subroutine davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_di
TOUCH nthreads_davidson
call write_int(6,N_st,'Number of states')
call write_int(6,N_st_diag,'Number of states in diagonalization')
call write_int(6,sze,'Number of determinants')
call write_int(6,sze,'Number of basis function')
call write_int(6,nproc_target,'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if (disk_based) then
@ -387,7 +387,7 @@ subroutine davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_di
if (k <= N_st) then
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
to_print(1,k) = lambda(k) + nuclear_repulsion
to_print(1,k) = lambda(k)
to_print(2,k) = residual_norm(k)
endif
enddo

View File

@ -3,7 +3,7 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,co
use mmap_module
implicit none
BEGIN_DOC
! Davidson diagonalization with specific diagonal elements of the H matrix
! Generic Davidson diagonalization
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
@ -221,7 +221,6 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,co
if ((iter > 1).or.(itertot == 1)) then
! Compute |W_k> = \sum_i |i><i|H|u_k>
! -----------------------------------
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
call ortho_qr(U,size(U,1),sze,shift2)
call ortho_qr(U,size(U,1),sze,shift2)
@ -345,6 +344,9 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,co
enddo
! Re-contract U and update W
! --------------------------------
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
do k=1,N_st_diag
@ -360,8 +362,8 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,co
U(i,k) = u_in(i,k)
enddo
enddo
call ortho_qr(U,size(U,1),sze,N_st_diag)
call ortho_qr(U,size(U,1),sze,N_st_diag)
call ortho_qr(U,size(U,1),sze,N_st_diag)
call ortho_qr(U,size(U,1),sze,N_st_diag)
do j=1,N_st_diag
k=1
do while ((k<sze).and.(U(k,j) == 0.d0))

View File

@ -12,7 +12,7 @@ BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
enddo
do j=1,min(N_det,N_states)
write(st,'(I4)') j
call write_double(6,CI_energy_dressed(j),'Energy of state '//trim(st))
call write_double(6,CI_energy_dressed(j),'Energy dressed of state '//trim(st))
call write_double(6,CI_eigenvectors_s2_dressed(j),'S^2 of state '//trim(st))
enddo

View File

@ -8,6 +8,7 @@ BEGIN_PROVIDER [ double precision, H_matrix_all_dets,(N_det,N_det) ]
double precision :: hij
integer :: degree(N_det),idx(0:N_det)
call i_H_j(psi_det(1,1,1),psi_det(1,1,1),N_int,hij)
print*,'Providing the H_matrix_all_dets ...'
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j,hij,degree,idx,k) &
!$OMP SHARED (N_det, psi_det, N_int,H_matrix_all_dets)
do i =1,N_det
@ -18,6 +19,26 @@ BEGIN_PROVIDER [ double precision, H_matrix_all_dets,(N_det,N_det) ]
enddo
enddo
!$OMP END PARALLEL DO
print*,'H_matrix_all_dets done '
END_PROVIDER
BEGIN_PROVIDER [ double precision, H_matrix_diag_all_dets,(N_det) ]
use bitmasks
implicit none
BEGIN_DOC
! |H| matrix on the basis of the Slater determinants defined by psi_det
END_DOC
integer :: i
double precision :: hij
integer :: degree(N_det)
call i_H_j(psi_det(1,1,1),psi_det(1,1,1),N_int,hij)
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,hij,degree) &
!$OMP SHARED (N_det, psi_det, N_int,H_matrix_diag_all_dets)
do i =1,N_det
call i_H_j(psi_det(1,1,i),psi_det(1,1,i),N_int,hij)
H_matrix_diag_all_dets(i) = hij
enddo
!$OMP END PARALLEL DO
END_PROVIDER

View File

@ -72,6 +72,7 @@ BEGIN_PROVIDER [double precision, mu_of_r_dft_average]
r(3) = final_grid_points(3,i)
call dm_dft_alpha_beta_at_r(r,dm_a,dm_b)
rho = dm_a + dm_b
if(mu_of_r_dft(i).gt.1.d+3)cycle
mu_of_r_dft_average += rho * mu_of_r_dft(i) * final_weight_at_r_vector(i)
enddo
mu_of_r_dft_average = mu_of_r_dft_average / dble(elec_alpha_num + elec_beta_num)

View File

@ -0,0 +1,39 @@
BEGIN_PROVIDER [ double precision, mo_grad_ints, (mo_num, mo_num,3)]
implicit none
BEGIN_DOC
! mo_grad_ints(i,j,m) = <phi_i^MO | d/dx | phi_j^MO>
END_DOC
integer :: i,j,ipoint,m
double precision :: weight
mo_grad_ints = 0.d0
do m = 1, 3
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
do j = 1, mo_num
do i = 1, mo_num
mo_grad_ints(i,j,m) += mos_grad_in_r_array(j,ipoint,m) * mos_in_r_array(i,ipoint) * weight
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_grad_ints_transp, (3,mo_num, mo_num)]
implicit none
BEGIN_DOC
! mo_grad_ints(i,j,m) = <phi_i^MO | d/dx | phi_j^MO>
END_DOC
integer :: i,j,ipoint,m
double precision :: weight
do m = 1, 3
do j = 1, mo_num
do i = 1, mo_num
mo_grad_ints_transp(m,i,j) = mo_grad_ints(i,j,m)
enddo
enddo
enddo
END_PROVIDER

View File

@ -98,7 +98,7 @@ subroutine print_summary(e_,pt2_data,pt2_data_err,n_det_,n_configuration_,n_st,s
enddo
endif
call print_energy_components()
! call print_energy_components()
end subroutine

View File

@ -302,21 +302,21 @@ end
integer(key_kind) :: idx
double precision :: tmp
icount = 1 ! Avoid division by zero
do j=1,mo_num
do i=1,j-1
call two_e_integrals_index(i,j,j,i,idx)
!DIR$ FORCEINLINE
call map_get(mo_integrals_map,idx,tmp)
banned_excitation(i,j) = dabs(tmp) < 1.d-14
banned_excitation(j,i) = banned_excitation(i,j)
if (banned_excitation(i,j)) icount = icount+2
enddo
enddo
use_banned_excitation = (mo_num*mo_num) / icount <= 100 !1%
if (use_banned_excitation) then
print *, 'Using sparsity of exchange integrals'
endif
!icount = 1 ! Avoid division by zero
!do j=1,mo_num
! do i=1,j-1
! call two_e_integrals_index(i,j,j,i,idx)
! !DIR$ FORCEINLINE
! call map_get(mo_integrals_map,idx,tmp)
! banned_excitation(i,j) = dabs(tmp) < 1.d-14
! banned_excitation(j,i) = banned_excitation(i,j)
! if (banned_excitation(i,j)) icount = icount+2
! enddo
!enddo
!use_banned_excitation = (mo_num*mo_num) / icount <= 100 !1%
!if (use_banned_excitation) then
! print *, 'Using sparsity of exchange integrals'
!endif
END_PROVIDER

View File

@ -2,3 +2,4 @@ fci
mo_two_e_erf_ints
aux_quantities
hartree_fock
two_body_rdm