mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-08 20:33:20 +01:00
opt in v_ij_u_cst_mu_j1b_an: tested
This commit is contained in:
parent
8f6df34283
commit
53041958a6
@ -1245,3 +1245,157 @@ end subroutine NAI_pol_x2_mult_erf_ao
|
||||
|
||||
! ---
|
||||
|
||||
subroutine NAI_pol_012_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_center, ints)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Computes the following integral :
|
||||
!
|
||||
! ints(1) = $\int_{-\infty}^{infty} dr x^0 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
! ints(2) = $\int_{-\infty}^{infty} dr x^1 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
! ints(3) = $\int_{-\infty}^{infty} dr y^1 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
! ints(4) = $\int_{-\infty}^{infty} dr z^1 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
! ints(5) = $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
! ints(6) = $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
! ints(7) = $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i_ao, j_ao
|
||||
double precision, intent(in) :: beta, B_center(3), mu_in, C_center(3)
|
||||
double precision, intent(out) :: ints(7)
|
||||
|
||||
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, m
|
||||
integer :: power_A1(3), power_A2(3)
|
||||
double precision :: Ai_center(3), Aj_center(3), alphai, alphaj, coef, coefi
|
||||
double precision :: integral0, integral1, integral2
|
||||
|
||||
double precision, external :: NAI_pol_mult_erf_with1s
|
||||
|
||||
ASSERT(beta .ge. 0.d0)
|
||||
if(beta .lt. 1d-10) then
|
||||
call NAI_pol_012_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
|
||||
return
|
||||
endif
|
||||
|
||||
ints = 0.d0
|
||||
|
||||
power_Ai(1:3) = ao_power(i_ao,1:3)
|
||||
power_Aj(1:3) = ao_power(j_ao,1:3)
|
||||
|
||||
Ai_center(1:3) = nucl_coord(ao_nucl(i_ao),1:3)
|
||||
Aj_center(1:3) = nucl_coord(ao_nucl(j_ao),1:3)
|
||||
|
||||
n_pt_in = n_pt_max_integrals
|
||||
|
||||
do i = 1, ao_prim_num(i_ao)
|
||||
alphai = ao_expo_ordered_transp (i,i_ao)
|
||||
coefi = ao_coef_normalized_ordered_transp(i,i_ao)
|
||||
|
||||
do j = 1, ao_prim_num(j_ao)
|
||||
alphaj = ao_expo_ordered_transp (j,j_ao)
|
||||
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
|
||||
|
||||
integral0 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
|
||||
ints(1) += coef * integral0
|
||||
|
||||
do m = 1, 3
|
||||
|
||||
power_A1 = power_Ai
|
||||
power_A1(m) += 1
|
||||
integral1 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A1, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
|
||||
ints(1+m) += coef * (integral1 + Ai_center(m)*integral0)
|
||||
|
||||
power_A2 = power_Ai
|
||||
power_A2(m) += 2
|
||||
integral2 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A2, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
|
||||
ints(4+m) += coef * (integral2 + Ai_center(m) * (2.d0*integral1 + Ai_center(m)*integral0))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine NAI_pol_012_mult_erf_ao_with1s
|
||||
|
||||
! ---
|
||||
|
||||
subroutine NAI_pol_012_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Computes the following integral :
|
||||
!
|
||||
! int(1) = $\int_{-\infty}^{infty} dr x^0 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
! int(2) = $\int_{-\infty}^{infty} dr x^1 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
! int(3) = $\int_{-\infty}^{infty} dr y^1 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
! int(4) = $\int_{-\infty}^{infty} dr z^1 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
! int(5) = $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
! int(6) = $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
! int(7) = $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i_ao, j_ao
|
||||
double precision, intent(in) :: mu_in, C_center(3)
|
||||
double precision, intent(out) :: ints(7)
|
||||
|
||||
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in, m
|
||||
integer :: power_A1(3), power_A2(3)
|
||||
double precision :: A_center(3), B_center(3), alpha, beta, coef
|
||||
double precision :: integral0, integral1, integral2
|
||||
|
||||
double precision :: NAI_pol_mult_erf
|
||||
|
||||
ints = 0.d0
|
||||
|
||||
num_A = ao_nucl(i_ao)
|
||||
power_A(1:3) = ao_power(i_ao,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
num_B = ao_nucl(j_ao)
|
||||
power_B(1:3) = ao_power(j_ao,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
n_pt_in = n_pt_max_integrals
|
||||
|
||||
do i = 1, ao_prim_num(i_ao)
|
||||
alpha = ao_expo_ordered_transp(i,i_ao)
|
||||
|
||||
do j = 1, ao_prim_num(j_ao)
|
||||
beta = ao_expo_ordered_transp(j,j_ao)
|
||||
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
|
||||
|
||||
integral0 = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in)
|
||||
ints(1) += coef * integral0
|
||||
|
||||
do m = 1, 3
|
||||
|
||||
power_A1 = power_A
|
||||
power_A1(m) += 1
|
||||
integral1 = NAI_pol_mult_erf(A_center, B_center, power_A1, power_B, alpha, beta, C_center, n_pt_in, mu_in)
|
||||
|
||||
ints(1+m) += coef * (integral1 + A_center(m)*integral0)
|
||||
|
||||
power_A2 = power_A
|
||||
power_A2(m) += 2
|
||||
integral2 = NAI_pol_mult_erf(A_center, B_center, power_A2, power_B, alpha, beta, C_center, n_pt_in, mu_in)
|
||||
|
||||
ints(4+m) += coef * (integral2 + A_center(m) * (2.d0*integral1 + A_center(m)*integral0))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine NAI_pol_012_mult_erf_ao
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -299,15 +299,12 @@ END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_points_final_grid)]
|
||||
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an_old, (ao_num, ao_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
|
||||
!
|
||||
! TODO
|
||||
! one subroutine for all integrals
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'constants.include.F'
|
||||
@ -325,7 +322,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_poin
|
||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||
double precision, external :: NAI_pol_mult_erf_ao_with1s
|
||||
|
||||
print*, ' providing v_ij_u_cst_mu_j1b_an ...'
|
||||
print*, ' providing v_ij_u_cst_mu_j1b_an_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mu_erf final_grid_points j1b_pen
|
||||
@ -333,7 +330,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_poin
|
||||
|
||||
ct = inv_sq_pi_2 / mu_erf
|
||||
|
||||
v_ij_u_cst_mu_j1b_an = 0.d0
|
||||
v_ij_u_cst_mu_j1b_an_old = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
|
||||
@ -342,7 +339,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_poin
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
|
||||
!$OMP final_grid_points, mu_erf, ct, &
|
||||
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
|
||||
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an)
|
||||
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an_old)
|
||||
!$OMP DO
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
@ -413,6 +410,125 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_poin
|
||||
|
||||
! ---
|
||||
|
||||
v_ij_u_cst_mu_j1b_an_old(j,i,ipoint) = tmp
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 2, ao_num
|
||||
do j = 1, i-1
|
||||
v_ij_u_cst_mu_j1b_an_old(j,i,ipoint) = v_ij_u_cst_mu_j1b_an_old(i,j,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print*, ' wall time for v_ij_u_cst_mu_j1b_an_old', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_points_final_grid)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint, i_1s
|
||||
double precision :: r(3), r1_2
|
||||
double precision :: int_o
|
||||
double precision :: int_c(7), int_e(7)
|
||||
double precision :: coef, beta, B_center(3)
|
||||
double precision :: tmp, ct
|
||||
double precision :: wall0, wall1
|
||||
|
||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||
double precision, external :: NAI_pol_mult_erf_ao_with1s
|
||||
|
||||
print*, ' providing v_ij_u_cst_mu_j1b_an ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mu_erf final_grid_points j1b_pen
|
||||
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
|
||||
|
||||
ct = inv_sq_pi_2 / mu_erf
|
||||
|
||||
v_ij_u_cst_mu_j1b_an = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
|
||||
!$OMP r1_2, tmp, int_c, int_e, int_o) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
|
||||
!$OMP final_grid_points, mu_erf, ct, &
|
||||
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
|
||||
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an)
|
||||
!$OMP DO
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
r(1) = final_grid_points(1,ipoint)
|
||||
r(2) = final_grid_points(2,ipoint)
|
||||
r(3) = final_grid_points(3,ipoint)
|
||||
r1_2 = 0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = i, ao_num
|
||||
|
||||
! ---
|
||||
|
||||
coef = List_all_comb_b2_coef (1)
|
||||
beta = List_all_comb_b2_expo (1)
|
||||
B_center(1) = List_all_comb_b2_cent(1,1)
|
||||
B_center(2) = List_all_comb_b2_cent(2,1)
|
||||
B_center(3) = List_all_comb_b2_cent(3,1)
|
||||
|
||||
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c)
|
||||
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e)
|
||||
|
||||
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
|
||||
|
||||
tmp = coef &
|
||||
* ( r1_2 * (int_c(1) - int_e(1)) &
|
||||
- r(1) * (int_c(2) - int_e(2)) - r(2) * (int_c(3) - int_e(3)) - r(3) * (int_c(4) - int_e(4)) &
|
||||
+ 0.5d0 * (int_c(5) + int_c(6) + int_c(7) - int_e(5) - int_e(6) - int_e(7)) &
|
||||
- ct * int_o &
|
||||
)
|
||||
|
||||
! ---
|
||||
|
||||
do i_1s = 2, List_all_comb_b2_size
|
||||
|
||||
coef = List_all_comb_b2_coef (i_1s)
|
||||
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
|
||||
beta = List_all_comb_b2_expo (i_1s)
|
||||
B_center(1) = List_all_comb_b2_cent(1,i_1s)
|
||||
B_center(2) = List_all_comb_b2_cent(2,i_1s)
|
||||
B_center(3) = List_all_comb_b2_cent(3,i_1s)
|
||||
|
||||
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c)
|
||||
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e)
|
||||
|
||||
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
|
||||
|
||||
tmp = tmp + coef &
|
||||
* ( r1_2 * (int_c(1) - int_e(1)) &
|
||||
- r(1) * (int_c(2) - int_e(2)) - r(2) * (int_c(3) - int_e(3)) - r(3) * (int_c(4) - int_e(4)) &
|
||||
+ 0.5d0 * (int_c(5) + int_c(6) + int_c(7) - int_e(5) - int_e(6) - int_e(7)) &
|
||||
- ct * int_o &
|
||||
)
|
||||
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
v_ij_u_cst_mu_j1b_an(j,i,ipoint) = tmp
|
||||
enddo
|
||||
enddo
|
||||
@ -434,4 +550,3 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_poin
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -14,7 +14,9 @@ program test_non_h
|
||||
!call routine_grad_squared()
|
||||
!call routine_fit()
|
||||
|
||||
call test_ipp()
|
||||
!call test_ipp()
|
||||
|
||||
call test_v_ij_u_cst_mu_j1b_an()
|
||||
end
|
||||
|
||||
! ---
|
||||
@ -545,9 +547,43 @@ end subroutine grad1_aos_ik_grad1_esquare
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine test_v_ij_u_cst_mu_j1b_an()
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint
|
||||
double precision :: I_old, I_new
|
||||
double precision :: norm, accu, thr, diff
|
||||
|
||||
PROVIDE v_ij_u_cst_mu_j1b_an_old v_ij_u_cst_mu_j1b_an
|
||||
|
||||
thr = 1d-12
|
||||
norm = 0.d0
|
||||
accu = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
|
||||
I_old = v_ij_u_cst_mu_j1b_an_old(j,i,ipoint)
|
||||
I_new = v_ij_u_cst_mu_j1b_an (j,i,ipoint)
|
||||
|
||||
diff = dabs(I_new-I_old)
|
||||
if(diff .gt. thr) then
|
||||
print *, ' problem on:', j, i, ipoint
|
||||
print *, ' old value :', I_old
|
||||
print *, ' new value :', I_new
|
||||
stop
|
||||
endif
|
||||
|
||||
accu += diff
|
||||
norm += dabs(I_old)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print*, ' accuracy(%) = ', 100.d0 * accu / norm
|
||||
|
||||
return
|
||||
end subroutine test_v_ij_u_cst_mu_j1b_an()
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user