10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-31 16:45:50 +01:00

modified pbe.irp.f

This commit is contained in:
Emmanuel Giner 2020-03-31 14:13:49 +02:00
parent 7bd7b6294c
commit 506f1cb094
4 changed files with 155 additions and 198 deletions

View File

@ -10,10 +10,9 @@
!
! Taking the expectation value does not provide any energy, but
!
! effective_one_e_potential(i,j) is the potential coupling DFT and WFT part to
!
! be used in any WFT calculation.
! effective_one_e_potential(i,j) is the potential coupling DFT and WFT parts
!
! and it is used in any RS-DFT based calculations
END_DOC
do istate = 1, N_states
do j = 1, mo_num

View File

@ -1,7 +1,9 @@
BEGIN_PROVIDER [double precision, mu_erf_dft]
implicit none
BEGIN_DOC
! range separation parameter used in RS-DFT. It is set to mu_erf in order to be consistent with the two electrons integrals erf
! range separation parameter used in RS-DFT.
!
! It is set to mu_erf in order to be consistent with the module "ao_two_e_erf_ints"
END_DOC
mu_erf_dft = mu_erf

View File

@ -1,124 +1,79 @@
BEGIN_PROVIDER[double precision, energy_x_pbe, (N_states) ]
&BEGIN_PROVIDER[double precision, energy_c_pbe, (N_states) ]
implicit none
BEGIN_DOC
! exchange / correlation energies with the short-range version Perdew-Burke-Ernzerhof GGA functional
!
! defined in Chem. Phys.329, 276 (2006)
END_DOC
BEGIN_DOC
! exchange/correlation energy with the short range pbe functional
END_DOC
integer :: istate,i,j,m
double precision :: mu,weight
double precision, allocatable :: ex(:), ec(:)
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
double precision :: ex, ec
double precision :: rho_a,rho_b,grad_rho_a(3),grad_rho_b(3),grad_rho_a_2,grad_rho_b_2,grad_rho_a_b
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
energy_x_pbe = 0.d0
do istate = 1, N_states
do i = 1, n_points_final_grid
weight = final_weight_at_r_vector(i)
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
enddo
! inputs
call GGA_sr_type_functionals(0.d0,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
energy_x_pbe += ex * weight
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER[double precision, energy_c_pbe, (N_states) ]
implicit none
BEGIN_DOC
! exchange/correlation energy with the short range pbe functional
END_DOC
integer :: istate,i,j,m
double precision :: mu,weight
double precision, allocatable :: ex(:), ec(:)
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
energy_c_pbe = 0.d0
mu = 0.d0
do istate = 1, N_states
do i = 1, n_points_final_grid
weight = final_weight_at_r_vector(i)
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
rho_a = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rho_b = one_e_dm_and_grad_beta_in_r(4,i,istate)
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
grad_rho_a_2 += grad_rho_a(m) * grad_rho_a(m)
grad_rho_b_2 += grad_rho_b(m) * grad_rho_b(m)
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
enddo
! inputs
call GGA_sr_type_functionals(0.d0,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
call GGA_sr_type_functionals(mu,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
energy_c_pbe += ec * weight
energy_x_pbe(istate) += ex * weight
energy_c_pbe(istate) += ec * weight
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_x_alpha_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_x_beta_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_c_alpha_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_c_beta_ao_pbe,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
! exchange / correlation potential for alpha / beta electrons with the short-range version Perdew-Burke-Ernzerhof GGA functional
!
! defined in Chem. Phys.329, 276 (2006)
END_DOC
integer :: i,j,istate
do istate = 1, n_states
do i = 1, ao_num
do j = 1, ao_num
potential_x_alpha_ao_pbe(j,i,istate) = pot_scal_x_alpha_ao_pbe(j,i,istate) + pot_grad_x_alpha_ao_pbe(j,i,istate) + pot_grad_x_alpha_ao_pbe(i,j,istate)
potential_x_beta_ao_pbe(j,i,istate) = pot_scal_x_beta_ao_pbe(j,i,istate) + pot_grad_x_beta_ao_pbe(j,i,istate) + pot_grad_x_beta_ao_pbe(i,j,istate)
potential_x_alpha_ao_pbe(j,i,istate) = pot_sr_scal_x_alpha_ao_pbe(j,i,istate) + pot_sr_grad_x_alpha_ao_pbe(j,i,istate) + pot_sr_grad_x_alpha_ao_pbe(i,j,istate)
potential_x_beta_ao_pbe(j,i,istate) = pot_sr_scal_x_beta_ao_pbe(j,i,istate) + pot_sr_grad_x_beta_ao_pbe(j,i,istate) + pot_sr_grad_x_beta_ao_pbe(i,j,istate)
potential_c_alpha_ao_pbe(j,i,istate) = pot_scal_c_alpha_ao_pbe(j,i,istate) + pot_grad_c_alpha_ao_pbe(j,i,istate) + pot_grad_c_alpha_ao_pbe(i,j,istate)
potential_c_beta_ao_pbe(j,i,istate) = pot_scal_c_beta_ao_pbe(j,i,istate) + pot_grad_c_beta_ao_pbe(j,i,istate) + pot_grad_c_beta_ao_pbe(i,j,istate)
potential_c_alpha_ao_pbe(j,i,istate) = pot_sr_scal_c_alpha_ao_pbe(j,i,istate) + pot_sr_grad_c_alpha_ao_pbe(j,i,istate) + pot_sr_grad_c_alpha_ao_pbe(i,j,istate)
potential_c_beta_ao_pbe(j,i,istate) = pot_sr_scal_c_beta_ao_pbe(j,i,istate) + pot_sr_grad_c_beta_ao_pbe(j,i,istate) + pot_sr_grad_c_beta_ao_pbe(i,j,istate)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_xc_beta_ao_pbe,(ao_num,ao_num,N_states)]
implicit none
@ -129,8 +84,8 @@ END_PROVIDER
do istate = 1, n_states
do i = 1, ao_num
do j = 1, ao_num
potential_xc_alpha_ao_pbe(j,i,istate) = pot_scal_xc_alpha_ao_pbe(j,i,istate) + pot_grad_xc_alpha_ao_pbe(j,i,istate) + pot_grad_xc_alpha_ao_pbe(i,j,istate)
potential_xc_beta_ao_pbe(j,i,istate) = pot_scal_xc_beta_ao_pbe(j,i,istate) + pot_grad_xc_beta_ao_pbe(j,i,istate) + pot_grad_xc_beta_ao_pbe(i,j,istate)
potential_xc_alpha_ao_pbe(j,i,istate) = pot_sr_scal_xc_alpha_ao_pbe(j,i,istate) + pot_sr_grad_xc_alpha_ao_pbe(j,i,istate) + pot_sr_grad_xc_alpha_ao_pbe(i,j,istate)
potential_xc_beta_ao_pbe(j,i,istate) = pot_sr_scal_xc_beta_ao_pbe(j,i,istate) + pot_sr_grad_xc_beta_ao_pbe(j,i,istate) + pot_sr_grad_xc_beta_ao_pbe(i,j,istate)
enddo
enddo
enddo
@ -138,78 +93,76 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER[double precision, aos_vc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vx_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvx_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vx_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
implicit none
BEGIN_DOC
! aos_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
! intermediates to compute the sr_pbe potentials
!
! aos_sr_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j,m
double precision :: mu,weight
double precision, allocatable :: ex(:), ec(:)
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
aos_dvc_alpha_pbe_w = 0.d0
aos_dvc_beta_pbe_w = 0.d0
aos_dvx_alpha_pbe_w = 0.d0
aos_dvx_beta_pbe_w = 0.d0
double precision :: ex, ec
double precision :: rho_a,rho_b,grad_rho_a(3),grad_rho_b(3),grad_rho_a_2,grad_rho_b_2,grad_rho_a_b
double precision :: contrib_grad_xa(3),contrib_grad_xb(3),contrib_grad_ca(3),contrib_grad_cb(3)
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
aos_dsr_vc_alpha_pbe_w= 0.d0
aos_dsr_vc_beta_pbe_w = 0.d0
aos_dsr_vx_alpha_pbe_w= 0.d0
aos_dsr_vx_beta_pbe_w = 0.d0
mu = 0.d0
do istate = 1, N_states
do i = 1, n_points_final_grid
weight = final_weight_at_r_vector(i)
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
rho_a = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rho_b = one_e_dm_and_grad_beta_in_r(4,i,istate)
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
grad_rho_a_2 += grad_rho_a(m) * grad_rho_a(m)
grad_rho_b_2 += grad_rho_b(m) * grad_rho_b(m)
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
enddo
! inputs
call GGA_sr_type_functionals(0.d0,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
call GGA_sr_type_functionals(mu,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
vx_rho_a(istate) *= weight
vc_rho_a(istate) *= weight
vx_rho_b(istate) *= weight
vc_rho_b(istate) *= weight
vx_rho_a *= weight
vc_rho_a *= weight
vx_rho_b *= weight
vc_rho_b *= weight
do m= 1,3
contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
contrib_grad_ca(m) = weight * (2.d0 * vc_grad_rho_a_2 * grad_rho_a(m) + vc_grad_rho_a_b * grad_rho_b(m) )
contrib_grad_xa(m) = weight * (2.d0 * vx_grad_rho_a_2 * grad_rho_a(m) + vx_grad_rho_a_b * grad_rho_b(m) )
contrib_grad_cb(m) = weight * (2.d0 * vc_grad_rho_b_2 * grad_rho_b(m) + vc_grad_rho_a_b * grad_rho_a(m) )
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m) )
enddo
do j = 1, ao_num
aos_vc_alpha_pbe_w(j,i,istate) = vc_rho_a(istate) * aos_in_r_array(j,i)
aos_vc_beta_pbe_w (j,i,istate) = vc_rho_b(istate) * aos_in_r_array(j,i)
aos_vx_alpha_pbe_w(j,i,istate) = vx_rho_a(istate) * aos_in_r_array(j,i)
aos_vx_beta_pbe_w (j,i,istate) = vx_rho_b(istate) * aos_in_r_array(j,i)
aos_sr_vc_alpha_pbe_w(j,i,istate) = vc_rho_a * aos_in_r_array(j,i)
aos_sr_vc_beta_pbe_w (j,i,istate) = vc_rho_b * aos_in_r_array(j,i)
aos_sr_vx_alpha_pbe_w(j,i,istate) = vx_rho_a * aos_in_r_array(j,i)
aos_sr_vx_beta_pbe_w (j,i,istate) = vx_rho_b * aos_in_r_array(j,i)
enddo
do j = 1, ao_num
do m = 1,3
aos_dvc_alpha_pbe_w(j,i,istate) += contrib_grad_ca(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dvc_beta_pbe_w (j,i,istate) += contrib_grad_cb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dvx_alpha_pbe_w(j,i,istate) += contrib_grad_xa(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dvx_beta_pbe_w (j,i,istate) += contrib_grad_xb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vc_alpha_pbe_w(j,i,istate) += contrib_grad_ca(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vc_beta_pbe_w (j,i,istate) += contrib_grad_cb(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vx_alpha_pbe_w(j,i,istate) += contrib_grad_xa(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vx_beta_pbe_w (j,i,istate) += contrib_grad_xb(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
enddo
enddo
enddo
@ -218,42 +171,44 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_scal_x_alpha_ao_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_scal_c_alpha_ao_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_scal_x_beta_ao_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_scal_c_beta_ao_pbe, (ao_num,ao_num,N_states)]
BEGIN_PROVIDER [double precision, pot_sr_scal_x_alpha_ao_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_scal_c_alpha_ao_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_scal_x_beta_ao_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_scal_c_beta_ao_pbe, (ao_num,ao_num,N_states)]
implicit none
! intermediates to compute the sr_pbe potentials
!
integer :: istate
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
END_DOC
pot_scal_c_alpha_ao_pbe = 0.d0
pot_scal_x_alpha_ao_pbe = 0.d0
pot_scal_c_beta_ao_pbe = 0.d0
pot_scal_x_beta_ao_pbe = 0.d0
pot_sr_scal_c_alpha_ao_pbe = 0.d0
pot_sr_scal_x_alpha_ao_pbe = 0.d0
pot_sr_scal_c_beta_ao_pbe = 0.d0
pot_sr_scal_x_beta_ao_pbe = 0.d0
double precision :: wall_1,wall_2
call wall_time(wall_1)
do istate = 1, N_states
! correlation alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_vc_alpha_pbe_w(1,1,istate),size(aos_vc_alpha_pbe_w,1), &
aos_sr_vc_alpha_pbe_w(1,1,istate),size(aos_sr_vc_alpha_pbe_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_scal_c_alpha_ao_pbe(1,1,istate),size(pot_scal_c_alpha_ao_pbe,1))
pot_sr_scal_c_alpha_ao_pbe(1,1,istate),size(pot_sr_scal_c_alpha_ao_pbe,1))
! correlation beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_vc_beta_pbe_w(1,1,istate),size(aos_vc_beta_pbe_w,1), &
aos_sr_vc_beta_pbe_w(1,1,istate),size(aos_sr_vc_beta_pbe_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_scal_c_beta_ao_pbe(1,1,istate),size(pot_scal_c_beta_ao_pbe,1))
pot_sr_scal_c_beta_ao_pbe(1,1,istate),size(pot_sr_scal_c_beta_ao_pbe,1))
! exchange alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_vx_alpha_pbe_w(1,1,istate),size(aos_vx_alpha_pbe_w,1), &
aos_sr_vx_alpha_pbe_w(1,1,istate),size(aos_sr_vx_alpha_pbe_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_scal_x_alpha_ao_pbe(1,1,istate),size(pot_scal_x_alpha_ao_pbe,1))
pot_sr_scal_x_alpha_ao_pbe(1,1,istate),size(pot_sr_scal_x_alpha_ao_pbe,1))
! exchange beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_vx_beta_pbe_w(1,1,istate),size(aos_vx_beta_pbe_w,1), &
aos_sr_vx_beta_pbe_w(1,1,istate),size(aos_sr_vx_beta_pbe_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_scal_x_beta_ao_pbe(1,1,istate), size(pot_scal_x_beta_ao_pbe,1))
pot_sr_scal_x_beta_ao_pbe(1,1,istate), size(pot_sr_scal_x_beta_ao_pbe,1))
enddo
call wall_time(wall_2)
@ -261,10 +216,10 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_grad_x_alpha_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_grad_x_beta_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_grad_c_alpha_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_grad_c_beta_ao_pbe,(ao_num,ao_num,N_states)]
BEGIN_PROVIDER [double precision, pot_sr_grad_x_alpha_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_grad_x_beta_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_grad_c_alpha_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_grad_c_beta_ao_pbe,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
@ -272,31 +227,31 @@ END_PROVIDER
integer :: istate
double precision :: wall_1,wall_2
call wall_time(wall_1)
pot_grad_c_alpha_ao_pbe = 0.d0
pot_grad_x_alpha_ao_pbe = 0.d0
pot_grad_c_beta_ao_pbe = 0.d0
pot_grad_x_beta_ao_pbe = 0.d0
pot_sr_grad_c_alpha_ao_pbe = 0.d0
pot_sr_grad_x_alpha_ao_pbe = 0.d0
pot_sr_grad_c_beta_ao_pbe = 0.d0
pot_sr_grad_x_beta_ao_pbe = 0.d0
do istate = 1, N_states
! correlation alpha
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dvc_alpha_pbe_w(1,1,istate),size(aos_dvc_alpha_pbe_w,1), &
aos_dsr_vc_alpha_pbe_w(1,1,istate),size(aos_dsr_vc_alpha_pbe_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_grad_c_alpha_ao_pbe(1,1,istate),size(pot_grad_c_alpha_ao_pbe,1))
pot_sr_grad_c_alpha_ao_pbe(1,1,istate),size(pot_sr_grad_c_alpha_ao_pbe,1))
! correlation beta
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dvc_beta_pbe_w(1,1,istate),size(aos_dvc_beta_pbe_w,1), &
aos_dsr_vc_beta_pbe_w(1,1,istate),size(aos_dsr_vc_beta_pbe_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_grad_c_beta_ao_pbe(1,1,istate),size(pot_grad_c_beta_ao_pbe,1))
pot_sr_grad_c_beta_ao_pbe(1,1,istate),size(pot_sr_grad_c_beta_ao_pbe,1))
! exchange alpha
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dvx_alpha_pbe_w(1,1,istate),size(aos_dvx_alpha_pbe_w,1), &
aos_dsr_vx_alpha_pbe_w(1,1,istate),size(aos_dsr_vx_alpha_pbe_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_grad_x_alpha_ao_pbe(1,1,istate),size(pot_grad_x_alpha_ao_pbe,1))
pot_sr_grad_x_alpha_ao_pbe(1,1,istate),size(pot_sr_grad_x_alpha_ao_pbe,1))
! exchange beta
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dvx_beta_pbe_w(1,1,istate),size(aos_dvx_beta_pbe_w,1), &
aos_dsr_vx_beta_pbe_w(1,1,istate),size(aos_dsr_vx_beta_pbe_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_grad_x_beta_ao_pbe(1,1,istate),size(pot_grad_x_beta_ao_pbe,1))
pot_sr_grad_x_beta_ao_pbe(1,1,istate),size(pot_sr_grad_x_beta_ao_pbe,1))
enddo
call wall_time(wall_2)
@ -304,13 +259,13 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER[double precision, aos_vxc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vxc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvxc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvxc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
BEGIN_PROVIDER[double precision, aos_sr_vxc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vxc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vxc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vxc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
implicit none
BEGIN_DOC
! aos_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
! aos_sr_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j,m
double precision :: mu,weight
@ -320,8 +275,9 @@ END_PROVIDER
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
aos_dvxc_alpha_pbe_w = 0.d0
aos_dvxc_beta_pbe_w = 0.d0
mu = 0.d0
aos_dsr_vxc_alpha_pbe_w = 0.d0
aos_dsr_vxc_beta_pbe_w = 0.d0
do istate = 1, N_states
do i = 1, n_points_final_grid
@ -339,28 +295,28 @@ END_PROVIDER
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
enddo
! call exc_sr_pbe
call GGA_sr_type_functionals(0.d0,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! inputs
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs exchange
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b ) ! outputs correlation
! inputs
call GGA_sr_type_functionals(mu,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
vx_rho_a *= weight
vc_rho_a *= weight
vx_rho_b *= weight
vc_rho_b *= weight
do m= 1,3
contrib_grad_ca(m) = weight * (2.d0 * vc_grad_rho_a_2 * grad_rho_a(m) + vc_grad_rho_a_b * grad_rho_b(m))
contrib_grad_xa(m) = weight * (2.d0 * vx_grad_rho_a_2 * grad_rho_a(m) + vx_grad_rho_a_b * grad_rho_b(m))
contrib_grad_cb(m) = weight * (2.d0 * vc_grad_rho_b_2 * grad_rho_b(m) + vc_grad_rho_a_b * grad_rho_a(m))
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m))
contrib_grad_ca(m) = weight * (2.d0 * vc_grad_rho_a_2 * grad_rho_a(m) + vc_grad_rho_a_b * grad_rho_b(m) )
contrib_grad_xa(m) = weight * (2.d0 * vx_grad_rho_a_2 * grad_rho_a(m) + vx_grad_rho_a_b * grad_rho_b(m) )
contrib_grad_cb(m) = weight * (2.d0 * vc_grad_rho_b_2 * grad_rho_b(m) + vc_grad_rho_a_b * grad_rho_a(m) )
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m) )
enddo
do j = 1, ao_num
aos_vxc_alpha_pbe_w(j,i,istate) = ( vc_rho_a + vx_rho_a ) * aos_in_r_array(j,i)
aos_vxc_beta_pbe_w (j,i,istate) = ( vc_rho_b + vx_rho_b ) * aos_in_r_array(j,i)
aos_sr_vxc_alpha_pbe_w(j,i,istate) = ( vc_rho_a + vx_rho_a ) * aos_in_r_array(j,i)
aos_sr_vxc_beta_pbe_w (j,i,istate) = ( vc_rho_b + vx_rho_b ) * aos_in_r_array(j,i)
enddo
do j = 1, ao_num
do m = 1,3
aos_dvxc_alpha_pbe_w(j,i,istate) += ( contrib_grad_ca(m) + contrib_grad_xa(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dvxc_beta_pbe_w (j,i,istate) += ( contrib_grad_cb(m) + contrib_grad_xb(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vxc_alpha_pbe_w(j,i,istate) += ( contrib_grad_ca(m) + contrib_grad_xa(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vxc_beta_pbe_w (j,i,istate) += ( contrib_grad_cb(m) + contrib_grad_xb(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
enddo
enddo
enddo
@ -369,36 +325,36 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_scal_xc_alpha_ao_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_scal_xc_beta_ao_pbe, (ao_num,ao_num,N_states)]
BEGIN_PROVIDER [double precision, pot_sr_scal_xc_alpha_ao_pbe, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_scal_xc_beta_ao_pbe, (ao_num,ao_num,N_states)]
implicit none
integer :: istate
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
END_DOC
pot_scal_xc_alpha_ao_pbe = 0.d0
pot_scal_xc_beta_ao_pbe = 0.d0
pot_sr_scal_xc_alpha_ao_pbe = 0.d0
pot_sr_scal_xc_beta_ao_pbe = 0.d0
double precision :: wall_1,wall_2
call wall_time(wall_1)
do istate = 1, N_states
! exchange - correlation alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_vxc_alpha_pbe_w(1,1,istate),size(aos_vxc_alpha_pbe_w,1), &
aos_sr_vxc_alpha_pbe_w(1,1,istate),size(aos_sr_vxc_alpha_pbe_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_scal_xc_alpha_ao_pbe(1,1,istate),size(pot_scal_xc_alpha_ao_pbe,1))
pot_sr_scal_xc_alpha_ao_pbe(1,1,istate),size(pot_sr_scal_xc_alpha_ao_pbe,1))
! exchange - correlation beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_vxc_beta_pbe_w(1,1,istate),size(aos_vxc_beta_pbe_w,1), &
aos_sr_vxc_beta_pbe_w(1,1,istate),size(aos_sr_vxc_beta_pbe_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_scal_xc_beta_ao_pbe(1,1,istate),size(pot_scal_xc_beta_ao_pbe,1))
pot_sr_scal_xc_beta_ao_pbe(1,1,istate),size(pot_sr_scal_xc_beta_ao_pbe,1))
enddo
call wall_time(wall_2)
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_grad_xc_alpha_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_grad_xc_beta_ao_pbe,(ao_num,ao_num,N_states)]
BEGIN_PROVIDER [double precision, pot_sr_grad_xc_alpha_ao_pbe,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_grad_xc_beta_ao_pbe,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
@ -406,21 +362,22 @@ END_PROVIDER
integer :: istate
double precision :: wall_1,wall_2
call wall_time(wall_1)
pot_grad_xc_alpha_ao_pbe = 0.d0
pot_grad_xc_beta_ao_pbe = 0.d0
pot_sr_grad_xc_alpha_ao_pbe = 0.d0
pot_sr_grad_xc_beta_ao_pbe = 0.d0
do istate = 1, N_states
! correlation alpha
! exchange - correlation alpha
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dvxc_alpha_pbe_w(1,1,istate),size(aos_dvxc_alpha_pbe_w,1), &
aos_dsr_vxc_alpha_pbe_w(1,1,istate),size(aos_dsr_vxc_alpha_pbe_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_grad_xc_alpha_ao_pbe(1,1,istate),size(pot_grad_xc_alpha_ao_pbe,1))
! correlation beta
pot_sr_grad_xc_alpha_ao_pbe(1,1,istate),size(pot_sr_grad_xc_alpha_ao_pbe,1))
! exchange - correlation beta
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dvxc_beta_pbe_w(1,1,istate),size(aos_dvxc_beta_pbe_w,1), &
aos_dsr_vxc_beta_pbe_w(1,1,istate),size(aos_dsr_vxc_beta_pbe_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_grad_xc_beta_ao_pbe(1,1,istate),size(pot_grad_xc_beta_ao_pbe,1))
pot_sr_grad_xc_beta_ao_pbe(1,1,istate),size(pot_sr_grad_xc_beta_ao_pbe,1))
enddo
call wall_time(wall_2)
END_PROVIDER

View File

@ -24,7 +24,6 @@ interface: ezfio,provider,ocaml
default: None
[mo_integrals_pseudo]
type: double precision
doc: Pseudopotential integrals in |MO| basis set