mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-31 16:45:50 +01:00
modified pbe.irp.f
This commit is contained in:
parent
7bd7b6294c
commit
506f1cb094
@ -10,10 +10,9 @@
|
||||
!
|
||||
! Taking the expectation value does not provide any energy, but
|
||||
!
|
||||
! effective_one_e_potential(i,j) is the potential coupling DFT and WFT part to
|
||||
!
|
||||
! be used in any WFT calculation.
|
||||
! effective_one_e_potential(i,j) is the potential coupling DFT and WFT parts
|
||||
!
|
||||
! and it is used in any RS-DFT based calculations
|
||||
END_DOC
|
||||
do istate = 1, N_states
|
||||
do j = 1, mo_num
|
||||
|
@ -1,7 +1,9 @@
|
||||
BEGIN_PROVIDER [double precision, mu_erf_dft]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! range separation parameter used in RS-DFT. It is set to mu_erf in order to be consistent with the two electrons integrals erf
|
||||
! range separation parameter used in RS-DFT.
|
||||
!
|
||||
! It is set to mu_erf in order to be consistent with the module "ao_two_e_erf_ints"
|
||||
END_DOC
|
||||
mu_erf_dft = mu_erf
|
||||
|
||||
|
@ -1,124 +1,79 @@
|
||||
|
||||
|
||||
BEGIN_PROVIDER[double precision, energy_x_pbe, (N_states) ]
|
||||
&BEGIN_PROVIDER[double precision, energy_c_pbe, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! exchange / correlation energies with the short-range version Perdew-Burke-Ernzerhof GGA functional
|
||||
!
|
||||
! defined in Chem. Phys.329, 276 (2006)
|
||||
END_DOC
|
||||
BEGIN_DOC
|
||||
! exchange/correlation energy with the short range pbe functional
|
||||
END_DOC
|
||||
integer :: istate,i,j,m
|
||||
double precision :: mu,weight
|
||||
double precision, allocatable :: ex(:), ec(:)
|
||||
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
||||
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
|
||||
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
|
||||
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
|
||||
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
|
||||
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
|
||||
double precision :: ex, ec
|
||||
double precision :: rho_a,rho_b,grad_rho_a(3),grad_rho_b(3),grad_rho_a_2,grad_rho_b_2,grad_rho_a_b
|
||||
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
|
||||
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
|
||||
|
||||
|
||||
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
|
||||
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
|
||||
energy_x_pbe = 0.d0
|
||||
do istate = 1, N_states
|
||||
do i = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(i)
|
||||
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||||
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||||
grad_rho_a_2 = 0.d0
|
||||
grad_rho_b_2 = 0.d0
|
||||
grad_rho_a_b = 0.d0
|
||||
do m = 1, 3
|
||||
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
|
||||
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
|
||||
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
|
||||
enddo
|
||||
|
||||
! inputs
|
||||
call GGA_sr_type_functionals(0.d0,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||
energy_x_pbe += ex * weight
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER[double precision, energy_c_pbe, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! exchange/correlation energy with the short range pbe functional
|
||||
END_DOC
|
||||
integer :: istate,i,j,m
|
||||
double precision :: mu,weight
|
||||
double precision, allocatable :: ex(:), ec(:)
|
||||
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
||||
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
|
||||
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
|
||||
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
|
||||
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
|
||||
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
|
||||
|
||||
|
||||
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
|
||||
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
|
||||
energy_c_pbe = 0.d0
|
||||
mu = 0.d0
|
||||
do istate = 1, N_states
|
||||
do i = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(i)
|
||||
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||||
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||||
rho_a = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||
rho_b = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||||
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||||
grad_rho_a_2 = 0.d0
|
||||
grad_rho_b_2 = 0.d0
|
||||
grad_rho_a_b = 0.d0
|
||||
do m = 1, 3
|
||||
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
|
||||
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
|
||||
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
|
||||
grad_rho_a_2 += grad_rho_a(m) * grad_rho_a(m)
|
||||
grad_rho_b_2 += grad_rho_b(m) * grad_rho_b(m)
|
||||
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
||||
enddo
|
||||
|
||||
! inputs
|
||||
call GGA_sr_type_functionals(0.d0,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||
call GGA_sr_type_functionals(mu,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||
energy_c_pbe += ec * weight
|
||||
energy_x_pbe(istate) += ex * weight
|
||||
energy_c_pbe(istate) += ec * weight
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, potential_x_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, potential_x_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, potential_c_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, potential_c_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
|
||||
! exchange / correlation potential for alpha / beta electrons with the short-range version Perdew-Burke-Ernzerhof GGA functional
|
||||
!
|
||||
! defined in Chem. Phys.329, 276 (2006)
|
||||
END_DOC
|
||||
integer :: i,j,istate
|
||||
do istate = 1, n_states
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
potential_x_alpha_ao_pbe(j,i,istate) = pot_scal_x_alpha_ao_pbe(j,i,istate) + pot_grad_x_alpha_ao_pbe(j,i,istate) + pot_grad_x_alpha_ao_pbe(i,j,istate)
|
||||
potential_x_beta_ao_pbe(j,i,istate) = pot_scal_x_beta_ao_pbe(j,i,istate) + pot_grad_x_beta_ao_pbe(j,i,istate) + pot_grad_x_beta_ao_pbe(i,j,istate)
|
||||
potential_x_alpha_ao_pbe(j,i,istate) = pot_sr_scal_x_alpha_ao_pbe(j,i,istate) + pot_sr_grad_x_alpha_ao_pbe(j,i,istate) + pot_sr_grad_x_alpha_ao_pbe(i,j,istate)
|
||||
potential_x_beta_ao_pbe(j,i,istate) = pot_sr_scal_x_beta_ao_pbe(j,i,istate) + pot_sr_grad_x_beta_ao_pbe(j,i,istate) + pot_sr_grad_x_beta_ao_pbe(i,j,istate)
|
||||
|
||||
potential_c_alpha_ao_pbe(j,i,istate) = pot_scal_c_alpha_ao_pbe(j,i,istate) + pot_grad_c_alpha_ao_pbe(j,i,istate) + pot_grad_c_alpha_ao_pbe(i,j,istate)
|
||||
potential_c_beta_ao_pbe(j,i,istate) = pot_scal_c_beta_ao_pbe(j,i,istate) + pot_grad_c_beta_ao_pbe(j,i,istate) + pot_grad_c_beta_ao_pbe(i,j,istate)
|
||||
potential_c_alpha_ao_pbe(j,i,istate) = pot_sr_scal_c_alpha_ao_pbe(j,i,istate) + pot_sr_grad_c_alpha_ao_pbe(j,i,istate) + pot_sr_grad_c_alpha_ao_pbe(i,j,istate)
|
||||
potential_c_beta_ao_pbe(j,i,istate) = pot_sr_scal_c_beta_ao_pbe(j,i,istate) + pot_sr_grad_c_beta_ao_pbe(j,i,istate) + pot_sr_grad_c_beta_ao_pbe(i,j,istate)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, potential_xc_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
implicit none
|
||||
@ -129,8 +84,8 @@ END_PROVIDER
|
||||
do istate = 1, n_states
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
potential_xc_alpha_ao_pbe(j,i,istate) = pot_scal_xc_alpha_ao_pbe(j,i,istate) + pot_grad_xc_alpha_ao_pbe(j,i,istate) + pot_grad_xc_alpha_ao_pbe(i,j,istate)
|
||||
potential_xc_beta_ao_pbe(j,i,istate) = pot_scal_xc_beta_ao_pbe(j,i,istate) + pot_grad_xc_beta_ao_pbe(j,i,istate) + pot_grad_xc_beta_ao_pbe(i,j,istate)
|
||||
potential_xc_alpha_ao_pbe(j,i,istate) = pot_sr_scal_xc_alpha_ao_pbe(j,i,istate) + pot_sr_grad_xc_alpha_ao_pbe(j,i,istate) + pot_sr_grad_xc_alpha_ao_pbe(i,j,istate)
|
||||
potential_xc_beta_ao_pbe(j,i,istate) = pot_sr_scal_xc_beta_ao_pbe(j,i,istate) + pot_sr_grad_xc_beta_ao_pbe(j,i,istate) + pot_sr_grad_xc_beta_ao_pbe(i,j,istate)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -138,78 +93,76 @@ END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_vc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_vc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_vx_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_vx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_dvc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_dvc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_dvx_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_dvx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_sr_vx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_dsr_vc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_dsr_vc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_dsr_vx_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_dsr_vx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! aos_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
||||
! intermediates to compute the sr_pbe potentials
|
||||
!
|
||||
! aos_sr_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
||||
END_DOC
|
||||
integer :: istate,i,j,m
|
||||
double precision :: mu,weight
|
||||
double precision, allocatable :: ex(:), ec(:)
|
||||
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
||||
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
|
||||
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
|
||||
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
|
||||
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
|
||||
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
|
||||
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
|
||||
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
|
||||
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
|
||||
|
||||
aos_dvc_alpha_pbe_w = 0.d0
|
||||
aos_dvc_beta_pbe_w = 0.d0
|
||||
aos_dvx_alpha_pbe_w = 0.d0
|
||||
aos_dvx_beta_pbe_w = 0.d0
|
||||
|
||||
double precision :: ex, ec
|
||||
double precision :: rho_a,rho_b,grad_rho_a(3),grad_rho_b(3),grad_rho_a_2,grad_rho_b_2,grad_rho_a_b
|
||||
double precision :: contrib_grad_xa(3),contrib_grad_xb(3),contrib_grad_ca(3),contrib_grad_cb(3)
|
||||
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
|
||||
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
|
||||
aos_dsr_vc_alpha_pbe_w= 0.d0
|
||||
aos_dsr_vc_beta_pbe_w = 0.d0
|
||||
aos_dsr_vx_alpha_pbe_w= 0.d0
|
||||
aos_dsr_vx_beta_pbe_w = 0.d0
|
||||
mu = 0.d0
|
||||
do istate = 1, N_states
|
||||
do i = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(i)
|
||||
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||||
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||||
|
||||
rho_a = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||
rho_b = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||||
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||||
grad_rho_a_2 = 0.d0
|
||||
grad_rho_b_2 = 0.d0
|
||||
grad_rho_a_b = 0.d0
|
||||
do m = 1, 3
|
||||
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
|
||||
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
|
||||
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
|
||||
grad_rho_a_2 += grad_rho_a(m) * grad_rho_a(m)
|
||||
grad_rho_b_2 += grad_rho_b(m) * grad_rho_b(m)
|
||||
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
||||
enddo
|
||||
|
||||
! inputs
|
||||
call GGA_sr_type_functionals(0.d0,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||
call GGA_sr_type_functionals(mu,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||
vx_rho_a(istate) *= weight
|
||||
vc_rho_a(istate) *= weight
|
||||
vx_rho_b(istate) *= weight
|
||||
vc_rho_b(istate) *= weight
|
||||
vx_rho_a *= weight
|
||||
vc_rho_a *= weight
|
||||
vx_rho_b *= weight
|
||||
vc_rho_b *= weight
|
||||
do m= 1,3
|
||||
contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
|
||||
contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
|
||||
contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
|
||||
contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
|
||||
contrib_grad_ca(m) = weight * (2.d0 * vc_grad_rho_a_2 * grad_rho_a(m) + vc_grad_rho_a_b * grad_rho_b(m) )
|
||||
contrib_grad_xa(m) = weight * (2.d0 * vx_grad_rho_a_2 * grad_rho_a(m) + vx_grad_rho_a_b * grad_rho_b(m) )
|
||||
contrib_grad_cb(m) = weight * (2.d0 * vc_grad_rho_b_2 * grad_rho_b(m) + vc_grad_rho_a_b * grad_rho_a(m) )
|
||||
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m) )
|
||||
enddo
|
||||
do j = 1, ao_num
|
||||
aos_vc_alpha_pbe_w(j,i,istate) = vc_rho_a(istate) * aos_in_r_array(j,i)
|
||||
aos_vc_beta_pbe_w (j,i,istate) = vc_rho_b(istate) * aos_in_r_array(j,i)
|
||||
aos_vx_alpha_pbe_w(j,i,istate) = vx_rho_a(istate) * aos_in_r_array(j,i)
|
||||
aos_vx_beta_pbe_w (j,i,istate) = vx_rho_b(istate) * aos_in_r_array(j,i)
|
||||
aos_sr_vc_alpha_pbe_w(j,i,istate) = vc_rho_a * aos_in_r_array(j,i)
|
||||
aos_sr_vc_beta_pbe_w (j,i,istate) = vc_rho_b * aos_in_r_array(j,i)
|
||||
aos_sr_vx_alpha_pbe_w(j,i,istate) = vx_rho_a * aos_in_r_array(j,i)
|
||||
aos_sr_vx_beta_pbe_w (j,i,istate) = vx_rho_b * aos_in_r_array(j,i)
|
||||
enddo
|
||||
do j = 1, ao_num
|
||||
do m = 1,3
|
||||
aos_dvc_alpha_pbe_w(j,i,istate) += contrib_grad_ca(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||
aos_dvc_beta_pbe_w (j,i,istate) += contrib_grad_cb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||
aos_dvx_alpha_pbe_w(j,i,istate) += contrib_grad_xa(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||
aos_dvx_beta_pbe_w (j,i,istate) += contrib_grad_xb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||
aos_dsr_vc_alpha_pbe_w(j,i,istate) += contrib_grad_ca(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||
aos_dsr_vc_beta_pbe_w (j,i,istate) += contrib_grad_cb(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||
aos_dsr_vx_alpha_pbe_w(j,i,istate) += contrib_grad_xa(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||
aos_dsr_vx_beta_pbe_w (j,i,istate) += contrib_grad_xb(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -218,42 +171,44 @@ END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, pot_scal_x_alpha_ao_pbe, (ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_scal_c_alpha_ao_pbe, (ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_scal_x_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_scal_c_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
||||
BEGIN_PROVIDER [double precision, pot_sr_scal_x_alpha_ao_pbe, (ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_sr_scal_c_alpha_ao_pbe, (ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_sr_scal_x_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_sr_scal_c_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
||||
implicit none
|
||||
! intermediates to compute the sr_pbe potentials
|
||||
!
|
||||
integer :: istate
|
||||
BEGIN_DOC
|
||||
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
|
||||
END_DOC
|
||||
pot_scal_c_alpha_ao_pbe = 0.d0
|
||||
pot_scal_x_alpha_ao_pbe = 0.d0
|
||||
pot_scal_c_beta_ao_pbe = 0.d0
|
||||
pot_scal_x_beta_ao_pbe = 0.d0
|
||||
pot_sr_scal_c_alpha_ao_pbe = 0.d0
|
||||
pot_sr_scal_x_alpha_ao_pbe = 0.d0
|
||||
pot_sr_scal_c_beta_ao_pbe = 0.d0
|
||||
pot_sr_scal_x_beta_ao_pbe = 0.d0
|
||||
double precision :: wall_1,wall_2
|
||||
call wall_time(wall_1)
|
||||
do istate = 1, N_states
|
||||
! correlation alpha
|
||||
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||||
aos_vc_alpha_pbe_w(1,1,istate),size(aos_vc_alpha_pbe_w,1), &
|
||||
aos_sr_vc_alpha_pbe_w(1,1,istate),size(aos_sr_vc_alpha_pbe_w,1), &
|
||||
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
||||
pot_scal_c_alpha_ao_pbe(1,1,istate),size(pot_scal_c_alpha_ao_pbe,1))
|
||||
pot_sr_scal_c_alpha_ao_pbe(1,1,istate),size(pot_sr_scal_c_alpha_ao_pbe,1))
|
||||
! correlation beta
|
||||
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||||
aos_vc_beta_pbe_w(1,1,istate),size(aos_vc_beta_pbe_w,1), &
|
||||
aos_sr_vc_beta_pbe_w(1,1,istate),size(aos_sr_vc_beta_pbe_w,1), &
|
||||
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
||||
pot_scal_c_beta_ao_pbe(1,1,istate),size(pot_scal_c_beta_ao_pbe,1))
|
||||
pot_sr_scal_c_beta_ao_pbe(1,1,istate),size(pot_sr_scal_c_beta_ao_pbe,1))
|
||||
! exchange alpha
|
||||
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||||
aos_vx_alpha_pbe_w(1,1,istate),size(aos_vx_alpha_pbe_w,1), &
|
||||
aos_sr_vx_alpha_pbe_w(1,1,istate),size(aos_sr_vx_alpha_pbe_w,1), &
|
||||
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
||||
pot_scal_x_alpha_ao_pbe(1,1,istate),size(pot_scal_x_alpha_ao_pbe,1))
|
||||
pot_sr_scal_x_alpha_ao_pbe(1,1,istate),size(pot_sr_scal_x_alpha_ao_pbe,1))
|
||||
! exchange beta
|
||||
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||||
aos_vx_beta_pbe_w(1,1,istate),size(aos_vx_beta_pbe_w,1), &
|
||||
aos_sr_vx_beta_pbe_w(1,1,istate),size(aos_sr_vx_beta_pbe_w,1), &
|
||||
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
||||
pot_scal_x_beta_ao_pbe(1,1,istate), size(pot_scal_x_beta_ao_pbe,1))
|
||||
pot_sr_scal_x_beta_ao_pbe(1,1,istate), size(pot_sr_scal_x_beta_ao_pbe,1))
|
||||
|
||||
enddo
|
||||
call wall_time(wall_2)
|
||||
@ -261,10 +216,10 @@ END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, pot_grad_x_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_grad_x_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_grad_c_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_grad_c_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
BEGIN_PROVIDER [double precision, pot_sr_grad_x_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_sr_grad_x_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_sr_grad_c_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_sr_grad_c_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
|
||||
@ -272,31 +227,31 @@ END_PROVIDER
|
||||
integer :: istate
|
||||
double precision :: wall_1,wall_2
|
||||
call wall_time(wall_1)
|
||||
pot_grad_c_alpha_ao_pbe = 0.d0
|
||||
pot_grad_x_alpha_ao_pbe = 0.d0
|
||||
pot_grad_c_beta_ao_pbe = 0.d0
|
||||
pot_grad_x_beta_ao_pbe = 0.d0
|
||||
pot_sr_grad_c_alpha_ao_pbe = 0.d0
|
||||
pot_sr_grad_x_alpha_ao_pbe = 0.d0
|
||||
pot_sr_grad_c_beta_ao_pbe = 0.d0
|
||||
pot_sr_grad_x_beta_ao_pbe = 0.d0
|
||||
do istate = 1, N_states
|
||||
! correlation alpha
|
||||
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||||
aos_dvc_alpha_pbe_w(1,1,istate),size(aos_dvc_alpha_pbe_w,1), &
|
||||
aos_dsr_vc_alpha_pbe_w(1,1,istate),size(aos_dsr_vc_alpha_pbe_w,1), &
|
||||
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
||||
pot_grad_c_alpha_ao_pbe(1,1,istate),size(pot_grad_c_alpha_ao_pbe,1))
|
||||
pot_sr_grad_c_alpha_ao_pbe(1,1,istate),size(pot_sr_grad_c_alpha_ao_pbe,1))
|
||||
! correlation beta
|
||||
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||||
aos_dvc_beta_pbe_w(1,1,istate),size(aos_dvc_beta_pbe_w,1), &
|
||||
aos_dsr_vc_beta_pbe_w(1,1,istate),size(aos_dsr_vc_beta_pbe_w,1), &
|
||||
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
||||
pot_grad_c_beta_ao_pbe(1,1,istate),size(pot_grad_c_beta_ao_pbe,1))
|
||||
pot_sr_grad_c_beta_ao_pbe(1,1,istate),size(pot_sr_grad_c_beta_ao_pbe,1))
|
||||
! exchange alpha
|
||||
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||||
aos_dvx_alpha_pbe_w(1,1,istate),size(aos_dvx_alpha_pbe_w,1), &
|
||||
aos_dsr_vx_alpha_pbe_w(1,1,istate),size(aos_dsr_vx_alpha_pbe_w,1), &
|
||||
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
||||
pot_grad_x_alpha_ao_pbe(1,1,istate),size(pot_grad_x_alpha_ao_pbe,1))
|
||||
pot_sr_grad_x_alpha_ao_pbe(1,1,istate),size(pot_sr_grad_x_alpha_ao_pbe,1))
|
||||
! exchange beta
|
||||
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||||
aos_dvx_beta_pbe_w(1,1,istate),size(aos_dvx_beta_pbe_w,1), &
|
||||
aos_dsr_vx_beta_pbe_w(1,1,istate),size(aos_dsr_vx_beta_pbe_w,1), &
|
||||
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
||||
pot_grad_x_beta_ao_pbe(1,1,istate),size(pot_grad_x_beta_ao_pbe,1))
|
||||
pot_sr_grad_x_beta_ao_pbe(1,1,istate),size(pot_sr_grad_x_beta_ao_pbe,1))
|
||||
enddo
|
||||
|
||||
call wall_time(wall_2)
|
||||
@ -304,13 +259,13 @@ END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_vxc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_vxc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_dvxc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_dvxc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
BEGIN_PROVIDER[double precision, aos_sr_vxc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_sr_vxc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_dsr_vxc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
&BEGIN_PROVIDER[double precision, aos_dsr_vxc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! aos_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
||||
! aos_sr_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
||||
END_DOC
|
||||
integer :: istate,i,j,m
|
||||
double precision :: mu,weight
|
||||
@ -320,8 +275,9 @@ END_PROVIDER
|
||||
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
|
||||
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
|
||||
|
||||
aos_dvxc_alpha_pbe_w = 0.d0
|
||||
aos_dvxc_beta_pbe_w = 0.d0
|
||||
mu = 0.d0
|
||||
aos_dsr_vxc_alpha_pbe_w = 0.d0
|
||||
aos_dsr_vxc_beta_pbe_w = 0.d0
|
||||
|
||||
do istate = 1, N_states
|
||||
do i = 1, n_points_final_grid
|
||||
@ -339,28 +295,28 @@ END_PROVIDER
|
||||
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
||||
enddo
|
||||
|
||||
! call exc_sr_pbe
|
||||
call GGA_sr_type_functionals(0.d0,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! inputs
|
||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs exchange
|
||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b ) ! outputs correlation
|
||||
! inputs
|
||||
call GGA_sr_type_functionals(mu,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||
vx_rho_a *= weight
|
||||
vc_rho_a *= weight
|
||||
vx_rho_b *= weight
|
||||
vc_rho_b *= weight
|
||||
do m= 1,3
|
||||
contrib_grad_ca(m) = weight * (2.d0 * vc_grad_rho_a_2 * grad_rho_a(m) + vc_grad_rho_a_b * grad_rho_b(m))
|
||||
contrib_grad_xa(m) = weight * (2.d0 * vx_grad_rho_a_2 * grad_rho_a(m) + vx_grad_rho_a_b * grad_rho_b(m))
|
||||
contrib_grad_cb(m) = weight * (2.d0 * vc_grad_rho_b_2 * grad_rho_b(m) + vc_grad_rho_a_b * grad_rho_a(m))
|
||||
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m))
|
||||
contrib_grad_ca(m) = weight * (2.d0 * vc_grad_rho_a_2 * grad_rho_a(m) + vc_grad_rho_a_b * grad_rho_b(m) )
|
||||
contrib_grad_xa(m) = weight * (2.d0 * vx_grad_rho_a_2 * grad_rho_a(m) + vx_grad_rho_a_b * grad_rho_b(m) )
|
||||
contrib_grad_cb(m) = weight * (2.d0 * vc_grad_rho_b_2 * grad_rho_b(m) + vc_grad_rho_a_b * grad_rho_a(m) )
|
||||
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m) )
|
||||
enddo
|
||||
do j = 1, ao_num
|
||||
aos_vxc_alpha_pbe_w(j,i,istate) = ( vc_rho_a + vx_rho_a ) * aos_in_r_array(j,i)
|
||||
aos_vxc_beta_pbe_w (j,i,istate) = ( vc_rho_b + vx_rho_b ) * aos_in_r_array(j,i)
|
||||
aos_sr_vxc_alpha_pbe_w(j,i,istate) = ( vc_rho_a + vx_rho_a ) * aos_in_r_array(j,i)
|
||||
aos_sr_vxc_beta_pbe_w (j,i,istate) = ( vc_rho_b + vx_rho_b ) * aos_in_r_array(j,i)
|
||||
enddo
|
||||
do j = 1, ao_num
|
||||
do m = 1,3
|
||||
aos_dvxc_alpha_pbe_w(j,i,istate) += ( contrib_grad_ca(m) + contrib_grad_xa(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||
aos_dvxc_beta_pbe_w (j,i,istate) += ( contrib_grad_cb(m) + contrib_grad_xb(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||
aos_dsr_vxc_alpha_pbe_w(j,i,istate) += ( contrib_grad_ca(m) + contrib_grad_xa(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||
aos_dsr_vxc_beta_pbe_w (j,i,istate) += ( contrib_grad_cb(m) + contrib_grad_xb(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -369,36 +325,36 @@ END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, pot_scal_xc_alpha_ao_pbe, (ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_scal_xc_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
||||
BEGIN_PROVIDER [double precision, pot_sr_scal_xc_alpha_ao_pbe, (ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_sr_scal_xc_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
||||
implicit none
|
||||
integer :: istate
|
||||
BEGIN_DOC
|
||||
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
|
||||
END_DOC
|
||||
pot_scal_xc_alpha_ao_pbe = 0.d0
|
||||
pot_scal_xc_beta_ao_pbe = 0.d0
|
||||
pot_sr_scal_xc_alpha_ao_pbe = 0.d0
|
||||
pot_sr_scal_xc_beta_ao_pbe = 0.d0
|
||||
double precision :: wall_1,wall_2
|
||||
call wall_time(wall_1)
|
||||
do istate = 1, N_states
|
||||
! exchange - correlation alpha
|
||||
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||||
aos_vxc_alpha_pbe_w(1,1,istate),size(aos_vxc_alpha_pbe_w,1), &
|
||||
aos_sr_vxc_alpha_pbe_w(1,1,istate),size(aos_sr_vxc_alpha_pbe_w,1), &
|
||||
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
||||
pot_scal_xc_alpha_ao_pbe(1,1,istate),size(pot_scal_xc_alpha_ao_pbe,1))
|
||||
pot_sr_scal_xc_alpha_ao_pbe(1,1,istate),size(pot_sr_scal_xc_alpha_ao_pbe,1))
|
||||
! exchange - correlation beta
|
||||
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||||
aos_vxc_beta_pbe_w(1,1,istate),size(aos_vxc_beta_pbe_w,1), &
|
||||
aos_sr_vxc_beta_pbe_w(1,1,istate),size(aos_sr_vxc_beta_pbe_w,1), &
|
||||
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
|
||||
pot_scal_xc_beta_ao_pbe(1,1,istate),size(pot_scal_xc_beta_ao_pbe,1))
|
||||
pot_sr_scal_xc_beta_ao_pbe(1,1,istate),size(pot_sr_scal_xc_beta_ao_pbe,1))
|
||||
enddo
|
||||
call wall_time(wall_2)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, pot_grad_xc_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_grad_xc_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
BEGIN_PROVIDER [double precision, pot_sr_grad_xc_alpha_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, pot_sr_grad_xc_beta_ao_pbe,(ao_num,ao_num,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
|
||||
@ -406,21 +362,22 @@ END_PROVIDER
|
||||
integer :: istate
|
||||
double precision :: wall_1,wall_2
|
||||
call wall_time(wall_1)
|
||||
pot_grad_xc_alpha_ao_pbe = 0.d0
|
||||
pot_grad_xc_beta_ao_pbe = 0.d0
|
||||
pot_sr_grad_xc_alpha_ao_pbe = 0.d0
|
||||
pot_sr_grad_xc_beta_ao_pbe = 0.d0
|
||||
do istate = 1, N_states
|
||||
! correlation alpha
|
||||
! exchange - correlation alpha
|
||||
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||||
aos_dvxc_alpha_pbe_w(1,1,istate),size(aos_dvxc_alpha_pbe_w,1), &
|
||||
aos_dsr_vxc_alpha_pbe_w(1,1,istate),size(aos_dsr_vxc_alpha_pbe_w,1), &
|
||||
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
||||
pot_grad_xc_alpha_ao_pbe(1,1,istate),size(pot_grad_xc_alpha_ao_pbe,1))
|
||||
! correlation beta
|
||||
pot_sr_grad_xc_alpha_ao_pbe(1,1,istate),size(pot_sr_grad_xc_alpha_ao_pbe,1))
|
||||
! exchange - correlation beta
|
||||
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
|
||||
aos_dvxc_beta_pbe_w(1,1,istate),size(aos_dvxc_beta_pbe_w,1), &
|
||||
aos_dsr_vxc_beta_pbe_w(1,1,istate),size(aos_dsr_vxc_beta_pbe_w,1), &
|
||||
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
|
||||
pot_grad_xc_beta_ao_pbe(1,1,istate),size(pot_grad_xc_beta_ao_pbe,1))
|
||||
pot_sr_grad_xc_beta_ao_pbe(1,1,istate),size(pot_sr_grad_xc_beta_ao_pbe,1))
|
||||
enddo
|
||||
|
||||
call wall_time(wall_2)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -24,7 +24,6 @@ interface: ezfio,provider,ocaml
|
||||
default: None
|
||||
|
||||
|
||||
|
||||
[mo_integrals_pseudo]
|
||||
type: double precision
|
||||
doc: Pseudopotential integrals in |MO| basis set
|
||||
|
Loading…
Reference in New Issue
Block a user