10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-05 02:48:49 +01:00

Added modifs to configuration_CI_sigma_helpres.org

This commit is contained in:
v1j4y 2021-03-01 12:29:26 +01:00
parent f2bbbfc299
commit 4f5f612c5d
2 changed files with 69 additions and 698 deletions

View File

@ -168,6 +168,12 @@ the input determinant \(|D_I\rangle\).
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
if((ndiffSOMO+ndiffDOMO) .EQ. 0) then
pqAlreadyGenQ = .TRUE.
ppExistsQ = .TRUE.
EXIT
endif
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
pqAlreadyGenQ = .TRUE.
!ppExistsQ = .TRUE.
!print *,i,k,ndiffSOMO,ndiffDOMO
!call debug_spindet(Jsomo,1)
!call debug_spindet(Jdomo,1)
@ -183,16 +189,16 @@ the input determinant \(|D_I\rangle\).
pqExistsQ = .FALSE.
! now check if this exists in the selected list
do k = idxI+1, N_configuration
diffSOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jsomo),psi_configuration(1,1,k))
diffDOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jdomo),psi_configuration(1,2,k))
ndiffSOMO = POPCNT(diffSOMO)
ndiffDOMO = POPCNT(diffDOMO)
if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
pqExistsQ = .TRUE.
EXIT
endif
end do
!do k = idxI+1, N_configuration
! diffSOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jsomo),psi_configuration(1,1,k))
! diffDOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jdomo),psi_configuration(1,2,k))
! ndiffSOMO = POPCNT(diffSOMO)
! ndiffDOMO = POPCNT(diffDOMO)
! if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
! pqExistsQ = .TRUE.
! EXIT
! endif
!end do
if(.NOT. pqExistsQ) then
tableUniqueAlphas(p,q) = .TRUE.
@ -242,6 +248,7 @@ the input determinant \(|D_I\rangle\).
print*,"Something went wrong in obtain_associated_alphaI"
endif
! SOMO
NalphaIcfg += 1
!print *,p,q,"|",holetype(i),vmotype(j),NalphaIcfg
alphasIcfg(1,1,NalphaIcfg) = Jsomo
@ -250,6 +257,33 @@ the input determinant \(|D_I\rangle\).
end do
end do
! Check if this Icfg has been previously generated as a mono
ppExistsQ = .False.
Isomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,1))
Idomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,2))
do k = 1, idxI-1
diffSOMO = IEOR(Isomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)))
diffDOMO = IEOR(Idomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)))
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffSOMO = POPCNT(diffSOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
ppExistsQ = .TRUE.
EXIT
endif
end do
! Diagonal part (pp,qq)
if(nholes > 0 .AND. (.NOT. ppExistsQ))then
! SOMO
NalphaIcfg += 1
!print *,p,q,"|",holetype(i),vmotype(j),NalphaIcfg
!call debug_spindet(Idomo,1)
!call debug_spindet(Jdomo,1)
alphasIcfg(1,1,NalphaIcfg) = Icfg(1,1)
alphasIcfg(1,2,NalphaIcfg) = Icfg(1,2)
endif
end subroutine
#+end_src
@ -259,7 +293,7 @@ Next step is to obtain the connected CFGs \(|I\rangle\) that belong to the selec
given a RI configuration \(|\alpha\rangle\).
#+begin_src f90 :main no :tangle ../cfgCI/obtain_I_foralpha.irp.f
subroutine obtain_connected_I_foralpha(idxI, Ialpha, connectedI, idxs_connectedI, nconnectedI, excitationIds, excitationTypes)
subroutine obtain_connected_I_foralpha(idxI, Ialpha, connectedI, idxs_connectedI, nconnectedI, excitationIds, excitationTypes, diagfactors)
implicit none
use bitmasks
BEGIN_DOC
@ -284,6 +318,7 @@ subroutine obtain_connected_I_foralpha(idxI, Ialpha, connectedI, idxs_connectedI
integer,intent(out) :: nconnectedI
integer,intent(out) :: excitationIds(2,*)
integer,intent(out) :: excitationTypes(*)
real*8 ,intent(out) :: diagfactors(*)
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
@ -291,34 +326,14 @@ subroutine obtain_connected_I_foralpha(idxI, Ialpha, connectedI, idxs_connectedI
integer*8 :: IJsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer*8 :: xordiffSOMODOMO
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: nxordiffSOMODOMO
integer :: i,j,k,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes
integer :: ii,i,j,k,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes
integer :: listholes(mo_num)
integer :: holetype(mo_num)
! find out all pq holes possible
nholes = 0
! holes in SOMO
Isomo = psi_configuration(1,1,idxI)
Idomo = psi_configuration(1,2,idxI)
do i = n_core_orb+1,n_core_orb + n_act_orb
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = i
holetype(nholes) = 1
endif
end do
! holes in DOMO
do i = n_core_orb+1,n_core_orb + n_act_orb
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = i
holetype(nholes) = 2
endif
end do
nconnectedI = 0
p = 0
@ -335,11 +350,15 @@ subroutine obtain_connected_I_foralpha(idxI, Ialpha, connectedI, idxs_connectedI
!call debug_spindet(Jdomo,1)
diffSOMO = IEOR(Isomo,Jsomo)
diffDOMO = IEOR(Idomo,Jdomo)
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffSOMO = POPCNT(diffSOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
!print *,"-I--i=",i,ndiffSOMO,ndiffDOMO,nxordiffSOMODOMO!Isomo,Jsomo,ndiffSOMO,ndiffDOMO
!if((ndiffSOMO + ndiffDOMO) .EQ. 0) cycle
!print *,POPCNT(IEOR(diffSOMO,diffDOMO)), ndiffDOMO
if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
!call debug_spindet(Isomo,1)
!call debug_spindet(Idomo,1)
!print *,"-J--i=",i,Idomo,Jdomo,">",N_configuration
@ -565,17 +584,26 @@ subroutine convertOrbIdsToModelSpaceIds(Ialpha, Jcfg, p, q, extype, pmodel, qmod
pmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
mask = ISHFT(1_8,q) - 1
Jsomo = IAND(Jsomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask)) + 1
else
mask = ISHFT(1_8,p) - 1
Isomo = IAND(Isomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask)) + 1
mask = ISHFT(1_8,q) - 1
Jsomo = IAND(Jsomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
endif
case (4)
! DOMO -> SOMO
! remove all domos except one at p
!print *,"type -> DOMO -> SOMO"
!Isomo = IEOR(Isomo,Jsomo)
mask = ISHFT(1_8,p) - 1
Jsomo = IAND(Jsomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
mask = ISHFT(1_8,q) - 1
Isomo = IAND(Isomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
if(p.LT.q) then
mask = ISHFT(1_8,p) - 1
Jsomo = IAND(Jsomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
mask = ISHFT(1_8,q) - 1
Isomo = IAND(Isomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask)) + 1
else
mask = ISHFT(1_8,p) - 1
@ -589,7 +617,7 @@ subroutine convertOrbIdsToModelSpaceIds(Ialpha, Jcfg, p, q, extype, pmodel, qmod
print *,"something is wrong in convertOrbIdsToModelSpaceIds"
end select
endif
!print *,p,q,"model ids=",pmodel,qmodel
!print *,p,q,"model ids=",pmodel,qmodel
end subroutine convertOrbIdsToModelSpaceIds
#+end_src

View File

@ -1,657 +0,0 @@
#+title: Configuration Sigma Vector Helpers
#+author: Vijay Gopal Chilkuri
#+email: vijay.gopal.c@gmail.com
* Generate the singly excited configurations on-the-fly
The algorithm is based on the work by Garniron et. al. (see thesis Chap 5).
The basic idea is to generate \(|\alpha\rangle\)'s on-the-fly.
The algorithm is based on the idea of splitting the list of \(|\alpha\rangle\)'s
into blocks associated with a selected determinant \(|D_I\rangle\).
** Create a function to return a list of alphas
Here we create a list of \(|\alpha\rangle\)'s associated with
the input determinant \(|D_I\rangle\).
#+begin_src f90 :main no :tangle configuration_CI_sigma_helpers.irp.f
subroutine obtain_associated_alphaI(idxI, Icfg, alphasIcfg, NalphaIcfg, factor_alphaI)
implicit none
use bitmasks
BEGIN_DOC
! Documentation for alphasI
! Returns the associated alpha's for
! the input configuration Icfg.
END_DOC
integer,intent(in) :: idxI ! The id of the Ith CFG
integer(bit_kind),intent(in) :: Icfg(N_int,2)
integer,intent(out) :: NalphaIcfg
real*8 ,intent(out) :: factor_alphaI(*)
integer(bit_kind),intent(out) :: alphasIcfg(N_int,2,*)
logical,dimension(:,:),allocatable :: tableUniqueAlphas
integer :: listholes(mo_num)
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
integer :: nholes
integer :: nvmos
integer :: listvmos(mo_num)
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
integer*8 :: Jsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer*8 :: xordiffSOMODOMO
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: nxordiffSOMODOMO
integer :: ndiffAll
integer :: i
integer :: j
integer :: k
integer :: hole
integer :: p
integer :: q
integer :: countalphas
logical :: pqAlreadyGenQ
logical :: pqExistsQ
logical :: ppExistsQ
Isomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,1))
Idomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,2))
!print*,"Input cfg"
!call debug_spindet(Isomo,1)
!call debug_spindet(Idomo,1)
!print*,n_act_orb, "monum=",mo_num," n_core=",n_core_orb
! find out all pq holes possible
nholes = 0
! holes in SOMO
do i = 1,mo_num
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = i
holetype(nholes) = 1
endif
end do
! holes in DOMO
do i = 1,mo_num
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = i
holetype(nholes) = 2
endif
end do
! find vmos
listvmos = -1
vmotype = -1
nvmos = 0
do i = 1,mo_num
!print *,i,IBSET(0,i-1),POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))), POPCNT(IAND(Idomo,(IBSET(0_8,i-1))))
if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 0 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0) then
nvmos += 1
listvmos(nvmos) = i
vmotype(nvmos) = 1
else if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 1 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0 ) then
nvmos += 1
listvmos(nvmos) = i
vmotype(nvmos) = 2
end if
end do
!print *,"Nvmo=",nvmos
!print *,listvmos
!print *,vmotype
allocate(tableUniqueAlphas(mo_num,mo_num))
tableUniqueAlphas = .FALSE.
! Now find the allowed (p,q) excitations
Isomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,1))
Idomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,2))
!print *,"Isomo"
!call debug_spindet(Isomo,1)
!call debug_spindet(Idomo,1)
!print *,"Nholes=",nholes," Nvmos=",nvmos, " idxi=",idxI
!do i = 1,nholes
! print *,i,"->",listholes(i)
!enddo
!do i = 1,nvmos
! print *,i,"->",listvmos(i)
!enddo
! TODO cfg_seniority_index
do i = 1,nholes
p = listholes(i)
do j = 1,nvmos
q = listvmos(j)
if(p .EQ. q) cycle
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
! SOMO -> VMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = Idomo
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
! SOMO -> SOMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBSET(Idomo,q-1)
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
! DOMO -> VMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
! DOMO -> SOMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
Jdomo = IBSET(Jdomo,q-1)
else
print*,"Something went wrong in obtain_associated_alphaI"
endif
pqAlreadyGenQ = .FALSE.
! First check if it can be generated before
do k = 1, idxI-1
diffSOMO = IEOR(Jsomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)))
diffDOMO = IEOR(Jdomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)))
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffSOMO = POPCNT(diffSOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
if((ndiffSOMO+ndiffDOMO) .EQ. 0) then
pqAlreadyGenQ = .TRUE.
ppExistsQ = .TRUE.
EXIT
endif
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
pqAlreadyGenQ = .TRUE.
!ppExistsQ = .TRUE.
!print *,i,k,ndiffSOMO,ndiffDOMO
!call debug_spindet(Jsomo,1)
!call debug_spindet(Jdomo,1)
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)),1)
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)),1)
EXIT
endif
end do
!print *,"(,",p,",",q,")",pqAlreadyGenQ
if(pqAlreadyGenQ) cycle
pqExistsQ = .FALSE.
! now check if this exists in the selected list
!do k = idxI+1, N_configuration
! diffSOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jsomo),psi_configuration(1,1,k))
! diffDOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jdomo),psi_configuration(1,2,k))
! ndiffSOMO = POPCNT(diffSOMO)
! ndiffDOMO = POPCNT(diffDOMO)
! if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
! pqExistsQ = .TRUE.
! EXIT
! endif
!end do
if(.NOT. pqExistsQ) then
tableUniqueAlphas(p,q) = .TRUE.
!print *,p,q
!call debug_spindet(Jsomo,1)
!call debug_spindet(Jdomo,1)
endif
end do
end do
!print *,tableUniqueAlphas(:,:)
! prune list of alphas
Isomo = Icfg(1,1)
Idomo = Icfg(1,2)
Jsomo = Icfg(1,1)
Jdomo = Icfg(1,2)
NalphaIcfg = 0
do i = 1, nholes
p = listholes(i)
do j = 1, nvmos
q = listvmos(j)
if(p .EQ. q) cycle
if(tableUniqueAlphas(p,q)) then
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
! SOMO -> VMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = Idomo
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
! SOMO -> SOMO
Jsomo = IBCLR(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBSET(Idomo,q-1)
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
! DOMO -> VMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBSET(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
! DOMO -> SOMO
Jsomo = IBSET(Isomo,p-1)
Jsomo = IBCLR(Jsomo,q-1)
Jdomo = IBCLR(Idomo,p-1)
Jdomo = IBSET(Jdomo,q-1)
else
print*,"Something went wrong in obtain_associated_alphaI"
endif
! SOMO
NalphaIcfg += 1
!print *,p,q,"|",holetype(i),vmotype(j),NalphaIcfg
alphasIcfg(1,1,NalphaIcfg) = Jsomo
alphasIcfg(1,2,NalphaIcfg) = IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
endif
end do
end do
! Check if this Icfg has been previously generated as a mono
ppExistsQ = .False.
Isomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,1))
Idomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,2))
do k = 1, idxI-1
diffSOMO = IEOR(Isomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)))
diffDOMO = IEOR(Idomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)))
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffSOMO = POPCNT(diffSOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
ppExistsQ = .TRUE.
EXIT
endif
end do
! Diagonal part (pp,qq)
if(nholes > 0 .AND. (.NOT. ppExistsQ))then
! SOMO
NalphaIcfg += 1
!print *,p,q,"|",holetype(i),vmotype(j),NalphaIcfg
!call debug_spindet(Idomo,1)
!call debug_spindet(Jdomo,1)
alphasIcfg(1,1,NalphaIcfg) = Icfg(1,1)
alphasIcfg(1,2,NalphaIcfg) = Icfg(1,2)
endif
end subroutine
#+end_src
** Given an \(\alpha\) CFG, return all the \(|I\rangle\) CFGs
Next step is to obtain the connected CFGs \(|I\rangle\) that belong to the selected space
given a RI configuration \(|\alpha\rangle\).
#+begin_src f90 :main no :tangle ../cfgCI/obtain_I_foralpha.irp.f
subroutine obtain_connected_I_foralpha(idxI, Ialpha, connectedI, idxs_connectedI, nconnectedI, excitationIds, excitationTypes, diagfactors)
implicit none
use bitmasks
BEGIN_DOC
! Documentation for obtain_connected_I_foralpha
! This function returns all those selected configurations
! which are connected to the input configuration
! Ialpha by a single excitation.
!
! The type of excitations are ordered as follows:
! Type 1 - SOMO -> SOMO
! Type 2 - DOMO -> VMO
! Type 3 - SOMO -> VMO
! Type 4 - DOMO -> SOMO
!
! Order of operators
! \alpha> = a^\dag_p a_q |I> = E_pq |I>
END_DOC
integer ,intent(in) :: idxI
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
integer(bit_kind),intent(out) :: connectedI(N_int,2,*)
integer ,intent(out) :: idxs_connectedI(*)
integer,intent(out) :: nconnectedI
integer,intent(out) :: excitationIds(2,*)
integer,intent(out) :: excitationTypes(*)
real*8 ,intent(out) :: diagfactors(*)
integer*8 :: Idomo
integer*8 :: Isomo
integer*8 :: Jdomo
integer*8 :: Jsomo
integer*8 :: IJsomo
integer*8 :: diffSOMO
integer*8 :: diffDOMO
integer*8 :: xordiffSOMODOMO
integer :: ndiffSOMO
integer :: ndiffDOMO
integer :: nxordiffSOMODOMO
integer :: ii,i,j,k,l,p,q,nsomoJ,nsomoalpha,starti,endi,extyp,nholes
integer :: listholes(mo_num)
integer :: holetype(mo_num)
nconnectedI = 0
p = 0
q = 0
do i=idxI,N_configuration
Isomo = Ialpha(1,1)
Idomo = Ialpha(1,2)
Jsomo = psi_configuration(1,1,i)
Jdomo = psi_configuration(1,2,i)
!call debug_spindet(Isomo,1)
!call debug_spindet(Idomo,1)
!print *,"-J--i=",i,Idomo,Jdomo,">",N_configuration
!call debug_spindet(Jsomo,1)
!call debug_spindet(Jdomo,1)
diffSOMO = IEOR(Isomo,Jsomo)
diffDOMO = IEOR(Idomo,Jdomo)
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
ndiffSOMO = POPCNT(diffSOMO)
ndiffDOMO = POPCNT(diffDOMO)
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
!print *,"-I--i=",i,ndiffSOMO,ndiffDOMO,nxordiffSOMODOMO!Isomo,Jsomo,ndiffSOMO,ndiffDOMO
!if((ndiffSOMO + ndiffDOMO) .EQ. 0) cycle
!print *,POPCNT(IEOR(diffSOMO,diffDOMO)), ndiffDOMO
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
!call debug_spindet(Isomo,1)
!call debug_spindet(Idomo,1)
!print *,"-J--i=",i,Idomo,Jdomo,">",N_configuration
!call debug_spindet(Jsomo,1)
!call debug_spindet(Jdomo,1)
select case(ndiffDOMO)
case (0)
! SOMO -> VMO
!print *,"obt SOMO -> VMO"
extyp = 3
IJsomo = IEOR(Isomo, Jsomo)
p = TRAILZ(IAND(Isomo,IJsomo)) + 1
IJsomo = IBCLR(IJsomo,p-1)
q = TRAILZ(IJsomo) + 1
case (1)
! DOMO -> VMO
! or
! SOMO -> SOMO
nsomoJ = POPCNT(Jsomo)
nsomoalpha = POPCNT(Isomo)
if(nsomoJ .GT. nsomoalpha) then
! DOMO -> VMO
!print *,"obt DOMO -> VMO"
extyp = 2
p = TRAILZ(IEOR(Idomo,Jdomo)) + 1
Isomo = IEOR(Isomo, Jsomo)
Isomo = IBCLR(Isomo,p-1)
q = TRAILZ(Isomo) + 1
else
! SOMO -> SOMO
!print *,"obt SOMO -> SOMO"
extyp = 1
q = TRAILZ(IEOR(Idomo,Jdomo)) + 1
Isomo = IEOR(Isomo, Jsomo)
Isomo = IBCLR(Isomo,q-1)
p = TRAILZ(Isomo) + 1
end if
case (2)
! DOMO -> SOMO
!print *,"obt DOMO -> SOMO"
extyp = 4
IJsomo = IEOR(Isomo, Jsomo)
p = TRAILZ(IAND(Jsomo,IJsomo)) + 1
IJsomo = IBCLR(IJsomo,p-1)
q = TRAILZ(IJsomo) + 1
case default
print *,"something went wront in get connectedI"
end select
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=starti
excitationIds(1,nconnectedI)=p
excitationIds(2,nconnectedI)=q
excitationTypes(nconnectedI) = extyp
diagfactors(nconnectedI) = 1.0d0
!print *,"------ > output p,q in obt=",p,q
else if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
! find out all pq holes possible
nholes = 0
! holes in SOMO
Isomo = psi_configuration(1,1,i)
Idomo = psi_configuration(1,2,i)
do ii = 1,mo_num
if(POPCNT(IAND(Isomo,IBSET(0_8,ii-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = ii
holetype(nholes) = 1
endif
end do
! holes in DOMO
do ii = 1,mo_num
if(POPCNT(IAND(Idomo,IBSET(0_8,ii-1))) .EQ. 1) then
nholes += 1
listholes(nholes) = ii
holetype(nholes) = 2
endif
end do
do k=1,nholes
p = listholes(k)
q = p
extyp = 1
if(holetype(k) .EQ. 1) then
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=starti
excitationIds(1,nconnectedI)=p
excitationIds(2,nconnectedI)=q
excitationTypes(nconnectedI) = extyp
diagfactors(nconnectedI) = 1.0d0
!print *,"------ > output p,q in obt=",p,q
else
starti = psi_config_data(i,1)
endi = psi_config_data(i,2)
nconnectedI += 1
connectedI(:,:,nconnectedI) = psi_configuration(:,:,i)
idxs_connectedI(nconnectedI)=starti
excitationIds(1,nconnectedI)=p
excitationIds(2,nconnectedI)=q
excitationTypes(nconnectedI) = extyp
diagfactors(nconnectedI) = 2.0d0
!print *,"------ > output p,q in obt=",p,q
endif
enddo
endif
end do
end subroutine obtain_connected_I_foralpha
#+end_src
#+begin_src fortran
print *,TRAILZ(8)
print *,IBCLR(8,TRAILZ(9))
print *,TRAILZ(IBCLR(8,TRAILZ(9)))
#+end_src
#+RESULTS:
| 3 |
| 8 |
| 3 |
** Function to get the NSOMOs (seniority)
#+begin_src f90 :main no :tangle configuration_CI_sigma_helpers.irp.f
function getNSOMO(Icfg) result(NSOMO)
implicit none
integer(bit_kind),intent(in) :: Icfg(N_int,2)
integer :: NSOMO
integer :: i
NSOMO = 0
do i = 1,N_int
NSOMO += POPCNT(Icfg(i,1))
enddo
end function getNSOMO
#+end_src
** Function to convert p,q to model space ids
This function converts the real orbital ids \(i,j\) to model
space ids \(p,q\) which depend only on the number of somos.
#+begin_src f90 :main no :tangle configuration_CI_sigma_helpers.irp.f
subroutine convertOrbIdsToModelSpaceIds(Ialpha, Jcfg, p, q, extype, pmodel, qmodel)
implicit none
BEGIN_DOC
! This function converts the orbital ids
! in real space to those used in model space
! in order to identify the matrices required
! for the calculation of MEs.
!
! The type of excitations are ordered as follows:
! Type 1 - SOMO -> SOMO
! Type 2 - DOMO -> VMO
! Type 3 - SOMO -> VMO
! Type 4 - DOMO -> SOMO
END_DOC
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
integer(bit_kind),intent(in) :: Jcfg(N_int,2)
integer,intent(in) :: p,q
integer,intent(in) :: extype
integer,intent(out) :: pmodel,qmodel
integer*8 :: Isomo
integer*8 :: Idomo
integer*8 :: Jsomo
integer*8 :: Jdomo
integer*8 :: mask
integer*8 :: Isomotmp
integer*8 :: Jsomotmp
integer :: pos0,pos0prev
! TODO Flag (print) when model space indices is > 64
Isomo = Ialpha(1,1)
Idomo = Ialpha(1,2)
Jsomo = Jcfg(1,1)
Jdomo = Jcfg(1,2)
pos0prev = 0
pmodel = p
qmodel = q
if(p .EQ. q) then
!print *,"input pq=",p,q,"extype=",extype
pmodel = 1
qmodel = 1
else
!print *,"input pq=",p,q,"extype=",extype
!call debug_spindet(Isomo,1)
!call debug_spindet(Idomo,1)
!call debug_spindet(Jsomo,1)
!call debug_spindet(Jdomo,1)
select case(extype)
case (1)
! SOMO -> SOMO
! remove all domos
!print *,"type -> SOMO -> SOMO"
mask = ISHFT(1_8,p) - 1
Isomotmp = IAND(Isomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
mask = ISHFT(1_8,q) - 1
Isomotmp = IAND(Isomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
case (2)
! DOMO -> VMO
! remove all domos except one at p
!print *,"type -> DOMO -> VMO"
mask = ISHFT(1_8,p) - 1
Jsomotmp = IAND(Jsomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
mask = ISHFT(1_8,q) - 1
Jsomotmp = IAND(Jsomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
case (3)
! SOMO -> VMO
!print *,"type -> SOMO -> VMO"
!Isomo = IEOR(Isomo,Jsomo)
if(p.LT.q) then
mask = ISHFT(1_8,p) - 1
Isomo = IAND(Isomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
mask = ISHFT(1_8,q) - 1
Jsomo = IAND(Jsomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask)) + 1
else
mask = ISHFT(1_8,p) - 1
Isomo = IAND(Isomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask)) + 1
mask = ISHFT(1_8,q) - 1
Jsomo = IAND(Jsomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
endif
case (4)
! DOMO -> SOMO
! remove all domos except one at p
!print *,"type -> DOMO -> SOMO"
!Isomo = IEOR(Isomo,Jsomo)
if(p.LT.q) then
mask = ISHFT(1_8,p) - 1
Jsomo = IAND(Jsomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
mask = ISHFT(1_8,q) - 1
Isomo = IAND(Isomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask)) + 1
else
mask = ISHFT(1_8,p) - 1
Jsomo = IAND(Jsomo,mask)
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask)) + 1
mask = ISHFT(1_8,q) - 1
Isomo = IAND(Isomo,mask)
qmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
endif
case default
print *,"something is wrong in convertOrbIdsToModelSpaceIds"
end select
endif
!print *,p,q,"model ids=",pmodel,qmodel
end subroutine convertOrbIdsToModelSpaceIds
#+end_src
#+begin_src fortran
integer :: i
integer :: count
integer :: mask
integer :: isomo
count = 0
mask = ISHFT(1_8,5)-1
print *,mask
print *,POPCNT(mask)
isomo = 144
isomo = IAND(isomo,mask)
print *,isomo
print *,XOR(isomo,mask)
print *,POPCNT(mask) - POPCNT(XOR(isomo,mask))
#+end_src
#+RESULTS:
| 31 |
| 5 |
| 16 |
| 15 |
| 1 |
#+begin_src fortran
print *,IBSET(0_8,4)-1
print *,POPCNT(IBSET(0_8,4)-1) - POPCNT(IAND(716,IBSET(0_8,4)-1))
print *,POPCNT(IBSET(0_8,8)-1) - POPCNT(IAND(716,IBSET(0_8,8)-1))
#+end_src
#+RESULTS:
| 15 |
| 2 |
| 4 |