mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 20:34:58 +01:00
added new mu(r) jastrow
This commit is contained in:
parent
fd051ae020
commit
4d9cdf9df1
@ -187,6 +187,19 @@ end function j12_mu
|
|||||||
|
|
||||||
subroutine grad1_j12_mu(r1, r2, grad)
|
subroutine grad1_j12_mu(r1, r2, grad)
|
||||||
|
|
||||||
|
BEGIN_DOC
|
||||||
|
! gradient of j(mu(r1,r2),r12) form of jastrow.
|
||||||
|
!
|
||||||
|
! if mu(r1,r2) = cst ---> j1b_type < 200 and
|
||||||
|
!
|
||||||
|
! d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
|
||||||
|
!
|
||||||
|
! if mu(r1,r2) /= cst ---> 200 < j1b_type < 300 and
|
||||||
|
!
|
||||||
|
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
|
||||||
|
!
|
||||||
|
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
|
||||||
|
END_DOC
|
||||||
include 'constants.include.F'
|
include 'constants.include.F'
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
@ -515,6 +528,9 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
|||||||
double precision :: r(3)
|
double precision :: r(3)
|
||||||
double precision :: dm_a(1), dm_b(1), grad_dm_a(3,1), grad_dm_b(3,1)
|
double precision :: dm_a(1), dm_b(1), grad_dm_a(3,1), grad_dm_b(3,1)
|
||||||
double precision :: dm_tot, tmp1, tmp2, tmp3
|
double precision :: dm_tot, tmp1, tmp2, tmp3
|
||||||
|
double precision :: rho1, grad_rho1(3),rho2,rho_tot,inv_rho_tot
|
||||||
|
double precision :: f_rho1, f_rho2, d_drho_f_rho1
|
||||||
|
double precision :: d_dx1_f_rho1(3),d_dx_rho_f_rho(3),nume
|
||||||
|
|
||||||
if(j1b_type .eq. 200) then
|
if(j1b_type .eq. 200) then
|
||||||
|
|
||||||
@ -578,8 +594,84 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
|
|||||||
mu_der(2) = tmp3 * (grad_dm_a(2,1) + grad_dm_b(2,1))
|
mu_der(2) = tmp3 * (grad_dm_a(2,1) + grad_dm_b(2,1))
|
||||||
mu_der(3) = tmp3 * (grad_dm_a(3,1) + grad_dm_b(3,1))
|
mu_der(3) = tmp3 * (grad_dm_a(3,1) + grad_dm_b(3,1))
|
||||||
|
|
||||||
else
|
elseif(j1b_type .eq. 202) then
|
||||||
|
|
||||||
|
! mu(r1,r2) = {rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]} / RHO
|
||||||
|
!
|
||||||
|
! RHO = rho(r1) + rho(r2)
|
||||||
|
!
|
||||||
|
! f[rho] = alpha rho^beta + mu0 exp(-rho)
|
||||||
|
!
|
||||||
|
! d/dx1 mu(r1,r2) = 1/RHO^2 * {RHO * d/dx1 (rho(r1) f[rho(r1)])
|
||||||
|
! - d/dx1 rho(r1) * [rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]] }
|
||||||
|
!
|
||||||
|
! d/dx1 f[rho(r1)] = [0.5 alpha / sqrt(rho(r1)) - mu0 exp(-rho(r1))] (d rho(r1) / dx1)
|
||||||
|
!
|
||||||
|
! d/dx1 (rho(r1) f[rho(r1)] = rho(r1) * d/dx1 f[rho(r1)] + f[rho(r1)] * d/dx1 rho(r1)
|
||||||
|
|
||||||
|
!!!!!!!!! rho1,rho2,rho1+rho2
|
||||||
|
call get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
|
||||||
|
rho_tot = rho1 + rho2
|
||||||
|
if(rho_tot.lt.1.d-10)rho_tot = 1.d-10
|
||||||
|
inv_rho_tot = 1.d0/rho_tot
|
||||||
|
! f(rho) = mu_r_ct * rho**beta_rho_power + mu_erf * exp(-rho)
|
||||||
|
call get_all_f_rho(rho1,rho2,mu_r_ct,mu_erf,beta_rho_power,f_rho1,d_drho_f_rho1,f_rho2)
|
||||||
|
d_dx1_f_rho1(1:3) = d_drho_f_rho1 * grad_rho1(1:3)
|
||||||
|
d_dx_rho_f_rho(1:3) = rho1 * d_dx1_f_rho1(1:3) + f_rho1 * grad_rho1(1:3)
|
||||||
|
nume = rho1 * f_rho1 + rho2 * f_rho2
|
||||||
|
mu_val = nume * inv_rho_tot
|
||||||
|
mu_der(1:3) = inv_rho_tot*inv_rho_tot * (rho_tot * d_dx_rho_f_rho(1:3) - grad_rho1(1:3) * nume)
|
||||||
|
elseif(j1b_type .eq. 203) then
|
||||||
|
|
||||||
|
! mu(r1,r2) = {rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]} / RHO
|
||||||
|
!
|
||||||
|
! RHO = rho(r1) + rho(r2)
|
||||||
|
!
|
||||||
|
! f[rho] = alpha rho^beta + mu0
|
||||||
|
!
|
||||||
|
! d/dx1 mu(r1,r2) = 1/RHO^2 * {RHO * d/dx1 (rho(r1) f[rho(r1)])
|
||||||
|
! - d/dx1 rho(r1) * [rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]] }
|
||||||
|
!
|
||||||
|
! d/dx1 f[rho(r1)] = [0.5 alpha / sqrt(rho(r1)) ] (d rho(r1) / dx1)
|
||||||
|
!
|
||||||
|
! d/dx1 (rho(r1) f[rho(r1)] = rho(r1) * d/dx1 f[rho(r1)] + f[rho(r1)] * d/dx1 rho(r1)
|
||||||
|
|
||||||
|
!!!!!!!!! rho1,rho2,rho1+rho2
|
||||||
|
call get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
|
||||||
|
rho_tot = rho1 + rho2
|
||||||
|
if(rho_tot.lt.1.d-10)rho_tot = 1.d-10
|
||||||
|
inv_rho_tot = 1.d0/rho_tot
|
||||||
|
! f(rho) = mu_r_ct * rho**beta_rho_power + mu_erf
|
||||||
|
call get_all_f_rho_simple(rho1,rho2,mu_r_ct,mu_erf,beta_rho_power,f_rho1,d_drho_f_rho1,f_rho2)
|
||||||
|
d_dx1_f_rho1(1:3) = d_drho_f_rho1 * grad_rho1(1:3)
|
||||||
|
d_dx_rho_f_rho(1:3) = rho1 * d_dx1_f_rho1(1:3) + f_rho1 * grad_rho1(1:3)
|
||||||
|
nume = rho1 * f_rho1 + rho2 * f_rho2
|
||||||
|
mu_val = nume * inv_rho_tot
|
||||||
|
mu_der(1:3) = inv_rho_tot*inv_rho_tot * (rho_tot * d_dx_rho_f_rho(1:3) - grad_rho1(1:3) * nume)
|
||||||
|
elseif(j1b_type .eq. 204) then
|
||||||
|
|
||||||
|
! mu(r1,r2) = 1/2 * (f[rho(r1)] + f[rho(r2)]}
|
||||||
|
!
|
||||||
|
! f[rho] = alpha rho^beta + mu0
|
||||||
|
!
|
||||||
|
! d/dx1 mu(r1,r2) = 1/2 * d/dx1 (rho(r1) f[rho(r1)])
|
||||||
|
!
|
||||||
|
! d/dx1 f[rho(r1)] = [0.5 alpha / sqrt(rho(r1)) ] (d rho(r1) / dx1)
|
||||||
|
!
|
||||||
|
! d/dx1 (rho(r1) f[rho(r1)] = rho(r1) * d/dx1 f[rho(r1)] + f[rho(r1)] * d/dx1 rho(r1)
|
||||||
|
|
||||||
|
!!!!!!!!! rho1,rho2,rho1+rho2
|
||||||
|
call get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
|
||||||
|
rho_tot = rho1 + rho2
|
||||||
|
if(rho_tot.lt.1.d-10)rho_tot = 1.d-10
|
||||||
|
inv_rho_tot = 1.d0/rho_tot
|
||||||
|
! f(rho) = mu_r_ct * rho**beta_rho_power + mu_erf
|
||||||
|
call get_all_f_rho_simple(rho1,rho2,mu_r_ct,mu_erf,beta_rho_power,f_rho1,d_drho_f_rho1,f_rho2)
|
||||||
|
d_dx1_f_rho1(1:3) = d_drho_f_rho1 * grad_rho1(1:3)
|
||||||
|
d_dx_rho_f_rho(1:3) = rho1 * d_dx1_f_rho1(1:3) + f_rho1 * grad_rho1(1:3)
|
||||||
|
mu_val = 0.5d0 * ( f_rho1 + f_rho2)
|
||||||
|
mu_der(1:3) = d_dx_rho_f_rho(1:3)
|
||||||
|
else
|
||||||
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
|
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
|
||||||
stop
|
stop
|
||||||
|
|
||||||
@ -684,3 +776,76 @@ end function j12_mu_square
|
|||||||
|
|
||||||
! ---
|
! ---
|
||||||
|
|
||||||
|
subroutine f_mu_and_deriv_mu(rho,alpha,mu0,beta,f_mu,d_drho_f_mu)
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! function giving mu as a function of rho
|
||||||
|
!
|
||||||
|
! f_mu = alpha * rho**beta + mu0 * exp(-rho)
|
||||||
|
!
|
||||||
|
! and its derivative with respect to rho d_drho_f_mu
|
||||||
|
END_DOC
|
||||||
|
double precision, intent(in) :: rho,alpha,mu0,beta
|
||||||
|
double precision, intent(out) :: f_mu,d_drho_f_mu
|
||||||
|
f_mu = alpha * (rho)**beta + mu0 * dexp(-rho)
|
||||||
|
d_drho_f_mu = alpha * beta * rho**(beta-1.d0) - mu0 * dexp(-rho)
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
subroutine get_all_rho_grad_rho(r1,r2,rho1,rho2,grad_rho1)
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! returns the density in r1,r2 and grad_rho at r1
|
||||||
|
END_DOC
|
||||||
|
double precision, intent(in) :: r1(3),r2(3)
|
||||||
|
double precision, intent(out):: grad_rho1(3),rho1,rho2
|
||||||
|
double precision :: dm_a(1), dm_b(1), grad_dm_a(3,1), grad_dm_b(3,1)
|
||||||
|
call density_and_grad_alpha_beta(r1, dm_a, dm_b, grad_dm_a, grad_dm_b)
|
||||||
|
rho1 = dm_a(1) + dm_b(1)
|
||||||
|
grad_rho1(1:3) = grad_dm_a(1:3,1) + grad_dm_b(1:3,1)
|
||||||
|
call density_and_grad_alpha_beta(r2, dm_a, dm_b, grad_dm_a, grad_dm_b)
|
||||||
|
rho2 = dm_a(1) + dm_b(1)
|
||||||
|
end
|
||||||
|
|
||||||
|
subroutine get_all_f_rho(rho1,rho2,alpha,mu0,beta,f_rho1,d_drho_f_rho1,f_rho2)
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! returns the values f(mu(r1)), f(mu(r2)) and d/drho(1) f(mu(r1))
|
||||||
|
END_DOC
|
||||||
|
double precision, intent(in) :: rho1,rho2,alpha,mu0,beta
|
||||||
|
double precision, intent(out):: f_rho1,d_drho_f_rho1,f_rho2
|
||||||
|
double precision :: tmp
|
||||||
|
call f_mu_and_deriv_mu(rho1,alpha,mu0,beta,f_rho1,d_drho_f_rho1)
|
||||||
|
call f_mu_and_deriv_mu(rho2,alpha,mu0,beta,f_rho2,tmp)
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
subroutine get_all_f_rho_simple(rho1,rho2,alpha,mu0,beta,f_rho1,d_drho_f_rho1,f_rho2)
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! returns the values f(mu(r1)), f(mu(r2)) and d/drho(1) f(mu(r1))
|
||||||
|
END_DOC
|
||||||
|
double precision, intent(in) :: rho1,rho2,alpha,mu0,beta
|
||||||
|
double precision, intent(out):: f_rho1,d_drho_f_rho1,f_rho2
|
||||||
|
double precision :: tmp
|
||||||
|
call f_mu_and_deriv_mu_simple(rho1,alpha,mu0,beta,f_rho1,d_drho_f_rho1)
|
||||||
|
call f_mu_and_deriv_mu_simple(rho2,alpha,mu0,beta,f_rho2,tmp)
|
||||||
|
end
|
||||||
|
|
||||||
|
subroutine f_mu_and_deriv_mu_simple(rho,alpha,mu0,beta,f_mu,d_drho_f_mu)
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! function giving mu as a function of rho
|
||||||
|
!
|
||||||
|
! f_mu = alpha * rho**beta + mu0
|
||||||
|
!
|
||||||
|
! and its derivative with respect to rho d_drho_f_mu
|
||||||
|
END_DOC
|
||||||
|
double precision, intent(in) :: rho,alpha,mu0,beta
|
||||||
|
double precision, intent(out) :: f_mu,d_drho_f_mu
|
||||||
|
f_mu = alpha * (rho)**beta + mu0
|
||||||
|
d_drho_f_mu = alpha * beta * rho**(beta-1.d0)
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
@ -148,6 +148,12 @@ doc: a parameter used to define mu(r)
|
|||||||
interface: ezfio, provider, ocaml
|
interface: ezfio, provider, ocaml
|
||||||
default: 6.203504908994001e-1
|
default: 6.203504908994001e-1
|
||||||
|
|
||||||
|
[beta_rho_power]
|
||||||
|
type: double precision
|
||||||
|
doc: a parameter used to define mu(r)
|
||||||
|
interface: ezfio, provider, ocaml
|
||||||
|
default: 0.5
|
||||||
|
|
||||||
[thr_degen_tc]
|
[thr_degen_tc]
|
||||||
type: Threshold
|
type: Threshold
|
||||||
doc: Threshold to determine if two orbitals are degenerate in TCSCF in order to avoid random quasi orthogonality between the right- and left-eigenvector for the same eigenvalue
|
doc: Threshold to determine if two orbitals are degenerate in TCSCF in order to avoid random quasi orthogonality between the right- and left-eigenvector for the same eigenvalue
|
||||||
|
Loading…
Reference in New Issue
Block a user