mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-19 04:22:32 +01:00
separate jk terms for debugging
This commit is contained in:
parent
807a781276
commit
4b4235d161
@ -13,19 +13,22 @@ END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, hf_energy]
|
||||
&BEGIN_PROVIDER [ double precision, hf_two_electron_energy]
|
||||
&BEGIN_PROVIDER [ double precision, hf_two_electron_energy_jk, (2)]
|
||||
&BEGIN_PROVIDER [ double precision, hf_one_electron_energy]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components.
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
integer :: i,j,k,jk
|
||||
hf_energy = nuclear_repulsion
|
||||
hf_two_electron_energy = 0.d0
|
||||
hf_two_electron_energy_jk = 0.d0
|
||||
hf_one_electron_energy = 0.d0
|
||||
if (is_complex) then
|
||||
complex*16 :: hf_1e_tmp, hf_2e_tmp
|
||||
complex*16 :: hf_1e_tmp, hf_2e_tmp, hf_2e_tmp_jk(2)
|
||||
hf_1e_tmp = (0.d0,0.d0)
|
||||
hf_2e_tmp = (0.d0,0.d0)
|
||||
hf_2e_tmp_jk = (0.d0,0.d0)
|
||||
do k=1,kpt_num
|
||||
do j=1,ao_num_per_kpt
|
||||
do i=1,ao_num_per_kpt
|
||||
@ -33,9 +36,21 @@ END_PROVIDER
|
||||
+ao_two_e_integral_beta_kpts(i,j,k) * scf_density_matrix_ao_beta_kpts(j,i,k) )
|
||||
hf_1e_tmp += ao_one_e_integrals_kpts(i,j,k) * (scf_density_matrix_ao_alpha_kpts(j,i,k) &
|
||||
+ scf_density_matrix_ao_beta_kpts (j,i,k) )
|
||||
do jk=1,2
|
||||
hf_2e_tmp_jk(jk) += 0.5d0 * ( ao_two_e_integral_alpha_kpts_jk(i,j,k,jk) * scf_density_matrix_ao_alpha_kpts(j,i,k) &
|
||||
+ao_two_e_integral_beta_kpts_jk(i,j,k,jk) * scf_density_matrix_ao_beta_kpts(j,i,k) )
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
do jk=1,2
|
||||
if (dabs(dimag(hf_2e_tmp_jk(jk))).gt.1.d-10) then
|
||||
print*,'HF_2e energy (jk) should be real:',jk,irp_here
|
||||
stop -1
|
||||
else
|
||||
hf_two_electron_energy_jk(jk) = dble(hf_2e_tmp_jk(jk))
|
||||
endif
|
||||
enddo
|
||||
if (dabs(dimag(hf_2e_tmp)).gt.1.d-10) then
|
||||
print*,'HF_2e energy should be real:',irp_here
|
||||
stop -1
|
||||
|
@ -15,6 +15,9 @@ subroutine run
|
||||
print*,hf_one_electron_energy
|
||||
print*,hf_two_electron_energy
|
||||
print*,hf_energy
|
||||
print*,'hf 2e J,K energy'
|
||||
print*,hf_two_electron_energy_jk(1)
|
||||
print*,hf_two_electron_energy_jk(2)
|
||||
|
||||
end
|
||||
|
||||
|
@ -540,6 +540,265 @@ BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_kpts, (ao_num_per_kpt, ao_num_per_kp
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, ao_two_e_integral_alpha_kpts_jk, (ao_num_per_kpt, ao_num_per_kpt, kpt_num, 2) ]
|
||||
&BEGIN_PROVIDER [ complex*16, ao_two_e_integral_beta_kpts_jk , (ao_num_per_kpt, ao_num_per_kpt, kpt_num, 2) ]
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Alpha and Beta Fock matrices in AO basis set separated into j/k
|
||||
END_DOC
|
||||
!TODO: finish implementing this: see complex qp1 (different mapping)
|
||||
|
||||
integer :: i,j,k,l,k1,r,s
|
||||
integer :: i0,j0,k0,l0
|
||||
integer*8 :: p,q
|
||||
complex*16 :: integral, c0
|
||||
complex*16, allocatable :: ao_two_e_integral_alpha_tmp(:,:,:,:)
|
||||
complex*16, allocatable :: ao_two_e_integral_beta_tmp(:,:,:,:)
|
||||
|
||||
ao_two_e_integral_alpha_kpts_jk = (0.d0,0.d0)
|
||||
ao_two_e_integral_beta_kpts_jk = (0.d0,0.d0)
|
||||
PROVIDE ao_two_e_integrals_in_map scf_density_matrix_ao_alpha_kpts scf_density_matrix_ao_beta_kpts
|
||||
|
||||
integer(omp_lock_kind) :: lck(ao_num)
|
||||
integer(map_size_kind) :: i8
|
||||
integer :: ii(4), jj(4), kk(4), ll(4), k2
|
||||
integer(cache_map_size_kind) :: n_elements_max, n_elements
|
||||
integer(key_kind), allocatable :: keys(:)
|
||||
double precision, allocatable :: values(:)
|
||||
complex*16, parameter :: i_sign(4) = (/(0.d0,1.d0),(0.d0,1.d0),(0.d0,-1.d0),(0.d0,-1.d0)/)
|
||||
integer(key_kind) :: key1
|
||||
integer :: kpt_i,kpt_j,kpt_k,kpt_l,idx_i,idx_j,idx_k,idx_l
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
|
||||
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
|
||||
!$OMP kpt_i,kpt_j,kpt_k,kpt_l,idx_i,idx_j,idx_k,idx_l, &
|
||||
!$OMP c0,key1)&
|
||||
!$OMP SHARED(ao_num_per_kpt,SCF_density_matrix_ao_alpha_kpts, kpt_num, irp_here, &
|
||||
!$OMP SCF_density_matrix_ao_beta_kpts, &
|
||||
!$OMP ao_integrals_map, ao_two_e_integral_alpha_kpts_jk, ao_two_e_integral_beta_kpts_jk)
|
||||
|
||||
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
|
||||
allocate(keys(n_elements_max), values(n_elements_max))
|
||||
allocate(ao_two_e_integral_alpha_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num,2), &
|
||||
ao_two_e_integral_beta_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num,2))
|
||||
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
|
||||
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
|
||||
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
do i8=0_8,ao_integrals_map%map_size
|
||||
n_elements = n_elements_max
|
||||
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
|
||||
do k1=1,n_elements
|
||||
! get original key
|
||||
! reverse of 2*key (imag part) and 2*key-1 (real part)
|
||||
key1 = shiftr(keys(k1)+1,1)
|
||||
|
||||
call two_e_integrals_index_reverse_complex_1(ii,jj,kk,ll,key1)
|
||||
! i<=k, j<=l, ik<=jl
|
||||
! ijkl, jilk, klij*, lkji*
|
||||
|
||||
if (shiftl(key1,1)==keys(k1)) then !imaginary part (even)
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
call get_kpt_idx_ao(i,kpt_i,idx_i)
|
||||
call get_kpt_idx_ao(j,kpt_j,idx_j)
|
||||
call get_kpt_idx_ao(k,kpt_k,idx_k)
|
||||
call get_kpt_idx_ao(l,kpt_l,idx_l)
|
||||
integral = i_sign(k2)*values(k1) !for klij and lkji, take complex conjugate
|
||||
|
||||
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
|
||||
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
|
||||
|
||||
if (kpt_l.eq.kpt_j) then
|
||||
c0 = (scf_density_matrix_ao_alpha_kpts(idx_l,idx_j,kpt_j)+scf_density_matrix_ao_beta_kpts(idx_l,idx_j,kpt_j))*integral
|
||||
if(kpt_i.ne.kpt_k) then
|
||||
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
|
||||
stop 1
|
||||
endif
|
||||
ao_two_e_integral_alpha_tmp(idx_i,idx_k,kpt_i,1) += c0
|
||||
ao_two_e_integral_beta_tmp (idx_i,idx_k,kpt_i,1) += c0
|
||||
endif
|
||||
|
||||
if (kpt_l.eq.kpt_i) then
|
||||
if(kpt_j.ne.kpt_k) then
|
||||
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
|
||||
stop 1
|
||||
endif
|
||||
ao_two_e_integral_alpha_tmp(idx_i,idx_l,kpt_i,2) -= SCF_density_matrix_ao_alpha_kpts(idx_k,idx_j,kpt_j) * integral
|
||||
ao_two_e_integral_beta_tmp (idx_i,idx_l,kpt_i,2) -= scf_density_matrix_ao_beta_kpts (idx_k,idx_j,kpt_j) * integral
|
||||
endif
|
||||
enddo
|
||||
else ! real part
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
call get_kpt_idx_ao(i,kpt_i,idx_i)
|
||||
call get_kpt_idx_ao(j,kpt_j,idx_j)
|
||||
call get_kpt_idx_ao(k,kpt_k,idx_k)
|
||||
call get_kpt_idx_ao(l,kpt_l,idx_l)
|
||||
integral = values(k1)
|
||||
|
||||
if (kpt_l.eq.kpt_j) then
|
||||
c0 = (scf_density_matrix_ao_alpha_kpts(idx_l,idx_j,kpt_j)+scf_density_matrix_ao_beta_kpts(idx_l,idx_j,kpt_j))*integral
|
||||
if(kpt_i.ne.kpt_k) then
|
||||
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
|
||||
stop 1
|
||||
endif
|
||||
ao_two_e_integral_alpha_tmp(idx_i,idx_k,kpt_i,1) += c0
|
||||
ao_two_e_integral_beta_tmp (idx_i,idx_k,kpt_i,1) += c0
|
||||
endif
|
||||
|
||||
if (kpt_l.eq.kpt_i) then
|
||||
if(kpt_j.ne.kpt_k) then
|
||||
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
|
||||
stop 1
|
||||
endif
|
||||
ao_two_e_integral_alpha_tmp(idx_i,idx_l,kpt_i,2) -= SCF_density_matrix_ao_alpha_kpts(idx_k,idx_j,kpt_j) * integral
|
||||
ao_two_e_integral_beta_tmp (idx_i,idx_l,kpt_i,2) -= scf_density_matrix_ao_beta_kpts (idx_k,idx_j,kpt_j) * integral
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP CRITICAL
|
||||
ao_two_e_integral_alpha_kpts_jk += ao_two_e_integral_alpha_tmp
|
||||
ao_two_e_integral_beta_kpts_jk += ao_two_e_integral_beta_tmp
|
||||
!$OMP END CRITICAL
|
||||
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
|
||||
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
|
||||
!$OMP kpt_i,kpt_j,kpt_k,kpt_l,idx_i,idx_j,idx_k,idx_l, &
|
||||
!$OMP c0,key1)&
|
||||
!$OMP SHARED(ao_num_per_kpt,SCF_density_matrix_ao_alpha_kpts,kpt_num, irp_here, &
|
||||
!$OMP SCF_density_matrix_ao_beta_kpts, &
|
||||
!$OMP ao_integrals_map_2, ao_two_e_integral_alpha_kpts_jk, ao_two_e_integral_beta_kpts_jk)
|
||||
|
||||
call get_cache_map_n_elements_max(ao_integrals_map_2,n_elements_max)
|
||||
allocate(keys(n_elements_max), values(n_elements_max))
|
||||
allocate(ao_two_e_integral_alpha_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num,2), &
|
||||
ao_two_e_integral_beta_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num,2))
|
||||
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
|
||||
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
|
||||
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
do i8=0_8,ao_integrals_map_2%map_size
|
||||
n_elements = n_elements_max
|
||||
call get_cache_map(ao_integrals_map_2,i8,keys,values,n_elements)
|
||||
do k1=1,n_elements
|
||||
! get original key
|
||||
! reverse of 2*key (imag part) and 2*key-1 (real part)
|
||||
key1 = shiftr(keys(k1)+1,1)
|
||||
|
||||
call two_e_integrals_index_reverse_complex_2(ii,jj,kk,ll,key1)
|
||||
! i>=k, j<=l, ik<=jl
|
||||
! ijkl, jilk, klij*, lkji*
|
||||
if (shiftl(key1,1)==keys(k1)) then !imaginary part
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
call get_kpt_idx_ao(i,kpt_i,idx_i)
|
||||
call get_kpt_idx_ao(j,kpt_j,idx_j)
|
||||
call get_kpt_idx_ao(k,kpt_k,idx_k)
|
||||
call get_kpt_idx_ao(l,kpt_l,idx_l)
|
||||
integral = i_sign(k2)*values(k1) ! for klij and lkji, take conjugate
|
||||
|
||||
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
|
||||
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
|
||||
|
||||
if (kpt_l.eq.kpt_j) then
|
||||
c0 = (scf_density_matrix_ao_alpha_kpts(idx_l,idx_j,kpt_j)+scf_density_matrix_ao_beta_kpts(idx_l,idx_j,kpt_j))*integral
|
||||
if(kpt_i.ne.kpt_k) then
|
||||
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
|
||||
stop 1
|
||||
endif
|
||||
ao_two_e_integral_alpha_tmp(idx_i,idx_k,kpt_i,1) += c0
|
||||
ao_two_e_integral_beta_tmp (idx_i,idx_k,kpt_i,1) += c0
|
||||
endif
|
||||
|
||||
if (kpt_l.eq.kpt_i) then
|
||||
if(kpt_j.ne.kpt_k) then
|
||||
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
|
||||
stop 1
|
||||
endif
|
||||
ao_two_e_integral_alpha_tmp(idx_i,idx_l,kpt_i,2) -= SCF_density_matrix_ao_alpha_kpts(idx_k,idx_j,kpt_j) * integral
|
||||
ao_two_e_integral_beta_tmp (idx_i,idx_l,kpt_i,2) -= scf_density_matrix_ao_beta_kpts (idx_k,idx_j,kpt_j) * integral
|
||||
endif
|
||||
enddo
|
||||
else ! real part
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
call get_kpt_idx_ao(i,kpt_i,idx_i)
|
||||
call get_kpt_idx_ao(j,kpt_j,idx_j)
|
||||
call get_kpt_idx_ao(k,kpt_k,idx_k)
|
||||
call get_kpt_idx_ao(l,kpt_l,idx_l)
|
||||
integral = values(k1)
|
||||
|
||||
if (kpt_l.eq.kpt_j) then
|
||||
c0 = (scf_density_matrix_ao_alpha_kpts(idx_l,idx_j,kpt_j)+scf_density_matrix_ao_beta_kpts(idx_l,idx_j,kpt_j))*integral
|
||||
if(kpt_i.ne.kpt_k) then
|
||||
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
|
||||
stop 1
|
||||
endif
|
||||
ao_two_e_integral_alpha_tmp(idx_i,idx_k,kpt_i,1) += c0
|
||||
ao_two_e_integral_beta_tmp (idx_i,idx_k,kpt_i,1) += c0
|
||||
endif
|
||||
|
||||
if (kpt_l.eq.kpt_i) then
|
||||
if(kpt_j.ne.kpt_k) then
|
||||
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
|
||||
stop 1
|
||||
endif
|
||||
ao_two_e_integral_alpha_tmp(idx_i,idx_l,kpt_i,2) -= SCF_density_matrix_ao_alpha_kpts(idx_k,idx_j,kpt_j) * integral
|
||||
ao_two_e_integral_beta_tmp (idx_i,idx_l,kpt_i,2) -= scf_density_matrix_ao_beta_kpts (idx_k,idx_j,kpt_j) * integral
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP CRITICAL
|
||||
ao_two_e_integral_alpha_kpts_jk += ao_two_e_integral_alpha_tmp
|
||||
ao_two_e_integral_beta_kpts_jk += ao_two_e_integral_beta_tmp
|
||||
!$OMP END CRITICAL
|
||||
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user