10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-10 21:18:24 +01:00

Merge pull request #210 from QuantumPackage/cleaning_dft

Cleaning dft
This commit is contained in:
Anthony Scemama 2022-09-29 14:35:21 +02:00 committed by GitHub
commit 447807623f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 962 additions and 12 deletions

View File

@ -0,0 +1,57 @@
double precision function ecmd_pbe_ueg_self_cont(dens,spin_pol,mu,e_PBE)
implicit none
! dens = total density
! spin_pol = spin_polarization (n_a - n_b)/dens
! e_PBE = PBE correlation (mu=0) energy evaluated at dens,spin_pol (and grad_rho)
! e_PBE = epsilon_PBE * dens which means that it is not the energy density but the energy density X the density
double precision, intent(in) :: dens,spin_pol,mu,e_PBE
double precision :: rho_a,rho_b,pi,g0_UEG_func,denom,beta
pi = dacos(-1.d0)
rho_a = (dens * spin_pol + dens)*0.5d0
rho_b = (dens - dens * spin_pol)*0.5d0
if(mu == 0.d0) then
ecmd_pbe_ueg_self_cont = e_PBE
else
! note: the on-top pair density is (1-zeta^2) rhoc^2 g0 = 4 rhoa * rhob * g0
denom = (-2.d0+sqrt(2d0))*sqrt(2.d0*pi) * 4.d0*rho_a*rho_b*g0_UEG_func(rho_a,rho_b)
if (dabs(denom) > 1.d-12) then
beta = (3.d0*e_PBE)/denom
ecmd_pbe_ueg_self_cont=e_PBE/(1.d0+beta*mu**3)
else
ecmd_pbe_ueg_self_cont=0.d0
endif
endif
end
double precision function g0_UEG_func(rho_a,rho_b)
! Pair distribution function g0(n_alpha,n_beta) of the Colombic UEG
!
! Taken from Eq. (46) P. Gori-Giorgi and A. Savin, Phys. Rev. A 73, 032506 (2006).
implicit none
double precision, intent(in) :: rho_a,rho_b
double precision :: rho,pi,x
double precision :: B, C, D, E, d2, rs, ahd
rho = rho_a+rho_b
pi = 4d0 * datan(1d0)
ahd = -0.36583d0
d2 = 0.7524d0
B = -2d0 * ahd - d2
C = 0.08193d0
D = -0.01277d0
E = 0.001859d0
x = -d2*rs
if (dabs(rho) > 1.d-20) then
rs = (3d0 / (4d0*pi*rho))**(1d0/3d0)
x = -d2*rs
if(dabs(x).lt.50.d0)then
g0_UEG_func= 0.5d0 * (1d0+ rs* (-B + rs*(C + rs*(D + rs*E))))*dexp(x)
else
g0_UEG_func= 0.d0
endif
else
g0_UEG_func= 0.d0
endif
g0_UEG_func = max(g0_UEG_func,1.d-14)
end

View File

@ -80,3 +80,64 @@ subroutine print_basis_correction
end
subroutine print_all_basis_correction
implicit none
integer :: istate
provide mu_average_prov
provide ecmd_lda_mu_of_r ecmd_pbe_ueg_mu_of_r
provide ecmd_pbe_on_top_mu_of_r ecmd_pbe_on_top_su_mu_of_r
print*, ''
print*, ''
print*, '****************************************'
print*, '****************************************'
print*, 'Basis set correction for WFT using DFT Ecmd functionals'
print*, 'These functionals are accurate for short-range correlation'
print*, ''
print*, 'For more details look at Journal of Chemical Physics 149, 194301 1-15 (2018) '
print*, ' Journal of Physical Chemistry Letters 10, 2931-2937 (2019) '
print*, ' ???REF SC?'
print*, '****************************************'
print*, '****************************************'
print*, 'mu_of_r_potential = ',mu_of_r_potential
print*, ''
print*,'Using a CAS-like two-body density to define mu(r)'
print*,'This assumes that the CAS is a qualitative representation of the wave function '
print*,'********************************************'
print*,'Functionals more suited for weak correlation'
print*,'********************************************'
print*,'+) LDA Ecmd functional : purely based on the UEG (JCP,149,194301,1-15 (2018)) '
do istate = 1, N_states
write(*, '(A29,X,I3,X,A3,X,F16.10)') ' ECMD LDA , state ',istate,' = ',ecmd_lda_mu_of_r(istate)
enddo
print*,'+) PBE-UEG Ecmd functional : PBE at mu=0, UEG ontop pair density at large mu (JPCL, 10, 2931-2937 (2019))'
do istate = 1, N_states
write(*, '(A29,X,I3,X,A3,X,F16.10)') ' ECMD PBE-UEG , state ',istate,' = ',ecmd_pbe_ueg_mu_of_r(istate)
enddo
print*,''
print*,'********************************************'
print*,'********************************************'
print*,'+) PBE-on-top Ecmd functional : (??????? REF-SCF ??????????)'
print*,'PBE at mu=0, extrapolated ontop pair density at large mu, usual spin-polarization'
do istate = 1, N_states
write(*, '(A29,X,I3,X,A3,X,F16.10)') ' ECMD PBE-OT , state ',istate,' = ',ecmd_pbe_on_top_mu_of_r(istate)
enddo
print*,''
print*,'********************************************'
print*,'+) PBE-on-top no spin polarization Ecmd functional : (??????? REF-SCF ??????????)'
print*,'PBE at mu=0, extrapolated ontop pair density at large mu, and ZERO SPIN POLARIZATION'
do istate = 1, N_states
write(*, '(A29,X,I3,X,A3,X,F16.10)') ' ECMD SU-PBE-OT , state ',istate,' = ',ecmd_pbe_on_top_su_mu_of_r(istate)
enddo
print*,''
print*,''
print*,'**************'
do istate = 1, N_states
write(*, '(A29,X,I3,X,A3,X,F16.10)') ' Average mu(r) , state ',istate,' = ',mu_average_prov(istate)
enddo
end

View File

@ -20,9 +20,10 @@ subroutine print_su_pbe_ot
integer :: istate
do istate = 1, N_states
write(*, '(A29,X,I3,X,A3,X,F16.10)') ' ECMD PBE-UEG , state ',istate,' = ',ecmd_pbe_ueg_mu_of_r(istate)
write(*, '(A29,X,I3,X,A3,X,F16.10)') ' ecmd_pbe_ueg_test , state ',istate,' = ',ecmd_pbe_ueg_test(istate)
enddo
do istate = 1, N_states
write(*, '(A29,X,I3,X,A3,X,F16.10)') ' ECMD SU-PBE-OT , state ',istate,' = ',ecmd_pbe_on_top_su_mu_of_r(istate)
enddo
! do istate = 1, N_states
! write(*, '(A29,X,I3,X,A3,X,F16.10)') ' ECMD SU-PBE-OT , state ',istate,' = ',ecmd_pbe_on_top_su_mu_of_r(istate)
! enddo
end

View File

@ -0,0 +1,84 @@
program test_sc
implicit none
integer :: m
double precision :: r(3),f_hf,on_top,mu,sqpi
double precision :: rho_a,rho_b,w_hf,dens,delta_rho,e_pbe
double precision :: grad_rho_a(3),grad_rho_b(3),grad_rho_a_2(3),grad_rho_b_2(3),grad_rho_a_b(3)
double precision :: sigmacc,sigmaco,sigmaoo,spin_pol
double precision :: eps_c_md_PBE , ecmd_pbe_ueg_self_cont
r = 0.D0
r(3) = 1.D0
call f_HF_valence_ab(r,r,f_hf,on_top)
sqpi = dsqrt(dacos(-1.d0))
if(on_top.le.1.d-12.or.f_hf.le.0.d0.or.f_hf * on_top.lt.0.d0)then
w_hf = 1.d+10
else
w_hf = f_hf / on_top
endif
mu = sqpi * 0.5d0 * w_hf
call density_and_grad_alpha_beta(r,rho_a,rho_b, grad_rho_a, grad_rho_b)
dens = rho_a + rho_b
delta_rho = rho_a - rho_b
spin_pol = delta_rho/(max(1.d-10,dens))
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2 += grad_rho_a(m)*grad_rho_a(m)
grad_rho_b_2 += grad_rho_b(m)*grad_rho_b(m)
grad_rho_a_b += grad_rho_a(m)*grad_rho_b(m)
enddo
call grad_rho_ab_to_grad_rho_oc(grad_rho_a_2,grad_rho_b_2,grad_rho_a_b,sigmaoo,sigmacc,sigmaco)
! call the PBE energy
print*,'f_hf,on_top = ',f_hf,on_top
print*,'mu = ',mu
print*,'dens,spin_pol',dens,spin_pol
call ec_pbe_only(0.d0,dens,delta_rho,sigmacc,sigmaco,sigmaoo,e_PBE)
print*,'e_PBE = ',e_PBE
eps_c_md_PBE = ecmd_pbe_ueg_self_cont(dens,spin_pol,mu,e_PBE)
print*,'eps_c_md_PBE = ',eps_c_md_PBE
print*,''
print*,''
print*,''
print*,'energy_c' ,energy_c
integer::ipoint
double precision :: weight , accu
accu = 0.d0
do ipoint = 1, n_points_final_grid
r = final_grid_points(:,ipoint)
weight = final_weight_at_r_vector(ipoint)
call f_HF_valence_ab(r,r,f_hf,on_top)
sqpi = dsqrt(dacos(-1.d0))
if(on_top.le.1.d-12.or.f_hf.le.0.d0.or.f_hf * on_top.lt.0.d0)then
w_hf = 1.d+10
else
w_hf = f_hf / on_top
endif
mu = sqpi * 0.5d0 * w_hf
call density_and_grad_alpha_beta(r,rho_a,rho_b, grad_rho_a, grad_rho_b)
dens = rho_a + rho_b
delta_rho = rho_a - rho_b
spin_pol = delta_rho/(max(1.d-10,dens))
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2 += grad_rho_a(m)*grad_rho_a(m)
grad_rho_b_2 += grad_rho_b(m)*grad_rho_b(m)
grad_rho_a_b += grad_rho_a(m)*grad_rho_b(m)
enddo
call grad_rho_ab_to_grad_rho_oc(grad_rho_a_2,grad_rho_b_2,grad_rho_a_b,sigmaoo,sigmacc,sigmaco)
! call the PBE energy
call ec_pbe_only(0.d0,dens,delta_rho,sigmacc,sigmaco,sigmaoo,e_PBE)
eps_c_md_PBE = ecmd_pbe_ueg_self_cont(dens,spin_pol,mu,e_PBE)
write(33,'(100(F16.10,X))')r(:), weight, w_hf, on_top, mu, dens, spin_pol, e_PBE, eps_c_md_PBE
accu += weight * eps_c_md_PBE
enddo
print*,'accu = ',accu
write(*, *) ' ECMD PBE-UEG ',ecmd_pbe_ueg_mu_of_r(1)
write(*, *) ' ecmd_pbe_ueg_test ',ecmd_pbe_ueg_test(1)
end

View File

@ -81,3 +81,54 @@ BEGIN_PROVIDER [double precision, ecmd_pbe_ueg_mu_of_r, (N_states)]
print*,'Time for the ecmd_pbe_ueg_mu_of_r:',wall1-wall0
END_PROVIDER
BEGIN_PROVIDER [double precision, ecmd_pbe_ueg_test, (N_states)]
BEGIN_DOC
! test of the routines contained in pbe_ueg_self_contained.irp.f
END_DOC
implicit none
double precision :: weight
integer :: ipoint,istate,m
double precision :: mu,rho_a,rho_b
double precision :: dens,spin_pol,grad_rho,e_PBE,delta_rho
double precision :: ecmd_pbe_ueg_self_cont,eps_c_md_PBE
ecmd_pbe_ueg_test = 0.d0
do istate = 1, N_states
do ipoint = 1, n_points_final_grid
weight=final_weight_at_r_vector(ipoint)
! mu(r) defined by Eq. (37) of J. Chem. Phys. 149, 194301 (2018)
mu = mu_of_r_prov(ipoint,istate)
! conversion from rho_a,rho_b --> dens,spin_pol
rho_a = one_e_dm_and_grad_alpha_in_r(4,ipoint,istate)
rho_b = one_e_dm_and_grad_beta_in_r(4,ipoint,istate)
dens = rho_a + rho_b
spin_pol = (rho_a - rho_b)/(max(dens,1.d-12))
delta_rho = rho_a - rho_b
! conversion from grad_rho_a ... to sigma
double precision :: grad_rho_a(3),grad_rho_b(3),grad_rho_a_2(3),grad_rho_b_2(3),grad_rho_a_b(3)
double precision :: sigmacc,sigmaco,sigmaoo
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,ipoint,istate)
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,ipoint,istate)
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2 += grad_rho_a(m)*grad_rho_a(m)
grad_rho_b_2 += grad_rho_b(m)*grad_rho_b(m)
grad_rho_a_b += grad_rho_a(m)*grad_rho_b(m)
enddo
call grad_rho_ab_to_grad_rho_oc(grad_rho_a_2,grad_rho_b_2,grad_rho_a_b,sigmaoo,sigmacc,sigmaco)
! call the PBE energy
call ec_pbe_only(0.d0,dens,delta_rho,sigmacc,sigmaco,sigmaoo,e_PBE)
eps_c_md_PBE = ecmd_pbe_ueg_self_cont(dens,spin_pol,mu,e_PBE)
ecmd_pbe_ueg_test(istate) += eps_c_md_PBE * weight
enddo
enddo
!
END_PROVIDER

View File

@ -64,7 +64,8 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_angular,n_points_radial_grid,nucl_num)]
BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_angular,n_points_radial_grid,nucl_num)]
&BEGIN_PROVIDER [double precision, radial_points_per_atom, (n_points_radial_grid,nucl_num)]
BEGIN_DOC
! x,y,z coordinates of grid points used for integration in 3d space
END_DOC
@ -72,6 +73,7 @@ BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_
integer :: i,j,k
double precision :: dr,x_ref,y_ref,z_ref
double precision :: knowles_function
radial_points_per_atom = 0.D0
do i = 1, nucl_num
x_ref = nucl_coord(i,1)
y_ref = nucl_coord(i,2)
@ -83,7 +85,7 @@ BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_
! value of the radial coordinate for the integration
r = knowles_function(alpha_knowles(grid_atomic_number(i)),m_knowles,x)
radial_points_per_atom(j,i) = r
! explicit values of the grid points centered around each atom
do k = 1, n_points_integration_angular
grid_points_per_atom(1,k,j,i) = &

View File

@ -0,0 +1,618 @@
! ---
subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N_st, N_st_diag_in, converged, hcalc)
use mmap_module
BEGIN_DOC
! Generic modified-Davidson diagonalization
!
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
!
! u_in : guess coefficients on the various states. Overwritten on exit by right eigenvectors
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > N_st
!
! Initial guess vectors are not necessarily orthonormal
!
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
END_DOC
implicit none
integer, intent(in) :: sze, N_st, N_st_diag_in
double precision, intent(in) :: H_jj(sze)
logical, intent(inout) :: converged
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
double precision, intent(out) :: energies(N_st)
external hcalc
character*(16384) :: write_buffer
integer :: iter, N_st_diag
integer :: i, j, k, m
integer :: iter2, itertot
logical :: disk_based
integer :: shift, shift2, itermax
integer :: nproc_target
integer :: order(N_st_diag_in)
double precision :: to_print(2,N_st)
double precision :: r1, r2, alpha
double precision :: cpu, wall
double precision :: cmax
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
double precision, allocatable :: U(:,:)
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
double precision, allocatable :: residual_norm(:)
integer :: i_omax
double precision :: lambda_tmp
double precision, allocatable :: U_tmp(:), overlap(:)
double precision, allocatable :: W(:,:)
!double precision, pointer :: W(:,:)
double precision, external :: u_dot_v, u_dot_u
include 'constants.include.F'
N_st_diag = N_st_diag_in
! print*,'trial vector'
do i = 1, sze
if(isnan(u_in(i,1)))then
print*,'pb in input vector of davidson_general_ext_rout_nonsym_b1space'
print*,i,u_in(i,1)
stop
else if (dabs(u_in(i,1)).lt.1.d-16)then
u_in(i,1) = 0.d0
endif
enddo
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
if(N_st_diag*3 > sze) then
print *, 'error in Davidson :'
print *, 'Increase n_det_max_full to ', N_st_diag*3
stop -1
endif
itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1
provide threshold_nonsym_davidson
call write_time(6)
write(6,'(A)') ''
write(6,'(A)') 'Davidson Diagonalization'
write(6,'(A)') '------------------------'
write(6,'(A)') ''
! Find max number of cores to fit in memory
! -----------------------------------------
nproc_target = nproc
double precision :: rss
integer :: maxab
maxab = sze
m=1
disk_based = .False.
call resident_memory(rss)
do
r1 = 8.d0 * &! bytes
( dble(sze)*(N_st_diag*itermax) &! U
+ 1.d0*dble(sze*m)*(N_st_diag*itermax) &! W
+ 2.d0*(N_st_diag*itermax)**2 &! h,y
+ 2.d0*(N_st_diag*itermax) &! s2,lambda
+ 1.d0*(N_st_diag) &! residual_norm
! In H_S2_u_0_nstates_zmq
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
+ 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
+ nproc_target * &! In OMP section
( 1.d0*(N_int*maxab) &! buffer
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
) / 1024.d0**3
if(nproc_target == 0) then
call check_mem(r1, irp_here)
nproc_target = 1
exit
endif
if(r1+rss < qp_max_mem) then
exit
endif
if(itermax > 4) then
itermax = itermax - 1
else if (m==1.and.disk_based_davidson) then
m = 0
disk_based = .True.
itermax = 6
else
nproc_target = nproc_target - 1
endif
enddo
nthreads_davidson = nproc_target
TOUCH nthreads_davidson
call write_int(6, N_st, 'Number of states')
call write_int(6, N_st_diag, 'Number of states in diagonalization')
call write_int(6, sze, 'Number of basis functions')
call write_int(6, nproc_target, 'Number of threads for diagonalization')
call write_double(6, r1, 'Memory(Gb)')
if(disk_based) then
print *, 'Using swap space to reduce RAM'
endif
!---------------
write(6,'(A)') ''
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = 'Iter'
do i=1,N_st
write_buffer = trim(write_buffer)//' Energy Residual '
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
write_buffer = '====='
do i=1,N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') write_buffer(1:6+41*N_st)
! ---
allocate( W(sze,N_st_diag*itermax) )
allocate( &
! Large
U(sze,N_st_diag*itermax), &
! Small
h(N_st_diag*itermax,N_st_diag*itermax), &
y(N_st_diag*itermax,N_st_diag*itermax), &
lambda(N_st_diag*itermax), &
residual_norm(N_st_diag) &
)
U = 0.d0
h = 0.d0
y = 0.d0
lambda = 0.d0
residual_norm = 0.d0
ASSERT (N_st > 0)
ASSERT (N_st_diag >= N_st)
ASSERT (sze > 0)
! Davidson iterations
! ===================
converged = .False.
! Initialize from N_st to N_st_diag with gaussian random numbers
! to be sure to have overlap with any eigenvectors
do k = N_st+1, N_st_diag
u_in(k,k) = 10.d0
do i = 1, sze
call random_number(r1)
call random_number(r2)
r1 = dsqrt(-2.d0*dlog(r1))
r2 = dtwo_pi*r2
u_in(i,k) = r1*dcos(r2)
enddo
enddo
! Normalize all states
do k = 1, N_st_diag
call normalize(u_in(1,k), sze)
enddo
! Copy from the guess input "u_in" to the working vectors "U"
do k = 1, N_st_diag
do i = 1, sze
U(i,k) = u_in(i,k)
enddo
enddo
! ---
itertot = 0
do while (.not.converged)
itertot = itertot + 1
if(itertot == 8) then
exit
endif
do iter = 1, itermax-1
shift = N_st_diag * (iter-1)
shift2 = N_st_diag * iter
if( (iter > 1) .or. (itertot == 1) ) then
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
call ortho_qr(U, size(U, 1), sze, shift2)
call ortho_qr(U, size(U, 1), sze, shift2)
! W = H U
call hcalc(W(1,shift+1), U(1,shift+1), N_st_diag, sze)
else
! Already computed in update below
continue
endif
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! -------------------------------------------
call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 &
, U, size(U, 1), W, size(W, 1) &
, 0.d0, h, size(h, 1) )
! Diagonalize h y = lambda y
! ---------------------------
call diag_nonsym_right(shift2, h(1,1), size(h, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1))
! Express eigenvectors of h in the determinant basis:
! ---------------------------------------------------
! y(:,k) = rk
! U(:,k) = Bk
! U(:,shift2+k) = Rk = Bk x rk
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, U, size(U, 1), y, size(y, 1) &
, 0.d0, U(1,shift2+1), size(U, 1) )
do k = 1, N_st_diag
call normalize(U(1,shift2+k), sze)
enddo
! ---
! select the max overlap
!
! start test ------------------------------------------------------------------------
!
!double precision, allocatable :: Utest(:,:), Otest(:)
!allocate( Utest(sze,shift2), Otest(shift2) )
!call dgemm( 'N', 'N', sze, shift2, shift2, 1.d0 &
! , U, size(U, 1), y, size(y, 1), 0.d0, Utest(1,1), size(Utest, 1) )
!do k = 1, shift2
! call normalize(Utest(1,k), sze)
!enddo
!do j = 1, sze
! write(455, '(100(1X, F16.10))') (Utest(j,k), k=1,shift2)
!enddo
!do k = 1, shift2
! Otest(k) = 0.d0
! do i = 1, sze
! Otest(k) += Utest(i,k) * u_in(i,1)
! enddo
! Otest(k) = dabs(Otest(k))
! print *, ' Otest =', k, Otest(k), lambda(k)
!enddo
!deallocate(Utest, Otest)
!
! end test ------------------------------------------------------------------------
!
allocate( overlap(N_st_diag) )
do k = 1, N_st_diag
overlap(k) = 0.d0
do i = 1, sze
overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,1)
enddo
overlap(k) = dabs(overlap(k))
!print *, ' overlap =', k, overlap(k)
enddo
lambda_tmp = 0.d0
do k = 1, N_st_diag
if(overlap(k) .gt. lambda_tmp) then
i_omax = k
lambda_tmp = overlap(k)
endif
enddo
deallocate(overlap)
if( lambda_tmp .lt. 0.5d0) then
print *, ' very small overlap..'
print*, ' max overlap = ', lambda_tmp, i_omax
stop
endif
! lambda_tmp = lambda(1)
! lambda(1) = lambda(i_omax)
! lambda(i_omax) = lambda_tmp
!
! allocate( U_tmp(sze) )
! do i = 1, sze
! U_tmp(i) = U(i,shift2+1)
! U(i,shift2+1) = U(i,shift2+i_omax)
! U(i,shift2+i_omax) = U_tmp(i)
! enddo
! deallocate(U_tmp)
!
! allocate( U_tmp(N_st_diag*itermax) )
! do i = 1, shift2
! U_tmp(i) = y(i,1)
! y(i,1) = y(i,i_omax)
! y(i,i_omax) = U_tmp(i)
! enddo
! deallocate(U_tmp)
! ---
!do k = 1, N_st_diag
! call normalize(U(1,shift2+k), sze)
!enddo
! ---
! y(:,k) = rk
! W(:,k) = H x Bk
! W(:,shift2+k) = H x Bk x rk
! = Wk
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, W, size(W, 1), y, size(y, 1) &
, 0.d0, W(1,shift2+1), size(W, 1) )
! ---
! Compute residual vector and davidson step
! -----------------------------------------
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
do k = 1, N_st_diag
do i = 1, sze
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2)
enddo
!if(k <= N_st) then
! residual_norm(k) = u_dot_u(U(1,shift2+k), sze)
! to_print(1,k) = lambda(k)
! to_print(2,k) = residual_norm(k)
!endif
enddo
!$OMP END PARALLEL DO
residual_norm(1) = u_dot_u(U(1,shift2+i_omax), sze)
to_print(1,1) = lambda(i_omax)
to_print(2,1) = residual_norm(1)
if( (itertot > 1) .and. (iter == 1) ) then
!don't print
continue
else
write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, F16.10, 1X, F16.10))') iter-1, to_print(1:2,1:N_st)
endif
! Check convergence
if(iter > 1) then
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson
endif
do k = 1, N_st
if(residual_norm(k) > 1.e8) then
print *, 'Davidson failed'
stop -1
endif
enddo
if(converged) then
exit
endif
logical, external :: qp_stop
if(qp_stop()) then
converged = .True.
exit
endif
enddo ! loop over iter
! Re-contract U and update W
! --------------------------------
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, W, size(W, 1), y, size(y, 1) &
, 0.d0, u_in, size(u_in, 1) )
do k = 1, N_st_diag
do i = 1, sze
W(i,k) = u_in(i,k)
enddo
enddo
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
, U, size(U, 1), y, size(y, 1) &
, 0.d0, u_in, size(u_in, 1) )
do k = 1, N_st_diag
do i = 1, sze
U(i,k) = u_in(i,k)
enddo
enddo
call ortho_qr(U, size(U, 1), sze, N_st_diag)
call ortho_qr(U, size(U, 1), sze, N_st_diag)
do j = 1, N_st_diag
k = 1
do while( (k < sze) .and. (U(k,j) == 0.d0) )
k = k+1
enddo
if(U(k,j) * u_in(k,j) < 0.d0) then
do i = 1, sze
W(i,j) = -W(i,j)
enddo
endif
enddo
enddo ! loop over while
! ---
do k = 1, N_st
energies(k) = lambda(k)
enddo
write_buffer = '====='
do i = 1, N_st
write_buffer = trim(write_buffer)//' ================ ==========='
enddo
write(6,'(A)') trim(write_buffer)
write(6,'(A)') ''
call write_time(6)
deallocate(W)
deallocate(U, h, y, lambda, residual_norm)
FREE nthreads_davidson
end subroutine davidson_general_ext_rout_nonsym_b1space
! ---
subroutine diag_nonsym_right(n, A, A_ldim, V, V_ldim, energy, E_ldim)
implicit none
integer, intent(in) :: n, A_ldim, V_ldim, E_ldim
double precision, intent(in) :: A(A_ldim,n)
double precision, intent(out) :: energy(E_ldim), V(V_ldim,n)
character*1 :: JOBVL, JOBVR, BALANC, SENSE
integer :: i, j
integer :: ILO, IHI, lda, ldvl, ldvr, LWORK, INFO
double precision :: ABNRM
integer, allocatable :: iorder(:), IWORK(:)
double precision, allocatable :: WORK(:), SCALE_array(:), RCONDE(:), RCONDV(:)
double precision, allocatable :: Atmp(:,:), WR(:), WI(:), VL(:,:), VR(:,:), Vtmp(:)
double precision, allocatable :: energy_loc(:), V_loc(:,:)
allocate( Atmp(n,n), WR(n), WI(n), VL(1,1), VR(n,n) )
do i = 1, n
do j = 1, n
Atmp(j,i) = A(j,i)
enddo
enddo
JOBVL = "N" ! computes the left eigenvectors
JOBVR = "V" ! computes the right eigenvectors
BALANC = "B" ! Diagonal scaling and Permutation for optimization
SENSE = "V" ! Determines which reciprocal condition numbers are computed
lda = n
ldvr = n
ldvl = 1
allocate( WORK(1), SCALE_array(n), RCONDE(n), RCONDV(n), IWORK(2*n-2) )
LWORK = -1 ! to ask for the optimal size of WORK
call dgeevx( BALANC, JOBVL, JOBVR, SENSE & ! CHARACTERS
, n, Atmp, lda & ! MATRIX TO DIAGONALIZE
, WR, WI & ! REAL AND IMAGINARY PART OF EIGENVALUES
, VL, ldvl, VR, ldvr & ! LEFT AND RIGHT EIGENVECTORS
, ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV & ! OUTPUTS OF OPTIMIZATION
, WORK, LWORK, IWORK, INFO )
if(INFO .ne. 0) then
print*, 'first dgeevx failed !!', INFO
stop
endif
LWORK = max(int(work(1)), 1) ! this is the optimal size of WORK
deallocate(WORK)
allocate(WORK(LWORK))
call dgeevx( BALANC, JOBVL, JOBVR, SENSE &
, n, Atmp, lda &
, WR, WI &
, VL, ldvl, VR, ldvr &
, ILO, IHI, SCALE_array, ABNRM, RCONDE, RCONDV &
, WORK, LWORK, IWORK, INFO )
if(INFO .ne. 0) then
print*, 'second dgeevx failed !!', INFO
stop
endif
deallocate( WORK, SCALE_array, RCONDE, RCONDV, IWORK )
deallocate( VL, Atmp )
allocate( energy_loc(n), V_loc(n,n) )
energy_loc = 0.d0
V_loc = 0.d0
i = 1
do while(i .le. n)
! print*, i, WR(i), WI(i)
if( dabs(WI(i)) .gt. 1e-7 ) then
print*, ' Found an imaginary component to eigenvalue'
print*, ' Re(i) + Im(i)', i, WR(i), WI(i)
energy_loc(i) = WR(i)
do j = 1, n
V_loc(j,i) = WR(i) * VR(j,i) - WI(i) * VR(j,i+1)
enddo
energy_loc(i+1) = WI(i)
do j = 1, n
V_loc(j,i+1) = WR(i) * VR(j,i+1) + WI(i) * VR(j,i)
enddo
i = i + 2
else
energy_loc(i) = WR(i)
do j = 1, n
V_loc(j,i) = VR(j,i)
enddo
i = i + 1
endif
enddo
deallocate(WR, WI, VR)
! ordering
! do j = 1, n
! write(444, '(100(1X, F16.10))') (V_loc(j,i), i=1,5)
! enddo
allocate( iorder(n) )
do i = 1, n
iorder(i) = i
enddo
call dsort(energy_loc, iorder, n)
do i = 1, n
energy(i) = energy_loc(i)
do j = 1, n
V(j,i) = V_loc(j,iorder(i))
enddo
enddo
deallocate(iorder)
! do j = 1, n
! write(445, '(100(1X, F16.10))') (V_loc(j,i), i=1,5)
! enddo
deallocate(V_loc, energy_loc)
end subroutine diag_nonsym_right
! ---

View File

@ -63,3 +63,10 @@ type: logical
doc: If |true|, don't use denominator
default: False
interface: ezfio,provider,ocaml
[threshold_nonsym_davidson]
type: Threshold
doc: Thresholds of non-symetric Davidson's algorithm
interface: ezfio,provider,ocaml
default: 1.e-12

View File

@ -590,6 +590,71 @@ subroutine save_wavefunction_general(ndet,nstates,psidet,dim_psicoef,psicoef)
end
subroutine save_wavefunction_general_unormalized(ndet,nstates,psidet,dim_psicoef,psicoef)
implicit none
BEGIN_DOC
! Save the wave function into the |EZFIO| file
END_DOC
use bitmasks
include 'constants.include.F'
integer, intent(in) :: ndet,nstates,dim_psicoef
integer(bit_kind), intent(in) :: psidet(N_int,2,ndet)
double precision, intent(in) :: psicoef(dim_psicoef,nstates)
integer*8, allocatable :: psi_det_save(:,:,:)
double precision, allocatable :: psi_coef_save(:,:)
double precision :: accu_norm
integer :: i,j,k, ndet_qp_edit
if (mpi_master) then
ndet_qp_edit = min(ndet,N_det_qp_edit)
call ezfio_set_determinants_N_int(N_int)
call ezfio_set_determinants_bit_kind(bit_kind)
call ezfio_set_determinants_N_det(ndet)
call ezfio_set_determinants_N_det_qp_edit(ndet_qp_edit)
call ezfio_set_determinants_n_states(nstates)
call ezfio_set_determinants_mo_label(mo_label)
allocate (psi_det_save(N_int,2,ndet))
do i=1,ndet
do j=1,2
do k=1,N_int
psi_det_save(k,j,i) = transfer(psidet(k,j,i),1_8)
enddo
enddo
enddo
call ezfio_set_determinants_psi_det(psi_det_save)
call ezfio_set_determinants_psi_det_qp_edit(psi_det_save)
deallocate (psi_det_save)
allocate (psi_coef_save(ndet,nstates))
do k=1,nstates
do i=1,ndet
psi_coef_save(i,k) = psicoef(i,k)
enddo
enddo
call ezfio_set_determinants_psi_coef(psi_coef_save)
deallocate (psi_coef_save)
allocate (psi_coef_save(ndet_qp_edit,nstates))
do k=1,nstates
do i=1,ndet_qp_edit
psi_coef_save(i,k) = psicoef(i,k)
enddo
enddo
call ezfio_set_determinants_psi_coef_qp_edit(psi_coef_save)
deallocate (psi_coef_save)
call write_int(6,ndet,'Saved determinants')
endif
end
subroutine save_wavefunction_specified(ndet,nstates,psidet,psicoef,ndetsave,index_det_save)
implicit none

View File

@ -3,11 +3,13 @@ BEGIN_PROVIDER [double precision, SCF_density_matrix_ao_alpha, (ao_num,ao_num) ]
BEGIN_DOC
! $C.C^t$ over $\alpha$ MOs
END_DOC
call dgemm('N','T',ao_num,ao_num,elec_alpha_num,1.d0, &
mo_coef, size(mo_coef,1), &
mo_coef, size(mo_coef,1), 0.d0, &
SCF_density_matrix_ao_alpha, size(SCF_density_matrix_ao_alpha,1))
SCF_density_matrix_ao_alpha = 0.d0
if(elec_alpha_num.gt.0)then
call dgemm('N','T',ao_num,ao_num,elec_alpha_num,1.d0, &
mo_coef, size(mo_coef,1), &
mo_coef, size(mo_coef,1), 0.d0, &
SCF_density_matrix_ao_alpha, size(SCF_density_matrix_ao_alpha,1))
endif
END_PROVIDER
@ -16,11 +18,13 @@ BEGIN_PROVIDER [ double precision, SCF_density_matrix_ao_beta, (ao_num,ao_num)
BEGIN_DOC
! $C.C^t$ over $\beta$ MOs
END_DOC
SCF_density_matrix_ao_beta = 0.d0
if(elec_beta_num.gt.0)then
call dgemm('N','T',ao_num,ao_num,elec_beta_num,1.d0, &
mo_coef, size(mo_coef,1), &
mo_coef, size(mo_coef,1), 0.d0, &
SCF_density_matrix_ao_beta, size(SCF_density_matrix_ao_beta,1))
endif
END_PROVIDER