10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-13 17:43:50 +01:00

Merge branch 'dev-lct' of https://github.com/QuantumPackage/qp2 into dev-lct

This commit is contained in:
Barthelemy Pradines LCT 2019-05-31 17:37:43 +02:00
commit 419681278b
91 changed files with 24303 additions and 905 deletions

View File

@ -6,6 +6,7 @@ Usage:
qp_plugins download <url> [-n <name>]
qp_plugins install <name>...
qp_plugins uninstall <name>
qp_plugins update [-r <repo>]
qp_plugins create -n <name> [-r <repo>] [<needed_modules>...]
Options:
@ -23,6 +24,8 @@ Options:
uninstall Uninstall a plugin
update Update the repository
create
-n --name=<name> Create a new plugin named <name>
-r --repository=<repo> Name of the repository in which to create the plugin
@ -89,16 +92,19 @@ def save_new_module(path, l_child):
end
""")
def get_repositories():
l_result = [f for f in os.listdir(QP_PLUGINS) \
if f not in [".gitignore", "local"] ]
return sorted(l_result)
def main(arguments):
"""Main function"""
arguments["<name>"] = [os.path.normpath(name) for name in arguments["<name>"]]
if arguments["list"]:
if arguments["--repositories"]:
l_result = [f for f in os.listdir(QP_PLUGINS) \
if f not in [".gitignore", "local"] ]
for repo in sorted(l_result):
for repo in get_repositories():
print repo
else:
@ -138,6 +144,7 @@ def main(arguments):
for module in sorted(l_result):
print "%-30s %-30s"%(module, repo_of_plugin[module])
if arguments["create"]:
m_instance = ModuleHandler([QP_SRC])
@ -306,6 +313,20 @@ def main(arguments):
print "%s is a core module which can't be removed" % module
elif arguments["update"]:
if arguments["--repository"]:
l_repositories = [ arguments["--repository"] ]
else:
l_repositories = get_repositories()
for repo in l_repositories:
print "Updating ", repo
os.chdir(os.path.join(QP_PLUGINS,repo))
git_cmd=["git", "pull"]
subprocess.check_call(git_cmd)
if __name__ == '__main__':
ARG = docopt(__doc__)
main(ARG)

View File

@ -6,18 +6,39 @@ Automatically finds n, the number of core electrons. Calls qp_set_mo_class
setting all MOs as Active, except the n/2 first ones which are set as Core.
If pseudo-potentials are used, all the MOs are set as Active.
For elements on the right of the periodic table, qp_set_frozen_core will work
as expected. But for elements on the left, a small core will be chosen. For
example, a Carbon atom will have 2 core electrons, but a Lithium atom will have
zero.
Usage:
qp_set_frozen_core [-q|--query] [-l|--large] EZFIO_DIR
qp_set_frozen_core [-q|--query] [(-l|-s|--large|--small)] EZFIO_DIR
Options:
-q --query Prints in the standard output the number of frozen MOs
-l --large Use a large core
-l --large Use a small core
-s --small Use a large core
Default numbers of frozen electrons:
========== ========= ======= =======
Range Default Small Large
========== ========= ======= =======
H -> He 0 0 0
Li -> Be 0 0 2
B -> Ne 2 2 2
Na -> Mg 2 2 10
Al -> Ar 10 2 10
K -> Ca 10 10 18
Sc -> Zn 10 10 18
Ga -> Kr 18 10 18
Rb -> Sr 18 18 36
Y -> Cd 18 18 36
In -> Xe 36 18 36
Cs -> Ba 36 36 54
La -> Hg 36 36 54
Tl -> Rn 54 36 54
Fr -> Ra 54 54 86
Ac -> Cn 54 54 86
Nh -> Og 86 54 86
========== ========= ======= =======
"""
@ -47,47 +68,36 @@ def main(arguments):
except:
do_pseudo = False
large = 0
small = 1
size = small
if arguments["--large"]:
size = large
if not do_pseudo:
if size == large:
if arguments["--large"]:
for charge in ezfio.nuclei_nucl_charge:
if charge <= 2:
pass
elif charge <= 10:
n_frozen += 1
elif charge <= 18:
n_frozen += 5
elif charge <= 36:
n_frozen += 9
elif charge <= 54:
n_frozen += 18
elif charge <= 86:
n_frozen += 27
elif charge <= 118:
n_frozen += 43
if charge <= 2: pass
elif charge <= 10: n_frozen += 1
elif charge <= 18: n_frozen += 5
elif charge <= 36: n_frozen += 9
elif charge <= 54: n_frozen += 18
elif charge <= 86: n_frozen += 27
elif charge <= 118: n_frozen += 43
if size == small:
elif arguments["--small"]:
if charge <= 4: pass
elif charge <= 18: n_frozen += 1
elif charge <= 36: n_frozen += 5
elif charge <= 54: n_frozen += 9
elif charge <= 86: n_frozen += 18
elif charge <= 118: n_frozen += 27
else: # default
for charge in ezfio.nuclei_nucl_charge:
if charge < 5:
pass
elif charge < 13:
n_frozen += 1
elif charge < 31:
n_frozen += 5
elif charge < 49:
n_frozen += 9
elif charge < 81:
n_frozen += 18
elif charge < 113:
n_frozen += 27
if charge <= 4: pass
elif charge <= 12: n_frozen += 1
elif charge <= 30: n_frozen += 5
elif charge <= 48: n_frozen += 9
elif charge <= 80: n_frozen += 18
elif charge <= 112: n_frozen += 27
mo_num = ezfio.mo_basis_mo_num

71
bin/qp_tunnel Executable file
View File

@ -0,0 +1,71 @@
#!/usr/bin/env python2
"""
Creates an ssh tunnel for using slaves on another network.
Launch a server on the front-end node of the cluster on which the master
process runs. Then start a client ont the front-end node of the distant
cluster.
Usage:
qp_tunnel server EZFIO_DIR
qp_tunnel client <address> EZFIO_DIR
Options:
-h --help
"""
import os
import sys
import zmq
try:
import qp_path
except ImportError:
print "source .quantum_package.rc"
raise
from docopt import docopt
from ezfio import ezfio
def get_address(filename):
with open(os.path.join(filename,'work','qp_run_address'),'r') as f:
a = f.readlines()[0].strip()
return a
def set_address(filename,address):
with open(os.path.join(filename,'work','qp_run_address'),'r') as f:
backup = f.readlines()
with open(os.path.join(filename,'work','qp_run_address'),'w') as f:
f.write('\n'.join([address]+backup))
def main_server(arguments,filename):
destination = get_address(filename)
print destination
def main_client(arguments,filename):
destination = arguments["<address>"]
print destination
def main(arguments):
"""Main function"""
print arguments
filename = arguments["EZFIO_DIR"]
if arguments["server"]:
return main_server(arguments, filename)
if arguments["client"]:
return main_client(arguments, filename)
if __name__ == '__main__':
ARGUMENTS = docopt(__doc__)
main(ARGUMENTS)

View File

@ -32,7 +32,7 @@ OPENMP : 1 ; Append OpenMP flags
#
[OPT]
FC : -traceback
FCFLAGS : -xAVX -O2 -ip -ftz -g
FCFLAGS : -march=corei7-avx -O2 -ip -ftz -g
# Profiling flags
#################

View File

@ -31,14 +31,14 @@ OPENMP : 1 ; Append OpenMP flags
# -ftz : Flushes denormal results to zero
#
[OPT]
FCFLAGS : -xAVX -O2 -ip -ftz -g -traceback
FCFLAGS : -march=corei7-avx -O2 -ip -ftz -g -traceback
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
FCFLAGS : -march=corei7 -O2 -ip -ftz
# Debugging flags

63
config/ifort_epyc.cfg Normal file
View File

@ -0,0 +1,63 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback
FCFLAGS : -march=core-avx2 -O2 -ip -ftz -g
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -march=core-avx2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -263,4 +263,16 @@ vtz_mclean-chandler 'McLean/Chandler VTZ' VTZ Vale
vtzp_binning-curtiss 'Binning/Curtiss VTZP' VTZP Valence Triple Zeta + Polarization
wachters+f 'Wachters+f' VDZP Valence Double Zeta + Polarization on All Atoms
aug-cc-pvdz_ecp_ncsu 'aug-cc-pvdz ecp ncsu' augmented cc-pvDz basis set designed for the NCSU ECP found in https://pseudopotentiallibrary.org/
aug-cc-pvtz_ecp_ncsu 'aug-cc-pvtz ecp ncsu' augmented cc-pvTz basis set designed for the NCSU ECP found in https://pseudopotentiallibrary.org/
aug-cc-pvqz_ecp_ncsu 'aug-cc-pvqz ecp ncsu' augmented cc-pvQz basis set designed for the NCSU ECP found in https://pseudopotentiallibrary.org/
aug-cc-pv5z_ecp_ncsu 'aug-cc-pv5z ecp ncsu' augmented cc-pv5z basis set designed for the NCSU ECP found in https://pseudopotentiallibrary.org/
cc-pvdz_ecp_ncsu 'cc-pvdz ecp ncsu' cc-pvDz basis set designed for the NCSU ECP found in https://pseudopotentiallibrary.org/
cc-pvtz_ecp_ncsu 'cc-pvtz ecp ncsu' cc-pvTz basis set designed for the NCSU ECP found in https://pseudopotentiallibrary.org/
cc-pvqz_ecp_ncsu 'cc-pvqz ecp ncsu' cc-pvQz basis set designed for the NCSU ECP found in https://pseudopotentiallibrary.org/
cc-pv5z_ecp_ncsu 'cc-pv5z ecp ncsu' cc-pv5z basis set designed for the NCSU ECP found in https://pseudopotentiallibrary.org/
# ; vim::nowrap

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

3512
data/basis/cc-pv5z_ecp_ncsu Normal file

File diff suppressed because it is too large Load Diff

1772
data/basis/cc-pvdz_ecp_ncsu Normal file

File diff suppressed because it is too large Load Diff

2888
data/basis/cc-pvqz_ecp_ncsu Normal file

File diff suppressed because it is too large Load Diff

2308
data/basis/cc-pvtz_ecp_ncsu Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,56 +1,46 @@
H GEN 0 1
3
-10.851924053 2 21.7769665504
1.0 1 21.2435950826
21.2435950826 3 21.2435950826
1.00000000000000 1 21.24359508259891
21.24359508259891 3 21.24359508259891
-10.85192405303825 2 21.77696655044365
1
0.0 2 1.0
0.00000000000000 2 1.000000000000000
C GEN 2 1
B GEN 2 1
3
4.0 1 14.43502
57.74008 3 8.39889
-25.81955 2 7.38188
3.00000 1 31.49298
94.47895 3 22.56509
-9.74800 2 8.64669
1
52.13345 2 7.76079
20.74800 2 4.06246
Cl GEN 10 2
C GEN 2 1
3
7.0 1 22.71655173
159.01586213 3 78.57185685
-15.6531065 2 7.47352436
2
6.50888648 2 17.23708573
46.763467 2 4.31148447
2
2.9946477 2 11.38275704
28.0170341 2 3.83218762
4.00000 1 14.43502
57.74008 3 8.39889
-25.81955 2 7.38188
1
52.13345 2 7.76079
Co GEN 10 2
4
17.0 1 24.7400138129
420.580234819 3 23.5426031368
-194.630579018 2 24.0406241364
-2.94301943013 2 10.237411369
N GEN 2 1
6
3.25000 1 12.91881
1.75000 1 9.22825
41.98612 3 12.96581
16.14945 3 8.05477
-26.09522 2 12.54876
-10.32626 2 7.53360
2
270.86974114 2 23.0205711168
54.1910212498 2 10.9219568474
2
200.63032558 2 25.3244045243
38.9480947892 2 10.6533915029
34.77692 2 9.41609
15.20330 2 8.16694
Cr GEN 10 2
4
14.0 1 18.2809107439
255.932750414 3 17.0980065531
-132.018263171 2 16.7226727605
-0.773887613451 2 5.02865105891
2
219.481462096 2 16.9007876081
28.079331766 2 7.33662150761
2
139.983968717 2 17.3197451654
19.5483578632 2 6.92409757503
O GEN 2 1
3
6.000000 1 12.30997
73.85984 3 14.76962
-47.87600 2 13.71419
1
85.86406 2 13.65512
F GEN 2 1
3
@ -60,124 +50,214 @@ F GEN 2 1
1
51.3934743997 2 11.3903478843
Fe GEN 10 2
4
16.0 1 23.2209171361
371.534674178 3 23.5471467972
-181.226034452 2 23.4725634461
-2.3730523614 2 9.85238815041
2
277.500325475 2 22.2106269743
46.2049558527 2 9.51515800919
2
194.998750566 2 24.5700087185
31.6794513291 2 8.86648776669
Mn GEN 10 2
4
15.0 1 21.9061889166
328.592833748 3 21.3460106503
-162.049880237 2 21.2709151562
-1.85679609726 2 7.90771171833
2
244.669998154 2 18.9263045646
33.5399867643 2 8.31114792811
2
162.350195446 2 20.162449313
24.1593874179 2 7.79269955633
Ni GEN 10 2
4
18.0 1 37.839331506
681.107967108 3 23.875701156
-173.162219465 2 19.8803935987
0.34274858261 2 3.56565870195
2
91.6513902571 2 13.545098213
331.659352198 2 27.7907700999
2
7.5147228016 2 6.46792786898
265.586894944 2 23.6921476759
O GEN 2 1
Na GEN 10 2
3
6.0 1 12.30997
73.85984 3 14.76962
-47.876 2 13.71419
1
85.86406 2 13.65512
1.000000 1 4.311678
4.311678 3 1.925689
-2.083137 2 1.549498
2
6.234064 2 5.377666
9.075931 2 1.408414
2
3.232724 2 1.379949
2.494079 2 0.862453
Mg GEN 10 2
3
2.000000 1 6.048538
12.097075 3 2.796989
-17.108313 2 2.547408
2
6.428631 2 5.936017
14.195491 2 1.592891
2
3.315069 2 1.583969
4.403025 2 1.077297
Al GEN 2 1
3
11.000000 1 11.062056
121.682619 3 12.369778
-82.624567 2 11.965444
2
25.157259 2 81.815564
113.067525 2 24.522883
Si GEN 10 2
3
4.000000 1 5.168316
20.673264 3 8.861690
-14.818174 2 3.933474
2
14.832760 2 9.447023
26.349664 2 2.553812
2
7.621400 2 3.660001
10.331583 2 1.903653
P GEN 2 1
3
13.000000 1 15.073300
195.952906 3 18.113176
-117.611086 2 17.371539
2
25.197230 2 101.982019
189.426261 2 37.485881
S GEN 2 1
3
14.00000000 1 17.46806994
244.55297916 3 16.40396851
-128.37752591 2 16.71429998
14.000000 1 17.977612
251.686565 3 20.435964
-135.538891 2 19.796579
2
30.00006536 2 54.87912854
125.50010056 2 31.32968867
25.243283 2 111.936344
227.060768 2 43.941844
Cl GEN 2 1
3
15.000000 1 22.196266
332.943994 3 26.145117
-161.999982 2 25.015118
2
26.837357 2 124.640433
277.296696 2 52.205433
Ar GEN 2 1
3
16.000000 1 23.431337
374.901386 3 26.735872
-178.039517 2 26.003325
2
25.069215 2 135.620522
332.151842 2 60.471053
Sc GEN 10 2
4
11.0 1 16.0484863686
176.533350054 3 14.07764439
-83.673420518 2 11.993486653
0.331064789149 2 3.75115298216
11.00000000 1 16.02394388
176.26338271 3 14.08647403
-83.68149599 2 11.93985121
0.43282764 2 3.69440111
2
153.959870288 2 11.4712713921
14.9643185607 2 5.00756742752
153.96530175 2 11.49466541
14.93675657 2 5.01031394
2
97.2094454291 2 11.4449481137
10.8162163087 2 4.78509457131
97.21725690 2 11.45126730
10.81704018 2 4.76798446
Ti GEN 10 2
4
12.0 1 18.4136620219
220.963944263 3 15.9229241432
-94.2902582468 2 13.6500062314
0.0979114248227 2 5.0955521057
12.00000000 1 18.41366202
220.96394426 3 15.92292414
-94.29025824 2 13.65000623
0.09791142 2 5.09555210
2
173.946572359 2 12.7058061392
18.8376833381 2 6.11178551988
173.94657235 2 12.70580613
18.83768333 2 6.11178551
2
111.45672882 2 12.6409192965
11.1770268269 2 5.35437415684
111.45672882 2 12.64091929
11.17702682 2 5.35437415
V GEN 10 2
4
13.0 1 20.3216891426
264.181958854 3 19.5969804012
-115.292932083 2 17.3314734817
-0.662887260057 2 5.12320657929
13.00000000 1 20.32168914
264.18195885 3 19.59698040
-115.29293208 2 17.33147348
-0.66288726 2 5.12320657
2
195.567138911 2 15.1250215054
22.8864283476 2 6.2989891447
195.56713891 2 15.12502150
22.88642834 2 6.29898914
2
126.421195008 2 15.9385511327
16.0359712766 2 5.74006266866
126.42119500 2 15.93855113
16.03597127 2 5.74006266
Zn GEN 10 2
Cr GEN 10 2
4
20.0 1 35.8079761618
716.159523235 3 34.536460837
-204.683933235 2 28.6283017827
0.760266144617 2 7.9623968256
14.00000000 1 18.28091074
255.93275041 3 17.09800655
-132.01826317 2 16.72267276
-0.77388761 2 5.02865105
2
95.8764043739 2 14.6349869153
431.708043027 2 35.0214135667
219.48146209 2 16.90078760
28.07933176 2 7.33662150
2
74.0127004894 2 14.5742930415
313.577705639 2 42.2297923499
139.98396871 2 17.31974516
19.54835786 2 6.92409757
Mn GEN 10 2
4
15.00000000 1 21.91937433
328.79061500 3 21.35527127
-162.05172805 2 21.27162653
-1.82694272 2 7.93913962
2
244.66870492 2 18.92044965
33.54162717 2 8.32764757
2
162.35033685 2 20.17347020
24.17956695 2 7.80047874
Fe GEN 10 2
4
16.00000000 1 23.22091713
371.53467417 3 23.54714679
-181.22603445 2 23.47256344
-2.37305236 2 9.85238815
2
277.50032547 2 22.21062697
46.20495585 2 9.51515800
2
194.99875056 2 24.57000871
31.67945132 2 8.86648776
Co GEN 10 2
4
17.00000000 1 25.00124115
425.02109971 3 22.83490096
-195.48211282 2 23.47468155
-2.81572866 2 10.33794825
2
271.77708486 2 23.41427030
54.26461121 2 10.76931694
2
201.53430745 2 25.47446316
38.99231927 2 10.68404901
Ni GEN 10 2
4
18.000 1 2.82630001015327e+01
508.7340018275886 3 2.69360254587070e+01
-2.20099999296390e+02 2 2.70860075292970e+01
-2.13493270999809e+00 2 1.22130001295874e+01
2
3.21240002430625e+02 2 2.64320193944270e+01
6.03470084610628e+01 2 1.17489696842121e+01
2
2.36539998999428e+02 2 2.94929998193907e+01
4.43969887908906e+01 2 1.15569831458722e+01
Cu GEN 10 2
4
19.0 1 31.5381126304
599.224139977 3 31.0692553147
-244.689154841 2 30.5903586806
-1.2934952584 2 14.0514106386
19.00000000 1 31.53811263
599.22413997 3 31.06925531
-244.68915484 2 30.59035868
-1.29349525 2 14.05141063
2
66.2756081341 2 12.7723591969
370.71371825 2 29.355622426
370.71371824 2 29.35562242
66.27560813 2 12.77235919
2
49.7626505709 2 12.5247148487
271.662810283 2 33.5169454376
271.66281028 2 33.51694543
49.76265057 2 12.52471484
Zn GEN 10 2
4
20.00000000 1 35.80797616
716.15952323 3 34.53646083
-204.68393323 2 28.62830178
0.76026614 2 7.96239682
2
431.70804302 2 35.02141356
95.87640437 2 14.63498691
2
313.57770563 2 42.22979234
74.01270048 2 14.57429304

View File

@ -953,6 +953,7 @@ Subroutines / functions
Gets multiple AO bi-electronic integral from the AO map .
All i are retrieved for j,k,l fixed.
physicist convention : <ij|kl>
Needs:
@ -1224,6 +1225,8 @@ Subroutines / functions
subroutine two_e_integrals_index(i,j,k,l,i1)
Gives a unique index for i,j,k,l using permtuation symmetry.
i <-> k, j <-> l, and (i,k) <-> (j,l)
Called by:
@ -1255,7 +1258,7 @@ Subroutines / functions
* :c:data:`mo_integrals_erf_cache`
* :c:data:`mo_integrals_erf_map`
* :c:data:`mo_integrals_map`
* :c:func:`two_e_integrals_index_reverse`
* :c:func:`test`
.. c:function:: two_e_integrals_index_reverse:
@ -1268,6 +1271,15 @@ Subroutines / functions
subroutine two_e_integrals_index_reverse(i,j,k,l,i1)
Computes the 4 indices $i,j,k,l$ from a unique index $i_1$.
For 2 indices $i,j$ and $i \le j$, we have
$p = i(i-1)/2 + j$.
The key point is that because $j < i$,
$i(i-1)/2 < p \le i(i+1)/2$. So $i$ can be found by solving
$i^2 - i - 2p=0$. One obtains $i=1 + \sqrt{1+8p}/2$
and $j = p - i(i-1)/2$.
This rule is applied 3 times. First for the symmetry of the
pairs (i,k) and (j,l), and then for the symmetry within each pair.
Called by:
@ -1275,11 +1287,5 @@ Subroutines / functions
:columns: 3
* :c:data:`ao_two_e_integral_alpha`
Calls:
.. hlist::
:columns: 3
* :c:func:`two_e_integrals_index`
* :c:func:`test`

View File

@ -51,3 +51,13 @@ EZFIO parameters
Beta one body density matrix on the |MO| basis computed with the wave function
.. option:: data_one_e_dm_alpha_ao
Alpha one body density matrix on the |AO| basis computed with the wave function
.. option:: data_one_e_dm_beta_ao
Beta one body density matrix on the |AO| basis computed with the wave function

View File

@ -241,6 +241,7 @@ Providers
* :c:data:`mos_in_r_array`
* :c:data:`one_e_dm_alpha_at_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
* :c:data:`one_e_dm_no_core_and_grad_alpha_in_r`
.. c:var:: final_weight_at_r
@ -339,6 +340,7 @@ Providers
* :c:data:`mos_in_r_array`
* :c:data:`one_e_dm_alpha_at_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
* :c:data:`one_e_dm_no_core_and_grad_alpha_in_r`
.. c:var:: grid_points_per_atom
@ -468,6 +470,7 @@ Providers
* :c:data:`mos_in_r_array`
* :c:data:`one_e_dm_alpha_at_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
* :c:data:`one_e_dm_no_core_and_grad_alpha_in_r`
.. c:var:: index_final_points_reverse
@ -532,6 +535,7 @@ Providers
* :c:data:`mos_in_r_array`
* :c:data:`one_e_dm_alpha_at_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
* :c:data:`one_e_dm_no_core_and_grad_alpha_in_r`
.. c:var:: m_knowles
@ -608,6 +612,7 @@ Providers
* :c:data:`mos_lapl_in_r_array`
* :c:data:`one_e_dm_alpha_at_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
* :c:data:`one_e_dm_no_core_and_grad_alpha_in_r`
* :c:data:`pot_grad_x_alpha_ao_pbe`
* :c:data:`pot_grad_xc_alpha_ao_pbe`
* :c:data:`pot_scal_x_alpha_ao_pbe`
@ -749,6 +754,7 @@ Providers
* :c:data:`grid_points_per_atom`
* :c:data:`n_points_radial_grid`
* :c:data:`nucl_charge`
* :c:data:`nucl_coord_transp`
* :c:data:`nucl_dist_inv`
* :c:data:`nucl_num`
@ -818,6 +824,7 @@ Subroutines / functions
* :c:data:`nucl_dist_inv`
* :c:data:`slater_bragg_type_inter_distance_ua`
* :c:data:`nucl_coord_transp`
* :c:data:`nucl_charge`
* :c:data:`nucl_num`

View File

@ -108,10 +108,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -150,8 +152,6 @@ Providers
* :c:data:`closed_shell_ref_bitmask`
* :c:data:`psi_cas`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
.. c:var:: closed_shell_ref_bitmask
@ -246,10 +246,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -374,10 +376,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -814,10 +818,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -943,10 +949,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -1021,10 +1029,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -1099,10 +1109,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -1110,12 +1122,12 @@ Providers
.. c:var:: list_core_inact_act
File : :file:`bitmask/bitmasks.irp.f`
File : :file:`bitmask/core_inact_act_virt.irp.f`
.. code:: fortran
integer, allocatable :: list_core_inact_act (n_core_inact_act_orb)
integer, allocatable :: list_core_inact_act_reverse (mo_num)
integer, allocatable :: list_core_inact_act_reverse (n_core_inact_act_orb)
@ -1125,7 +1137,8 @@ Providers
:columns: 3
* :c:data:`list_inact`
* :c:data:`mo_num`
* :c:data:`n_core_inact_act_orb`
* :c:data:`n_core_orb`
* :c:data:`n_int`
* :c:data:`reunion_of_core_inact_act_bitmask`
@ -1134,12 +1147,12 @@ Providers
.. c:var:: list_core_inact_act_reverse
File : :file:`bitmask/bitmasks.irp.f`
File : :file:`bitmask/core_inact_act_virt.irp.f`
.. code:: fortran
integer, allocatable :: list_core_inact_act (n_core_inact_act_orb)
integer, allocatable :: list_core_inact_act_reverse (mo_num)
integer, allocatable :: list_core_inact_act_reverse (n_core_inact_act_orb)
@ -1149,7 +1162,8 @@ Providers
:columns: 3
* :c:data:`list_inact`
* :c:data:`mo_num`
* :c:data:`n_core_inact_act_orb`
* :c:data:`n_core_orb`
* :c:data:`n_int`
* :c:data:`reunion_of_core_inact_act_bitmask`
@ -1225,10 +1239,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -1303,10 +1319,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -1381,10 +1399,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -1459,14 +1479,38 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
.. c:var:: list_inact_act
File : :file:`bitmask/core_inact_act_virt.irp.f`
.. code:: fortran
integer, allocatable :: list_inact_act (n_inact_act_orb)
Needs:
.. hlist::
:columns: 3
* :c:data:`list_inact`
* :c:data:`n_core_orb`
* :c:data:`n_inact_act_orb`
.. c:var:: list_inact_reverse
@ -1537,10 +1581,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -1615,10 +1661,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -1693,10 +1741,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`
@ -1772,9 +1822,13 @@ Providers
* :c:data:`dim_list_core_orb`
* :c:data:`eigenvectors_fock_matrix_mo`
* :c:data:`fock_matrix_mo`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`n_core_inact_act_orb`
* :c:data:`n_core_orb_allocate`
* :c:data:`n_inact_act_orb`
* :c:data:`n_inact_orb_allocate`
* :c:data:`n_virt_orb_allocate`
* :c:data:`pt2_f`
@ -1813,31 +1867,26 @@ Providers
.. c:var:: n_core_inact_act_orb
File : :file:`bitmask/bitmasks.irp.f`
File : :file:`bitmask/core_inact_act_virt.irp.f`
.. code:: fortran
integer(bit_kind), allocatable :: reunion_of_core_inact_act_bitmask (N_int,2)
integer :: n_core_inact_act_orb
Reunion of the core, inactive and active bitmasks
Needs:
.. hlist::
:columns: 3
* :c:data:`cas_bitmask`
* :c:data:`n_int`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`n_core_orb`
Needed by:
.. hlist::
:columns: 3
* :c:data:`core_inact_act_bitmask_4`
* :c:data:`list_core_inact_act`
@ -1919,9 +1968,13 @@ Providers
* :c:data:`dim_list_core_orb`
* :c:data:`eigenvectors_fock_matrix_mo`
* :c:data:`fock_matrix_mo`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`n_core_inact_act_orb`
* :c:data:`n_core_orb_allocate`
* :c:data:`n_inact_act_orb`
* :c:data:`n_inact_orb_allocate`
* :c:data:`n_virt_orb_allocate`
* :c:data:`pt2_f`
@ -2004,9 +2057,13 @@ Providers
* :c:data:`dim_list_core_orb`
* :c:data:`eigenvectors_fock_matrix_mo`
* :c:data:`fock_matrix_mo`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`n_core_inact_act_orb`
* :c:data:`n_core_orb_allocate`
* :c:data:`n_inact_act_orb`
* :c:data:`n_inact_orb_allocate`
* :c:data:`n_virt_orb_allocate`
* :c:data:`pt2_f`
@ -2072,6 +2129,32 @@ Providers
* :c:data:`generators_bitmask_restart`
.. c:var:: n_inact_act_orb
File : :file:`bitmask/core_inact_act_virt.irp.f`
.. code:: fortran
integer :: n_inact_act_orb
Needs:
.. hlist::
:columns: 3
* :c:data:`n_core_orb`
Needed by:
.. hlist::
:columns: 3
* :c:data:`list_inact_act`
.. c:var:: n_inact_orb
@ -2129,9 +2212,13 @@ Providers
* :c:data:`dim_list_core_orb`
* :c:data:`eigenvectors_fock_matrix_mo`
* :c:data:`fock_matrix_mo`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`n_core_inact_act_orb`
* :c:data:`n_core_orb_allocate`
* :c:data:`n_inact_act_orb`
* :c:data:`n_inact_orb_allocate`
* :c:data:`n_virt_orb_allocate`
* :c:data:`pt2_f`
@ -2309,9 +2396,13 @@ Providers
* :c:data:`dim_list_core_orb`
* :c:data:`eigenvectors_fock_matrix_mo`
* :c:data:`fock_matrix_mo`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`n_core_inact_act_orb`
* :c:data:`n_core_orb_allocate`
* :c:data:`n_inact_act_orb`
* :c:data:`n_inact_orb_allocate`
* :c:data:`n_virt_orb_allocate`
* :c:data:`pt2_f`
@ -2412,7 +2503,6 @@ Providers
.. hlist::
:columns: 3
* :c:data:`cas_bitmask`
* :c:data:`list_inact`
* :c:data:`n_int`
@ -2426,7 +2516,6 @@ Providers
.. code:: fortran
integer(bit_kind), allocatable :: reunion_of_core_inact_act_bitmask (N_int,2)
integer :: n_core_inact_act_orb
Reunion of the core, inactive and active bitmasks
@ -2436,7 +2525,7 @@ Providers
.. hlist::
:columns: 3
* :c:data:`cas_bitmask`
* :c:data:`list_inact`
* :c:data:`n_int`
* :c:data:`reunion_of_core_inact_bitmask`
@ -2570,10 +2659,12 @@ Providers
* :c:data:`fock_matrix_mo`
* :c:data:`inact_virt_bitmask`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact_act`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`mo_two_e_integrals_vv_from_ao`
* :c:data:`reunion_of_bitmask`
* :c:data:`reunion_of_cas_inact_bitmask`
* :c:data:`reunion_of_core_inact_act_bitmask`
* :c:data:`reunion_of_core_inact_bitmask`
* :c:data:`virt_bitmask_4`

View File

@ -344,6 +344,34 @@ Providers
.. c:var:: pt2_match_weight
File : :file:`cipsi/selection.irp.f`
.. code:: fortran
double precision, allocatable :: pt2_match_weight (N_states)
Weights adjusted along the selection to make the PT2 contributions
of each state coincide.
Needs:
.. hlist::
:columns: 3
* :c:data:`n_states`
Needed by:
.. hlist::
:columns: 3
* :c:data:`selection_weight`
.. c:var:: pt2_mindetinfirstteeth
@ -698,6 +726,7 @@ Providers
* :c:data:`c0_weight`
* :c:data:`n_states`
* :c:data:`pt2_match_weight`
@ -854,6 +883,8 @@ Subroutines / functions
* :c:data:`psi_det_hii`
* :c:data:`do_only_1h1p`
* :c:data:`h0_type`
* :c:data:`thresh_sym`
* :c:data:`pseudo_sym`
* :c:data:`psi_det_generators`
Called by:
@ -1584,6 +1615,7 @@ Subroutines / functions
* :c:data:`psi_energy`
* :c:data:`psi_occ_pattern`
* :c:data:`psi_energy`
* :c:data:`pt2_match_weight`
* :c:data:`pt2_stoch_istate`
* :c:data:`state_average_weight`
* :c:data:`threshold_generators`
@ -1805,6 +1837,7 @@ Subroutines / functions
.. hlist::
:columns: 3
* :c:func:`fci`
* :c:func:`pt2`
Calls:
@ -1991,6 +2024,7 @@ Subroutines / functions
* :c:data:`psi_energy`
* :c:data:`psi_occ_pattern`
* :c:data:`psi_energy`
* :c:data:`pt2_match_weight`
* :c:data:`pt2_stoch_istate`
* :c:data:`state_average_weight`
* :c:data:`threshold_generators`
@ -2344,6 +2378,7 @@ Subroutines / functions
* :c:data:`state_average_weight`
* :c:data:`n_det`
* :c:data:`s2_eig`
* :c:data:`pt2_match_weight`
* :c:data:`pt2_j`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`psi_bilinear_matrix_transp_values`
@ -2415,6 +2450,7 @@ Subroutines / functions
* :c:data:`psi_det`
* :c:data:`psi_det_size`
* :c:data:`psi_det_sorted_bit`
* :c:data:`pt2_match_weight`
* :c:data:`pt2_stoch_istate`
* :c:data:`state_average_weight`
@ -2441,6 +2477,7 @@ Subroutines / functions
* :c:data:`n_det`
* :c:data:`psi_bilinear_matrix_columns_loc`
* :c:data:`n_det_selectors`
* :c:data:`psi_bilinear_matrix_transp_values`
* :c:data:`psi_det_alpha_unique`
* :c:data:`psi_bilinear_matrix_transp_values`
* :c:data:`state_average_weight`
@ -2456,7 +2493,7 @@ Subroutines / functions
* :c:data:`n_states`
* :c:data:`pt2_f`
* :c:data:`n_det_generators`
* :c:data:`psi_bilinear_matrix_transp_values`
* :c:data:`pt2_match_weight`
* :c:data:`n_int`
Called by:
@ -2496,4 +2533,5 @@ Subroutines / functions
* :c:data:`psi_det`
* :c:data:`psi_det_size`
* :c:data:`psi_det_sorted_bit`
* :c:data:`pt2_match_weight`

View File

@ -72,7 +72,7 @@ Subroutines / functions
.. c:function:: h_apply_cis:
File : :file:`h_apply.irp.f_shell_8`
File : :file:`h_apply.irp.f_shell_13`
.. code:: fortran
@ -134,7 +134,7 @@ Subroutines / functions
.. c:function:: h_apply_cis_diexc:
File : :file:`h_apply.irp.f_shell_8`
File : :file:`h_apply.irp.f_shell_13`
.. code:: fortran
@ -169,7 +169,7 @@ Subroutines / functions
.. c:function:: h_apply_cis_diexcorg:
File : :file:`h_apply.irp.f_shell_8`
File : :file:`h_apply.irp.f_shell_13`
.. code:: fortran
@ -208,7 +208,7 @@ Subroutines / functions
.. c:function:: h_apply_cis_diexcp:
File : :file:`h_apply.irp.f_shell_8`
File : :file:`h_apply.irp.f_shell_13`
.. code:: fortran
@ -243,7 +243,7 @@ Subroutines / functions
.. c:function:: h_apply_cis_monoexc:
File : :file:`h_apply.irp.f_shell_8`
File : :file:`h_apply.irp.f_shell_13`
.. code:: fortran
@ -278,3 +278,215 @@ Subroutines / functions
* :c:func:`bitstring_to_list_ab`
* :c:func:`fill_h_apply_buffer_no_selection`
.. c:function:: h_apply_cis_sym:
File : :file:`h_apply.irp.f_shell_13`
.. code:: fortran
subroutine H_apply_cis_sym()
Calls H_apply on the |HF| determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
Needs:
.. hlist::
:columns: 3
* :c:data:`psi_coef`
* :c:data:`n_states`
* :c:data:`generators_bitmask`
* :c:data:`mo_num`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`h_apply_buffer_allocated`
* :c:data:`n_det`
* :c:data:`s2_eig`
* :c:data:`n_det_generators`
* :c:data:`i_bitmask_gen`
* :c:data:`n_int`
* :c:data:`psi_det`
* :c:data:`psi_det_generators`
* :c:data:`psi_det_generators`
Calls:
.. hlist::
:columns: 3
* :c:func:`build_fock_tmp`
* :c:func:`copy_h_apply_buffer_to_wf`
* :c:func:`dsort`
* :c:func:`h_apply_cis_sym_diexc`
* :c:func:`h_apply_cis_sym_monoexc`
* :c:func:`make_s2_eigenfunction`
* :c:func:`wall_time`
Touches:
.. hlist::
:columns: 3
* :c:data:`n_det`
* :c:data:`psi_occ_pattern`
* :c:data:`c0_weight`
* :c:data:`psi_coef`
* :c:data:`psi_det_sorted_bit`
* :c:data:`psi_det`
* :c:data:`psi_det_size`
* :c:data:`psi_det_sorted_bit`
* :c:data:`psi_occ_pattern`
.. c:function:: h_apply_cis_sym_diexc:
File : :file:`h_apply.irp.f_shell_13`
.. code:: fortran
subroutine H_apply_cis_sym_diexc(key_in, key_prev, hole_1,particl_1, hole_2, particl_2, fock_diag_tmp, i_generator, iproc_in )
Needs:
.. hlist::
:columns: 3
* :c:data:`n_int`
* :c:data:`n_det`
* :c:data:`mo_num`
Called by:
.. hlist::
:columns: 3
* :c:func:`h_apply_cis_sym`
Calls:
.. hlist::
:columns: 3
* :c:func:`h_apply_cis_sym_diexcp`
.. c:function:: h_apply_cis_sym_diexcorg:
File : :file:`h_apply.irp.f_shell_13`
.. code:: fortran
subroutine H_apply_cis_sym_diexcOrg(key_in,key_mask,hole_1,particl_1,hole_2, particl_2, fock_diag_tmp, i_generator, iproc_in )
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
Needs:
.. hlist::
:columns: 3
* :c:data:`n_int`
* :c:data:`elec_alpha_num`
* :c:data:`mo_num`
Called by:
.. hlist::
:columns: 3
* :c:func:`h_apply_cis_sym_diexcp`
Calls:
.. hlist::
:columns: 3
* :c:func:`bitstring_to_list_ab`
* :c:func:`connected_to_hf`
* :c:func:`fill_h_apply_buffer_no_selection`
.. c:function:: h_apply_cis_sym_diexcp:
File : :file:`h_apply.irp.f_shell_13`
.. code:: fortran
subroutine H_apply_cis_sym_diexcP(key_in, fs1, fh1, particl_1, fs2, fh2, particl_2, fock_diag_tmp, i_generator, iproc_in )
Needs:
.. hlist::
:columns: 3
* :c:data:`n_int`
* :c:data:`n_det`
* :c:data:`mo_num`
Called by:
.. hlist::
:columns: 3
* :c:func:`h_apply_cis_sym_diexc`
Calls:
.. hlist::
:columns: 3
* :c:func:`h_apply_cis_sym_diexcorg`
.. c:function:: h_apply_cis_sym_monoexc:
File : :file:`h_apply.irp.f_shell_13`
.. code:: fortran
subroutine H_apply_cis_sym_monoexc(key_in, hole_1,particl_1,fock_diag_tmp,i_generator,iproc_in )
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
Needs:
.. hlist::
:columns: 3
* :c:data:`n_int`
* :c:data:`elec_alpha_num`
* :c:data:`mo_num`
Called by:
.. hlist::
:columns: 3
* :c:func:`h_apply_cis_sym`
Calls:
.. hlist::
:columns: 3
* :c:func:`bitstring_to_list_ab`
* :c:func:`connected_to_hf`
* :c:func:`fill_h_apply_buffer_no_selection`

View File

@ -65,7 +65,7 @@ Subroutines / functions
.. c:function:: h_apply_cisd:
File : :file:`h_apply.irp.f_shell_8`
File : :file:`h_apply.irp.f_shell_12`
.. code:: fortran
@ -127,7 +127,7 @@ Subroutines / functions
.. c:function:: h_apply_cisd_diexc:
File : :file:`h_apply.irp.f_shell_8`
File : :file:`h_apply.irp.f_shell_12`
.. code:: fortran
@ -162,7 +162,7 @@ Subroutines / functions
.. c:function:: h_apply_cisd_diexcorg:
File : :file:`h_apply.irp.f_shell_8`
File : :file:`h_apply.irp.f_shell_12`
.. code:: fortran
@ -201,7 +201,7 @@ Subroutines / functions
.. c:function:: h_apply_cisd_diexcp:
File : :file:`h_apply.irp.f_shell_8`
File : :file:`h_apply.irp.f_shell_12`
.. code:: fortran
@ -236,7 +236,7 @@ Subroutines / functions
.. c:function:: h_apply_cisd_monoexc:
File : :file:`h_apply.irp.f_shell_8`
File : :file:`h_apply.irp.f_shell_12`
.. code:: fortran
@ -271,3 +271,215 @@ Subroutines / functions
* :c:func:`bitstring_to_list_ab`
* :c:func:`fill_h_apply_buffer_no_selection`
.. c:function:: h_apply_cisd_sym:
File : :file:`h_apply.irp.f_shell_12`
.. code:: fortran
subroutine H_apply_cisd_sym()
Calls H_apply on the |HF| determinant and selects all connected single and double
excitations (of the same symmetry). Auto-generated by the ``generate_h_apply`` script.
Needs:
.. hlist::
:columns: 3
* :c:data:`psi_coef`
* :c:data:`n_states`
* :c:data:`generators_bitmask`
* :c:data:`mo_num`
* :c:data:`mo_two_e_integrals_in_map`
* :c:data:`h_apply_buffer_allocated`
* :c:data:`n_det`
* :c:data:`s2_eig`
* :c:data:`n_det_generators`
* :c:data:`i_bitmask_gen`
* :c:data:`n_int`
* :c:data:`psi_det`
* :c:data:`psi_det_generators`
* :c:data:`psi_det_generators`
Calls:
.. hlist::
:columns: 3
* :c:func:`build_fock_tmp`
* :c:func:`copy_h_apply_buffer_to_wf`
* :c:func:`dsort`
* :c:func:`h_apply_cisd_sym_diexc`
* :c:func:`h_apply_cisd_sym_monoexc`
* :c:func:`make_s2_eigenfunction`
* :c:func:`wall_time`
Touches:
.. hlist::
:columns: 3
* :c:data:`n_det`
* :c:data:`psi_occ_pattern`
* :c:data:`c0_weight`
* :c:data:`psi_coef`
* :c:data:`psi_det_sorted_bit`
* :c:data:`psi_det`
* :c:data:`psi_det_size`
* :c:data:`psi_det_sorted_bit`
* :c:data:`psi_occ_pattern`
.. c:function:: h_apply_cisd_sym_diexc:
File : :file:`h_apply.irp.f_shell_12`
.. code:: fortran
subroutine H_apply_cisd_sym_diexc(key_in, key_prev, hole_1,particl_1, hole_2, particl_2, fock_diag_tmp, i_generator, iproc_in )
Needs:
.. hlist::
:columns: 3
* :c:data:`n_int`
* :c:data:`n_det`
* :c:data:`mo_num`
Called by:
.. hlist::
:columns: 3
* :c:func:`h_apply_cisd_sym`
Calls:
.. hlist::
:columns: 3
* :c:func:`h_apply_cisd_sym_diexcp`
.. c:function:: h_apply_cisd_sym_diexcorg:
File : :file:`h_apply.irp.f_shell_12`
.. code:: fortran
subroutine H_apply_cisd_sym_diexcOrg(key_in,key_mask,hole_1,particl_1,hole_2, particl_2, fock_diag_tmp, i_generator, iproc_in )
Generate all double excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
Needs:
.. hlist::
:columns: 3
* :c:data:`n_int`
* :c:data:`elec_alpha_num`
* :c:data:`mo_num`
Called by:
.. hlist::
:columns: 3
* :c:func:`h_apply_cisd_sym_diexcp`
Calls:
.. hlist::
:columns: 3
* :c:func:`bitstring_to_list_ab`
* :c:func:`connected_to_hf`
* :c:func:`fill_h_apply_buffer_no_selection`
.. c:function:: h_apply_cisd_sym_diexcp:
File : :file:`h_apply.irp.f_shell_12`
.. code:: fortran
subroutine H_apply_cisd_sym_diexcP(key_in, fs1, fh1, particl_1, fs2, fh2, particl_2, fock_diag_tmp, i_generator, iproc_in )
Needs:
.. hlist::
:columns: 3
* :c:data:`n_int`
* :c:data:`n_det`
* :c:data:`mo_num`
Called by:
.. hlist::
:columns: 3
* :c:func:`h_apply_cisd_sym_diexc`
Calls:
.. hlist::
:columns: 3
* :c:func:`h_apply_cisd_sym_diexcorg`
.. c:function:: h_apply_cisd_sym_monoexc:
File : :file:`h_apply.irp.f_shell_12`
.. code:: fortran
subroutine H_apply_cisd_sym_monoexc(key_in, hole_1,particl_1,fock_diag_tmp,i_generator,iproc_in )
Generate all single excitations of key_in using the bit masks of holes and
particles.
Assume N_int is already provided.
Needs:
.. hlist::
:columns: 3
* :c:data:`n_int`
* :c:data:`elec_alpha_num`
* :c:data:`mo_num`
Called by:
.. hlist::
:columns: 3
* :c:func:`h_apply_cisd_sym`
Calls:
.. hlist::
:columns: 3
* :c:func:`bitstring_to_list_ab`
* :c:func:`connected_to_hf`
* :c:func:`fill_h_apply_buffer_no_selection`

View File

@ -44,6 +44,12 @@ EZFIO parameters
Default: full_density
.. option:: normalize_dm
if .True., then you normalize the no_core_dm to elec_alpha_num - n_core_orb and elec_beta_num - n_core_orb
Default: True
Providers
---------
@ -131,6 +137,9 @@ Providers
:columns: 3
* :c:data:`ao_num`
* :c:data:`data_one_e_dm_alpha_ao`
* :c:data:`data_one_e_dm_beta_ao`
* :c:data:`density_for_dft`
* :c:data:`mo_coef`
* :c:data:`mo_num`
* :c:data:`n_states`
@ -147,6 +156,39 @@ Providers
* :c:data:`one_e_dm_and_grad_alpha_in_r`
.. c:var:: one_e_dm_alpha_ao_for_dft_no_core
File : :file:`density_for_dft/density_for_dft.irp.f`
.. code:: fortran
double precision, allocatable :: one_e_dm_alpha_ao_for_dft_no_core (ao_num,ao_num,N_states)
double precision, allocatable :: one_e_dm_beta_ao_for_dft_no_core (ao_num,ao_num,N_states)
one body density matrix on the AO basis based on one_e_dm_mo_alpha_for_dft_no_core
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`mo_coef`
* :c:data:`mo_num`
* :c:data:`n_states`
* :c:data:`one_e_dm_mo_alpha_for_dft_no_core`
* :c:data:`one_e_dm_mo_beta_for_dft_no_core`
Needed by:
.. hlist::
:columns: 3
* :c:data:`one_e_dm_no_core_and_grad_alpha_in_r`
.. c:var:: one_e_dm_average_mo_for_dft
@ -195,6 +237,9 @@ Providers
:columns: 3
* :c:data:`ao_num`
* :c:data:`data_one_e_dm_alpha_ao`
* :c:data:`data_one_e_dm_beta_ao`
* :c:data:`density_for_dft`
* :c:data:`mo_coef`
* :c:data:`mo_num`
* :c:data:`n_states`
@ -211,6 +256,39 @@ Providers
* :c:data:`one_e_dm_and_grad_alpha_in_r`
.. c:var:: one_e_dm_beta_ao_for_dft_no_core
File : :file:`density_for_dft/density_for_dft.irp.f`
.. code:: fortran
double precision, allocatable :: one_e_dm_alpha_ao_for_dft_no_core (ao_num,ao_num,N_states)
double precision, allocatable :: one_e_dm_beta_ao_for_dft_no_core (ao_num,ao_num,N_states)
one body density matrix on the AO basis based on one_e_dm_mo_alpha_for_dft_no_core
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`mo_coef`
* :c:data:`mo_num`
* :c:data:`n_states`
* :c:data:`one_e_dm_mo_alpha_for_dft_no_core`
* :c:data:`one_e_dm_mo_beta_for_dft_no_core`
Needed by:
.. hlist::
:columns: 3
* :c:data:`one_e_dm_no_core_and_grad_alpha_in_r`
.. c:var:: one_e_dm_mo_alpha_for_dft
@ -228,14 +306,18 @@ Providers
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`damping_for_rs_dft`
* :c:data:`data_one_e_dm_alpha_mo`
* :c:data:`density_for_dft`
* :c:data:`elec_alpha_num`
* :c:data:`list_inact`
* :c:data:`mo_coef`
* :c:data:`mo_num`
* :c:data:`n_core_orb`
* :c:data:`n_states`
* :c:data:`no_core_density`
* :c:data:`normalize_dm`
* :c:data:`one_body_dm_mo_alpha_one_det`
* :c:data:`one_e_dm_mo_alpha`
* :c:data:`one_e_dm_mo_alpha_average`
@ -246,12 +328,44 @@ Providers
:columns: 3
* :c:data:`one_e_dm_alpha_ao_for_dft`
* :c:data:`one_e_dm_mo_alpha_for_dft_no_core`
* :c:data:`one_e_dm_mo_for_dft`
* :c:data:`psi_dft_energy_kinetic`
* :c:data:`trace_v_xc`
* :c:data:`trace_v_xc_new`
.. c:var:: one_e_dm_mo_alpha_for_dft_no_core
File : :file:`density_for_dft/density_for_dft.irp.f`
.. code:: fortran
double precision, allocatable :: one_e_dm_mo_alpha_for_dft_no_core (mo_num,mo_num,N_states)
density matrix for alpha electrons in the MO basis without the core orbitals
Needs:
.. hlist::
:columns: 3
* :c:data:`list_inact`
* :c:data:`mo_num`
* :c:data:`n_core_orb`
* :c:data:`n_states`
* :c:data:`one_e_dm_mo_alpha_for_dft`
Needed by:
.. hlist::
:columns: 3
* :c:data:`one_e_dm_alpha_ao_for_dft_no_core`
.. c:var:: one_e_dm_mo_beta_for_dft
@ -269,14 +383,18 @@ Providers
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`damping_for_rs_dft`
* :c:data:`data_one_e_dm_beta_mo`
* :c:data:`density_for_dft`
* :c:data:`elec_beta_num`
* :c:data:`list_inact`
* :c:data:`mo_coef`
* :c:data:`mo_num`
* :c:data:`n_core_orb`
* :c:data:`n_states`
* :c:data:`no_core_density`
* :c:data:`normalize_dm`
* :c:data:`one_body_dm_mo_alpha_one_det`
* :c:data:`one_e_dm_mo_alpha`
* :c:data:`one_e_dm_mo_alpha_average`
@ -287,12 +405,44 @@ Providers
:columns: 3
* :c:data:`one_e_dm_alpha_ao_for_dft`
* :c:data:`one_e_dm_mo_beta_for_dft_no_core`
* :c:data:`one_e_dm_mo_for_dft`
* :c:data:`psi_dft_energy_kinetic`
* :c:data:`trace_v_xc`
* :c:data:`trace_v_xc_new`
.. c:var:: one_e_dm_mo_beta_for_dft_no_core
File : :file:`density_for_dft/density_for_dft.irp.f`
.. code:: fortran
double precision, allocatable :: one_e_dm_mo_beta_for_dft_no_core (mo_num,mo_num,N_states)
density matrix for beta electrons in the MO basis without the core orbitals
Needs:
.. hlist::
:columns: 3
* :c:data:`list_inact`
* :c:data:`mo_num`
* :c:data:`n_core_orb`
* :c:data:`n_states`
* :c:data:`one_e_dm_mo_beta_for_dft`
Needed by:
.. hlist::
:columns: 3
* :c:data:`one_e_dm_alpha_ao_for_dft_no_core`
.. c:var:: one_e_dm_mo_for_dft

View File

@ -71,7 +71,7 @@ EZFIO parameters
Thresholds on generators (fraction of the square of the norm)
Default: 0.99
Default: 0.999
.. option:: n_int
@ -119,6 +119,18 @@ EZFIO parameters
Weight of the states in state-average calculations.
.. option:: thresh_sym
Thresholds to check if a determinant is connected with HF
Default: 1.e-15
.. option:: pseudo_sym
If |true|, discard any Slater determinants with an interaction smaller than thresh_sym with HF.
Default: False
Providers
---------
@ -3971,6 +3983,37 @@ Subroutines / functions
* :c:func:`debug_det`
.. c:function:: connected_to_hf:
File : :file:`determinants/slater_rules.irp.f`
.. code:: fortran
subroutine connected_to_hf(key_i,yes_no)
Needs:
.. hlist::
:columns: 3
* :c:data:`thresh_sym`
* :c:data:`ref_bitmask`
* :c:data:`mo_one_e_integrals`
* :c:data:`n_int`
Calls:
.. hlist::
:columns: 3
* :c:func:`get_excitation_degree`
* :c:func:`get_single_excitation`
* :c:func:`i_h_j`
.. c:function:: connected_to_ref:
@ -5367,6 +5410,7 @@ Subroutines / functions
.. hlist::
:columns: 3
* :c:func:`connected_to_hf`
* :c:data:`degree_max_generators`
* :c:func:`diag_h_mat_elem_fock`
* :c:func:`example_determinants`
@ -5699,6 +5743,7 @@ Subroutines / functions
.. hlist::
:columns: 3
* :c:func:`connected_to_hf`
* :c:func:`diag_h_mat_elem_fock`
* :c:func:`get_excitation`
* :c:func:`i_h_j`
@ -5866,6 +5911,7 @@ Subroutines / functions
:columns: 3
* :c:data:`coef_hf_selector`
* :c:func:`connected_to_hf`
* :c:func:`example_determinants`
* :c:func:`get_d0`
* :c:func:`get_d1`

View File

@ -344,6 +344,94 @@ Providers
* :c:data:`mos_lapl_in_r_array`
.. c:var:: elec_alpha_num_grid_becke
File : :file:`dft_utils_in_r/dm_in_r.irp.f`
.. code:: fortran
double precision, allocatable :: one_e_dm_alpha_at_r (n_points_final_grid,N_states)
double precision, allocatable :: one_e_dm_beta_at_r (n_points_final_grid,N_states)
double precision, allocatable :: elec_beta_num_grid_becke (N_states)
double precision, allocatable :: elec_alpha_num_grid_becke (N_states)
one_e_dm_alpha_at_r(i,istate) = n_alpha(r_i,istate)
one_e_dm_beta_at_r(i,istate) = n_beta(r_i,istate)
where r_i is the ith point of the grid and istate is the state number
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`final_grid_points`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
* :c:data:`one_e_dm_alpha_ao_for_dft`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_sr_vc_alpha_lda_w`
* :c:data:`aos_sr_vxc_alpha_lda_w`
* :c:data:`aos_vc_alpha_lda_w`
* :c:data:`aos_vxc_alpha_lda_w`
* :c:data:`energy_c_lda`
* :c:data:`energy_c_sr_lda`
* :c:data:`energy_sr_x_lda`
* :c:data:`energy_x_lda`
* :c:data:`energy_x_sr_lda`
.. c:var:: elec_beta_num_grid_becke
File : :file:`dft_utils_in_r/dm_in_r.irp.f`
.. code:: fortran
double precision, allocatable :: one_e_dm_alpha_at_r (n_points_final_grid,N_states)
double precision, allocatable :: one_e_dm_beta_at_r (n_points_final_grid,N_states)
double precision, allocatable :: elec_beta_num_grid_becke (N_states)
double precision, allocatable :: elec_alpha_num_grid_becke (N_states)
one_e_dm_alpha_at_r(i,istate) = n_alpha(r_i,istate)
one_e_dm_beta_at_r(i,istate) = n_beta(r_i,istate)
where r_i is the ith point of the grid and istate is the state number
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`final_grid_points`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
* :c:data:`one_e_dm_alpha_ao_for_dft`
Needed by:
.. hlist::
:columns: 3
* :c:data:`aos_sr_vc_alpha_lda_w`
* :c:data:`aos_sr_vxc_alpha_lda_w`
* :c:data:`aos_vc_alpha_lda_w`
* :c:data:`aos_vxc_alpha_lda_w`
* :c:data:`energy_c_lda`
* :c:data:`energy_c_sr_lda`
* :c:data:`energy_sr_x_lda`
* :c:data:`energy_x_lda`
* :c:data:`energy_x_sr_lda`
.. c:var:: mos_grad_in_r_array
@ -467,6 +555,8 @@ Providers
double precision, allocatable :: one_e_dm_alpha_at_r (n_points_final_grid,N_states)
double precision, allocatable :: one_e_dm_beta_at_r (n_points_final_grid,N_states)
double precision, allocatable :: elec_beta_num_grid_becke (N_states)
double precision, allocatable :: elec_alpha_num_grid_becke (N_states)
one_e_dm_alpha_at_r(i,istate) = n_alpha(r_i,istate)
@ -628,6 +718,8 @@ Providers
double precision, allocatable :: one_e_dm_alpha_at_r (n_points_final_grid,N_states)
double precision, allocatable :: one_e_dm_beta_at_r (n_points_final_grid,N_states)
double precision, allocatable :: elec_beta_num_grid_becke (N_states)
double precision, allocatable :: elec_alpha_num_grid_becke (N_states)
one_e_dm_alpha_at_r(i,istate) = n_alpha(r_i,istate)
@ -688,6 +780,66 @@ Providers
.. c:var:: one_e_dm_no_core_and_grad_alpha_in_r
File : :file:`dft_utils_in_r/dm_in_r.irp.f`
.. code:: fortran
double precision, allocatable :: one_e_dm_no_core_and_grad_alpha_in_r (4,n_points_final_grid,N_states)
double precision, allocatable :: one_e_dm_no_core_and_grad_beta_in_r (4,n_points_final_grid,N_states)
one_e_dm_no_core_and_grad_alpha_in_r(1,i,i_state) = d\dx n_alpha(r_i,istate) without core orbitals
one_e_dm_no_core_and_grad_alpha_in_r(2,i,i_state) = d\dy n_alpha(r_i,istate) without core orbitals
one_e_dm_no_core_and_grad_alpha_in_r(3,i,i_state) = d\dz n_alpha(r_i,istate) without core orbitals
one_e_dm_no_core_and_grad_alpha_in_r(4,i,i_state) = n_alpha(r_i,istate) without core orbitals
where r_i is the ith point of the grid and istate is the state number
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`final_grid_points`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
* :c:data:`one_e_dm_alpha_ao_for_dft_no_core`
.. c:var:: one_e_dm_no_core_and_grad_beta_in_r
File : :file:`dft_utils_in_r/dm_in_r.irp.f`
.. code:: fortran
double precision, allocatable :: one_e_dm_no_core_and_grad_alpha_in_r (4,n_points_final_grid,N_states)
double precision, allocatable :: one_e_dm_no_core_and_grad_beta_in_r (4,n_points_final_grid,N_states)
one_e_dm_no_core_and_grad_alpha_in_r(1,i,i_state) = d\dx n_alpha(r_i,istate) without core orbitals
one_e_dm_no_core_and_grad_alpha_in_r(2,i,i_state) = d\dy n_alpha(r_i,istate) without core orbitals
one_e_dm_no_core_and_grad_alpha_in_r(3,i,i_state) = d\dz n_alpha(r_i,istate) without core orbitals
one_e_dm_no_core_and_grad_alpha_in_r(4,i,i_state) = n_alpha(r_i,istate) without core orbitals
where r_i is the ith point of the grid and istate is the state number
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`final_grid_points`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
* :c:data:`one_e_dm_alpha_ao_for_dft_no_core`
.. c:var:: one_e_grad_2_dm_alpha_at_r
@ -784,6 +936,55 @@ Providers
Subroutines / functions
-----------------------
.. c:function:: dens_grad_a_b_no_core_and_aos_grad_aos_at_r:
File : :file:`dft_utils_in_r/dm_in_r.irp.f`
.. code:: fortran
subroutine dens_grad_a_b_no_core_and_aos_grad_aos_at_r(r,dm_a,dm_b, grad_dm_a, grad_dm_b, aos_array, grad_aos_array)
input:
* r(1) ==> r(1) = x, r(2) = y, r(3) = z
output:
* dm_a = alpha density evaluated at r without the core orbitals
* dm_b = beta density evaluated at r without the core orbitals
* aos_array(i) = ao(i) evaluated at r without the core orbitals
* grad_dm_a(1) = X gradient of the alpha density evaluated in r without the core orbitals
* grad_dm_a(1) = X gradient of the beta density evaluated in r without the core orbitals
* grad_aos_array(1) = X gradient of the aos(i) evaluated at r
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`one_e_dm_alpha_ao_for_dft_no_core`
* :c:data:`n_states`
Called by:
.. hlist::
:columns: 3
* :c:data:`one_e_dm_no_core_and_grad_alpha_in_r`
Calls:
.. hlist::
:columns: 3
* :c:func:`dsymv`
* :c:func:`give_all_aos_and_grad_at_r`
.. c:function:: density_and_grad_alpha_beta_and_all_aos_and_grad_aos_at_r:
@ -905,3 +1106,35 @@ Subroutines / functions
* :c:func:`dgemv`
* :c:func:`give_all_aos_at_r`
.. c:function:: dm_dft_alpha_beta_no_core_at_r:
File : :file:`dft_utils_in_r/dm_in_r.irp.f`
.. code:: fortran
subroutine dm_dft_alpha_beta_no_core_at_r(r,dm_a,dm_b)
input: r(1) ==> r(1) = x, r(2) = y, r(3) = z
output : dm_a = alpha density evaluated at r(3) without the core orbitals
output : dm_b = beta density evaluated at r(3) without the core orbitals
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`one_e_dm_alpha_ao_for_dft_no_core`
* :c:data:`n_states`
Calls:
.. hlist::
:columns: 3
* :c:func:`dgemv`
* :c:func:`give_all_aos_at_r`

View File

@ -387,320 +387,6 @@ Providers
* :c:data:`energy_x_sr_pbe`
.. c:var:: potential_sr_c_alpha_ao_lda
File : :file:`dft_utils_one_e/sr_pot_ao_lda.irp.f`
.. code:: fortran
double precision, allocatable :: potential_sr_c_alpha_ao_lda (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_c_beta_ao_lda (ao_num,ao_num,N_states)
short range correlation alpha/beta potentials with LDA functional on the |AO| basis
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`aos_in_r_array`
* :c:data:`aos_sr_vc_alpha_lda_w`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
.. c:var:: potential_sr_c_alpha_ao_pbe
File : :file:`dft_utils_one_e/sr_pot_ao_pbe.irp.f`
.. code:: fortran
double precision, allocatable :: potential_sr_x_alpha_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_x_beta_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_c_alpha_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_c_beta_ao_pbe (ao_num,ao_num,N_states)
exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`n_states`
* :c:data:`pot_sr_grad_x_alpha_ao_pbe`
* :c:data:`pot_sr_scal_x_alpha_ao_pbe`
.. c:var:: potential_sr_c_beta_ao_lda
File : :file:`dft_utils_one_e/sr_pot_ao_lda.irp.f`
.. code:: fortran
double precision, allocatable :: potential_sr_c_alpha_ao_lda (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_c_beta_ao_lda (ao_num,ao_num,N_states)
short range correlation alpha/beta potentials with LDA functional on the |AO| basis
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`aos_in_r_array`
* :c:data:`aos_sr_vc_alpha_lda_w`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
.. c:var:: potential_sr_c_beta_ao_pbe
File : :file:`dft_utils_one_e/sr_pot_ao_pbe.irp.f`
.. code:: fortran
double precision, allocatable :: potential_sr_x_alpha_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_x_beta_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_c_alpha_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_c_beta_ao_pbe (ao_num,ao_num,N_states)
exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`n_states`
* :c:data:`pot_sr_grad_x_alpha_ao_pbe`
* :c:data:`pot_sr_scal_x_alpha_ao_pbe`
.. c:var:: potential_sr_x_alpha_ao_lda
File : :file:`dft_utils_one_e/sr_pot_ao_lda.irp.f`
.. code:: fortran
double precision, allocatable :: potential_sr_x_alpha_ao_lda (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_x_beta_ao_lda (ao_num,ao_num,N_states)
short range exchange alpha/beta potentials with LDA functional on the |AO| basis
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`aos_in_r_array`
* :c:data:`aos_sr_vc_alpha_lda_w`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
.. c:var:: potential_sr_x_alpha_ao_pbe
File : :file:`dft_utils_one_e/sr_pot_ao_pbe.irp.f`
.. code:: fortran
double precision, allocatable :: potential_sr_x_alpha_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_x_beta_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_c_alpha_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_c_beta_ao_pbe (ao_num,ao_num,N_states)
exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`n_states`
* :c:data:`pot_sr_grad_x_alpha_ao_pbe`
* :c:data:`pot_sr_scal_x_alpha_ao_pbe`
.. c:var:: potential_sr_x_beta_ao_lda
File : :file:`dft_utils_one_e/sr_pot_ao_lda.irp.f`
.. code:: fortran
double precision, allocatable :: potential_sr_x_alpha_ao_lda (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_x_beta_ao_lda (ao_num,ao_num,N_states)
short range exchange alpha/beta potentials with LDA functional on the |AO| basis
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`aos_in_r_array`
* :c:data:`aos_sr_vc_alpha_lda_w`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
.. c:var:: potential_sr_x_beta_ao_pbe
File : :file:`dft_utils_one_e/sr_pot_ao_pbe.irp.f`
.. code:: fortran
double precision, allocatable :: potential_sr_x_alpha_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_x_beta_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_c_alpha_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_c_beta_ao_pbe (ao_num,ao_num,N_states)
exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`n_states`
* :c:data:`pot_sr_grad_x_alpha_ao_pbe`
* :c:data:`pot_sr_scal_x_alpha_ao_pbe`
.. c:var:: potential_sr_xc_alpha_ao_lda
File : :file:`dft_utils_one_e/sr_pot_ao_lda_smashed.irp.f`
.. code:: fortran
double precision, allocatable :: potential_sr_xc_alpha_ao_lda (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_xc_beta_ao_lda (ao_num,ao_num,N_states)
short range exchange/correlation alpha/beta potentials with LDA functional on the AO basis
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`aos_in_r_array`
* :c:data:`aos_sr_vxc_alpha_lda_w`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
.. c:var:: potential_sr_xc_alpha_ao_pbe
File : :file:`dft_utils_one_e/sr_pot_ao_pbe_smashed.irp.f`
.. code:: fortran
double precision, allocatable :: potential_sr_xc_alpha_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_xc_beta_ao_pbe (ao_num,ao_num,N_states)
exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`n_states`
* :c:data:`pot_sr_grad_xc_alpha_ao_pbe`
* :c:data:`pot_sr_scal_xc_alpha_ao_pbe`
.. c:var:: potential_sr_xc_beta_ao_lda
File : :file:`dft_utils_one_e/sr_pot_ao_lda_smashed.irp.f`
.. code:: fortran
double precision, allocatable :: potential_sr_xc_alpha_ao_lda (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_xc_beta_ao_lda (ao_num,ao_num,N_states)
short range exchange/correlation alpha/beta potentials with LDA functional on the AO basis
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`aos_in_r_array`
* :c:data:`aos_sr_vxc_alpha_lda_w`
* :c:data:`n_points_final_grid`
* :c:data:`n_states`
.. c:var:: potential_sr_xc_beta_ao_pbe
File : :file:`dft_utils_one_e/sr_pot_ao_pbe_smashed.irp.f`
.. code:: fortran
double precision, allocatable :: potential_sr_xc_alpha_ao_pbe (ao_num,ao_num,N_states)
double precision, allocatable :: potential_sr_xc_beta_ao_pbe (ao_num,ao_num,N_states)
exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
Needs:
.. hlist::
:columns: 3
* :c:data:`ao_num`
* :c:data:`n_states`
* :c:data:`pot_sr_grad_xc_alpha_ao_pbe`
* :c:data:`pot_sr_scal_xc_alpha_ao_pbe`
.. c:var:: psi_dft_energy_h_core

View File

@ -58,7 +58,9 @@ Providers
* :c:data:`correlation_energy_ratio_max`
* :c:data:`data_energy_proj`
* :c:data:`data_energy_var`
* :c:data:`data_one_e_dm_alpha_ao`
* :c:data:`data_one_e_dm_alpha_mo`
* :c:data:`data_one_e_dm_beta_ao`
* :c:data:`data_one_e_dm_beta_mo`
* :c:data:`davidson_sze_max`
* :c:data:`disk_access_nuclear_repulsion`
@ -131,6 +133,7 @@ Providers
* :c:data:`pseudo_lmax`
* :c:data:`pseudo_n_k`
* :c:data:`pseudo_n_kl`
* :c:data:`pseudo_sym`
* :c:data:`pseudo_v_k`
* :c:data:`pseudo_v_kl`
* :c:data:`psi_coef`
@ -146,6 +149,7 @@ Providers
* :c:data:`state_following`
* :c:data:`target_energy`
* :c:data:`thresh_scf`
* :c:data:`thresh_sym`
* :c:data:`threshold_davidson`
* :c:data:`threshold_diis`
* :c:data:`threshold_generators`
@ -219,7 +223,9 @@ Providers
* :c:data:`correlation_energy_ratio_max`
* :c:data:`data_energy_proj`
* :c:data:`data_energy_var`
* :c:data:`data_one_e_dm_alpha_ao`
* :c:data:`data_one_e_dm_alpha_mo`
* :c:data:`data_one_e_dm_beta_ao`
* :c:data:`data_one_e_dm_beta_mo`
* :c:data:`davidson_sze_max`
* :c:data:`disk_access_nuclear_repulsion`
@ -281,6 +287,7 @@ Providers
* :c:data:`pseudo_lmax`
* :c:data:`pseudo_n_k`
* :c:data:`pseudo_n_kl`
* :c:data:`pseudo_sym`
* :c:data:`pseudo_v_k`
* :c:data:`pseudo_v_kl`
* :c:data:`pt2_iterations`
@ -292,6 +299,7 @@ Providers
* :c:data:`state_following`
* :c:data:`target_energy`
* :c:data:`thresh_scf`
* :c:data:`thresh_sym`
* :c:data:`threshold_davidson`
* :c:data:`threshold_diis`
* :c:data:`threshold_generators`
@ -330,7 +338,9 @@ Providers
* :c:data:`correlation_energy_ratio_max`
* :c:data:`data_energy_proj`
* :c:data:`data_energy_var`
* :c:data:`data_one_e_dm_alpha_ao`
* :c:data:`data_one_e_dm_alpha_mo`
* :c:data:`data_one_e_dm_beta_ao`
* :c:data:`data_one_e_dm_beta_mo`
* :c:data:`davidson_sze_max`
* :c:data:`disk_access_nuclear_repulsion`
@ -392,6 +402,7 @@ Providers
* :c:data:`pseudo_lmax`
* :c:data:`pseudo_n_k`
* :c:data:`pseudo_n_kl`
* :c:data:`pseudo_sym`
* :c:data:`pseudo_v_k`
* :c:data:`pseudo_v_kl`
* :c:data:`pt2_iterations`
@ -403,6 +414,7 @@ Providers
* :c:data:`state_following`
* :c:data:`target_energy`
* :c:data:`thresh_scf`
* :c:data:`thresh_sym`
* :c:data:`threshold_davidson`
* :c:data:`threshold_diis`
* :c:data:`threshold_generators`
@ -673,7 +685,9 @@ Subroutines / functions
* :c:func:`damping_scf`
* :c:data:`data_energy_proj`
* :c:data:`data_energy_var`
* :c:data:`data_one_e_dm_alpha_ao`
* :c:data:`data_one_e_dm_alpha_mo`
* :c:data:`data_one_e_dm_beta_ao`
* :c:data:`data_one_e_dm_beta_mo`
* :c:func:`davidson_diag_hjj_sjj`
* :c:data:`davidson_sze_max`
@ -740,6 +754,7 @@ Subroutines / functions
* :c:data:`pseudo_lmax`
* :c:data:`pseudo_n_k`
* :c:data:`pseudo_n_kl`
* :c:data:`pseudo_sym`
* :c:data:`pseudo_v_k`
* :c:data:`pseudo_v_kl`
* :c:data:`pt2_iterations`
@ -752,6 +767,7 @@ Subroutines / functions
* :c:data:`state_following`
* :c:data:`target_energy`
* :c:data:`thresh_scf`
* :c:data:`thresh_sym`
* :c:data:`threshold_davidson`
* :c:data:`threshold_diis`
* :c:data:`threshold_generators`

View File

@ -51,6 +51,7 @@ Programs
--------
* :ref:`scf`
* :ref:`test`
Providers
---------

View File

@ -80,9 +80,9 @@ Providers
Molecular orbital coefficients on |AO| basis set
mo_coef(i,j) = coefficient of the i-th |AO| on the jth mo
mo_coef(i,j) = coefficient of the i-th |AO| on the jth |MO|
mo_label : Label characterizing the MOS (local, canonical, natural, etc)
mo_label : Label characterizing the |MOs| (local, canonical, natural, etc)
Needs:
@ -286,7 +286,6 @@ Providers
* :c:data:`fps_spf_matrix_mo`
* :c:data:`full_ijkl_bitmask`
* :c:data:`int_erf_3_index`
* :c:data:`list_core_inact_act`
* :c:data:`list_inact`
* :c:data:`mo_class`
* :c:data:`mo_coef`
@ -762,8 +761,11 @@ Subroutines / functions
* :c:func:`hcore_guess`
* :c:func:`huckel_guess`
* :c:func:`roothaan_hall_scf`
* :c:func:`rotate_mos`
* :c:func:`save_natural_mos`
* :c:func:`save_ortho_mos`
* :c:func:`sort_by_fock_energies`
* :c:func:`swap_mos`
Calls:

View File

@ -74,7 +74,9 @@ Providers
* :c:data:`correlation_energy_ratio_max`
* :c:data:`data_energy_proj`
* :c:data:`data_energy_var`
* :c:data:`data_one_e_dm_alpha_ao`
* :c:data:`data_one_e_dm_alpha_mo`
* :c:data:`data_one_e_dm_beta_ao`
* :c:data:`data_one_e_dm_beta_mo`
* :c:data:`davidson_sze_max`
* :c:data:`disk_access_nuclear_repulsion`
@ -152,6 +154,7 @@ Providers
* :c:data:`pseudo_lmax`
* :c:data:`pseudo_n_k`
* :c:data:`pseudo_n_kl`
* :c:data:`pseudo_sym`
* :c:data:`pseudo_v_k`
* :c:data:`pseudo_v_kl`
* :c:data:`psi_cas`
@ -174,6 +177,7 @@ Providers
* :c:data:`state_following`
* :c:data:`target_energy`
* :c:data:`thresh_scf`
* :c:data:`thresh_sym`
* :c:data:`threshold_davidson`
* :c:data:`threshold_diis`
* :c:data:`threshold_generators`

View File

@ -526,7 +526,7 @@ Providers
.. code:: fortran
double precision, allocatable :: slater_bragg_radii (100)
double precision, allocatable :: slater_bragg_radii (0:100)
atomic radii in Angstrom defined in table I of JCP 41, 3199 (1964) Slater
@ -604,7 +604,7 @@ Providers
.. code:: fortran
double precision, allocatable :: slater_bragg_radii_ua (100)
double precision, allocatable :: slater_bragg_radii_ua (0:100)

View File

@ -165,7 +165,7 @@ Providers
double precision, allocatable :: eigenvectors_fock_matrix_mo (ao_num,mo_num)
Eigenvectors of the Fock matrix in the MO basis obtained with level shift.
Eigenvectors of the Fock matrix in the |MO| basis obtained with level shift.
Needs:

View File

@ -22,9 +22,12 @@ Programs
* :ref:`print_ci_vectors`
* :ref:`print_e_conv`
* :ref:`print_wf`
* :ref:`rotate_mos`
* :ref:`save_natorb`
* :ref:`save_one_e_dm`
* :ref:`save_ortho_mos`
* :ref:`sort_by_fock_energies`
* :ref:`swap_mos`
* :ref:`write_integrals_erf`
Subroutines / functions
@ -115,6 +118,7 @@ Subroutines / functions
.. hlist::
:columns: 3
* :c:data:`one_e_dm_ao_alpha`
* :c:data:`one_e_dm_mo_alpha`
Called by:
@ -129,6 +133,8 @@ Subroutines / functions
.. hlist::
:columns: 3
* :c:func:`ezfio_set_aux_quantities_data_one_e_dm_alpha_ao`
* :c:func:`ezfio_set_aux_quantities_data_one_e_dm_alpha_mo`
* :c:func:`ezfio_set_aux_quantities_data_one_e_dm_beta_ao`
* :c:func:`ezfio_set_aux_quantities_data_one_e_dm_beta_mo`

View File

@ -997,6 +997,7 @@ Subroutines / functions
* :c:func:`make_selection_buffer_s2`
* :c:data:`psi_det_sorted`
* :c:func:`reorder_core_orb`
* :c:func:`sort_by_fock_energies`
* :c:func:`sort_selection_buffer`
Calls:

View File

@ -168,7 +168,9 @@ Index of Providers
* :c:data:`damping_for_rs_dft`
* :c:data:`data_energy_proj`
* :c:data:`data_energy_var`
* :c:data:`data_one_e_dm_alpha_ao`
* :c:data:`data_one_e_dm_alpha_mo`
* :c:data:`data_one_e_dm_beta_ao`
* :c:data:`data_one_e_dm_beta_mo`
* :c:data:`davidson_criterion`
* :c:data:`davidson_sze_max`
@ -214,7 +216,9 @@ Index of Providers
* :c:data:`eigenvectors_fock_matrix_ao`
* :c:data:`eigenvectors_fock_matrix_mo`
* :c:data:`elec_alpha_num`
* :c:data:`elec_alpha_num_grid_becke`
* :c:data:`elec_beta_num`
* :c:data:`elec_beta_num_grid_becke`
* :c:data:`elec_num`
* :c:data:`elec_num_tab`
* :c:data:`element_mass`
@ -351,6 +355,7 @@ Index of Providers
* :c:data:`list_del`
* :c:data:`list_del_reverse`
* :c:data:`list_inact`
* :c:data:`list_inact_act`
* :c:data:`list_inact_reverse`
* :c:data:`list_virt`
* :c:data:`list_virt_reverse`
@ -441,6 +446,7 @@ Index of Providers
* :c:data:`n_double_selectors`
* :c:data:`n_generators_bitmask`
* :c:data:`n_generators_bitmask_restart`
* :c:data:`n_inact_act_orb`
* :c:data:`n_inact_orb`
* :c:data:`n_inact_orb_allocate`
* :c:data:`n_int`
@ -463,6 +469,7 @@ Index of Providers
* :c:data:`no_ivvv_integrals`
* :c:data:`no_vvv_integrals`
* :c:data:`no_vvvv_integrals`
* :c:data:`normalize_dm`
* :c:data:`nproc`
* :c:data:`nthreads_davidson`
* :c:data:`nthreads_pt2`
@ -487,6 +494,7 @@ Index of Providers
* :c:data:`one_body_dm_mo_alpha_one_det`
* :c:data:`one_body_dm_mo_beta_one_det`
* :c:data:`one_e_dm_alpha_ao_for_dft`
* :c:data:`one_e_dm_alpha_ao_for_dft_no_core`
* :c:data:`one_e_dm_alpha_at_r`
* :c:data:`one_e_dm_alpha_in_r`
* :c:data:`one_e_dm_and_grad_alpha_in_r`
@ -495,6 +503,7 @@ Index of Providers
* :c:data:`one_e_dm_ao_beta`
* :c:data:`one_e_dm_average_mo_for_dft`
* :c:data:`one_e_dm_beta_ao_for_dft`
* :c:data:`one_e_dm_beta_ao_for_dft_no_core`
* :c:data:`one_e_dm_beta_at_r`
* :c:data:`one_e_dm_beta_in_r`
* :c:data:`one_e_dm_dagger_mo_spin_index`
@ -502,12 +511,16 @@ Index of Providers
* :c:data:`one_e_dm_mo_alpha`
* :c:data:`one_e_dm_mo_alpha_average`
* :c:data:`one_e_dm_mo_alpha_for_dft`
* :c:data:`one_e_dm_mo_alpha_for_dft_no_core`
* :c:data:`one_e_dm_mo_beta`
* :c:data:`one_e_dm_mo_beta_average`
* :c:data:`one_e_dm_mo_beta_for_dft`
* :c:data:`one_e_dm_mo_beta_for_dft_no_core`
* :c:data:`one_e_dm_mo_diff`
* :c:data:`one_e_dm_mo_for_dft`
* :c:data:`one_e_dm_mo_spin_index`
* :c:data:`one_e_dm_no_core_and_grad_alpha_in_r`
* :c:data:`one_e_dm_no_core_and_grad_beta_in_r`
* :c:data:`one_e_energy`
* :c:data:`one_e_grad_2_dm_alpha_at_r`
* :c:data:`one_e_grad_2_dm_beta_at_r`
@ -556,18 +569,6 @@ Index of Providers
* :c:data:`potential_c_beta_ao_sr_lda`
* :c:data:`potential_c_beta_ao_sr_pbe`
* :c:data:`potential_c_beta_mo`
* :c:data:`potential_sr_c_alpha_ao_lda`
* :c:data:`potential_sr_c_alpha_ao_pbe`
* :c:data:`potential_sr_c_beta_ao_lda`
* :c:data:`potential_sr_c_beta_ao_pbe`
* :c:data:`potential_sr_x_alpha_ao_lda`
* :c:data:`potential_sr_x_alpha_ao_pbe`
* :c:data:`potential_sr_x_beta_ao_lda`
* :c:data:`potential_sr_x_beta_ao_pbe`
* :c:data:`potential_sr_xc_alpha_ao_lda`
* :c:data:`potential_sr_xc_alpha_ao_pbe`
* :c:data:`potential_sr_xc_beta_ao_lda`
* :c:data:`potential_sr_xc_beta_ao_pbe`
* :c:data:`potential_x_alpha_ao`
* :c:data:`potential_x_alpha_ao_lda`
* :c:data:`potential_x_alpha_ao_none`
@ -609,6 +610,7 @@ Index of Providers
* :c:data:`pseudo_n_k_transp`
* :c:data:`pseudo_n_kl`
* :c:data:`pseudo_n_kl_transp`
* :c:data:`pseudo_sym`
* :c:data:`pseudo_v_k`
* :c:data:`pseudo_v_k_transp`
* :c:data:`pseudo_v_kl`
@ -679,6 +681,7 @@ Index of Providers
* :c:data:`pt2_f`
* :c:data:`pt2_iterations`
* :c:data:`pt2_j`
* :c:data:`pt2_match_weight`
* :c:data:`pt2_max`
* :c:data:`pt2_mindetinfirstteeth`
* :c:data:`pt2_n_0`
@ -773,6 +776,7 @@ Index of Providers
* :c:data:`target_energy`
* :c:data:`theta_angular_integration_lebedev`
* :c:data:`thresh_scf`
* :c:data:`thresh_sym`
* :c:data:`threshold_davidson`
* :c:data:`threshold_diis`
* :c:data:`threshold_diis_nonzero`
@ -891,6 +895,7 @@ Index of Subroutines/Functions
* :c:func:`compute_ao_two_e_integrals`
* :c:func:`compute_ao_two_e_integrals_erf`
* :c:func:`connect_to_taskserver`
* :c:func:`connected_to_hf`
* :c:func:`connected_to_ref`
* :c:func:`connected_to_ref_by_single`
* :c:func:`copy_h_apply_buffer_to_wf`
@ -925,6 +930,7 @@ Index of Subroutines/Functions
* :c:func:`decode_exc`
* :c:func:`decode_exc_spin`
* :c:func:`delete_selection_buffer`
* :c:func:`dens_grad_a_b_no_core_and_aos_grad_aos_at_r`
* :c:func:`density_and_grad_alpha_beta_and_all_aos_and_grad_aos_at_r`
* :c:func:`derivative_knowles_function`
* :c:func:`det_inf`
@ -942,6 +948,7 @@ Index of Subroutines/Functions
* :c:func:`disconnect_from_taskserver_state`
* :c:func:`dm_dft_alpha_beta_and_all_aos_at_r`
* :c:func:`dm_dft_alpha_beta_at_r`
* :c:func:`dm_dft_alpha_beta_no_core_at_r`
* :c:func:`do_single_excitation`
* :c:func:`dpol`
* :c:func:`dpold`
@ -1093,11 +1100,21 @@ Index of Subroutines/Functions
* :c:func:`h_apply_cis_diexcorg`
* :c:func:`h_apply_cis_diexcp`
* :c:func:`h_apply_cis_monoexc`
* :c:func:`h_apply_cis_sym`
* :c:func:`h_apply_cis_sym_diexc`
* :c:func:`h_apply_cis_sym_diexcorg`
* :c:func:`h_apply_cis_sym_diexcp`
* :c:func:`h_apply_cis_sym_monoexc`
* :c:func:`h_apply_cisd`
* :c:func:`h_apply_cisd_diexc`
* :c:func:`h_apply_cisd_diexcorg`
* :c:func:`h_apply_cisd_diexcp`
* :c:func:`h_apply_cisd_monoexc`
* :c:func:`h_apply_cisd_sym`
* :c:func:`h_apply_cisd_sym_diexc`
* :c:func:`h_apply_cisd_sym_diexcorg`
* :c:func:`h_apply_cisd_sym_diexcp`
* :c:func:`h_apply_cisd_sym_monoexc`
* :c:func:`h_s2_u_0_nstates_openmp`
* :c:func:`h_s2_u_0_nstates_openmp_work`
* :c:func:`h_s2_u_0_nstates_openmp_work_1`
@ -1321,6 +1338,7 @@ Index of Subroutines/Functions
* :c:func:`rinteg`
* :c:func:`rintgauss`
* :c:func:`roothaan_hall_scf`
* :c:func:`rotate_mos`
* :c:func:`routine`
* :c:func:`routine_e_conv`
* :c:func:`routine_example_psi_det`
@ -1369,6 +1387,7 @@ Index of Subroutines/Functions
* :c:func:`set_order_big`
* :c:func:`single_excitation_wee`
* :c:func:`sort`
* :c:func:`sort_by_fock_energies`
* :c:func:`sort_dets_ab`
* :c:func:`sort_dets_ab_v`
* :c:func:`sort_dets_ba_v`
@ -1384,10 +1403,12 @@ Index of Subroutines/Functions
* :c:func:`spot_isinwf`
* :c:func:`step_function_becke`
* :c:func:`svd`
* :c:func:`swap_mos`
* :c:func:`switch_qp_run_to_master`
* :c:func:`tamiser`
* :c:func:`task_done_to_taskserver`
* :c:func:`tasks_done_to_taskserver`
* :c:func:`test`
* :c:func:`testteethbuilding`
* :c:func:`total_memory`
* :c:func:`two_e_integrals_index`

View File

@ -60,6 +60,7 @@ fci
:columns: 3
* :c:func:`run_cipsi`
* :c:func:`run_slave_cipsi`
* :c:func:`run_stochastic_cipsi`
Touches:
@ -75,6 +76,7 @@ fci
* :c:data:`n_iter`
* :c:data:`psi_occ_pattern`
* :c:data:`c0_weight`
* :c:data:`distributed_davidson`
* :c:data:`psi_coef`
* :c:data:`psi_det_sorted_bit`
* :c:data:`psi_det`
@ -83,6 +85,9 @@ fci
* :c:data:`psi_energy`
* :c:data:`psi_occ_pattern`
* :c:data:`psi_energy`
* :c:data:`pt2_e0_denominator`
* :c:data:`pt2_match_weight`
* :c:data:`pt2_stoch_istate`
* :c:data:`read_wf`
* :c:data:`state_average_weight`
* :c:data:`threshold_generators`

View File

@ -9,15 +9,15 @@ save_one_e_dm
Program that computes the one body density on the |MO| basis
Program that computes the one body density on the |MO| and |AO| basis
for $\alpha$ and $\beta$ electrons from the wave function
stored in the |EZFIO| directory, and then saves it into the
:ref:`module_aux_quantities`.
Then, the global variable :option:`aux_quantities data_one_e_dm_alpha_mo`
and :option:`aux_quantities data_one_e_dm_beta_mo` will automatically
read this density in the next calculation. This can be used to perform
damping on the density in |RSDFT| calculations (see
and :option:`aux_quantities data_one_e_dm_beta_mo` (and the corresponding for |AO|)
will automatically ! read this density in the next calculation.
This can be used to perform damping on the density in |RSDFT| calculations (see
:ref:`module_density_for_dft`).
Needs:

View File

@ -1,14 +1,62 @@
%%% ARXIV TO BE UPDATED %%%
@misc{BibEntry2019Feb,
title = {{Quantum Package 2.0: An Open-Source Determinant-Driven Suite of
Programs}},
@article{Dash2019May,
author = {Dash, Monika and Feldt, Jonas and Moroni, Saverio and Scemama, Anthony and Filippi, Claudia},
title = {{Excited states with selected CI-QMC: chemically accurate excitation energies and geometries}},
journal = {arXiv},
year = {2019},
month = {Feb},
note = {[Online; accessed 7. Mar. 2019]},
url = {https://arxiv.org/abs/1902.08154.pdf}
month = {May},
eprint = {1905.06737},
url = {https://arxiv.org/abs/1905.06737}
}
@article{Burton2019May,
author = {Burton, Hugh G. A. and Thom, Alex J. W.},
title = {{A General Approach for Multireference Ground and Excited States using Non-Orthogonal Configuration Interaction}},
journal = {arXiv},
year = {2019},
month = {May},
eprint = {1905.02626},
url = {https://arxiv.org/abs/1905.02626}
}
%%%% PUBLISHED PAPERS
@article{Loos_2019,
doi = {10.1021/acs.jpclett.9b01176},
url = {https://doi.org/10.1021%2Facs.jpclett.9b01176},
year = 2019,
month = {may},
publisher = {American Chemical Society ({ACS})},
author = {Pierre-Francois Loos and Bartélémy Pradines and Anthony Scemama and Julien Toulouse and Emmanuel Giner},
title = {A Density-Based Basis-Set Correction For Wave Function Theory},
journal = {The Journal of Physical Chemistry Letters}
}
@article{Garniron_2019,
doi = {10.1021/acs.jctc.9b00176},
url = {https://doi.org/10.1021%2Facs.jctc.9b00176},
year = 2019,
month = {may},
publisher = {American Chemical Society ({ACS})},
author = {Yann Garniron and Thomas Applencourt and Kevin Gasperich and Anouar Benali and Anthony Ferte and Julien Paquier and Bartélémy Pradines and Roland Assaraf and Peter Reinhardt and Julien Toulouse and Pierrette Barbaresco and Nicolas Renon and Gregoire David and Jean-Paul Malrieu and Mickael Veril and Michel Caffarel and Pierre-Francois Loos and Emmanuel Giner and Anthony Scemama},
title = {Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs},
journal = {Journal of Chemical Theory and Computation}
}
@article{Scemama_2019,
doi = {10.1016/j.rechem.2019.100002},
url = {https://doi.org/10.1016%2Fj.rechem.2019.100002},
year = 2019,
month = {may},
publisher = {Elsevier {BV}},
pages = {100002},
author = {Anthony Scemama and Michel Caffarel and Anouar Benali and Denis Jacquemin and Pierre-Fran{\c{c}}ois Loos},
title = {Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion Monte Carlo},
journal = {Results in Chemistry}
}
@article{Applencourt2018Dec,
author = {Applencourt, Thomas and Gasperich, Kevin and Scemama, Anthony},
title = {{Spin adaptation with determinant-based selected configuration interaction}},
@ -19,9 +67,6 @@ Programs}},
url = {https://arxiv.org/abs/1812.06902}
}
%%%% PUBLISHED PAPERS
@article{Loos2019Mar,
author = {Loos, Pierre-Fran\c{c}ois and Boggio-Pasqua, Martial and Scemama, Anthony and Caffarel, Michel and Jacquemin, Denis},
title = {{Reference Energies for Double Excitations}},

View File

@ -53,6 +53,10 @@ Usage
Uninstall the plugin ``plugin_name``.
.. option:: update
Update the repositories of the plugins. Should be followed by a re-compilation.
.. option:: -n, --name=<plugin_name>
Create a new plugin named ``plugin_name`` (in local repository by default).

View File

@ -11,6 +11,29 @@ Automatically finds *n*, the number of core electrons. Calls
:math:`n/2` first ones which are set as ``Core``. If pseudo-potentials
are used, all the |MOs| are set as ``Active``.
========== ========= ======= =======
Range Default Small Large
========== ========= ======= =======
H -> He 0 0 0
Li -> Be 0 0 2
B -> Ne 2 2 2
Na -> Mg 2 2 10
Al -> Ar 10 2 10
K -> Ca 10 10 18
Sc -> Zn 10 10 18
Ga -> Kr 18 10 18
Rb -> Sr 18 18 36
Y -> Cd 18 18 36
In -> Xe 36 18 36
Cs -> Ba 36 36 54
La -> Hg 36 36 54
Tl -> Rn 54 36 54
Fr -> Ra 54 54 86
Ac -> Cn 54 54 86
Nh -> Og 86 54 86
========== ========= ======= =======
For elements on the right of the periodic table, `qp_set_frozen_core`
will work as expected. But for elements on the left, a small core will
be chosen. For example, a Carbon atom will have 2 core electrons, but a
@ -21,11 +44,19 @@ Usage
.. code:: bash
qp_set_frozen_core [-q] EZFIO_DIR
qp_set_frozen_core [-q|--query] [(-l|-s|--large|--small) EZFIO_DIR
.. option:: -q
.. option:: -q, --query
Prints in the standard output the number of core electrons.
.. option:: -s, --small
Use a small core.
.. option:: -l, --large
Use a large core.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "CIS" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "CIS" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
cis \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "CISD" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "CISD" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
cisd \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "CONFIGURE" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "CONFIGURE" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
configure \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "DIAGONALIZE_H" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "DIAGONALIZE_H" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
diagonalize_h \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "EXCITED_STATES" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "EXCITED_STATES" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
excited_states \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "FCI" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "FCI" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
fci \- | Quantum Package >
.
@ -98,9 +98,11 @@ Calls:
.UNINDENT
.INDENT 2.0
.IP \(bu 2
\fBrun_stochastic_cipsi()\fP
\fBrun_slave_cipsi()\fP
.UNINDENT
.INDENT 2.0
.IP \(bu 2
\fBrun_stochastic_cipsi()\fP
.UNINDENT
.UNINDENT
.sp
@ -121,10 +123,12 @@ Touches:
\fBn_iter\fP
.IP \(bu 2
\fBpsi_occ_pattern\fP
.IP \(bu 2
\fBc0_weight\fP
.UNINDENT
.INDENT 2.0
.IP \(bu 2
\fBc0_weight\fP
\fBdistributed_davidson\fP
.IP \(bu 2
\fBpsi_coef\fP
.IP \(bu 2
@ -135,17 +139,23 @@ Touches:
\fBpsi_det_size\fP
.IP \(bu 2
\fBpsi_det_sorted_bit\fP
.IP \(bu 2
\fBpsi_energy\fP
.IP \(bu 2
\fBpsi_occ_pattern\fP
.UNINDENT
.INDENT 2.0
.IP \(bu 2
\fBpsi_energy\fP
.IP \(bu 2
\fBpsi_occ_pattern\fP
\fBpt2_e0_denominator\fP
.IP \(bu 2
\fBpsi_energy\fP
\fBpt2_match_weight\fP
.IP \(bu 2
\fBpt2_stoch_istate\fP
.IP \(bu 2
\fBread_wf\fP
.IP \(bu 2
\fBstate_average_weight\fP
.IP \(bu 2
\fBthreshold_generators\fP

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "FCIDUMP" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "FCIDUMP" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
fcidump \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "FOUR_IDX_TRANSFORM" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "FOUR_IDX_TRANSFORM" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
four_idx_transform \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "INTERFACES" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "INTERFACES" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
interfaces \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "KS_SCF" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "KS_SCF" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
ks_scf \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "MOLDEN" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "MOLDEN" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
molden \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "NATURAL_ORBITALS" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "NATURAL_ORBITALS" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
natural_orbitals \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "PLUGINS" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "PLUGINS" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
plugins \- | Quantum Package >
.

87
man/print_ci_vectors.1 Normal file
View File

@ -0,0 +1,87 @@
.\" Man page generated from reStructuredText.
.
.TH "PRINT_CI_VECTORS" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
print_ci_vectors \- | Quantum Package >
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.INDENT 0.0
.INDENT 3.5
Print the ground state wave function stored in the \fI\%EZFIO\fP directory
in the intermediate normalization.
.sp
It also prints a lot of information regarding the excitation
operators from the reference determinant ! and a first\-order
perturbative analysis of the wave function.
.sp
If the wave function strongly deviates from the first\-order analysis,
something funny is going on :)
.sp
Needs:
.INDENT 0.0
.INDENT 2.0
.IP \(bu 2
\fBread_wf\fP
.UNINDENT
.INDENT 2.0
.UNINDENT
.INDENT 2.0
.UNINDENT
.UNINDENT
.sp
Calls:
.INDENT 0.0
.INDENT 2.0
.IP \(bu 2
\fBroutine()\fP
.UNINDENT
.INDENT 2.0
.UNINDENT
.INDENT 2.0
.UNINDENT
.UNINDENT
.sp
Touches:
.INDENT 0.0
.INDENT 2.0
.IP \(bu 2
\fBread_wf\fP
.UNINDENT
.INDENT 2.0
.UNINDENT
.INDENT 2.0
.UNINDENT
.UNINDENT
.UNINDENT
.UNINDENT
.SH AUTHOR
A. Scemama, E. Giner
.SH COPYRIGHT
2019, A. Scemama, E. Giner
.\" Generated by docutils manpage writer.
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "PRINT_E_CONV" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "PRINT_E_CONV" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
print_e_conv \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "PRINT_WF" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "PRINT_WF" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
print_wf \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "PRINTING" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "PRINTING" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
printing \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "PT2" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "PT2" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
pt2 \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "QP_CONVERT_OUTPUT_TO_EZFIO" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "QP_CONVERT_OUTPUT_TO_EZFIO" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
qp_convert_output_to_ezfio \- | Quantum Package >
.

235
man/qp_create_ezfio.1 Normal file
View File

@ -0,0 +1,235 @@
.\" Man page generated from reStructuredText.
.
.TH "QP_CREATE_EZFIO" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
qp_create_ezfio \- | Quantum Package >
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.sp
This command creates an \fI\%EZFIO\fP directory from a standard \fIxyz\fP file or
from a \fIz\-matrix\fP file in Gaussian format.
.SH USAGE
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
qp_create_ezfio [\-a] \-b <string> [\-c <int>] [\-d <float>]
[\-h] [\-m <int>] [\-o EZFIO_DIR] [\-p <string>] [\-x] [\-\-] FILE
.ft P
.fi
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B \-a, \-\-au
If present, input geometry is in atomic units.
.UNINDENT
.INDENT 0.0
.TP
.B \-b, \-\-basis=<string>
Name of basis set. The basis set is defined as a single string if
all the atoms are taken from the same basis set, otherwise specific
elements can be defined as follows:
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
\-b "cc\-pcvdz | H:cc\-pvdz | C:6\-31g"
\-b "cc\-pvtz | 1,H:sto\-3g | 3,H:6\-31g"
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
By default, the basis set is obtained from the local database of the.
\fIQuantum Package\fP This option is mandatory .
.sp
If \fB<string>\fP is set to \fBshow\fP, the list of all available basis
sets is displayed.
.UNINDENT
.INDENT 0.0
.TP
.B \-c, \-\-charge=<int>
Total charge of the molecule. Default is 0.
.UNINDENT
.INDENT 0.0
.TP
.B \-d, \-\-dummy=<float>
Add dummy atoms (X) between atoms when the distance between two atoms
is less than x \etimes \esum R_\emathrm{cov}, the covalent radii
of the atoms. The default is x=0, so no dummy atom is added.
.UNINDENT
.INDENT 0.0
.TP
.B \-h, \-\-help
Print the help text and exit
.UNINDENT
.INDENT 0.0
.TP
.B \-m, \-\-multiplicity=<int>
Spin multiplicity 2S+1 of the molecule. Default is 1.
.UNINDENT
.INDENT 0.0
.TP
.B \-o, \-\-output=EZFIO_DIR
Name of the created \fI\%EZFIO\fP directory.
.UNINDENT
.INDENT 0.0
.TP
.B \-p <string>, \-\-pseudo=<string>
Name of the pseudo\-potential. Follows the same conventions as the basis set.
.UNINDENT
.INDENT 0.0
.TP
.B \-x, \-\-cart
Compute AOs in the Cartesian basis set (6d, 10f, …)
.UNINDENT
.SH USING CUSTOM ATOMIC BASIS SETS
.sp
If a file with the same name as the basis set exists, this file will
be read. For example, if the file containing the basis set is named
\fBcustom.basis\fP, and the \fIxyz\fP geometry is in \fBmolecule.xyz\fP, the
following should be used:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
qp_create_ezfio \-b custom.basis molecule.xyz
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Basis set files should be given in \fI\%GAMESS\fP format, where the full
names of the atoms are given, and the basis sets for each element are
separated by a blank line. Here is an example
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
HYDROGEN
S 3
1 13.0100000 0.0196850
2 1.9620000 0.1379770
3 0.4446000 0.4781480
S 1
1 0.1220000 1.0000000
P 1
1 0.7270000 1.0000000
BORON
S 8
1 4570.0000000 0.0006960
2 685.9000000 0.0053530
3 156.5000000 0.0271340
4 44.4700000 0.1013800
5 14.4800000 0.2720550
6 5.1310000 0.4484030
7 1.8980000 0.2901230
8 0.3329000 0.0143220
S 8
1 4570.0000000 \-0.0001390
2 685.9000000 \-0.0010970
3 156.5000000 \-0.0054440
4 44.4700000 \-0.0219160
5 14.4800000 \-0.0597510
6 5.1310000 \-0.1387320
7 1.8980000 \-0.1314820
8 0.3329000 0.5395260
S 1
1 0.1043000 1.0000000
P 3
1 6.0010000 0.0354810
2 1.2410000 0.1980720
3 0.3364000 0.5052300
P 1
1 0.0953800 1.0000000
D 1
1 0.3430000 1.0000000
.ft P
.fi
.UNINDENT
.UNINDENT
.SH USING CUSTOM PSEUDO-POTENTIALS
.sp
As for the basis set, if a file with the same name as the
pseudo\-potential exists, this file will be read. For example, if the
file containing the custom pseudo\-potential is named \fBcustom.pseudo\fP,
the basis set is named \fBcustom.basis\fP, and the \fIxyz\fP geometry is in
\fBmolecule.xyz\fP, the following command should be used
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
qp_create_ezfio \-b custom.basis \-p custom.pseudo molecule.xyz
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Pseudo\-potential files should be given in a format very close to
\fI\%GAMESS\fP format. The first line should be formatted as \fB%s GEN %d %d\fP
where the first string is the chemical symbol, the first integer is
the number of core electrons to be removed and the second integer is
LMAX+1 as in \fI\%GAMESS\fP format. The pseudo\-potential for each element are
separated by a blank line. Here is an example
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
Ne GEN 2 1
3
8.00000000 1 10.74945199
85.99561593 3 10.19801460
\-56.79004456 2 10.18694048
1
55.11144535 2 12.85042963
F GEN 2 1
3
7.00000000 1 11.39210685
79.74474797 3 10.74911370
\-49.45159098 2 10.45120693
1
50.25646328 2 11.30345826
.ft P
.fi
.UNINDENT
.UNINDENT
.SH AUTHOR
A. Scemama, E. Giner
.SH COPYRIGHT
2019, A. Scemama, E. Giner
.\" Generated by docutils manpage writer.
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "QP_EDIT" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "QP_EDIT" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
qp_edit \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "QP_EXPORT_AS_TGZ" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "QP_EXPORT_AS_TGZ" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
qp_export_as_tgz \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "QP_PLUGINS" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "QP_PLUGINS" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
qp_plugins \- | Quantum Package >
.
@ -93,6 +93,11 @@ Uninstall the plugin \fBplugin_name\fP\&.
.UNINDENT
.INDENT 0.0
.TP
.B update
Update the repositories of the plugins. Should be followed by a re\-compilation.
.UNINDENT
.INDENT 0.0
.TP
.B \-n, \-\-name=<plugin_name>
Create a new plugin named \fBplugin_name\fP (in local repository by default).
.UNINDENT

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "QP_RESET" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "QP_RESET" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
qp_reset \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "QP_RUN" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "QP_RUN" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
qp_run \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "QP_SET_FROZEN_CORE" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "QP_SET_FROZEN_CORE" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
qp_set_frozen_core \- | Quantum Package >
.
@ -35,6 +35,191 @@ Automatically finds \fIn\fP, the number of core electrons. Calls
qp_set_mo_class setting all MOs as \fBActive\fP, except the
n/2 first ones which are set as \fBCore\fP\&. If pseudo\-potentials
are used, all the MOs are set as \fBActive\fP\&.
.TS
center;
|l|l|l|l|.
_
T{
Range
T} T{
Default
T} T{
Small
T} T{
Large
T}
_
T{
H \-> He
T} T{
0
T} T{
0
T} T{
0
T}
_
T{
Li \-> Be
T} T{
0
T} T{
0
T} T{
2
T}
_
T{
B \-> Ne
T} T{
2
T} T{
2
T} T{
2
T}
_
T{
Na \-> Mg
T} T{
2
T} T{
2
T} T{
10
T}
_
T{
Al \-> Ar
T} T{
10
T} T{
2
T} T{
10
T}
_
T{
K \-> Ca
T} T{
10
T} T{
10
T} T{
18
T}
_
T{
Sc \-> Zn
T} T{
10
T} T{
10
T} T{
18
T}
_
T{
Ga \-> Kr
T} T{
18
T} T{
10
T} T{
18
T}
_
T{
Rb \-> Sr
T} T{
18
T} T{
18
T} T{
36
T}
_
T{
Y \-> Cd
T} T{
18
T} T{
18
T} T{
36
T}
_
T{
In \-> Xe
T} T{
36
T} T{
18
T} T{
36
T}
_
T{
Cs \-> Ba
T} T{
36
T} T{
36
T} T{
54
T}
_
T{
La \-> Hg
T} T{
36
T} T{
36
T} T{
54
T}
_
T{
Tl \-> Rn
T} T{
54
T} T{
36
T} T{
54
T}
_
T{
Fr \-> Ra
T} T{
54
T} T{
54
T} T{
86
T}
_
T{
Ac \-> Cn
T} T{
54
T} T{
54
T} T{
86
T}
_
T{
Nh \-> Og
T} T{
86
T} T{
54
T} T{
86
T}
_
.TE
.sp
For elements on the right of the periodic table, \fIqp_set_frozen_core\fP
will work as expected. But for elements on the left, a small core will
@ -46,16 +231,26 @@ Lithium atom will have zero.
.sp
.nf
.ft C
qp_set_frozen_core [\-q] EZFIO_DIR
qp_set_frozen_core [\-q|\-\-query] [(\-l|\-s|\-\-large|\-\-small) EZFIO_DIR
.ft P
.fi
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B \-q
.B \-q, \-\-query
Prints in the standard output the number of core electrons.
.UNINDENT
.INDENT 0.0
.TP
.B \-s, \-\-small
Use a small core.
.UNINDENT
.INDENT 0.0
.TP
.B \-l, \-\-large
Use a large core.
.UNINDENT
.SH AUTHOR
A. Scemama, E. Giner
.SH COPYRIGHT

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "QP_SET_MO_CLASS" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "QP_SET_MO_CLASS" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
qp_set_mo_class \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "QP_STOP" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "QP_STOP" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
qp_stop \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "QP_UPDATE" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "QP_UPDATE" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
qp_update \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "QPSH" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "QPSH" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
qpsh \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "RS_KS_SCF" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "RS_KS_SCF" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
rs_ks_scf \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "SAVE_NATORB" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "SAVE_NATORB" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
save_natorb \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "SAVE_ONE_E_DM" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "SAVE_ONE_E_DM" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
save_one_e_dm \- | Quantum Package >
.
@ -32,15 +32,15 @@ level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
..
.INDENT 0.0
.INDENT 3.5
Program that computes the one body density on the MO basis
Program that computes the one body density on the MO and AO basis
for $alpha$ and $beta$ electrons from the wave function
stored in the \fI\%EZFIO\fP directory, and then saves it into the
module_aux_quantities\&.
.sp
Then, the global variable \fBaux_quantities data_one_e_dm_alpha_mo\fP
and \fBaux_quantities data_one_e_dm_beta_mo\fP will automatically
read this density in the next calculation. This can be used to perform
damping on the density in RSDFT calculations (see
and \fBaux_quantities data_one_e_dm_beta_mo\fP (and the corresponding for AO)
will automatically ! read this density in the next calculation.
This can be used to perform damping on the density in RSDFT calculations (see
module_density_for_dft).
.sp
Needs:

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "SAVE_ORTHO_MOS" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "SAVE_ORTHO_MOS" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
save_ortho_mos \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "SCF" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "SCF" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
scf \- | Quantum Package >
.

View File

@ -1,6 +1,6 @@
.\" Man page generated from reStructuredText.
.
.TH "WRITE_INTEGRALS_ERF" "1" "Mar 07, 2019" "2.0" "Quantum Package"
.TH "WRITE_INTEGRALS_ERF" "1" "May 28, 2019" "2.0" "Quantum Package"
.SH NAME
write_integrals_erf \- | Quantum Package >
.

File diff suppressed because it is too large Load Diff

View File

@ -1,13 +1,18 @@
exception ElementError of string
type t =
|X
type t = X
|H |He
|Li|Be |B |C |N |O |F |Ne
|Na|Mg |Al|Si|P |S |Cl|Ar
|K |Ca|Sc|Ti|V |Cr|Mn|Fe|Co|Ni|Cu|Zn|Ga|Ge|As|Se|Br|Kr
|Rb|Sr|Y |Zr|Nb|Mo|Tc|Ru|Rh|Pd|Ag|Cd|In|Sn|Sb|Te|I |Xe
|Pt
|Cs|Ba|La|Hf|Ta|W |Re|Os|Ir|Pt|Au|Hg|Tl|Pb|Bi|Po|At|Rn
|Fr|Ra|Ac|Rf|Db|Sg|Bh|Hs|Mt|Ds|Rg|Cn|Nh|Fl|Mc|Lv|Ts|Og
|Ce|Pr|Nd|Pm|Sm|Eu|Gd|Tb|Dy|Ho|Er|Tm|Yb|Lu
|Th|Pa|U |Np|Pu|Am|Cm|Bk|Cf|Es|Fm|Md|No|Lr
[@@deriving sexp]
(** String conversion functions *)
@ -19,5 +24,5 @@ val to_long_string : t -> string
val to_charge : t -> Charge.t
val of_charge : Charge.t -> t
val covalent_radius : t -> Qptypes.Positive_float.t
val vdw_radius : t -> Qptypes.Positive_float.t
val vdw_radius : t -> Qptypes.Positive_float.t option
val mass : t -> Qptypes.Positive_float.t

View File

@ -15,5 +15,10 @@ EXES=$(find -L ${QP_ROOT}/src -maxdepth 2 -depth -executable -type f | grep -e "
for EXE in $EXES
do
printf "%-30s %s\n" $(basename $EXE) $EXE | sed "s|${QP_ROOT}|\$QP_ROOT|g" >> executables
case "$(basename $EXE)" in
install) continue;;
uninstall) continue;;
*)
printf "%-30s %s\n" $(basename $EXE) $EXE | sed "s|${QP_ROOT}|\$QP_ROOT|g" >> executables ;;
esac
done

View File

@ -0,0 +1,9 @@
BEGIN_PROVIDER [ integer, grid_atomic_number, (nucl_num) ]
implicit none
BEGIN_DOC
! Atomic number used to adjust the grid
END_DOC
grid_atomic_number(:) = max(1,int(nucl_charge(:)))
END_PROVIDER

View File

@ -146,7 +146,7 @@ BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_
x = grid_points_radial(j)
! value of the radial coordinate for the integration
r = knowles_function(alpha_knowles(int(nucl_charge(i))),m_knowles,x)
r = knowles_function(alpha_knowles(grid_atomic_number(i)),m_knowles,x)
! explicit values of the grid points centered around each atom
do k = 1, n_points_integration_angular
@ -232,8 +232,8 @@ BEGIN_PROVIDER [double precision, final_weight_at_r, (n_points_integration_angul
do i = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom
x = grid_points_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]
do k = 1, n_points_integration_angular ! for each angular point attached to the "jth" atom
contrib_integration = derivative_knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)&
*knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)**2
contrib_integration = derivative_knowles_function(alpha_knowles(grid_atomic_number(j)),m_knowles,x)&
*knowles_function(alpha_knowles(grid_atomic_number(j)),m_knowles,x)**2
final_weight_at_r(k,i,j) = weights_angular_points(k) * weight_at_r(k,i,j) * contrib_integration * dr_radial_integral
if(isnan(final_weight_at_r(k,i,j)))then
print*,'isnan(final_weight_at_r(k,i,j))'

View File

@ -1,5 +1,6 @@
BEGIN_PROVIDER [integer, n_points_final_grid]
implicit none
BEGIN_DOC
! Number of points which are non zero
END_DOC
@ -9,7 +10,7 @@ BEGIN_PROVIDER [integer, n_points_final_grid]
do j = 1, nucl_num
do i = 1, n_points_radial_grid -1
do k = 1, n_points_integration_angular
if(dabs(final_weight_at_r(k,i,j)) < tresh_grid)then
if(dabs(final_weight_at_r(k,i,j)) < thresh_grid)then
cycle
endif
n_points_final_grid += 1

View File

@ -31,10 +31,6 @@ double precision function cell_function_becke(r,atom_number)
double precision :: mu_ij,nu_ij
double precision :: distance_i,distance_j,step_function_becke
integer :: j
if(int(nucl_charge(atom_number))==0)then
cell_function_becke = 0.d0
return
endif
distance_i = (r(1) - nucl_coord_transp(1,atom_number) ) * (r(1) - nucl_coord_transp(1,atom_number))
distance_i += (r(2) - nucl_coord_transp(2,atom_number) ) * (r(2) - nucl_coord_transp(2,atom_number))
distance_i += (r(3) - nucl_coord_transp(3,atom_number) ) * (r(3) - nucl_coord_transp(3,atom_number))
@ -42,7 +38,6 @@ double precision function cell_function_becke(r,atom_number)
cell_function_becke = 1.d0
do j = 1, nucl_num
if(j==atom_number)cycle
if(int(nucl_charge(j))==0)cycle
distance_j = (r(1) - nucl_coord_transp(1,j) ) * (r(1) - nucl_coord_transp(1,j))
distance_j+= (r(2) - nucl_coord_transp(2,j) ) * (r(2) - nucl_coord_transp(2,j))
distance_j+= (r(3) - nucl_coord_transp(3,j) ) * (r(3) - nucl_coord_transp(3,j))

View File

@ -135,7 +135,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
PROVIDE psi_occ_pattern_hii det_to_occ_pattern
endif
if (N_det < max(10,N_states)) then
if (N_det < max(1000,N_states)) then
pt2=0.d0
variance=0.d0
norm=0.d0

View File

@ -38,7 +38,7 @@ default: 1
type: Threshold
doc: Thresholds on generators (fraction of the square of the norm)
interface: ezfio,provider,ocaml
default: 0.99
default: 0.999
[n_int]
interface: ezfio

View File

@ -109,6 +109,101 @@ end
grad_dm_b *= 2.d0
end
subroutine density_and_grad_lapl_alpha_beta_and_all_aos_and_grad_aos_at_r(r,dm_a,dm_b, grad_dm_a, grad_dm_b, lapl_dm_a, lapl_dm_b, aos_array, grad_aos_array, lapl_aos_array)
implicit none
BEGIN_DOC
! input:
!
! * r(1) ==> r(1) = x, r(2) = y, r(3) = z
!
! output:
!
! * dm_a = alpha density evaluated at r
! * dm_b = beta density evaluated at r
! * aos_array(i) = ao(i) evaluated at r
! * grad_dm_a(1) = X gradient of the alpha density evaluated in r
! * grad_dm_a(1) = X gradient of the beta density evaluated in r
! * grad_aos_array(1) = X gradient of the aos(i) evaluated at r
!
END_DOC
double precision, intent(in) :: r(3)
double precision, intent(out) :: dm_a(N_states),dm_b(N_states)
double precision, intent(out) :: grad_dm_a(3,N_states),grad_dm_b(3,N_states)
double precision, intent(out) :: lapl_dm_a(3,N_states),lapl_dm_b(3,N_states)
double precision, intent(out) :: grad_aos_array(3,ao_num)
double precision, intent(out) :: lapl_aos_array(3,ao_num)
integer :: i,j,istate
double precision :: aos_array(ao_num),aos_array_bis(ao_num),u_dot_v
double precision :: aos_grad_array(ao_num,3), aos_grad_array_bis(ao_num,3)
double precision :: aos_lapl_array(ao_num,3)
call give_all_aos_and_grad_and_lapl_at_r(r,aos_array,grad_aos_array,lapl_aos_array)
do i = 1, ao_num
do j = 1, 3
aos_grad_array(i,j) = grad_aos_array(j,i)
aos_lapl_array(i,j) = lapl_aos_array(j,i)
enddo
enddo
do istate = 1, N_states
! alpha density
! aos_array_bis = \rho_ao * aos_array
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_array,1,0.d0,aos_array_bis,1)
dm_a(istate) = u_dot_v(aos_array,aos_array_bis,ao_num)
! grad_dm(1) = \sum_i aos_grad_array(i,1) * aos_array_bis(i)
grad_dm_a(1,istate) = u_dot_v(aos_grad_array(1,1),aos_array_bis,ao_num)
grad_dm_a(2,istate) = u_dot_v(aos_grad_array(1,2),aos_array_bis,ao_num)
grad_dm_a(3,istate) = u_dot_v(aos_grad_array(1,3),aos_array_bis,ao_num)
! lapl_dm(1) = \sum_i aos_lapl_array(i,1) * aos_array_bis(i)
lapl_dm_a(1,istate) = 2.d0 * u_dot_v(aos_lapl_array(1,1),aos_array_bis,ao_num)
lapl_dm_a(2,istate) = 2.d0 * u_dot_v(aos_lapl_array(1,2),aos_array_bis,ao_num)
lapl_dm_a(3,istate) = 2.d0 * u_dot_v(aos_lapl_array(1,3),aos_array_bis,ao_num)
! aos_grad_array_bis(1) = \rho_ao * aos_grad_array(1)
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_grad_array(1,1),1,0.d0,aos_grad_array_bis(1,1),1)
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_grad_array(1,2),1,0.d0,aos_grad_array_bis(1,2),1)
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_grad_array(1,3),1,0.d0,aos_grad_array_bis(1,3),1)
! lapl_dm(1) += \sum_i aos_grad_array(i,1) * aos_grad_array_bis(i)
lapl_dm_a(1,istate) += 2.d0 * u_dot_v(aos_grad_array(1,1),aos_grad_array_bis,ao_num)
lapl_dm_a(2,istate) += 2.d0 * u_dot_v(aos_grad_array(1,2),aos_grad_array_bis,ao_num)
lapl_dm_a(3,istate) += 2.d0 * u_dot_v(aos_grad_array(1,3),aos_grad_array_bis,ao_num)
! beta density
call dsymv('U',ao_num,1.d0,one_e_dm_beta_ao_for_dft(1,1,istate),size(one_e_dm_beta_ao_for_dft,1),aos_array,1,0.d0,aos_array_bis,1)
dm_b(istate) = u_dot_v(aos_array,aos_array_bis,ao_num)
! grad_dm(1) = \sum_i aos_grad_array(i,1) * aos_array_bis(i)
grad_dm_b(1,istate) = u_dot_v(aos_grad_array(1,1),aos_array_bis,ao_num)
grad_dm_b(2,istate) = u_dot_v(aos_grad_array(1,2),aos_array_bis,ao_num)
grad_dm_b(3,istate) = u_dot_v(aos_grad_array(1,3),aos_array_bis,ao_num)
! lapl_dm(1) = \sum_i aos_lapl_array(i,1) * aos_array_bis(i)
lapl_dm_b(1,istate) = 2.d0 * u_dot_v(aos_lapl_array(1,1),aos_array_bis,ao_num)
lapl_dm_b(2,istate) = 2.d0 * u_dot_v(aos_lapl_array(1,2),aos_array_bis,ao_num)
lapl_dm_b(3,istate) = 2.d0 * u_dot_v(aos_lapl_array(1,3),aos_array_bis,ao_num)
! aos_grad_array_bis(1) = \rho_ao * aos_grad_array(1)
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_grad_array(1,1),1,0.d0,aos_grad_array_bis(1,1),1)
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_grad_array(1,2),1,0.d0,aos_grad_array_bis(1,2),1)
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_grad_array(1,3),1,0.d0,aos_grad_array_bis(1,3),1)
! lapl_dm(1) += \sum_i aos_grad_array(i,1) * aos_grad_array_bis(i)
lapl_dm_b(1,istate) += 2.d0 * u_dot_v(aos_grad_array(1,1),aos_grad_array_bis,ao_num)
lapl_dm_b(2,istate) += 2.d0 * u_dot_v(aos_grad_array(1,2),aos_grad_array_bis,ao_num)
lapl_dm_b(3,istate) += 2.d0 * u_dot_v(aos_grad_array(1,3),aos_grad_array_bis,ao_num)
enddo
grad_dm_a *= 2.d0
grad_dm_b *= 2.d0
end
subroutine dm_dft_alpha_beta_no_core_at_r(r,dm_a,dm_b)
implicit none
BEGIN_DOC

View File

@ -0,0 +1,111 @@
subroutine give_all_stuffs_in_r_for_lyp_88(r,rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2)
implicit none
double precision, intent(in) :: r(3)
double precision, intent(out) :: rho_a(N_states),rho_b(N_states),grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_2(N_states),rho(N_states)
double precision :: grad_rho_a(3,N_states),grad_rho_b(3,N_states),grad_rho_a_b(N_states)
double precision :: grad_aos_array(3,ao_num),aos_array(ao_num)
call density_and_grad_alpha_beta_and_all_aos_and_grad_aos_at_r(r,rho_a,rho_b, grad_rho_a, grad_rho_b, aos_array, grad_aos_array)
integer :: i,istate
rho = rho_a + rho_b
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do istate = 1, N_states
do i = 1, 3
grad_rho_a_2(istate) += grad_rho_a(i,istate) * grad_rho_a(i,istate)
grad_rho_b_2(istate) += grad_rho_b(i,istate) * grad_rho_b(i,istate)
grad_rho_a_b(istate) += grad_rho_a(i,istate) * grad_rho_b(i,istate)
enddo
enddo
grad_rho_2 = grad_rho_a_2 + grad_rho_b_2 + 2.d0 * grad_rho_a_b
end
double precision function ec_lyp_88(rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2)
implicit none
BEGIN_DOC
! LYP functional of the Lee, Yan, Parr, Phys. Rev B 1988, Vol 37, page 785.
! The expression used is the one by Miehlich, Savin, Stoll, Preuss, CPL, 1989 which gets rid of the laplacian of the density
END_DOC
include 'constants.include.F'
! Input variables
double precision, intent(in) :: rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2
! Local variables
double precision :: a,b,c,d,c_f,omega,delta
double precision :: rho_13,rho_inv_13,rho_83,rho_113,rho_inv_113,denom
double precision :: thr,huge_num
double precision :: cst_2_113,cst_8_3,rho_2,rho_a_2,rho_b_2
double precision :: tmp1,tmp2,tmp3,tmp4
double precision :: big1,big2,big3
! Output variables
! Constants of the LYP correlation functional
a = 0.04918d0
b = 0.132d0
c = 0.2533d0
d = 0.349d0
thr = 1d-15
huge_num = 1.d0/thr
rho_13 = rho**(1d0/3d0)
rho_113 = rho**(11d0/3d0)
if(abs(rho_13) < thr) then
rho_inv_13 = huge_num
else
rho_inv_13 = 1.d0/rho_13
endif
if (abs(rho_113) < thr) then
rho_inv_113 = huge_num
else
rho_inv_113 = 1d0/rho_113
endif
! Useful quantities to predefine
denom = 1d0/(1d0 + d*rho_inv_13)
omega = rho_inv_113*exp(-c*rho_inv_13)*denom
delta = c*rho_inv_13 + d*rho_inv_13*denom
c_f = 0.3d0*(3d0*pi*pi)**(2d0/3d0)
rho_2 = rho *rho
rho_a_2 = rho_a*rho_a
rho_b_2 = rho_b*rho_b
cst_2_113 = 2d0**(11d0/3d0)
cst_8_3 = 8d0/3d0
! first term in the equation (2) of Preuss CPL, 1989
big1 = 4d0*denom*rho_a*rho_b/rho
tmp1 = cst_2_113*c_f*(rho_a**cst_8_3 + rho_b**cst_8_3)
tmp2 = (47d0/18d0 - 7d0/18d0*delta)*grad_rho_2
tmp3 = - (5d0/2d0 - 1.d0/18d0*delta)*(grad_rho_a_2 + grad_rho_b_2)
tmp4 = - (delta - 11d0)/9d0*(rho_a/rho*grad_rho_a_2 + rho_b/rho*grad_rho_b_2)
big2 = rho_a*rho_b*(tmp1 + tmp2 + tmp3 + tmp4)
tmp1 = -2d0/3d0*rho_2*grad_rho_2
tmp2 = grad_rho_b_2*(2d0/3d0*rho_2 - rho_a_2)
tmp3 = grad_rho_a_2*(2d0/3d0*rho_2 - rho_b_2)
big3 = tmp1 + tmp2 + tmp3
ec_lyp_88 = -a*big1 -a*b*omega*big2 -a*b*omega*big3
end

View File

@ -48,18 +48,18 @@ function run_stoch() {
@test "DHNO" { # 11.4721s
qp set_file dhno.ezfio
qp set_mo_class --core="[1-7]" --act="[8-64]"
run -130.458875747063 1.e-5
run -130.459020029816 1.e-5
}
@test "HCO" { # 12.2868s
qp set_file hco.ezfio
run -113.296794171915 2.e-05
run -113.297494345682 2.e-05
}
@test "H2O2" { # 12.9214s
qp set_file h2o2.ezfio
qp set_mo_class --core="[1-2]" --act="[3-24]" --del="[25-38]"
run -151.004888189874 4.e-5
run -151.00477 1.e-4
}
@test "HBO" { # 13.3144s
@ -83,7 +83,7 @@ function run_stoch() {
@test "SO" { # 13.4952s
[[ -n $TRAVIS ]] && skip
qp set_file so.ezfio
run -26.0144622194831 1.e-5
run -26.0124797722154 1.e-5
}
@test "H2S" { # 13.6745s
@ -120,13 +120,13 @@ function run_stoch() {
[[ -n $TRAVIS ]] && skip
qp set_file ch4.ezfio
qp set_mo_class --core="[1]" --act="[2-30]" --del="[31-59]"
run -40.2409858175829 2.e-5
run -40.2409059687324 2.e-5
}
@test "ClF" { # 16.8864s
[[ -n $TRAVIS ]] && skip
qp set_file clf.ezfio
run -559.170116079903 1.e-5
run -559.170406471496 1.e-5
}
@test "SO2" { # 17.5645s
@ -140,14 +140,14 @@ function run_stoch() {
[[ -n $TRAVIS ]] && skip
qp set_file c2h2.ezfio
qp set_mo_class --act="[1-30]" --del="[31-36]"
run -12.3678973551285 2.e-5
run -12.3670840202635 2.e-5
}
@test "N2" { # 18.0198s
[[ -n $TRAVIS ]] && skip
qp set_file n2.ezfio
qp set_mo_class --core="[1,2]" --act="[3-40]" --del="[41-60]"
run -109.291310557766 1.e-4
run -109.291600196629 1.e-4
}
@test "N2H4" { # 18.5006s
@ -161,7 +161,7 @@ function run_stoch() {
[[ -n $TRAVIS ]] && skip
qp set_file co2.ezfio
qp set_mo_class --core="[1,2]" --act="[3-30]" --del="[31-42]"
run -187.969556614801 1.e-5
run -187.969676381867 1.e-5
}
@ -176,6 +176,6 @@ function run_stoch() {
[[ -n $TRAVIS ]] && skip
qp set_file hcn.ezfio
qp set_mo_class --core="[1,2]" --act="[3-40]" --del="[41-55]"
run -93.0794109423741 2.e-5
run -93.0799328685679 2.e-5
}

View File

@ -0,0 +1,23 @@
subroutine extract_cas
implicit none
BEGIN_DOC
! Replaces the total wave function by the normalized projection on the CAS.
END_DOC
integer :: i,j,k
do k=1,N_states
do j=1,N_det_generators
psi_coef(j,k) = psi_coef_generators(j,k)
enddo
enddo
do j=1,N_det_generators
do k=1,N_int
psi_det(k,1,j) = psi_det_generators(k,1,j)
psi_det(k,2,j) = psi_det_generators(k,2,j)
enddo
enddo
N_det = N_det_generators
SOFT_TOUCH N_det psi_det psi_coef
end

View File

@ -66,7 +66,7 @@ BEGIN_PROVIDER [double precision, slater_bragg_radii_per_atom, (nucl_num)]
implicit none
integer :: i
do i = 1, nucl_num
slater_bragg_radii_per_atom(i) = slater_bragg_radii(int(nucl_charge(i)))
slater_bragg_radii_per_atom(i) = slater_bragg_radii(max(1,int(nucl_charge(i))))
enddo
END_PROVIDER
@ -74,7 +74,7 @@ BEGIN_PROVIDER [double precision, slater_bragg_radii_per_atom_ua, (nucl_num)]
implicit none
integer :: i
do i = 1, nucl_num
slater_bragg_radii_per_atom_ua(i) = slater_bragg_radii_ua(int(nucl_charge(i)))
slater_bragg_radii_per_atom_ua(i) = slater_bragg_radii_ua(max(1,int(nucl_charge(i))))
enddo
END_PROVIDER