mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-09 04:43:13 +01:00
indentation
This commit is contained in:
parent
9bb66d5b3a
commit
3e38912dcb
@ -8,11 +8,11 @@ program print_two_rdm
|
||||
|
||||
double precision :: accu,twodm
|
||||
accu = 0.d0
|
||||
do i=1,mo_num
|
||||
do j=1,mo_num
|
||||
do k=1,mo_num
|
||||
do l=1,mo_num
|
||||
twodm = coussin_peter_two_rdm_mo(i,j,k,l,1)
|
||||
do i=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
twodm = coussin_peter_two_rdm_mo(list_act(i),list_act(j),list_act(k),list_act(l),1)
|
||||
if(dabs(twodm - P0tuvx(i,j,k,l)).gt.thr)then
|
||||
print*,''
|
||||
print*,'sum'
|
||||
|
@ -2,5 +2,7 @@
|
||||
two_body_rdm
|
||||
============
|
||||
|
||||
Contains the two rdms (aa,bb,ab) stored as plain arrays
|
||||
Contains the two rdms $\alpha\alpha$, $\beta\beta$ and $\alpha\beta$ stored as
|
||||
maps, with pysicists notation, consistent with the two-electron integrals in the
|
||||
MO basis.
|
||||
|
||||
|
@ -1,443 +1,442 @@
|
||||
|
||||
subroutine all_two_rdm_dm_nstates_openmp(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_0,N_st,sze)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
|
||||
!
|
||||
! Assumes that the determinants are in psi_det
|
||||
!
|
||||
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: u_0(sze,N_st)
|
||||
integer :: k
|
||||
double precision, allocatable :: u_t(:,:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
|
||||
allocate(u_t(N_st,N_det))
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
|
||||
enddo
|
||||
call dtranspose( &
|
||||
u_0, &
|
||||
size(u_0, 1), &
|
||||
u_t, &
|
||||
size(u_t, 1), &
|
||||
N_det, N_st)
|
||||
|
||||
call all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1)
|
||||
deallocate(u_t)
|
||||
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes two-rdm
|
||||
!
|
||||
! Default should be 1,N_det,0,1
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
select case (N_int)
|
||||
case (1)
|
||||
call all_two_rdm_dm_nstates_openmp_work_1(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (2)
|
||||
call all_two_rdm_dm_nstates_openmp_work_2(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (3)
|
||||
call all_two_rdm_dm_nstates_openmp_work_3(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (4)
|
||||
call all_two_rdm_dm_nstates_openmp_work_4(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case default
|
||||
call all_two_rdm_dm_nstates_openmp_work_N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
end select
|
||||
end
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine all_two_rdm_dm_nstates_openmp(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_0,N_st,sze)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
|
||||
!
|
||||
! Assumes that the determinants are in psi_det
|
||||
!
|
||||
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: u_0(sze,N_st)
|
||||
integer :: k
|
||||
double precision, allocatable :: u_t(:,:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
|
||||
allocate(u_t(N_st,N_det))
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
|
||||
enddo
|
||||
call dtranspose( &
|
||||
u_0, &
|
||||
size(u_0, 1), &
|
||||
u_t, &
|
||||
size(u_t, 1), &
|
||||
N_det, N_st)
|
||||
|
||||
call all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1)
|
||||
deallocate(u_t)
|
||||
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes two-rdm
|
||||
!
|
||||
! Default should be 1,N_det,0,1
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
select case (N_int)
|
||||
case (1)
|
||||
call all_two_rdm_dm_nstates_openmp_work_1(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (2)
|
||||
call all_two_rdm_dm_nstates_openmp_work_2(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (3)
|
||||
call all_two_rdm_dm_nstates_openmp_work_3(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (4)
|
||||
call all_two_rdm_dm_nstates_openmp_work_4(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case default
|
||||
call all_two_rdm_dm_nstates_openmp_work_N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
end select
|
||||
end
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine all_two_rdm_dm_nstates_openmp_work_$N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes $v_t = H | u_t \\rangle$ and $s_t = S^2 | u_t \\rangle$
|
||||
!
|
||||
! Default should be 1,N_det,0,1
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
|
||||
|
||||
integer :: i,j,k,l
|
||||
integer :: k_a, k_b, l_a, l_b, m_a, m_b
|
||||
integer :: istate
|
||||
integer :: krow, kcol, krow_b, kcol_b
|
||||
integer :: lrow, lcol
|
||||
integer :: mrow, mcol
|
||||
integer(bit_kind) :: spindet($N_int)
|
||||
integer(bit_kind) :: tmp_det($N_int,2)
|
||||
integer(bit_kind) :: tmp_det2($N_int,2)
|
||||
integer(bit_kind) :: tmp_det3($N_int,2)
|
||||
integer(bit_kind), allocatable :: buffer(:,:)
|
||||
integer :: n_doubles
|
||||
integer, allocatable :: doubles(:)
|
||||
integer, allocatable :: singles_a(:)
|
||||
integer, allocatable :: singles_b(:)
|
||||
integer, allocatable :: idx(:), idx0(:)
|
||||
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
|
||||
integer*8 :: k8
|
||||
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
allocate(idx0(maxab))
|
||||
|
||||
do i=1,maxab
|
||||
idx0(i) = i
|
||||
enddo
|
||||
|
||||
! Prepare the array of all alpha single excitations
|
||||
! -------------------------------------------------
|
||||
|
||||
PROVIDE N_int nthreads_davidson
|
||||
!!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
|
||||
! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
|
||||
! !$OMP psi_bilinear_matrix_columns, &
|
||||
! !$OMP psi_det_alpha_unique, psi_det_beta_unique, &
|
||||
! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int, &
|
||||
! !$OMP psi_bilinear_matrix_transp_rows, &
|
||||
! !$OMP psi_bilinear_matrix_transp_columns, &
|
||||
! !$OMP psi_bilinear_matrix_transp_order, N_st, &
|
||||
! !$OMP psi_bilinear_matrix_order_transp_reverse, &
|
||||
! !$OMP psi_bilinear_matrix_columns_loc, &
|
||||
! !$OMP psi_bilinear_matrix_transp_rows_loc, &
|
||||
! !$OMP istart, iend, istep, irp_here, v_t, s_t, &
|
||||
! !$OMP ishift, idx0, u_t, maxab) &
|
||||
! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, &
|
||||
! !$OMP lcol, lrow, l_a, l_b, &
|
||||
! !$OMP buffer, doubles, n_doubles, &
|
||||
! !$OMP tmp_det2, idx, l, kcol_prev, &
|
||||
! !$OMP singles_a, n_singles_a, singles_b, &
|
||||
! !$OMP n_singles_b, k8)
|
||||
|
||||
! Alpha/Beta double excitations
|
||||
! =============================
|
||||
|
||||
allocate( buffer($N_int,maxab), &
|
||||
singles_a(maxab), &
|
||||
singles_b(maxab), &
|
||||
doubles(maxab), &
|
||||
idx(maxab))
|
||||
|
||||
kcol_prev=-1
|
||||
|
||||
ASSERT (iend <= N_det)
|
||||
ASSERT (istart > 0)
|
||||
ASSERT (istep > 0)
|
||||
|
||||
!!$OMP DO SCHEDULE(dynamic,64)
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
if (kcol /= kcol_prev) then
|
||||
call get_all_spin_singles_$N_int( &
|
||||
psi_det_beta_unique, idx0, &
|
||||
tmp_det(1,2), N_det_beta_unique, &
|
||||
singles_b, n_singles_b)
|
||||
endif
|
||||
kcol_prev = kcol
|
||||
|
||||
! Loop over singly excited beta columns
|
||||
! -------------------------------------
|
||||
|
||||
do i=1,n_singles_b
|
||||
lcol = singles_b(i)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
|
||||
ASSERT (l_a <= N_det)
|
||||
idx(j) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
j = j-1
|
||||
|
||||
call get_all_spin_singles_$N_int( &
|
||||
buffer, idx, tmp_det(1,1), j, &
|
||||
singles_a, n_singles_a )
|
||||
|
||||
! Loop over alpha singles
|
||||
! -----------------------
|
||||
|
||||
do k = 1,n_singles_a
|
||||
l_a = singles_a(k)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
!call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij)
|
||||
do l= 1, N_states
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes $v_t = H | u_t \\rangle$ and $s_t = S^2 | u_t \\rangle$
|
||||
!
|
||||
! Default should be 1,N_det,0,1
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
|
||||
|
||||
integer :: i,j,k,l
|
||||
integer :: k_a, k_b, l_a, l_b, m_a, m_b
|
||||
integer :: istate
|
||||
integer :: krow, kcol, krow_b, kcol_b
|
||||
integer :: lrow, lcol
|
||||
integer :: mrow, mcol
|
||||
integer(bit_kind) :: spindet($N_int)
|
||||
integer(bit_kind) :: tmp_det($N_int,2)
|
||||
integer(bit_kind) :: tmp_det2($N_int,2)
|
||||
integer(bit_kind) :: tmp_det3($N_int,2)
|
||||
integer(bit_kind), allocatable :: buffer(:,:)
|
||||
integer :: n_doubles
|
||||
integer, allocatable :: doubles(:)
|
||||
integer, allocatable :: singles_a(:)
|
||||
integer, allocatable :: singles_b(:)
|
||||
integer, allocatable :: idx(:), idx0(:)
|
||||
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
|
||||
integer*8 :: k8
|
||||
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
allocate(idx0(maxab))
|
||||
|
||||
do i=1,maxab
|
||||
idx0(i) = i
|
||||
enddo
|
||||
|
||||
! Prepare the array of all alpha single excitations
|
||||
! -------------------------------------------------
|
||||
|
||||
PROVIDE N_int nthreads_davidson
|
||||
!!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
|
||||
! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
|
||||
! !$OMP psi_bilinear_matrix_columns, &
|
||||
! !$OMP psi_det_alpha_unique, psi_det_beta_unique,&
|
||||
! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int,&
|
||||
! !$OMP psi_bilinear_matrix_transp_rows, &
|
||||
! !$OMP psi_bilinear_matrix_transp_columns, &
|
||||
! !$OMP psi_bilinear_matrix_transp_order, N_st, &
|
||||
! !$OMP psi_bilinear_matrix_order_transp_reverse, &
|
||||
! !$OMP psi_bilinear_matrix_columns_loc, &
|
||||
! !$OMP psi_bilinear_matrix_transp_rows_loc, &
|
||||
! !$OMP istart, iend, istep, irp_here, v_t, s_t, &
|
||||
! !$OMP ishift, idx0, u_t, maxab) &
|
||||
! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,&
|
||||
! !$OMP lcol, lrow, l_a, l_b, &
|
||||
! !$OMP buffer, doubles, n_doubles, &
|
||||
! !$OMP tmp_det2, idx, l, kcol_prev, &
|
||||
! !$OMP singles_a, n_singles_a, singles_b, &
|
||||
! !$OMP n_singles_b, k8)
|
||||
|
||||
! Alpha/Beta double excitations
|
||||
! =============================
|
||||
|
||||
allocate( buffer($N_int,maxab), &
|
||||
singles_a(maxab), &
|
||||
singles_b(maxab), &
|
||||
doubles(maxab), &
|
||||
idx(maxab))
|
||||
|
||||
kcol_prev=-1
|
||||
|
||||
ASSERT (iend <= N_det)
|
||||
ASSERT (istart > 0)
|
||||
ASSERT (istep > 0)
|
||||
|
||||
!!$OMP DO SCHEDULE(dynamic,64)
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
if (kcol /= kcol_prev) then
|
||||
call get_all_spin_singles_$N_int( &
|
||||
psi_det_beta_unique, idx0, &
|
||||
tmp_det(1,2), N_det_beta_unique, &
|
||||
singles_b, n_singles_b)
|
||||
endif
|
||||
kcol_prev = kcol
|
||||
|
||||
! Loop over singly excited beta columns
|
||||
! -------------------------------------
|
||||
|
||||
do i=1,n_singles_b
|
||||
lcol = singles_b(i)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
|
||||
ASSERT (l_a <= N_det)
|
||||
idx(j) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
j = j-1
|
||||
|
||||
call get_all_spin_singles_$N_int( &
|
||||
buffer, idx, tmp_det(1,1), j, &
|
||||
singles_a, n_singles_a )
|
||||
|
||||
! Loop over alpha singles
|
||||
! -----------------------
|
||||
|
||||
do k = 1,n_singles_a
|
||||
l_a = singles_a(k)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
!call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
! !$OMP END DO
|
||||
|
||||
! !$OMP DO SCHEDULE(dynamic,64)
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
|
||||
! Single and double alpha exitations
|
||||
! ===================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! ----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
ASSERT (k_b <= N_det)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,1)
|
||||
|
||||
! Loop inside the beta column to gather all the connected alphas
|
||||
lcol = psi_bilinear_matrix_columns(k_a)
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
do i=1,N_det_alpha_unique
|
||||
if (l_a > N_det) exit
|
||||
lcol = psi_bilinear_matrix_columns(l_a)
|
||||
if (lcol /= kcol) exit
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
idx(i) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_a, doubles, n_singles_a, n_doubles )
|
||||
|
||||
! Compute Hij for all alpha singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
do i=1,n_singles_a
|
||||
l_a = singles_a(i)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
! !$OMP END DO
|
||||
|
||||
! !$OMP DO SCHEDULE(dynamic,64)
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
|
||||
! Single and double alpha exitations
|
||||
! ===================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! ----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
ASSERT (k_b <= N_det)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,1)
|
||||
|
||||
! Loop inside the beta column to gather all the connected alphas
|
||||
lcol = psi_bilinear_matrix_columns(k_a)
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
do i=1,N_det_alpha_unique
|
||||
if (l_a > N_det) exit
|
||||
lcol = psi_bilinear_matrix_columns(l_a)
|
||||
if (lcol /= kcol) exit
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
idx(i) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_a, doubles, n_singles_a, n_doubles )
|
||||
|
||||
! Compute Hij for all alpha singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
do i=1,n_singles_a
|
||||
l_a = singles_a(i)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
! increment the alpha/beta part for single excitations
|
||||
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
! increment the alpha/alpha part for single excitations
|
||||
call off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4)
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
! Compute Hij for all alpha doubles
|
||||
! ----------------------------------
|
||||
|
||||
do i=1,n_doubles
|
||||
l_a = doubles(i)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4)
|
||||
enddo
|
||||
|
||||
|
||||
! Single and double beta excitations
|
||||
! ==================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,2)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
ASSERT (k_b <= N_det)
|
||||
|
||||
! Loop inside the alpha row to gather all the connected betas
|
||||
lrow = psi_bilinear_matrix_transp_rows(k_b)
|
||||
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
|
||||
do i=1,N_det_beta_unique
|
||||
if (l_b > N_det) exit
|
||||
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
||||
if (lrow /= krow) exit
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
idx(i) = l_b
|
||||
l_b = l_b+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_b, doubles, n_singles_b, n_doubles )
|
||||
|
||||
! Compute Hij for all beta singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
do i=1,n_singles_b
|
||||
l_b = singles_b(i)
|
||||
ASSERT (l_b <= N_det)
|
||||
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
! increment the alpha/beta part for single excitations
|
||||
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
! increment the beta /beta part for single excitations
|
||||
call off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
|
||||
enddo
|
||||
|
||||
! Compute Hij for all beta doubles
|
||||
! ----------------------------------
|
||||
|
||||
do i=1,n_doubles
|
||||
l_b = doubles(i)
|
||||
ASSERT (l_b <= N_det)
|
||||
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
! Diagonal contribution
|
||||
! =====================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
|
||||
|
||||
double precision :: c_1(N_states),c_2(N_states)
|
||||
do l = 1, N_states
|
||||
c_1(l) = u_t(l,k_a)
|
||||
enddo
|
||||
|
||||
call diagonal_contrib_to_all_two_rdm_dm(tmp_det,c_1,big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
|
||||
end do
|
||||
!!$OMP END DO
|
||||
deallocate(buffer, singles_a, singles_b, doubles, idx)
|
||||
!!$OMP END PARALLEL
|
||||
|
||||
enddo
|
||||
! increment the alpha/beta part for single excitations
|
||||
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
! increment the alpha/alpha part for single excitations
|
||||
call off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4)
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
! Compute Hij for all alpha doubles
|
||||
! ----------------------------------
|
||||
|
||||
do i=1,n_doubles
|
||||
l_a = doubles(i)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4)
|
||||
enddo
|
||||
|
||||
|
||||
! Single and double beta excitations
|
||||
! ==================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,2)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
ASSERT (k_b <= N_det)
|
||||
|
||||
! Loop inside the alpha row to gather all the connected betas
|
||||
lrow = psi_bilinear_matrix_transp_rows(k_b)
|
||||
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
|
||||
do i=1,N_det_beta_unique
|
||||
if (l_b > N_det) exit
|
||||
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
||||
if (lrow /= krow) exit
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
idx(i) = l_b
|
||||
l_b = l_b+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_b, doubles, n_singles_b, n_doubles )
|
||||
|
||||
! Compute Hij for all beta singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
do i=1,n_singles_b
|
||||
l_b = singles_b(i)
|
||||
ASSERT (l_b <= N_det)
|
||||
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
! increment the alpha/beta part for single excitations
|
||||
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
! increment the beta /beta part for single excitations
|
||||
call off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
|
||||
enddo
|
||||
|
||||
! Compute Hij for all beta doubles
|
||||
! ----------------------------------
|
||||
|
||||
do i=1,n_doubles
|
||||
l_b = doubles(i)
|
||||
ASSERT (l_b <= N_det)
|
||||
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
! Diagonal contribution
|
||||
! =====================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
|
||||
|
||||
double precision :: c_1(N_states),c_2(N_states)
|
||||
do l = 1, N_states
|
||||
c_1(l) = u_t(l,k_a)
|
||||
enddo
|
||||
|
||||
call diagonal_contrib_to_all_two_rdm_dm(tmp_det,c_1,big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
|
||||
end do
|
||||
!!$OMP END DO
|
||||
deallocate(buffer, singles_a, singles_b, doubles, idx)
|
||||
!!$OMP END PARALLEL
|
||||
|
||||
end
|
||||
|
||||
SUBST [ N_int ]
|
||||
|
||||
1;;
|
||||
2;;
|
||||
3;;
|
||||
4;;
|
||||
N_int;;
|
||||
|
||||
END_TEMPLATE
|
||||
|
||||
|
||||
SUBST [ N_int ]
|
||||
|
||||
1;;
|
||||
2;;
|
||||
3;;
|
||||
4;;
|
||||
N_int;;
|
||||
|
||||
END_TEMPLATE
|
||||
|
||||
|
@ -1,84 +1,86 @@
|
||||
|
||||
BEGIN_PROVIDER [double precision, coussin_peter_two_rdm_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! coussin_peter_two_rdm_mo(i,j,k,l) = the two rdm that peter wants for his CASSCF
|
||||
END_DOC
|
||||
integer :: i,j,k,l
|
||||
do l = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
coussin_peter_two_rdm_mo(i,j,k,l,:) = 0.5d0 * (two_rdm_alpha_beta_mo(i,j,k,l,:) + two_rdm_alpha_beta_mo(i,j,k,l,:)) &
|
||||
+ two_rdm_alpha_alpha_mo(i,j,k,l,:) &
|
||||
+ two_rdm_beta_beta_mo(i,j,k,l,:)
|
||||
BEGIN_PROVIDER [double precision, coussin_peter_two_rdm_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! coussin_peter_two_rdm_mo(i,j,k,l) = the two rdm that peter wants for his CASSCF
|
||||
END_DOC
|
||||
integer :: i,j,k,l, istate
|
||||
do istate = 1,N_states
|
||||
do l = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
coussin_peter_two_rdm_mo (i,j,k,l,istate) = &
|
||||
two_rdm_alpha_beta_mo (i,j,k,l,istate) + &
|
||||
two_rdm_alpha_alpha_mo(i,j,k,l,istate) + &
|
||||
two_rdm_beta_beta_mo (i,j,k,l,istate)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, two_rdm_alpha_alpha_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, two_rdm_beta_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! two_rdm_alpha_beta(i,j,k,l) = <Psi| a^{dagger}_{j,alpha} a^{dagger}_{l,beta} a_{k,beta} a_{i,alpha} | Psi>
|
||||
! 1 1 2 2 = chemist notations
|
||||
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
|
||||
!
|
||||
END_DOC
|
||||
integer :: dim1,dim2,dim3,dim4
|
||||
double precision :: cpu_0,cpu_1
|
||||
dim1 = mo_num
|
||||
dim2 = mo_num
|
||||
dim3 = mo_num
|
||||
dim4 = mo_num
|
||||
two_rdm_alpha_beta_mo = 0.d0
|
||||
two_rdm_alpha_alpha_mo= 0.d0
|
||||
two_rdm_beta_beta_mo = 0.d0
|
||||
print*,'providing two_rdm_alpha_beta ...'
|
||||
call wall_time(cpu_0)
|
||||
call all_two_rdm_dm_nstates_openmp(two_rdm_alpha_alpha_mo,two_rdm_beta_beta_mo,two_rdm_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
||||
call wall_time(cpu_1)
|
||||
print*,'two_rdm_alpha_beta provided in',dabs(cpu_1-cpu_0)
|
||||
|
||||
END_PROVIDER
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! two_rdm_alpha_beta(i,j,k,l) = <Psi| a^{dagger}_{j,alpha} a^{dagger}_{l,beta} a_{k,beta} a_{i,alpha} | Psi>
|
||||
! 1 1 2 2 = chemist notations
|
||||
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
|
||||
!
|
||||
END_DOC
|
||||
integer :: dim1,dim2,dim3,dim4
|
||||
double precision :: cpu_0,cpu_1
|
||||
dim1 = mo_num
|
||||
dim2 = mo_num
|
||||
dim3 = mo_num
|
||||
dim4 = mo_num
|
||||
two_rdm_alpha_beta_mo = 0.d0
|
||||
two_rdm_alpha_alpha_mo= 0.d0
|
||||
two_rdm_beta_beta_mo = 0.d0
|
||||
print*,'providing two_rdm_alpha_beta ...'
|
||||
call wall_time(cpu_0)
|
||||
call all_two_rdm_dm_nstates_openmp(two_rdm_alpha_alpha_mo,two_rdm_beta_beta_mo,two_rdm_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
||||
call wall_time(cpu_1)
|
||||
print*,'two_rdm_alpha_beta provided in',dabs(cpu_1-cpu_0)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, two_rdm_alpha_alpha_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, two_rdm_beta_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! two_rdm_alpha_beta_mo_physicist,(i,j,k,l) = <Psi| a^{dagger}_{k,alpha} a^{dagger}_{l,beta} a_{j,beta} a_{i,alpha} | Psi>
|
||||
! 1 2 1 2 = physicist notations
|
||||
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
|
||||
!
|
||||
END_DOC
|
||||
integer :: i,j,k,l,istate
|
||||
double precision :: cpu_0,cpu_1
|
||||
two_rdm_alpha_beta_mo_physicist = 0.d0
|
||||
print*,'providing two_rdm_alpha_beta_mo_physicist ...'
|
||||
call wall_time(cpu_0)
|
||||
do istate = 1, N_states
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
! 1 2 1 2 1 1 2 2
|
||||
two_rdm_alpha_beta_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_beta_mo(i,l,j,k,istate)
|
||||
two_rdm_alpha_alpha_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_alpha_mo(i,l,j,k,istate)
|
||||
two_rdm_beta_beta_mo_physicist(l,k,i,j,istate) = two_rdm_beta_beta_mo(i,l,j,k,istate)
|
||||
enddo
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! two_rdm_alpha_beta_mo_physicist,(i,j,k,l) = <Psi| a^{dagger}_{k,alpha} a^{dagger}_{l,beta} a_{j,beta} a_{i,alpha} | Psi>
|
||||
! 1 2 1 2 = physicist notations
|
||||
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
|
||||
!
|
||||
END_DOC
|
||||
integer :: i,j,k,l,istate
|
||||
double precision :: cpu_0,cpu_1
|
||||
two_rdm_alpha_beta_mo_physicist = 0.d0
|
||||
print*,'providing two_rdm_alpha_beta_mo_physicist ...'
|
||||
call wall_time(cpu_0)
|
||||
do istate = 1, N_states
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
! 1 2 1 2 1 1 2 2
|
||||
two_rdm_alpha_beta_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_beta_mo(i,l,j,k,istate)
|
||||
two_rdm_alpha_alpha_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_alpha_mo(i,l,j,k,istate)
|
||||
two_rdm_beta_beta_mo_physicist(l,k,i,j,istate) = two_rdm_beta_beta_mo(i,l,j,k,istate)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(cpu_1)
|
||||
print*,'two_rdm_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0)
|
||||
|
||||
END_PROVIDER
|
||||
call wall_time(cpu_1)
|
||||
print*,'two_rdm_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user