mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-08 20:33:20 +01:00
beginning the cleaning of two_body_rdm
This commit is contained in:
parent
be3aa1af71
commit
3e0ada9538
@ -11,10 +11,10 @@ interface: ezfio,provider,ocaml
|
||||
default: 0.5
|
||||
|
||||
[no_core_density]
|
||||
type: character*(32)
|
||||
doc: Type of density. If [no_core_dm] then all elements of the density matrix involving at least one orbital set as core are set to zero
|
||||
type: logical
|
||||
doc: If [no_core_density] then all elements of the density matrix involving at least one orbital set as core are set to zero. The default is False in order to take all the density.
|
||||
interface: ezfio, provider, ocaml
|
||||
default: full_density
|
||||
default: False
|
||||
|
||||
[normalize_dm]
|
||||
type: logical
|
||||
|
@ -22,7 +22,7 @@ BEGIN_PROVIDER [double precision, one_e_dm_mo_alpha_for_dft, (mo_num,mo_num, N_s
|
||||
one_e_dm_mo_alpha_for_dft(:,:,1) = one_e_dm_mo_alpha_average(:,:)
|
||||
endif
|
||||
|
||||
if(no_core_density .EQ. "no_core_dm")then
|
||||
if(no_core_density)then
|
||||
integer :: ii,i,j
|
||||
do ii = 1, n_core_orb
|
||||
i = list_core(ii)
|
||||
@ -73,7 +73,7 @@ BEGIN_PROVIDER [double precision, one_e_dm_mo_beta_for_dft, (mo_num,mo_num, N_st
|
||||
one_e_dm_mo_beta_for_dft(:,:,1) = one_e_dm_mo_beta_average(:,:)
|
||||
endif
|
||||
|
||||
if(no_core_density .EQ. "no_core_dm")then
|
||||
if(no_core_density)then
|
||||
integer :: ii,i,j
|
||||
do ii = 1, n_core_orb
|
||||
i = list_core(ii)
|
||||
|
@ -6,3 +6,4 @@ Contains the two rdms $\alpha\alpha$, $\beta\beta$ and $\alpha\beta$ stored as
|
||||
arrays, with pysicists notation, consistent with the two-electron integrals in the
|
||||
MO basis.
|
||||
|
||||
|
||||
|
@ -1,402 +0,0 @@
|
||||
|
||||
subroutine two_rdm_ab_nstates(big_array,dim1,dim2,dim3,dim4,u_0,N_st,sze)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the alpha/beta part of the two-body density matrix IN CHEMIST NOTATIONS
|
||||
!
|
||||
! Assumes that the determinants are in psi_det
|
||||
!
|
||||
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: u_0(sze,N_st)
|
||||
integer :: k
|
||||
double precision, allocatable :: u_t(:,:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
|
||||
allocate(u_t(N_st,N_det))
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
|
||||
enddo
|
||||
call dtranspose( &
|
||||
u_0, &
|
||||
size(u_0, 1), &
|
||||
u_t, &
|
||||
size(u_t, 1), &
|
||||
N_det, N_st)
|
||||
|
||||
call two_rdm_ab_nstates_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1)
|
||||
deallocate(u_t)
|
||||
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine two_rdm_ab_nstates_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the alpha/beta part of the two-body density matrix
|
||||
!
|
||||
! Default should be 1,N_det,0,1
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
select case (N_int)
|
||||
case (1)
|
||||
call two_rdm_ab_nstates_work_1(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (2)
|
||||
call two_rdm_ab_nstates_work_2(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (3)
|
||||
call two_rdm_ab_nstates_work_3(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (4)
|
||||
call two_rdm_ab_nstates_work_4(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case default
|
||||
call two_rdm_ab_nstates_work_N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
end select
|
||||
end
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine two_rdm_ab_nstates_work_$N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
|
||||
double precision :: hij, sij
|
||||
integer :: i,j,k,l
|
||||
integer :: k_a, k_b, l_a, l_b, m_a, m_b
|
||||
integer :: istate
|
||||
integer :: krow, kcol, krow_b, kcol_b
|
||||
integer :: lrow, lcol
|
||||
integer :: mrow, mcol
|
||||
integer(bit_kind) :: spindet($N_int)
|
||||
integer(bit_kind) :: tmp_det($N_int,2)
|
||||
integer(bit_kind) :: tmp_det2($N_int,2)
|
||||
integer(bit_kind) :: tmp_det3($N_int,2)
|
||||
integer(bit_kind), allocatable :: buffer(:,:)
|
||||
integer :: n_doubles
|
||||
integer, allocatable :: doubles(:)
|
||||
integer, allocatable :: singles_a(:)
|
||||
integer, allocatable :: singles_b(:)
|
||||
integer, allocatable :: idx(:), idx0(:)
|
||||
integer :: maxab, n_singles_a, n_singles_b, kcol_prev, nmax
|
||||
integer*8 :: k8
|
||||
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
allocate(idx0(maxab))
|
||||
|
||||
do i=1,maxab
|
||||
idx0(i) = i
|
||||
enddo
|
||||
|
||||
! Prepare the array of all alpha single excitations
|
||||
! -------------------------------------------------
|
||||
|
||||
PROVIDE N_int nthreads_davidson
|
||||
|
||||
! Alpha/Beta double excitations
|
||||
! =============================
|
||||
|
||||
allocate( buffer($N_int,maxab), &
|
||||
singles_a(maxab), &
|
||||
singles_b(maxab), &
|
||||
doubles(maxab), &
|
||||
idx(maxab))
|
||||
|
||||
kcol_prev=-1
|
||||
|
||||
ASSERT (iend <= N_det)
|
||||
ASSERT (istart > 0)
|
||||
ASSERT (istep > 0)
|
||||
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
if (kcol /= kcol_prev) then
|
||||
call get_all_spin_singles_$N_int( &
|
||||
psi_det_beta_unique, idx0, &
|
||||
tmp_det(1,2), N_det_beta_unique, &
|
||||
singles_b, n_singles_b)
|
||||
endif
|
||||
kcol_prev = kcol
|
||||
|
||||
! Loop over singly excited beta columns
|
||||
! -------------------------------------
|
||||
|
||||
do i=1,n_singles_b
|
||||
lcol = singles_b(i)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
|
||||
ASSERT (l_a <= N_det)
|
||||
idx(j) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
j = j-1
|
||||
|
||||
call get_all_spin_singles_$N_int( &
|
||||
buffer, idx, tmp_det(1,1), j, &
|
||||
singles_a, n_singles_a )
|
||||
|
||||
! Loop over alpha singles
|
||||
! -----------------------
|
||||
|
||||
do k = 1,n_singles_a
|
||||
l_a = singles_a(k)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
!!!!!!!!!!!!!!!!!! ALPHA BETA
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
|
||||
! Single and double alpha excitations
|
||||
! ===================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! ----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,1)
|
||||
|
||||
! Loop inside the beta column to gather all the connected alphas
|
||||
lcol = psi_bilinear_matrix_columns(k_a)
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
do i=1,N_det_alpha_unique
|
||||
if (l_a > N_det) exit
|
||||
lcol = psi_bilinear_matrix_columns(l_a)
|
||||
if (lcol /= kcol) exit
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
idx(i) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_a, doubles, n_singles_a, n_doubles )
|
||||
|
||||
! Compute Hij for all alpha singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
do i=1,n_singles_a
|
||||
l_a = singles_a(i)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
!!!! MONO SPIN
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
!! Compute Hij for all alpha doubles
|
||||
!! ----------------------------------
|
||||
!
|
||||
!do i=1,n_doubles
|
||||
! l_a = doubles(i)
|
||||
! ASSERT (l_a <= N_det)
|
||||
|
||||
! lrow = psi_bilinear_matrix_rows(l_a)
|
||||
! ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
! call i_H_j_double_spin_erf( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
|
||||
! do l=1,N_st
|
||||
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||||
! ! same spin => sij = 0
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
|
||||
|
||||
! Single and double beta excitations
|
||||
! ==================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,2)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
|
||||
! Loop inside the alpha row to gather all the connected betas
|
||||
lrow = psi_bilinear_matrix_transp_rows(k_b)
|
||||
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
|
||||
do i=1,N_det_beta_unique
|
||||
if (l_b > N_det) exit
|
||||
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
||||
if (lrow /= krow) exit
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
idx(i) = l_b
|
||||
l_b = l_b+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_b, doubles, n_singles_b, n_doubles )
|
||||
|
||||
! Compute Hij for all beta singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
do i=1,n_singles_b
|
||||
l_b = singles_b(i)
|
||||
ASSERT (l_b <= N_det)
|
||||
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
ASSERT (l_a <= N_det)
|
||||
enddo
|
||||
!
|
||||
!! Compute Hij for all beta doubles
|
||||
!! ----------------------------------
|
||||
!
|
||||
!do i=1,n_doubles
|
||||
! l_b = doubles(i)
|
||||
! ASSERT (l_b <= N_det)
|
||||
|
||||
! lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
! ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
! call i_H_j_double_spin_erf( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
|
||||
! l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
! ASSERT (l_a <= N_det)
|
||||
|
||||
! do l=1,N_st
|
||||
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||||
! ! same spin => sij = 0
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
|
||||
! Diagonal contribution
|
||||
! =====================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
double precision, external :: diag_H_mat_elem_erf, diag_S_mat_elem
|
||||
double precision :: c_1(N_states),c_2(N_states)
|
||||
do l = 1, N_states
|
||||
c_1(l) = u_t(l,k_a)
|
||||
enddo
|
||||
|
||||
call diagonal_contrib_to_two_rdm_ab_dm(tmp_det,c_1,big_array,dim1,dim2,dim3,dim4)
|
||||
|
||||
end do
|
||||
deallocate(buffer, singles_a, singles_b, doubles, idx)
|
||||
|
||||
end
|
||||
|
||||
SUBST [ N_int ]
|
||||
|
||||
1;;
|
||||
2;;
|
||||
3;;
|
||||
4;;
|
||||
N_int;;
|
||||
|
||||
END_TEMPLATE
|
@ -1,442 +0,0 @@
|
||||
subroutine all_two_rdm_dm_nstates(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_0,N_st,sze)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the alpha/alpha, beta/beta and alpha/beta part of the two-body density matrix IN CHEMIST NOTATIONS
|
||||
!
|
||||
! Assumes that the determinants are in psi_det
|
||||
!
|
||||
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: u_0(sze,N_st)
|
||||
integer :: k
|
||||
double precision, allocatable :: u_t(:,:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
|
||||
allocate(u_t(N_st,N_det))
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
|
||||
enddo
|
||||
call dtranspose( &
|
||||
u_0, &
|
||||
size(u_0, 1), &
|
||||
u_t, &
|
||||
size(u_t, 1), &
|
||||
N_det, N_st)
|
||||
|
||||
call all_two_rdm_dm_nstates_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1)
|
||||
deallocate(u_t)
|
||||
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine all_two_rdm_dm_nstates_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes two-rdm
|
||||
!
|
||||
! Default should be 1,N_det,0,1
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
select case (N_int)
|
||||
case (1)
|
||||
call all_two_rdm_dm_nstates_work_1(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (2)
|
||||
call all_two_rdm_dm_nstates_work_2(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (3)
|
||||
call all_two_rdm_dm_nstates_work_3(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (4)
|
||||
call all_two_rdm_dm_nstates_work_4(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case default
|
||||
call all_two_rdm_dm_nstates_work_N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
end select
|
||||
end
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine all_two_rdm_dm_nstates_work_$N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes $v_t = H | u_t \\rangle$ and $s_t = S^2 | u_t \\rangle$
|
||||
!
|
||||
! Default should be 1,N_det,0,1
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
|
||||
|
||||
integer :: i,j,k,l
|
||||
integer :: k_a, k_b, l_a, l_b, m_a, m_b
|
||||
integer :: istate
|
||||
integer :: krow, kcol, krow_b, kcol_b
|
||||
integer :: lrow, lcol
|
||||
integer :: mrow, mcol
|
||||
integer(bit_kind) :: spindet($N_int)
|
||||
integer(bit_kind) :: tmp_det($N_int,2)
|
||||
integer(bit_kind) :: tmp_det2($N_int,2)
|
||||
integer(bit_kind) :: tmp_det3($N_int,2)
|
||||
integer(bit_kind), allocatable :: buffer(:,:)
|
||||
integer :: n_doubles
|
||||
integer, allocatable :: doubles(:)
|
||||
integer, allocatable :: singles_a(:)
|
||||
integer, allocatable :: singles_b(:)
|
||||
integer, allocatable :: idx(:), idx0(:)
|
||||
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
|
||||
integer*8 :: k8
|
||||
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
allocate(idx0(maxab))
|
||||
|
||||
do i=1,maxab
|
||||
idx0(i) = i
|
||||
enddo
|
||||
|
||||
! Prepare the array of all alpha single excitations
|
||||
! -------------------------------------------------
|
||||
|
||||
PROVIDE N_int nthreads_davidson
|
||||
!!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
|
||||
! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
|
||||
! !$OMP psi_bilinear_matrix_columns, &
|
||||
! !$OMP psi_det_alpha_unique, psi_det_beta_unique,&
|
||||
! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int,&
|
||||
! !$OMP psi_bilinear_matrix_transp_rows, &
|
||||
! !$OMP psi_bilinear_matrix_transp_columns, &
|
||||
! !$OMP psi_bilinear_matrix_transp_order, N_st, &
|
||||
! !$OMP psi_bilinear_matrix_order_transp_reverse, &
|
||||
! !$OMP psi_bilinear_matrix_columns_loc, &
|
||||
! !$OMP psi_bilinear_matrix_transp_rows_loc, &
|
||||
! !$OMP istart, iend, istep, irp_here, v_t, s_t, &
|
||||
! !$OMP ishift, idx0, u_t, maxab) &
|
||||
! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,&
|
||||
! !$OMP lcol, lrow, l_a, l_b, &
|
||||
! !$OMP buffer, doubles, n_doubles, &
|
||||
! !$OMP tmp_det2, idx, l, kcol_prev, &
|
||||
! !$OMP singles_a, n_singles_a, singles_b, &
|
||||
! !$OMP n_singles_b, k8)
|
||||
|
||||
! Alpha/Beta double excitations
|
||||
! =============================
|
||||
|
||||
allocate( buffer($N_int,maxab), &
|
||||
singles_a(maxab), &
|
||||
singles_b(maxab), &
|
||||
doubles(maxab), &
|
||||
idx(maxab))
|
||||
|
||||
kcol_prev=-1
|
||||
|
||||
ASSERT (iend <= N_det)
|
||||
ASSERT (istart > 0)
|
||||
ASSERT (istep > 0)
|
||||
|
||||
!!$OMP DO SCHEDULE(dynamic,64)
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
if (kcol /= kcol_prev) then
|
||||
call get_all_spin_singles_$N_int( &
|
||||
psi_det_beta_unique, idx0, &
|
||||
tmp_det(1,2), N_det_beta_unique, &
|
||||
singles_b, n_singles_b)
|
||||
endif
|
||||
kcol_prev = kcol
|
||||
|
||||
! Loop over singly excited beta columns
|
||||
! -------------------------------------
|
||||
|
||||
do i=1,n_singles_b
|
||||
lcol = singles_b(i)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
|
||||
ASSERT (l_a <= N_det)
|
||||
idx(j) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
j = j-1
|
||||
|
||||
call get_all_spin_singles_$N_int( &
|
||||
buffer, idx, tmp_det(1,1), j, &
|
||||
singles_a, n_singles_a )
|
||||
|
||||
! Loop over alpha singles
|
||||
! -----------------------
|
||||
|
||||
do k = 1,n_singles_a
|
||||
l_a = singles_a(k)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
!call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
! !$OMP END DO
|
||||
|
||||
! !$OMP DO SCHEDULE(dynamic,64)
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
|
||||
! Single and double alpha exitations
|
||||
! ===================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! ----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
ASSERT (k_b <= N_det)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,1)
|
||||
|
||||
! Loop inside the beta column to gather all the connected alphas
|
||||
lcol = psi_bilinear_matrix_columns(k_a)
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
do i=1,N_det_alpha_unique
|
||||
if (l_a > N_det) exit
|
||||
lcol = psi_bilinear_matrix_columns(l_a)
|
||||
if (lcol /= kcol) exit
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
idx(i) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_a, doubles, n_singles_a, n_doubles )
|
||||
|
||||
! Compute Hij for all alpha singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
do i=1,n_singles_a
|
||||
l_a = singles_a(i)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
! increment the alpha/beta part for single excitations
|
||||
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
! increment the alpha/alpha part for single excitations
|
||||
call off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4)
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
! Compute Hij for all alpha doubles
|
||||
! ----------------------------------
|
||||
|
||||
do i=1,n_doubles
|
||||
l_a = doubles(i)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4)
|
||||
enddo
|
||||
|
||||
|
||||
! Single and double beta excitations
|
||||
! ==================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,2)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
ASSERT (k_b <= N_det)
|
||||
|
||||
! Loop inside the alpha row to gather all the connected betas
|
||||
lrow = psi_bilinear_matrix_transp_rows(k_b)
|
||||
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
|
||||
do i=1,N_det_beta_unique
|
||||
if (l_b > N_det) exit
|
||||
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
||||
if (lrow /= krow) exit
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
idx(i) = l_b
|
||||
l_b = l_b+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_b, doubles, n_singles_b, n_doubles )
|
||||
|
||||
! Compute Hij for all beta singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
do i=1,n_singles_b
|
||||
l_b = singles_b(i)
|
||||
ASSERT (l_b <= N_det)
|
||||
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
! increment the alpha/beta part for single excitations
|
||||
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
! increment the beta /beta part for single excitations
|
||||
call off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
|
||||
enddo
|
||||
|
||||
! Compute Hij for all beta doubles
|
||||
! ----------------------------------
|
||||
|
||||
do i=1,n_doubles
|
||||
l_b = doubles(i)
|
||||
ASSERT (l_b <= N_det)
|
||||
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
! Diagonal contribution
|
||||
! =====================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
|
||||
|
||||
double precision :: c_1(N_states),c_2(N_states)
|
||||
do l = 1, N_states
|
||||
c_1(l) = u_t(l,k_a)
|
||||
enddo
|
||||
|
||||
call diagonal_contrib_to_all_two_rdm_dm(tmp_det,c_1,big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
|
||||
end do
|
||||
!!$OMP END DO
|
||||
deallocate(buffer, singles_a, singles_b, doubles, idx)
|
||||
!!$OMP END PARALLEL
|
||||
|
||||
end
|
||||
|
||||
SUBST [ N_int ]
|
||||
|
||||
1;;
|
||||
2;;
|
||||
3;;
|
||||
4;;
|
||||
N_int;;
|
||||
|
||||
END_TEMPLATE
|
||||
|
@ -5,8 +5,11 @@
|
||||
implicit none
|
||||
double precision, allocatable :: state_weights(:)
|
||||
BEGIN_DOC
|
||||
! all_states_act_two_rdm_alpha_alpha_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-alpha electron pairs
|
||||
! = <Psi| a^{\dagger}_i a^{\dagger}_j a_l a_k |Psi>
|
||||
! all_states_act_two_rdm_alpha_alpha_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of alpha electrons
|
||||
!
|
||||
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \alpha} a_{l \alpha} a_{k \alpha} |Psi>
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
END_DOC
|
||||
allocate(state_weights(N_states))
|
||||
state_weights = 1.d0/dble(N_states)
|
||||
@ -20,11 +23,14 @@
|
||||
|
||||
BEGIN_PROVIDER [double precision, all_states_act_two_rdm_beta_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)]
|
||||
implicit none
|
||||
double precision, allocatable :: state_weights(:)
|
||||
BEGIN_DOC
|
||||
! all_states_act_two_rdm_beta_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for beta-beta electron pairs
|
||||
! = <Psi| a^{\dagger}_i a^{\dagger}_j a_l a_k |Psi>
|
||||
! all_states_act_two_rdm_beta_beta_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of beta electrons
|
||||
!
|
||||
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
END_DOC
|
||||
double precision, allocatable :: state_weights(:)
|
||||
allocate(state_weights(N_states))
|
||||
state_weights = 1.d0/dble(N_states)
|
||||
integer :: ispin
|
||||
@ -39,8 +45,11 @@
|
||||
implicit none
|
||||
double precision, allocatable :: state_weights(:)
|
||||
BEGIN_DOC
|
||||
! all_states_act_two_rdm_alpha_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-beta electron pairs
|
||||
! = <Psi| a^{\dagger}_{i,alpha} a^{\dagger}_{j,beta} a_{l,beta} a_{k,alpha} |Psi>
|
||||
! all_states_act_two_rdm_alpha_beta_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of alpha/beta electrons
|
||||
!
|
||||
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \beta} a_{l \beta} a_{k \alpha} |Psi>
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
END_DOC
|
||||
allocate(state_weights(N_states))
|
||||
state_weights = 1.d0/dble(N_states)
|
||||
@ -61,10 +70,15 @@
|
||||
BEGIN_PROVIDER [double precision, all_states_act_two_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! all_states_act_two_rdm_spin_trace_mo(i,j,k,l) = state average physicist spin trace two-body rdm restricted to the ACTIVE indices
|
||||
! The active part of the two-electron energy can be computed as:
|
||||
! all_states_act_two_rdm_spin_trace_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM
|
||||
!
|
||||
! \sum_{\sigma, \sigma'} <Psi| a^{\dagger}_{i \sigma} a^{\dagger}_{j \sigma'} a_{l \sigma'} a_{k \sigma} |Psi>
|
||||
!
|
||||
! \sum_{i,j,k,l = 1, n_act_orb} all_states_act_two_rdm_spin_trace_mo(i,j,k,l) * < ii jj | kk ll >
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
! The active part of the two-electron energy for the state istate can be computed as:
|
||||
!
|
||||
! \sum_{i,j,k,l = 1, n_act_orb} all_states_act_two_rdm_spin_trace_mo(i,j,k,l,istate) * < ii jj | kk ll >
|
||||
!
|
||||
! with ii = list_act(i), jj = list_act(j), kk = list_act(k), ll = list_act(l)
|
||||
END_DOC
|
@ -1,269 +0,0 @@
|
||||
|
||||
|
||||
subroutine diagonal_contrib_to_two_rdm_ab_dm(det_1,c_1,big_array,dim1,dim2,dim3,dim4)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the DIAGONAL PART of the alpha/beta two body rdm IN CHEMIST NOTATIONS
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2)
|
||||
double precision, intent(in) :: c_1(N_states)
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate
|
||||
double precision :: c_1_bis
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
do istate = 1, N_states
|
||||
c_1_bis = c_1(istate) * c_1(istate)
|
||||
do i = 1, n_occ_ab(1)
|
||||
h1 = occ(i,1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
h2 = occ(j,2)
|
||||
big_array(h1,h1,h2,h2,istate) += c_1_bis
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
subroutine diagonal_contrib_to_all_two_rdm_dm(det_1,c_1,big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the DIAGONAL PART of ALL THREE two body rdm IN CHEMIST NOTATIONS
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2)
|
||||
double precision, intent(in) :: c_1(N_states)
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate
|
||||
double precision :: c_1_bis
|
||||
BEGIN_DOC
|
||||
! no factor 1/2 have to be taken into account as the permutations are already taken into account
|
||||
END_DOC
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
do istate = 1, N_states
|
||||
c_1_bis = c_1(istate) * c_1(istate)
|
||||
do i = 1, n_occ_ab(1)
|
||||
h1 = occ(i,1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
h2 = occ(j,2)
|
||||
big_array_ab(h1,h1,h2,h2,istate) += c_1_bis
|
||||
enddo
|
||||
do j = 1, n_occ_ab(1)
|
||||
h2 = occ(j,1)
|
||||
big_array_aa(h1,h1,h2,h2,istate) += 0.5d0 * c_1_bis
|
||||
big_array_aa(h1,h2,h2,h1,istate) -= 0.5d0 * c_1_bis
|
||||
enddo
|
||||
enddo
|
||||
do i = 1, n_occ_ab(2)
|
||||
h1 = occ(i,2)
|
||||
do j = 1, n_occ_ab(2)
|
||||
h2 = occ(j,2)
|
||||
big_array_bb(h1,h1,h2,h2,istate) += 0.5d0 * c_1_bis
|
||||
big_array_bb(h1,h2,h2,h1,istate) -= 0.5d0 * c_1_bis
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
subroutine off_diagonal_double_to_two_rdm_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the alpha/beta 2RDM only for DOUBLE EXCITATIONS IN CHEMIST NOTATIONS
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
double precision, intent(in) :: c_1(N_states),c_2(N_states)
|
||||
integer :: i,j,h1,h2,p1,p2,istate
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
call get_double_excitation(det_1,det_2,exc,phase,N_int)
|
||||
h1 = exc(1,1,1)
|
||||
h2 = exc(1,1,2)
|
||||
p1 = exc(1,2,1)
|
||||
p2 = exc(1,2,2)
|
||||
do istate = 1, N_states
|
||||
big_array(h1,p1,h2,p2,istate) += c_1(istate) * phase * c_2(istate)
|
||||
! big_array(p1,h1,p2,h2,istate) += c_1(istate) * phase * c_2(istate)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine off_diagonal_single_to_two_rdm_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the alpha/beta 2RDM only for SINGLE EXCITATIONS IN CHEMIST NOTATIONS
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
double precision, intent(in) :: c_1(N_states),c_2(N_states)
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
h1 = exc(1,1,1)
|
||||
p1 = exc(1,2,1)
|
||||
do istate = 1, N_states
|
||||
do i = 1, n_occ_ab(2)
|
||||
h2 = occ(i,2)
|
||||
big_array(h1,p1,h2,h2,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
! Mono beta
|
||||
h1 = exc(1,1,2)
|
||||
p1 = exc(1,2,2)
|
||||
do istate = 1, N_states
|
||||
do i = 1, n_occ_ab(1)
|
||||
h2 = occ(i,1)
|
||||
big_array(h2,h2,h1,p1,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine off_diagonal_single_to_two_rdm_aa_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the alpha/alpha 2RDM only for SINGLE EXCITATIONS IN CHEMIST NOTATIONS
|
||||
END_DOC
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
double precision, intent(in) :: c_1(N_states),c_2(N_states)
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
h1 = exc(1,1,1)
|
||||
p1 = exc(1,2,1)
|
||||
do istate = 1, N_states
|
||||
do i = 1, n_occ_ab(1)
|
||||
h2 = occ(i,1)
|
||||
big_array(h1,p1,h2,h2,istate) += 0.5d0 * c_1(istate) * c_2(istate) * phase
|
||||
big_array(h1,h2,h2,p1,istate) -= 0.5d0 * c_1(istate) * c_2(istate) * phase
|
||||
|
||||
big_array(h2,h2,h1,p1,istate) += 0.5d0 * c_1(istate) * c_2(istate) * phase
|
||||
big_array(h2,p1,h1,h2,istate) -= 0.5d0 * c_1(istate) * c_2(istate) * phase
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
return
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine off_diagonal_single_to_two_rdm_bb_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the beta /beta 2RDM only for SINGLE EXCITATIONS IN CHEMIST NOTATIONS
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
double precision, intent(in) :: c_1(N_states),c_2(N_states)
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
if (exc(0,1,1) == 1) then
|
||||
return
|
||||
else
|
||||
! Mono beta
|
||||
h1 = exc(1,1,2)
|
||||
p1 = exc(1,2,2)
|
||||
do istate = 1, N_states
|
||||
do i = 1, n_occ_ab(2)
|
||||
h2 = occ(i,2)
|
||||
big_array(h1,p1,h2,h2,istate) += 0.5d0 * c_1(istate) * c_2(istate) * phase
|
||||
big_array(h1,h2,h2,p1,istate) -= 0.5d0 * c_1(istate) * c_2(istate) * phase
|
||||
|
||||
big_array(h2,h2,h1,p1,istate) += 0.5d0 * c_1(istate) * c_2(istate) * phase
|
||||
big_array(h2,p1,h1,h2,istate) -= 0.5d0 * c_1(istate) * c_2(istate) * phase
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
subroutine off_diagonal_double_to_two_rdm_aa_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the alpha/alpha 2RDM only for DOUBLE EXCITATIONS IN CHEMIST NOTATIONS
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
|
||||
double precision, intent(in) :: c_1(N_states),c_2(N_states)
|
||||
integer :: i,j,h1,h2,p1,p2,istate
|
||||
integer :: exc(0:2,2)
|
||||
double precision :: phase
|
||||
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
|
||||
h1 =exc(1,1)
|
||||
h2 =exc(2,1)
|
||||
p1 =exc(1,2)
|
||||
p2 =exc(2,2)
|
||||
!print*,'h1,p1,h2,p2',h1,p1,h2,p2,c_1(istate) * phase * c_2(istate)
|
||||
do istate = 1, N_states
|
||||
big_array(h1,p1,h2,p2,istate) += 0.5d0 * c_1(istate) * phase * c_2(istate)
|
||||
big_array(h1,p2,h2,p1,istate) -= 0.5d0 * c_1(istate) * phase * c_2(istate)
|
||||
|
||||
big_array(h2,p2,h1,p1,istate) += 0.5d0 * c_1(istate) * phase * c_2(istate)
|
||||
big_array(h2,p1,h1,p2,istate) -= 0.5d0 * c_1(istate) * phase * c_2(istate)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine off_diagonal_double_to_two_rdm_bb_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the beta /beta 2RDM only for DOUBLE EXCITATIONS
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
|
||||
double precision, intent(in) :: c_1(N_states),c_2(N_states)
|
||||
integer :: i,j,h1,h2,p1,p2,istate
|
||||
integer :: exc(0:2,2)
|
||||
double precision :: phase
|
||||
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
|
||||
h1 =exc(1,1)
|
||||
h2 =exc(2,1)
|
||||
p1 =exc(1,2)
|
||||
p2 =exc(2,2)
|
||||
!print*,'h1,p1,h2,p2',h1,p1,h2,p2,c_1(istate) * phase * c_2(istate)
|
||||
do istate = 1, N_states
|
||||
big_array(h1,p1,h2,p2,istate) += 0.5d0 * c_1(istate) * phase * c_2(istate)
|
||||
big_array(h1,p2,h2,p1,istate) -= 0.5d0 * c_1(istate) * phase * c_2(istate)
|
||||
|
||||
big_array(h2,p2,h1,p1,istate) += 0.5d0 * c_1(istate) * phase * c_2(istate)
|
||||
big_array(h2,p1,h1,p2,istate) -= 0.5d0 * c_1(istate) * phase * c_2(istate)
|
||||
enddo
|
||||
end
|
||||
|
@ -1,807 +0,0 @@
|
||||
subroutine orb_range_diag_to_all_two_rdm_dm_buffer(det_1,c_1,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the DIAGONAL PART of the two body rdms in a specific range of orbitals for a given determinant det_1
|
||||
!
|
||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!
|
||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!
|
||||
! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!
|
||||
! ispin == 1 :: alpha/ alpha
|
||||
! ispin == 2 :: beta / beta
|
||||
! ispin == 3 :: alpha/ beta
|
||||
! ispin == 4 :: spin traced <=> total two-rdm
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: ispin,sze_buff
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2)
|
||||
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
||||
double precision, intent(in) :: c_1
|
||||
double precision, intent(out) :: values(sze_buff)
|
||||
integer , intent(out) :: keys(4,sze_buff)
|
||||
integer , intent(inout):: nkeys
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2
|
||||
integer(bit_kind) :: det_1_act(N_int,2)
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
do i = 1, N_int
|
||||
det_1_act(i,1) = iand(det_1(i,1),orb_bitmask(i))
|
||||
det_1_act(i,2) = iand(det_1(i,2),orb_bitmask(i))
|
||||
enddo
|
||||
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
call bitstring_to_list_ab(det_1_act, occ, n_occ_ab, N_int)
|
||||
logical :: is_integer_in_string
|
||||
integer :: i1,i2
|
||||
if(alpha_beta)then
|
||||
do i = 1, n_occ_ab(1)
|
||||
i1 = occ(i,1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
i2 = occ(j,2)
|
||||
h1 = list_orb_reverse(i1)
|
||||
h2 = list_orb_reverse(i2)
|
||||
nkeys += 1
|
||||
values(nkeys) = c_1
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h1
|
||||
keys(4,nkeys) = h2
|
||||
enddo
|
||||
enddo
|
||||
else if (alpha_alpha)then
|
||||
do i = 1, n_occ_ab(1)
|
||||
i1 = occ(i,1)
|
||||
do j = 1, n_occ_ab(1)
|
||||
i2 = occ(j,1)
|
||||
h1 = list_orb_reverse(i1)
|
||||
h2 = list_orb_reverse(i2)
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h1
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
values(nkeys) = -0.5d0 * c_1
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = h1
|
||||
enddo
|
||||
enddo
|
||||
else if (beta_beta)then
|
||||
do i = 1, n_occ_ab(2)
|
||||
i1 = occ(i,2)
|
||||
do j = 1, n_occ_ab(2)
|
||||
i2 = occ(j,2)
|
||||
h1 = list_orb_reverse(i1)
|
||||
h2 = list_orb_reverse(i2)
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h1
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
values(nkeys) = -0.5d0 * c_1
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = h1
|
||||
enddo
|
||||
enddo
|
||||
else if(spin_trace)then
|
||||
! 0.5 * (alpha beta + beta alpha)
|
||||
do i = 1, n_occ_ab(1)
|
||||
i1 = occ(i,1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
i2 = occ(j,2)
|
||||
h1 = list_orb_reverse(i1)
|
||||
h2 = list_orb_reverse(i2)
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h1
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = h1
|
||||
enddo
|
||||
enddo
|
||||
do i = 1, n_occ_ab(1)
|
||||
i1 = occ(i,1)
|
||||
do j = 1, n_occ_ab(1)
|
||||
i2 = occ(j,1)
|
||||
h1 = list_orb_reverse(i1)
|
||||
h2 = list_orb_reverse(i2)
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h1
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
values(nkeys) = -0.5d0 * c_1
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = h1
|
||||
enddo
|
||||
enddo
|
||||
do i = 1, n_occ_ab(2)
|
||||
i1 = occ(i,2)
|
||||
do j = 1, n_occ_ab(2)
|
||||
i2 = occ(j,2)
|
||||
h1 = list_orb_reverse(i1)
|
||||
h2 = list_orb_reverse(i2)
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h1
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
values(nkeys) = -0.5d0 * c_1
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = h1
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
subroutine orb_range_off_diag_double_to_two_rdm_ab_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!
|
||||
! a given couple of determinant det_1, det_2 being a alpha/beta DOUBLE excitation with respect to one another
|
||||
!
|
||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!
|
||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!
|
||||
! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!
|
||||
! ispin == 1 :: alpha/ alpha
|
||||
! ispin == 2 :: beta / beta
|
||||
! ispin == 3 :: alpha/ beta
|
||||
! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!
|
||||
! here, only ispin == 3 or 4 will do something
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: ispin,sze_buff
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
double precision, intent(out) :: values(sze_buff)
|
||||
integer , intent(out) :: keys(4,sze_buff)
|
||||
integer , intent(inout):: nkeys
|
||||
integer :: i,j,h1,h2,p1,p2
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
call get_double_excitation(det_1,det_2,exc,phase,N_int)
|
||||
h1 = exc(1,1,1)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
h2 = exc(1,1,2)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
p1 = exc(1,2,1)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
p2 = exc(1,2,2)
|
||||
if(list_orb_reverse(p2).lt.0)return
|
||||
p2 = list_orb_reverse(p2)
|
||||
if(alpha_beta)then
|
||||
nkeys += 1
|
||||
values(nkeys) = c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
else if(spin_trace)then
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = p1
|
||||
keys(2,nkeys) = p2
|
||||
keys(3,nkeys) = h1
|
||||
keys(4,nkeys) = h2
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine orb_range_off_diag_single_to_two_rdm_ab_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!
|
||||
! a given couple of determinant det_1, det_2 being a SINGLE excitation with respect to one another
|
||||
!
|
||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!
|
||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!
|
||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!
|
||||
! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!
|
||||
! ispin == 1 :: alpha/ alpha
|
||||
! ispin == 2 :: beta / beta
|
||||
! ispin == 3 :: alpha/ beta
|
||||
! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!
|
||||
! here, only ispin == 3 or 4 will do something
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: ispin,sze_buff
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
double precision, intent(out) :: values(sze_buff)
|
||||
integer , intent(out) :: keys(4,sze_buff)
|
||||
integer , intent(inout):: nkeys
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
if(alpha_beta)then
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
h1 = exc(1,1,1)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = exc(1,2,1)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
do i = 1, n_occ_ab(2)
|
||||
h2 = occ(i,2)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
nkeys += 1
|
||||
values(nkeys) = c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
enddo
|
||||
else
|
||||
! Mono beta
|
||||
h1 = exc(1,1,2)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = exc(1,2,2)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
do i = 1, n_occ_ab(1)
|
||||
h2 = occ(i,1)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
nkeys += 1
|
||||
values(nkeys) = c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
enddo
|
||||
endif
|
||||
else if(spin_trace)then
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
h1 = exc(1,1,1)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = exc(1,2,1)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
do i = 1, n_occ_ab(2)
|
||||
h2 = occ(i,2)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
enddo
|
||||
else
|
||||
! Mono beta
|
||||
h1 = exc(1,1,2)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = exc(1,2,2)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
!print*,'****************'
|
||||
!print*,'****************'
|
||||
!print*,'h1,p1',h1,p1
|
||||
do i = 1, n_occ_ab(1)
|
||||
h2 = occ(i,1)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
! print*,'h2 = ',h2
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
enddo
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine orb_range_off_diag_single_to_two_rdm_aa_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!
|
||||
! a given couple of determinant det_1, det_2 being a ALPHA SINGLE excitation with respect to one another
|
||||
!
|
||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!
|
||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!
|
||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!
|
||||
! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!
|
||||
! ispin == 1 :: alpha/ alpha
|
||||
! ispin == 2 :: beta / beta
|
||||
! ispin == 3 :: alpha/ beta
|
||||
! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!
|
||||
! here, only ispin == 1 or 4 will do something
|
||||
END_DOC
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: ispin,sze_buff
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
double precision, intent(out) :: values(sze_buff)
|
||||
integer , intent(out) :: keys(4,sze_buff)
|
||||
integer , intent(inout):: nkeys
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
if(alpha_alpha.or.spin_trace)then
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
h1 = exc(1,1,1)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = exc(1,2,1)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
do i = 1, n_occ_ab(1)
|
||||
h2 = occ(i,1)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
enddo
|
||||
else
|
||||
return
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine orb_range_off_diag_single_to_two_rdm_bb_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!
|
||||
! a given couple of determinant det_1, det_2 being a BETA SINGLE excitation with respect to one another
|
||||
!
|
||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!
|
||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!
|
||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!
|
||||
! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!
|
||||
! ispin == 1 :: alpha/ alpha
|
||||
! ispin == 2 :: beta / beta
|
||||
! ispin == 3 :: alpha/ beta
|
||||
! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!
|
||||
! here, only ispin == 2 or 4 will do something
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: ispin,sze_buff
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
double precision, intent(out) :: values(sze_buff)
|
||||
integer , intent(out) :: keys(4,sze_buff)
|
||||
integer , intent(inout):: nkeys
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
|
||||
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
if(beta_beta.or.spin_trace)then
|
||||
if (exc(0,1,1) == 1) then
|
||||
return
|
||||
else
|
||||
! Mono beta
|
||||
h1 = exc(1,1,2)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = exc(1,2,2)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
do i = 1, n_occ_ab(2)
|
||||
h2 = occ(i,2)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
enddo
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
subroutine orb_range_off_diag_double_to_two_rdm_aa_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!
|
||||
! a given couple of determinant det_1, det_2 being a ALPHA/ALPHA DOUBLE excitation with respect to one another
|
||||
!
|
||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!
|
||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!
|
||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!
|
||||
! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!
|
||||
! ispin == 1 :: alpha/ alpha
|
||||
! ispin == 2 :: beta / beta
|
||||
! ispin == 3 :: alpha/ beta
|
||||
! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!
|
||||
! here, only ispin == 1 or 4 will do something
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: ispin,sze_buff
|
||||
integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
double precision, intent(out) :: values(sze_buff)
|
||||
integer , intent(out) :: keys(4,sze_buff)
|
||||
integer , intent(inout):: nkeys
|
||||
|
||||
|
||||
integer :: i,j,h1,h2,p1,p2
|
||||
integer :: exc(0:2,2)
|
||||
double precision :: phase
|
||||
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
|
||||
h1 =exc(1,1)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
h2 =exc(2,1)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
p1 =exc(1,2)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
p2 =exc(2,2)
|
||||
if(list_orb_reverse(p2).lt.0)return
|
||||
p2 = list_orb_reverse(p2)
|
||||
if(alpha_alpha.or.spin_trace)then
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine orb_range_off_diag_double_to_two_rdm_bb_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!
|
||||
! a given couple of determinant det_1, det_2 being a BETA /BETA DOUBLE excitation with respect to one another
|
||||
!
|
||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!
|
||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!
|
||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!
|
||||
! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!
|
||||
! ispin == 1 :: alpha/ alpha
|
||||
! ispin == 2 :: beta / beta
|
||||
! ispin == 3 :: alpha/ beta
|
||||
! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!
|
||||
! here, only ispin == 2 or 4 will do something
|
||||
END_DOC
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: ispin,sze_buff
|
||||
integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
double precision, intent(out) :: values(sze_buff)
|
||||
integer , intent(out) :: keys(4,sze_buff)
|
||||
integer , intent(inout):: nkeys
|
||||
|
||||
integer :: i,j,h1,h2,p1,p2
|
||||
integer :: exc(0:2,2)
|
||||
double precision :: phase
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
|
||||
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
|
||||
h1 =exc(1,1)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
h2 =exc(2,1)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
p1 =exc(1,2)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
p2 =exc(2,2)
|
||||
if(list_orb_reverse(p2).lt.0)return
|
||||
p2 = list_orb_reverse(p2)
|
||||
if(beta_beta.or.spin_trace)then
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
endif
|
||||
end
|
||||
|
@ -1,85 +0,0 @@
|
||||
|
||||
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_openmp_alpha_alpha_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
implicit none
|
||||
double precision, allocatable :: state_weights(:)
|
||||
BEGIN_DOC
|
||||
! state_av_act_two_rdm_openmp_alpha_alpha_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-alpha electron pairs
|
||||
! = <Psi| a^{\dagger}_i a^{\dagger}_j a_l a_k |Psi>
|
||||
END_DOC
|
||||
allocate(state_weights(N_states))
|
||||
state_weights = state_average_weight
|
||||
integer :: ispin
|
||||
! condition for alpha/beta spin
|
||||
ispin = 1
|
||||
state_av_act_two_rdm_openmp_alpha_alpha_mo = 0.D0
|
||||
call orb_range_two_rdm_state_av_openmp(state_av_act_two_rdm_openmp_alpha_alpha_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_openmp_beta_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
implicit none
|
||||
double precision, allocatable :: state_weights(:)
|
||||
BEGIN_DOC
|
||||
! state_av_act_two_rdm_openmp_beta_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for beta-beta electron pairs
|
||||
! = <Psi| a^{\dagger}_i a^{\dagger}_j a_l a_k |Psi>
|
||||
END_DOC
|
||||
allocate(state_weights(N_states))
|
||||
state_weights = state_average_weight
|
||||
integer :: ispin
|
||||
! condition for alpha/beta spin
|
||||
ispin = 2
|
||||
state_av_act_two_rdm_openmp_beta_beta_mo = 0.d0
|
||||
call orb_range_two_rdm_state_av_openmp(state_av_act_two_rdm_openmp_beta_beta_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_openmp_alpha_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
implicit none
|
||||
double precision, allocatable :: state_weights(:)
|
||||
BEGIN_DOC
|
||||
! state_av_act_two_rdm_openmp_alpha_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-beta electron pairs
|
||||
! = <Psi| a^{\dagger}_{i,alpha} a^{\dagger}_{j,beta} a_{l,beta} a_{k,alpha} |Psi>
|
||||
END_DOC
|
||||
allocate(state_weights(N_states))
|
||||
state_weights = state_average_weight
|
||||
integer :: ispin
|
||||
! condition for alpha/beta spin
|
||||
print*,''
|
||||
print*,''
|
||||
print*,''
|
||||
print*,'providint state_av_act_two_rdm_openmp_alpha_beta_mo '
|
||||
ispin = 3
|
||||
print*,'ispin = ',ispin
|
||||
state_av_act_two_rdm_openmp_alpha_beta_mo = 0.d0
|
||||
call orb_range_two_rdm_state_av_openmp(state_av_act_two_rdm_openmp_alpha_beta_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_openmp_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! state_av_act_two_rdm_openmp_spin_trace_mo(i,j,k,l) = state average physicist spin trace two-body rdm restricted to the ACTIVE indices
|
||||
! The active part of the two-electron energy can be computed as:
|
||||
!
|
||||
! \sum_{i,j,k,l = 1, n_act_orb} state_av_act_two_rdm_openmp_spin_trace_mo(i,j,k,l) * < ii jj | kk ll >
|
||||
!
|
||||
! with ii = list_act(i), jj = list_act(j), kk = list_act(k), ll = list_act(l)
|
||||
END_DOC
|
||||
double precision, allocatable :: state_weights(:)
|
||||
allocate(state_weights(N_states))
|
||||
state_weights = state_average_weight
|
||||
integer :: ispin
|
||||
! condition for alpha/beta spin
|
||||
ispin = 4
|
||||
state_av_act_two_rdm_openmp_spin_trace_mo = 0.d0
|
||||
integer :: i
|
||||
double precision :: wall_0,wall_1
|
||||
call wall_time(wall_0)
|
||||
print*,'providing the state average TWO-RDM ...'
|
||||
call orb_range_two_rdm_state_av_openmp(state_av_act_two_rdm_openmp_spin_trace_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
||||
|
||||
call wall_time(wall_1)
|
||||
print*,'Time to provide the state average TWO-RDM',wall_1 - wall_0
|
||||
END_PROVIDER
|
||||
|
@ -1,568 +0,0 @@
|
||||
subroutine orb_range_two_rdm_state_av_openmp(big_array,dim1,norb,list_orb,state_weights,ispin,u_0,N_st,sze)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! if ispin == 1 :: alpha/alpha 2rdm
|
||||
! == 2 :: beta /beta 2rdm
|
||||
! == 3 :: alpha/beta 2rdm
|
||||
! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba))
|
||||
!
|
||||
! Assumes that the determinants are in psi_det
|
||||
!
|
||||
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
|
||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
||||
double precision, intent(in) :: u_0(sze,N_st),state_weights(N_st)
|
||||
|
||||
integer :: k
|
||||
double precision, allocatable :: u_t(:,:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
|
||||
allocate(u_t(N_st,N_det))
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
|
||||
enddo
|
||||
call dtranspose( &
|
||||
u_0, &
|
||||
size(u_0, 1), &
|
||||
u_t, &
|
||||
size(u_t, 1), &
|
||||
N_det, N_st)
|
||||
|
||||
call orb_range_two_rdm_state_av_openmp_work(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,1,N_det,0,1)
|
||||
deallocate(u_t)
|
||||
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine orb_range_two_rdm_state_av_openmp_work(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes two-rdm
|
||||
!
|
||||
! Default should be 1,N_det,0,1
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
|
||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
||||
double precision, intent(in) :: u_t(N_st,N_det),state_weights(N_st)
|
||||
|
||||
integer :: k
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
select case (N_int)
|
||||
case (1)
|
||||
call orb_range_two_rdm_state_av_openmp_work_1(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (2)
|
||||
call orb_range_two_rdm_state_av_openmp_work_2(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (3)
|
||||
call orb_range_two_rdm_state_av_openmp_work_3(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (4)
|
||||
call orb_range_two_rdm_state_av_openmp_work_4(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case default
|
||||
call orb_range_two_rdm_state_av_openmp_work_N_int(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
end select
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
use bitmasks
|
||||
use omp_lib
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the two rdm for the N_st vectors |u_t>
|
||||
! if ispin == 1 :: alpha/alpha 2rdm
|
||||
! == 2 :: beta /beta 2rdm
|
||||
! == 3 :: alpha/beta 2rdm
|
||||
! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba))
|
||||
! The 2rdm will be computed only on the list of orbitals list_orb, which contains norb
|
||||
! In any cases, the state average weights will be used with an array state_weights
|
||||
! Default should be 1,N_det,0,1 for istart,iend,ishift,istep
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
double precision, intent(in) :: u_t(N_st,N_det),state_weights(N_st)
|
||||
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
|
||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
||||
|
||||
integer(omp_lock_kind) :: lock_2rdm
|
||||
integer :: i,j,k,l
|
||||
integer :: k_a, k_b, l_a, l_b
|
||||
integer :: krow, kcol
|
||||
integer :: lrow, lcol
|
||||
integer(bit_kind) :: spindet($N_int)
|
||||
integer(bit_kind) :: tmp_det($N_int,2)
|
||||
integer(bit_kind) :: tmp_det2($N_int,2)
|
||||
integer(bit_kind) :: tmp_det3($N_int,2)
|
||||
integer(bit_kind), allocatable :: buffer(:,:)
|
||||
integer :: n_doubles
|
||||
integer, allocatable :: doubles(:)
|
||||
integer, allocatable :: singles_a(:)
|
||||
integer, allocatable :: singles_b(:)
|
||||
integer, allocatable :: idx(:), idx0(:)
|
||||
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
|
||||
double precision :: c_average
|
||||
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
integer(bit_kind) :: orb_bitmask($N_int)
|
||||
integer :: list_orb_reverse(mo_num)
|
||||
integer, allocatable :: keys(:,:)
|
||||
double precision, allocatable :: values(:)
|
||||
integer :: nkeys,sze_buff
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
else
|
||||
print*,'Wrong parameter for ispin in general_two_rdm_state_av_openmp_work'
|
||||
print*,'ispin = ',ispin
|
||||
stop
|
||||
endif
|
||||
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
call list_to_bitstring( orb_bitmask, list_orb, norb, N_int)
|
||||
sze_buff = norb ** 3 + 6 * norb
|
||||
list_orb_reverse = -1000
|
||||
do i = 1, norb
|
||||
list_orb_reverse(list_orb(i)) = i
|
||||
enddo
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
allocate(idx0(maxab))
|
||||
|
||||
do i=1,maxab
|
||||
idx0(i) = i
|
||||
enddo
|
||||
call omp_init_lock(lock_2rdm)
|
||||
|
||||
! Prepare the array of all alpha single excitations
|
||||
! -------------------------------------------------
|
||||
|
||||
PROVIDE N_int nthreads_davidson elec_alpha_num
|
||||
!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
|
||||
!$OMP SHARED(psi_bilinear_matrix_rows, N_det,lock_2rdm,&
|
||||
!$OMP psi_bilinear_matrix_columns, &
|
||||
!$OMP psi_det_alpha_unique, psi_det_beta_unique,&
|
||||
!$OMP n_det_alpha_unique, n_det_beta_unique, N_int,&
|
||||
!$OMP psi_bilinear_matrix_transp_rows, &
|
||||
!$OMP psi_bilinear_matrix_transp_columns, &
|
||||
!$OMP psi_bilinear_matrix_transp_order, N_st, &
|
||||
!$OMP psi_bilinear_matrix_order_transp_reverse, &
|
||||
!$OMP psi_bilinear_matrix_columns_loc, &
|
||||
!$OMP psi_bilinear_matrix_transp_rows_loc,elec_alpha_num, &
|
||||
!$OMP istart, iend, istep, irp_here,list_orb_reverse, n_states, state_weights, dim1, &
|
||||
!$OMP ishift, idx0, u_t, maxab, alpha_alpha,beta_beta,alpha_beta,spin_trace,ispin,big_array,sze_buff,orb_bitmask) &
|
||||
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,c_1, c_2, &
|
||||
!$OMP lcol, lrow, l_a, l_b, &
|
||||
!$OMP buffer, doubles, n_doubles, &
|
||||
!$OMP tmp_det2, idx, l, kcol_prev, &
|
||||
!$OMP singles_a, n_singles_a, singles_b, &
|
||||
!$OMP n_singles_b, nkeys, keys, values, c_average)
|
||||
|
||||
! Alpha/Beta double excitations
|
||||
! =============================
|
||||
nkeys = 0
|
||||
allocate( keys(4,sze_buff), values(sze_buff))
|
||||
allocate( buffer($N_int,maxab), &
|
||||
singles_a(maxab), &
|
||||
singles_b(maxab), &
|
||||
doubles(maxab), &
|
||||
idx(maxab))
|
||||
|
||||
kcol_prev=-1
|
||||
|
||||
ASSERT (iend <= N_det)
|
||||
ASSERT (istart > 0)
|
||||
ASSERT (istep > 0)
|
||||
|
||||
!$OMP DO SCHEDULE(dynamic,64)
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
if (kcol /= kcol_prev) then
|
||||
call get_all_spin_singles_$N_int( &
|
||||
psi_det_beta_unique, idx0, &
|
||||
tmp_det(1,2), N_det_beta_unique, &
|
||||
singles_b, n_singles_b)
|
||||
endif
|
||||
kcol_prev = kcol
|
||||
|
||||
! Loop over singly excited beta columns
|
||||
! -------------------------------------
|
||||
|
||||
do i=1,n_singles_b
|
||||
lcol = singles_b(i)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
|
||||
ASSERT (l_a <= N_det)
|
||||
idx(j) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
j = j-1
|
||||
|
||||
call get_all_spin_singles_$N_int( &
|
||||
buffer, idx, tmp_det(1,1), j, &
|
||||
singles_a, n_singles_a )
|
||||
|
||||
! Loop over alpha singles
|
||||
! -----------------------
|
||||
|
||||
if(alpha_beta.or.spin_trace)then
|
||||
do k = 1,n_singles_a
|
||||
l_a = singles_a(k)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
c_average = 0.d0
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
c_average += c_1(l) * c_2(l) * state_weights(l)
|
||||
enddo
|
||||
if(alpha_beta)then
|
||||
! only ONE contribution
|
||||
if (nkeys+1 .ge. size(values)) then
|
||||
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
endif
|
||||
else if (spin_trace)then
|
||||
! TWO contributions
|
||||
if (nkeys+2 .ge. size(values)) then
|
||||
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
endif
|
||||
endif
|
||||
call orb_range_off_diag_double_to_two_rdm_ab_dm_buffer(tmp_det,tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
|
||||
enddo
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO SCHEDULE(dynamic,64)
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
|
||||
! Single and double alpha exitations
|
||||
! ===================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! ----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
ASSERT (k_b <= N_det)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,1)
|
||||
|
||||
! Loop inside the beta column to gather all the connected alphas
|
||||
lcol = psi_bilinear_matrix_columns(k_a)
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
do i=1,N_det_alpha_unique
|
||||
if (l_a > N_det) exit
|
||||
lcol = psi_bilinear_matrix_columns(l_a)
|
||||
if (lcol /= kcol) exit
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
idx(i) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_a, doubles, n_singles_a, n_doubles )
|
||||
|
||||
! Compute Hij for all alpha singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
do i=1,n_singles_a
|
||||
l_a = singles_a(i)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
c_average = 0.d0
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
c_average += c_1(l) * c_2(l) * state_weights(l)
|
||||
enddo
|
||||
if(alpha_beta.or.spin_trace.or.alpha_alpha)then
|
||||
! increment the alpha/beta part for single excitations
|
||||
if (nkeys+ 2 * elec_alpha_num .ge. sze_buff) then
|
||||
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_single_to_two_rdm_ab_dm_buffer(tmp_det, tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
! increment the alpha/alpha part for single excitations
|
||||
if (nkeys+4 * elec_alpha_num .ge. sze_buff ) then
|
||||
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_single_to_two_rdm_aa_dm_buffer(tmp_det,tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
! Compute Hij for all alpha doubles
|
||||
! ----------------------------------
|
||||
|
||||
if(alpha_alpha.or.spin_trace)then
|
||||
do i=1,n_doubles
|
||||
l_a = doubles(i)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
c_average = 0.d0
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
c_average += c_1(l) * c_2(l) * state_weights(l)
|
||||
enddo
|
||||
if (nkeys+4 .ge. sze_buff) then
|
||||
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_double_to_two_rdm_aa_dm_buffer(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
enddo
|
||||
endif
|
||||
|
||||
|
||||
! Single and double beta excitations
|
||||
! ==================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,2)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
ASSERT (k_b <= N_det)
|
||||
|
||||
! Loop inside the alpha row to gather all the connected betas
|
||||
lrow = psi_bilinear_matrix_transp_rows(k_b)
|
||||
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
|
||||
do i=1,N_det_beta_unique
|
||||
if (l_b > N_det) exit
|
||||
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
||||
if (lrow /= krow) exit
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
idx(i) = l_b
|
||||
l_b = l_b+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_b, doubles, n_singles_b, n_doubles )
|
||||
|
||||
! Compute Hij for all beta singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
do i=1,n_singles_b
|
||||
l_b = singles_b(i)
|
||||
ASSERT (l_b <= N_det)
|
||||
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
c_average = 0.d0
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
c_average += c_1(l) * c_2(l) * state_weights(l)
|
||||
enddo
|
||||
if(alpha_beta.or.spin_trace.or.beta_beta)then
|
||||
! increment the alpha/beta part for single excitations
|
||||
if (nkeys+2 * elec_alpha_num .ge. sze_buff ) then
|
||||
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_single_to_two_rdm_ab_dm_buffer(tmp_det, tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
! increment the beta /beta part for single excitations
|
||||
if (nkeys+4 * elec_alpha_num .ge. sze_buff) then
|
||||
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_single_to_two_rdm_bb_dm_buffer(tmp_det, tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Compute Hij for all beta doubles
|
||||
! ----------------------------------
|
||||
|
||||
if(beta_beta.or.spin_trace)then
|
||||
do i=1,n_doubles
|
||||
l_b = doubles(i)
|
||||
ASSERT (l_b <= N_det)
|
||||
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
c_average = 0.d0
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
c_average += c_1(l) * c_2(l) * state_weights(l)
|
||||
enddo
|
||||
if (nkeys+4 .ge. sze_buff) then
|
||||
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_double_to_two_rdm_bb_dm_buffer(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
enddo
|
||||
endif
|
||||
|
||||
|
||||
! Diagonal contribution
|
||||
! =====================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
|
||||
|
||||
double precision :: c_1(N_states),c_2(N_states)
|
||||
c_average = 0.d0
|
||||
do l = 1, N_states
|
||||
c_1(l) = u_t(l,k_a)
|
||||
c_average += c_1(l) * c_1(l) * state_weights(l)
|
||||
enddo
|
||||
|
||||
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
call orb_range_diag_to_all_two_rdm_dm_buffer(tmp_det,c_average,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
|
||||
end do
|
||||
!$OMP END DO
|
||||
deallocate(buffer, singles_a, singles_b, doubles, idx, keys, values)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
end
|
||||
|
||||
SUBST [ N_int ]
|
||||
|
||||
1;;
|
||||
2;;
|
||||
3;;
|
||||
4;;
|
||||
N_int;;
|
||||
|
||||
END_TEMPLATE
|
||||
|
||||
|
||||
subroutine update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm)
|
||||
use omp_lib
|
||||
implicit none
|
||||
integer, intent(in) :: nkeys,dim1
|
||||
integer, intent(in) :: keys(4,nkeys)
|
||||
double precision, intent(in) :: values(nkeys)
|
||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
||||
|
||||
integer(omp_lock_kind),intent(inout):: lock_2rdm
|
||||
integer :: i,h1,h2,p1,p2
|
||||
call omp_set_lock(lock_2rdm)
|
||||
do i = 1, nkeys
|
||||
h1 = keys(1,i)
|
||||
h2 = keys(2,i)
|
||||
p1 = keys(3,i)
|
||||
p2 = keys(4,i)
|
||||
big_array(h1,h2,p1,p2) += values(i)
|
||||
enddo
|
||||
call omp_unset_lock(lock_2rdm)
|
||||
|
||||
end
|
||||
|
@ -5,8 +5,11 @@
|
||||
implicit none
|
||||
double precision, allocatable :: state_weights(:)
|
||||
BEGIN_DOC
|
||||
! state_av_act_two_rdm_alpha_alpha_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-alpha electron pairs
|
||||
! = <Psi| a^{\dagger}_i a^{\dagger}_j a_l a_k |Psi>
|
||||
! state_av_act_two_rdm_alpha_alpha_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of alpha electrons
|
||||
!
|
||||
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \alpha} a_{l \alpha} a_{k \alpha} |Psi>
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
END_DOC
|
||||
allocate(state_weights(N_states))
|
||||
state_weights = state_average_weight
|
||||
@ -22,8 +25,11 @@
|
||||
implicit none
|
||||
double precision, allocatable :: state_weights(:)
|
||||
BEGIN_DOC
|
||||
! state_av_act_two_rdm_beta_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for beta-beta electron pairs
|
||||
! = <Psi| a^{\dagger}_i a^{\dagger}_j a_l a_k |Psi>
|
||||
! state_av_act_two_rdm_beta_beta_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of beta electrons
|
||||
!
|
||||
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
END_DOC
|
||||
allocate(state_weights(N_states))
|
||||
state_weights = state_average_weight
|
||||
@ -39,8 +45,11 @@
|
||||
implicit none
|
||||
double precision, allocatable :: state_weights(:)
|
||||
BEGIN_DOC
|
||||
! state_av_act_two_rdm_alpha_beta_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-beta electron pairs
|
||||
! = <Psi| a^{\dagger}_{i,alpha} a^{\dagger}_{j,beta} a_{l,beta} a_{k,alpha} |Psi>
|
||||
! state_av_act_two_rdm_alpha_beta_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of alpha/beta electrons
|
||||
!
|
||||
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \beta} a_{l \beta} a_{k \alpha} |Psi>
|
||||
!
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
END_DOC
|
||||
allocate(state_weights(N_states))
|
||||
state_weights = state_average_weight
|
||||
@ -61,13 +70,12 @@
|
||||
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! state_av_act_two_rdm_spin_trace_mo(i,j,k,l) = state average physicist spin trace two-body rdm restricted to the ACTIVE indices
|
||||
! The active part of the two-electron energy can be computed as:
|
||||
! state_av_act_two_rdm_spin_trace_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM
|
||||
!
|
||||
! \sum_{\sigma, \sigma'} <Psi| a^{\dagger}_{i \sigma} a^{\dagger}_{j \sigma'} a_{l \sigma'} a_{k \sigma} |Psi>
|
||||
!
|
||||
! \sum_{i,j,k,l = 1, n_act_orb} state_av_act_two_rdm_spin_trace_mo(i,j,k,l) * < ii jj | kk ll >
|
||||
!
|
||||
! with ii = list_act(i), jj = list_act(j), kk = list_act(k), ll = list_act(l)
|
||||
END_DOC
|
||||
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
END_DOC
|
||||
double precision, allocatable :: state_weights(:)
|
||||
allocate(state_weights(N_states))
|
||||
state_weights = state_average_weight
|
@ -1,62 +0,0 @@
|
||||
BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, two_rdm_alpha_alpha_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, two_rdm_beta_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! two_rdm_alpha_beta(i,j,k,l) = <Psi| a^{dagger}_{j,alpha} a^{dagger}_{l,beta} a_{k,beta} a_{i,alpha} | Psi>
|
||||
! 1 1 2 2 = chemist notations
|
||||
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
|
||||
!
|
||||
END_DOC
|
||||
integer :: dim1,dim2,dim3,dim4
|
||||
double precision :: cpu_0,cpu_1
|
||||
dim1 = mo_num
|
||||
dim2 = mo_num
|
||||
dim3 = mo_num
|
||||
dim4 = mo_num
|
||||
two_rdm_alpha_beta_mo = 0.d0
|
||||
two_rdm_alpha_alpha_mo= 0.d0
|
||||
two_rdm_beta_beta_mo = 0.d0
|
||||
print*,'providing two_rdm_alpha_beta ...'
|
||||
call wall_time(cpu_0)
|
||||
call all_two_rdm_dm_nstates(two_rdm_alpha_alpha_mo,two_rdm_beta_beta_mo,two_rdm_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
||||
call wall_time(cpu_1)
|
||||
print*,'two_rdm_alpha_beta provided in',dabs(cpu_1-cpu_0)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, two_rdm_alpha_alpha_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, two_rdm_beta_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! two_rdm_alpha_beta_mo_physicist,(i,j,k,l) = <Psi| a^{dagger}_{k,alpha} a^{dagger}_{l,beta} a_{j,beta} a_{i,alpha} | Psi>
|
||||
! 1 2 1 2 = physicist notations
|
||||
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
|
||||
!
|
||||
END_DOC
|
||||
integer :: i,j,k,l,istate
|
||||
double precision :: cpu_0,cpu_1
|
||||
two_rdm_alpha_beta_mo_physicist = 0.d0
|
||||
print*,'providing two_rdm_alpha_beta_mo_physicist ...'
|
||||
call wall_time(cpu_0)
|
||||
do istate = 1, N_states
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
! 1 2 1 2 1 1 2 2
|
||||
two_rdm_alpha_beta_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_beta_mo(i,l,j,k,istate)
|
||||
two_rdm_alpha_alpha_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_alpha_mo(i,l,j,k,istate)
|
||||
two_rdm_beta_beta_mo_physicist(l,k,i,j,istate) = two_rdm_beta_beta_mo(i,l,j,k,istate)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(cpu_1)
|
||||
print*,'two_rdm_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0)
|
||||
|
||||
END_PROVIDER
|
||||
|
Loading…
Reference in New Issue
Block a user