mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 12:23:43 +01:00
Merge branch 'csf' of github.com:QuantumPackage/qp2 into csf
This commit is contained in:
commit
3c27c6b9c5
@ -51,6 +51,7 @@
|
||||
- Added ~print_energy~
|
||||
- Added ~print_hamiltonian~
|
||||
- Added input for two body RDM
|
||||
- Added keyword ~save_wf_after_selection~
|
||||
|
||||
*** Code
|
||||
|
||||
@ -81,3 +82,4 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -32,7 +32,7 @@ OPENMP : 1 ; Append OpenMP flags
|
||||
#
|
||||
[OPT]
|
||||
FC : -traceback
|
||||
FCFLAGS : -mavx -O2 -ip -ftz -g
|
||||
FCFLAGS : -xAVX -O2 -ip -ftz -g
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
|
@ -128,6 +128,12 @@ and the atomic basis set:
|
||||
ao_two_e_erf_ints density_for_dft electrons mo_two_e_ints scf_utils
|
||||
ao_two_e_ints determinants ezfio nuclei work
|
||||
|
||||
If you need to run using an already existing EZFIO database, use
|
||||
|
||||
.. code:: bash
|
||||
|
||||
qp set_file hcn
|
||||
|
||||
|
||||
Run a Hartree-Fock calculation
|
||||
------------------------------
|
||||
|
@ -125,6 +125,41 @@ subroutine bitstring_to_str( output, string, Nint )
|
||||
output(ibuf:ibuf) = '|'
|
||||
end
|
||||
|
||||
subroutine configuration_to_str( output, string, Nint )
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Transform the bit string of a configuration to a string for printing
|
||||
END_DOC
|
||||
character*(*), intent(out) :: output
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: string(Nint,2)
|
||||
|
||||
integer :: i, j, ibuf
|
||||
integer(bit_kind) :: itemp
|
||||
|
||||
ibuf = 1
|
||||
output = ''
|
||||
output(ibuf:ibuf) = '|'
|
||||
ibuf = ibuf+1
|
||||
do i=1,Nint
|
||||
itemp = 1_bit_kind
|
||||
do j=1,bit_kind_size
|
||||
if (iand(itemp,string(i,2)) == itemp) then
|
||||
output(ibuf:ibuf) = '2'
|
||||
else if (iand(itemp,string(i,1)) == itemp) then
|
||||
output(ibuf:ibuf) = '1'
|
||||
else
|
||||
output(ibuf:ibuf) = '0'
|
||||
endif
|
||||
ibuf = ibuf+1
|
||||
itemp = shiftl(itemp,1)
|
||||
enddo
|
||||
enddo
|
||||
output(ibuf:ibuf) = '|'
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine bitstring_to_hexa( output, string, Nint )
|
||||
use bitmasks
|
||||
@ -166,6 +201,25 @@ subroutine debug_det(string,Nint)
|
||||
|
||||
end
|
||||
|
||||
subroutine debug_cfg(string,Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Subroutine to print the content of a determinant in '+-' notation and
|
||||
! hexadecimal representation.
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: string(Nint,2)
|
||||
character*(2048) :: output(2)
|
||||
call bitstring_to_hexa( output(1), string(1,1), Nint )
|
||||
call bitstring_to_hexa( output(2), string(1,2), Nint )
|
||||
print *, trim(output(1)) , '|', trim(output(2))
|
||||
|
||||
call configuration_to_str( output(1), string, Nint )
|
||||
print *, trim(output(1))
|
||||
|
||||
end
|
||||
|
||||
subroutine print_det(string,Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
@ -4,6 +4,12 @@ doc: If true, computes the one- and two-body rdms with perturbation theory
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[save_wf_after_selection]
|
||||
type: logical
|
||||
doc: If true, saves the wave function after the selection, before the diagonalization
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[seniority_max]
|
||||
type: integer
|
||||
doc: Maximum number of allowed open shells. Using -1 selects all determinants
|
||||
|
@ -114,7 +114,10 @@ subroutine run_cipsi
|
||||
|
||||
! Add selected determinants
|
||||
call copy_H_apply_buffer_to_wf()
|
||||
! call save_wavefunction
|
||||
|
||||
if (save_wf_after_selection) then
|
||||
call save_wavefunction
|
||||
endif
|
||||
|
||||
PROVIDE psi_coef
|
||||
PROVIDE psi_det
|
||||
|
@ -166,6 +166,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
|
||||
integer :: l_a, nmax, idx
|
||||
integer, allocatable :: indices(:), exc_degree(:), iorder(:)
|
||||
double precision, parameter :: norm_thr = 1.d-16
|
||||
allocate (indices(N_det), &
|
||||
exc_degree(max(N_det_alpha_unique,N_det_beta_unique)))
|
||||
|
||||
@ -185,7 +186,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
i = psi_bilinear_matrix_rows(l_a)
|
||||
if (nt + exc_degree(i) <= 4) then
|
||||
idx = psi_det_sorted_order(psi_bilinear_matrix_order(l_a))
|
||||
if (psi_average_norm_contrib_sorted(idx) > 1.d-20) then
|
||||
if (psi_average_norm_contrib_sorted(idx) > norm_thr) then
|
||||
indices(k) = idx
|
||||
k=k+1
|
||||
endif
|
||||
@ -212,7 +213,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
idx = psi_det_sorted_order( &
|
||||
psi_bilinear_matrix_order( &
|
||||
psi_bilinear_matrix_transp_order(l_a)))
|
||||
if (psi_average_norm_contrib_sorted(idx) > 1.d-20) then
|
||||
if (psi_average_norm_contrib_sorted(idx) > norm_thr) then
|
||||
indices(k) = idx
|
||||
k=k+1
|
||||
endif
|
||||
@ -742,12 +743,9 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
|
||||
alpha_h_psi = mat(istate, p1, p2)
|
||||
|
||||
do jstate=1,N_states
|
||||
pt2_data % overlap(jstate,istate) += coef(jstate) * coef(istate)
|
||||
enddo
|
||||
|
||||
pt2_data % variance(istate) += alpha_h_psi * alpha_h_psi
|
||||
pt2_data % pt2(istate) += e_pert(istate)
|
||||
pt2_data % overlap(:,istate) = pt2_data % overlap(:,istate) + coef(:) * coef(istate)
|
||||
pt2_data % variance(istate) = pt2_data % variance(istate) + alpha_h_psi * alpha_h_psi
|
||||
pt2_data % pt2(istate) = pt2_data % pt2(istate) + e_pert(istate)
|
||||
|
||||
!!!DEBUG
|
||||
! delta_E = E0(istate) - Hii + E_shift
|
||||
@ -1578,7 +1576,7 @@ subroutine get_d0_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
|
||||
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) * phase
|
||||
end if
|
||||
mat(:, p1, p2) += coefs(:) * hij
|
||||
mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
else ! AA BB
|
||||
@ -1595,7 +1593,7 @@ subroutine get_d0_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
|
||||
else
|
||||
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))* get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
|
||||
end if
|
||||
mat(:, puti, putj) += coefs(:) * hij
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
@ -1654,18 +1652,18 @@ subroutine get_d1_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
|
||||
do putj=1, hfix-1
|
||||
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
tmp_row(1:N_states,putj) += hij * coefs(1:N_states)
|
||||
tmp_row(1:N_states,putj) = tmp_row(1:N_states,putj) + hij * coefs(1:N_states)
|
||||
end do
|
||||
do putj=hfix+1, mo_num
|
||||
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
tmp_row(1:N_states,putj) += hij * coefs(1:N_states)
|
||||
tmp_row(1:N_states,putj) = tmp_row(1:N_states,putj) + hij * coefs(1:N_states)
|
||||
end do
|
||||
|
||||
if(ma == 1) then
|
||||
mat(1:N_states,1:mo_num,puti) += tmp_row(1:N_states,1:mo_num)
|
||||
mat(1:N_states,1:mo_num,puti) = mat(1:N_states,1:mo_num,puti) + tmp_row(1:N_states,1:mo_num)
|
||||
else
|
||||
mat(1:N_states,puti,1:mo_num) += tmp_row(1:N_states,1:mo_num)
|
||||
mat(1:N_states,puti,1:mo_num) = mat(1:N_states,puti,1:mo_num) + tmp_row(1:N_states,1:mo_num)
|
||||
end if
|
||||
end if
|
||||
|
||||
@ -1679,22 +1677,22 @@ subroutine get_d1_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
|
||||
putj = p1
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hij = mo_two_e_integral(p2,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
|
||||
tmp_row(:,puti) += hij * coefs(:)
|
||||
tmp_row(:,puti) = tmp_row(:,puti) + hij * coefs(:)
|
||||
end if
|
||||
|
||||
putj = p2
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hij = mo_two_e_integral(p1,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
|
||||
tmp_row2(:,puti) += hij * coefs(:)
|
||||
tmp_row2(:,puti) = tmp_row2(:,puti) + hij * coefs(:)
|
||||
end if
|
||||
end do
|
||||
|
||||
if(mi == 1) then
|
||||
mat(:,:,p1) += tmp_row(:,:)
|
||||
mat(:,:,p2) += tmp_row2(:,:)
|
||||
mat(:,:,p1) = mat(:,:,p1) + tmp_row(:,:)
|
||||
mat(:,:,p2) = mat(:,:,p2) + tmp_row2(:,:)
|
||||
else
|
||||
mat(:,p1,:) += tmp_row(:,:)
|
||||
mat(:,p2,:) += tmp_row2(:,:)
|
||||
mat(:,p1,:) = mat(:,p1,:) + tmp_row(:,:)
|
||||
mat(:,p2,:) = mat(:,p2,:) + tmp_row2(:,:)
|
||||
end if
|
||||
else
|
||||
if(p(0,ma) == 3) then
|
||||
@ -1707,16 +1705,16 @@ subroutine get_d1_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
|
||||
do putj=1,hfix-1
|
||||
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
tmp_row(:,putj) += hij * coefs(:)
|
||||
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
|
||||
end do
|
||||
do putj=hfix+1,mo_num
|
||||
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
tmp_row(:,putj) += hij * coefs(:)
|
||||
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
|
||||
end do
|
||||
|
||||
mat(:, :puti-1, puti) += tmp_row(:,:puti-1)
|
||||
mat(:, puti, puti:) += tmp_row(:,puti:)
|
||||
mat(:, :puti-1, puti) = mat(:, :puti-1, puti) + tmp_row(:,:puti-1)
|
||||
mat(:, puti, puti:) = mat(:, puti, puti:) + tmp_row(:,puti:)
|
||||
end do
|
||||
else
|
||||
hfix = h(1,mi)
|
||||
@ -1730,19 +1728,19 @@ subroutine get_d1_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
|
||||
putj = p2
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
hij = mo_two_e_integral(pfix, p1, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
|
||||
tmp_row(:,puti) += hij * coefs(:)
|
||||
tmp_row(:,puti) = tmp_row(:,puti) + hij * coefs(:)
|
||||
end if
|
||||
|
||||
putj = p1
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
hij = mo_two_e_integral(pfix, p2, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
|
||||
tmp_row2(:,puti) += hij * coefs(:)
|
||||
tmp_row2(:,puti) = tmp_row2(:,puti) + hij * coefs(:)
|
||||
end if
|
||||
end do
|
||||
mat(:,:p2-1,p2) += tmp_row(:,:p2-1)
|
||||
mat(:,p2,p2:) += tmp_row(:,p2:)
|
||||
mat(:,:p1-1,p1) += tmp_row2(:,:p1-1)
|
||||
mat(:,p1,p1:) += tmp_row2(:,p1:)
|
||||
mat(:,:p2-1,p2) = mat(:,:p2-1,p2) + tmp_row(:,:p2-1)
|
||||
mat(:,p2,p2:) = mat(:,p2,p2:) + tmp_row(:,p2:)
|
||||
mat(:,:p1-1,p1) = mat(:,:p1-1,p1) + tmp_row2(:,:p1-1)
|
||||
mat(:,p1,p1:) = mat(:,p1,p1:) + tmp_row2(:,p1:)
|
||||
end if
|
||||
end if
|
||||
deallocate(lbanned)
|
||||
@ -1765,7 +1763,7 @@ subroutine get_d1_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
|
||||
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
|
||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
mat(:, p1, p2) += coefs(:) * hij
|
||||
mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
end
|
||||
@ -1818,9 +1816,9 @@ subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
|
||||
|
||||
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
||||
if(ma == 1) then
|
||||
mat(:, putj, puti) += coefs(:) * hij
|
||||
mat(:, putj, puti) = mat(:, putj, puti) + coefs(:) * hij
|
||||
else
|
||||
mat(:, puti, putj) += coefs(:) * hij
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end if
|
||||
end do
|
||||
else
|
||||
@ -1836,7 +1834,7 @@ subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
|
||||
p1 = p(turn2(i), 1)
|
||||
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2,N_int)
|
||||
mat(:, puti, putj) += coefs(:) * hij
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
@ -1856,7 +1854,7 @@ subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
|
||||
p1 = p(i1, ma)
|
||||
p2 = p(i2, ma)
|
||||
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2,N_int)
|
||||
mat(:, puti, putj) += coefs(:) * hij
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
else if(tip == 3) then
|
||||
@ -1870,7 +1868,7 @@ subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
|
||||
p2 = p(i, ma)
|
||||
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2,N_int)
|
||||
mat(:, min(puti, putj), max(puti, putj)) += coefs(:) * hij
|
||||
mat(:, min(puti, putj), max(puti, putj)) = mat(:, min(puti, putj), max(puti, putj)) + coefs(:) * hij
|
||||
end do
|
||||
else ! tip == 4
|
||||
puti = p(1, sp)
|
||||
@ -1881,7 +1879,7 @@ subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p,
|
||||
h1 = h(1, mi)
|
||||
h2 = h(2, mi)
|
||||
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2,N_int)
|
||||
mat(:, puti, putj) += coefs(:) * hij
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end if
|
||||
end if
|
||||
end if
|
||||
|
@ -104,7 +104,9 @@ subroutine run_stochastic_cipsi
|
||||
|
||||
! Add selected determinants
|
||||
call copy_H_apply_buffer_to_wf()
|
||||
! call save_wavefunction
|
||||
if (save_wf_after_selection) then
|
||||
call save_wavefunction
|
||||
endif
|
||||
|
||||
PROVIDE psi_coef
|
||||
PROVIDE psi_det
|
||||
|
@ -428,7 +428,7 @@ subroutine H_S2_u_0_nstates_zmq(v_0,s_0,u_0,N_st,sze)
|
||||
|
||||
integer :: istep, imin, imax, ishift, ipos
|
||||
integer, external :: add_task_to_taskserver
|
||||
integer, parameter :: tasksize=10000
|
||||
integer, parameter :: tasksize=20000
|
||||
character*(100000) :: task
|
||||
istep=1
|
||||
ishift=0
|
||||
|
@ -3,7 +3,7 @@
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! psi_energy(i) = $\langle \Psi_i | H | \Psi_i \rangle$
|
||||
!
|
||||
!
|
||||
! psi_s2(i) = $\langle \Psi_i | S^2 | \Psi_i \rangle$
|
||||
END_DOC
|
||||
call u_0_H_u_0(psi_energy,psi_s2,psi_coef,N_det,psi_det,N_int,N_states,psi_det_size)
|
||||
@ -211,6 +211,7 @@ subroutine H_S2_u_0_nstates_openmp_work_$N_int(v_t,s_t,u_t,N_st,sze,istart,iend,
|
||||
double precision :: rss, mem, ratio
|
||||
double precision, allocatable :: utl(:,:)
|
||||
integer, parameter :: block_size=128
|
||||
logical :: u_is_sparse
|
||||
|
||||
! call resident_memory(rss)
|
||||
! mem = dble(singles_beta_csc_size) / 1024.d0**3
|
||||
@ -222,6 +223,7 @@ subroutine H_S2_u_0_nstates_openmp_work_$N_int(v_t,s_t,u_t,N_st,sze,istart,iend,
|
||||
! endif
|
||||
compute_singles=.True.
|
||||
|
||||
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
allocate(idx0(maxab))
|
||||
|
||||
@ -249,8 +251,8 @@ compute_singles=.True.
|
||||
!$OMP singles_alpha_csc,singles_alpha_csc_idx, &
|
||||
!$OMP singles_beta_csc,singles_beta_csc_idx) &
|
||||
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, &
|
||||
!$OMP lcol, lrow, l_a, l_b, utl, kk, &
|
||||
!$OMP buffer, doubles, n_doubles, &
|
||||
!$OMP lcol, lrow, l_a, l_b, utl, kk, u_is_sparse, &
|
||||
!$OMP buffer, doubles, n_doubles, umax, &
|
||||
!$OMP tmp_det2, hij, sij, idx, l, kcol_prev, &
|
||||
!$OMP singles_a, n_singles_a, singles_b, ratio, &
|
||||
!$OMP n_singles_b, k8, last_found,left,right,right_max)
|
||||
@ -266,6 +268,22 @@ compute_singles=.True.
|
||||
|
||||
kcol_prev=-1
|
||||
|
||||
! Check if u has multiple zeros
|
||||
kk=1 ! Avoid division by zero
|
||||
!$OMP DO
|
||||
do k=1,N_det
|
||||
umax = 0.d0
|
||||
do l=1,N_st
|
||||
umax = max(umax, dabs(u_t(l,k)))
|
||||
enddo
|
||||
if (umax < 1.d-20) then
|
||||
!$OMP ATOMIC
|
||||
kk = kk+1
|
||||
endif
|
||||
enddo
|
||||
!$OMP END DO
|
||||
u_is_sparse = N_det / kk < 20 ! 5%
|
||||
|
||||
ASSERT (iend <= N_det)
|
||||
ASSERT (istart > 0)
|
||||
ASSERT (istep > 0)
|
||||
@ -399,18 +417,33 @@ compute_singles=.True.
|
||||
! Loop over alpha singles
|
||||
! -----------------------
|
||||
|
||||
double precision :: umax
|
||||
|
||||
!DIR$ LOOP COUNT avg(1000)
|
||||
do k = 1,n_singles_a,block_size
|
||||
umax = 0.d0
|
||||
! Prefetch u_t(:,l_a)
|
||||
do kk=0,block_size-1
|
||||
if (k+kk > n_singles_a) exit
|
||||
l_a = singles_a(k+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
if (u_is_sparse) then
|
||||
do kk=0,block_size-1
|
||||
if (k+kk > n_singles_a) exit
|
||||
l_a = singles_a(k+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
umax = max(umax, dabs(utl(l,kk+1)))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do kk=0,block_size-1
|
||||
if (k+kk > n_singles_a) exit
|
||||
l_a = singles_a(k+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
utl(:,kk+1) = u_t(:,l_a)
|
||||
enddo
|
||||
umax = 1.d0
|
||||
endif
|
||||
if (umax < 1.d-20) cycle
|
||||
|
||||
do kk=0,block_size-1
|
||||
if (k+kk > n_singles_a) exit
|
||||
@ -490,16 +523,29 @@ compute_singles=.True.
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
!DIR$ LOOP COUNT avg(1000)
|
||||
do i=1,n_singles_a,block_size
|
||||
umax = 0.d0
|
||||
! Prefetch u_t(:,l_a)
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_a) exit
|
||||
l_a = singles_a(i+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
if (u_is_sparse) then
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_a) exit
|
||||
l_a = singles_a(i+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
umax = max(umax, dabs(utl(l,kk+1)))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_a) exit
|
||||
l_a = singles_a(i+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
utl(:,kk+1) = u_t(:,l_a)
|
||||
enddo
|
||||
umax = 1.d0
|
||||
endif
|
||||
if (umax < 1.d-20) cycle
|
||||
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_a) exit
|
||||
@ -524,16 +570,29 @@ compute_singles=.True.
|
||||
|
||||
!DIR$ LOOP COUNT avg(50000)
|
||||
do i=1,n_doubles,block_size
|
||||
umax = 0.d0
|
||||
! Prefetch u_t(:,l_a)
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
l_a = doubles(i+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
if (u_is_sparse) then
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
l_a = doubles(i+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
umax = max(umax, dabs(utl(l,kk+1)))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
l_a = doubles(i+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
utl(:,kk+1) = u_t(:,l_a)
|
||||
enddo
|
||||
umax = 1.d0
|
||||
endif
|
||||
if (umax < 1.d-20) cycle
|
||||
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
@ -599,18 +658,32 @@ compute_singles=.True.
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
!DIR$ LOOP COUNT avg(1000)
|
||||
do i=1,n_singles_b,block_size
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_b) exit
|
||||
l_b = singles_b(i+kk)
|
||||
ASSERT (l_b <= N_det)
|
||||
umax = 0.d0
|
||||
if (u_is_sparse) then
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_b) exit
|
||||
l_b = singles_b(i+kk)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
ASSERT (l_b <= N_det)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
umax = max(umax, dabs(utl(l,kk+1)))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_b) exit
|
||||
l_b = singles_b(i+kk)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
ASSERT (l_b <= N_det)
|
||||
ASSERT (l_a <= N_det)
|
||||
utl(:,kk+1) = u_t(:,l_a)
|
||||
enddo
|
||||
umax = 1.d0
|
||||
endif
|
||||
if (umax < 1.d-20) cycle
|
||||
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_b) exit
|
||||
@ -634,17 +707,31 @@ compute_singles=.True.
|
||||
|
||||
!DIR$ LOOP COUNT avg(50000)
|
||||
do i=1,n_doubles,block_size
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
l_b = doubles(i+kk)
|
||||
ASSERT (l_b <= N_det)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
umax = 0.d0
|
||||
if (u_is_sparse) then
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
l_b = doubles(i+kk)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
ASSERT (l_b <= N_det)
|
||||
ASSERT (l_a <= N_det)
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
umax = max(umax, dabs(utl(l,kk+1)))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
l_b = doubles(i+kk)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
ASSERT (l_b <= N_det)
|
||||
ASSERT (l_a <= N_det)
|
||||
utl(:,kk+1) = u_t(:,l_a)
|
||||
enddo
|
||||
umax = 1.d0
|
||||
endif
|
||||
if (umax < 1.d-20) cycle
|
||||
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
@ -671,6 +758,16 @@ compute_singles=.True.
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
if (u_is_sparse) then
|
||||
umax = 0.d0
|
||||
do l=1,N_st
|
||||
umax = max(umax, dabs(u_t(l,k_a)))
|
||||
enddo
|
||||
else
|
||||
umax = 1.d0
|
||||
endif
|
||||
if (umax < 1.d-20) cycle
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
|
@ -42,6 +42,7 @@ subroutine configuration_to_dets_size(o,sze,n_alpha,Nint)
|
||||
amax -= popcnt( o(k,2) )
|
||||
enddo
|
||||
if (binom_int(bmax, amax) > huge(1)) then
|
||||
print *, bmax, amax
|
||||
print *, irp_here, ': Too many determinants to generate'
|
||||
stop 1
|
||||
endif
|
||||
@ -54,7 +55,7 @@ subroutine configuration_to_dets(o,d,sze,n_alpha,Nint)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Generate all possible determinants for a given configuration
|
||||
!
|
||||
!
|
||||
! Input :
|
||||
! o : configuration : (doubly occupied, singly occupied)
|
||||
! sze : Number of produced determinants, computed by `configuration_to_dets_size`
|
||||
@ -62,7 +63,7 @@ subroutine configuration_to_dets(o,d,sze,n_alpha,Nint)
|
||||
! Nint : N_int
|
||||
!
|
||||
! Output:
|
||||
! d : determinants
|
||||
! d : determinants
|
||||
!
|
||||
END_DOC
|
||||
integer ,intent(in) :: Nint
|
||||
@ -254,16 +255,13 @@ end
|
||||
endif
|
||||
dup = .True.
|
||||
do k=1,N_int
|
||||
if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) &
|
||||
.or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then
|
||||
dup = .False.
|
||||
exit
|
||||
endif
|
||||
dup = dup .and. (tmp_array(k,1,i) == tmp_array(k,1,j)) &
|
||||
.and. (tmp_array(k,2,i) == tmp_array(k,2,j))
|
||||
enddo
|
||||
if (dup) then
|
||||
duplicate(j) = .True.
|
||||
endif
|
||||
j+=1
|
||||
j = j+1
|
||||
if (j>N_det) then
|
||||
exit
|
||||
endif
|
||||
@ -314,8 +312,8 @@ end
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns the index in psi_configuration of the first cfg with
|
||||
! the requested seniority
|
||||
END_DOC
|
||||
@ -335,18 +333,20 @@ BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num) ]
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, det_to_configuration, (N_det) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns the index of the configuration for each determinant
|
||||
END_DOC
|
||||
integer :: i,j,k,r,l
|
||||
integer*8 :: key
|
||||
integer*8 :: key, key2
|
||||
integer(bit_kind) :: occ(N_int,2)
|
||||
logical :: found
|
||||
integer*8, allocatable :: bit_tmp(:)
|
||||
integer*8, external :: configuration_search_key
|
||||
|
||||
allocate(bit_tmp(N_configuration))
|
||||
allocate(bit_tmp(0:N_configuration))
|
||||
bit_tmp(0) = 0
|
||||
do i=1,N_configuration
|
||||
bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
|
||||
enddo
|
||||
@ -361,36 +361,37 @@ BEGIN_PROVIDER [ integer, det_to_configuration, (N_det) ]
|
||||
|
||||
key = configuration_search_key(occ,N_int)
|
||||
|
||||
! TODO: Binary search
|
||||
l = 1
|
||||
r = N_configuration
|
||||
! do while(r-l > 32)
|
||||
! j = shiftr(r+l,1)
|
||||
! if (bit_tmp(j) < key) then
|
||||
! l = j
|
||||
! else
|
||||
! r = j
|
||||
! endif
|
||||
! enddo
|
||||
do j=l,r
|
||||
found = .True.
|
||||
do k=1,N_int
|
||||
if ( (occ(k,1) /= psi_configuration(k,1,j)) &
|
||||
.or. (occ(k,2) /= psi_configuration(k,2,j)) ) then
|
||||
found = .False.
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (found) then
|
||||
det_to_configuration(i) = j
|
||||
exit
|
||||
! Binary search
|
||||
l = 0
|
||||
r = N_configuration+1
|
||||
j = shiftr(r-l,1)
|
||||
do while (j>=1)
|
||||
j = j+l
|
||||
if (bit_tmp(j) == key) then
|
||||
do while (bit_tmp(j) == bit_tmp(j-1))
|
||||
j = j-1
|
||||
enddo
|
||||
do while (bit_tmp(j) == key)
|
||||
found = .True.
|
||||
do k=1,N_int
|
||||
found = found .and. (psi_configuration(k,1,j) == occ(k,1)) &
|
||||
.and. (psi_configuration(k,2,j) == occ(k,2))
|
||||
enddo
|
||||
if (found) then
|
||||
det_to_configuration(i) = j
|
||||
exit
|
||||
endif
|
||||
j = j+1
|
||||
enddo
|
||||
if (found) exit
|
||||
else if (bit_tmp(j) > key) then
|
||||
r = j
|
||||
else
|
||||
l = j
|
||||
endif
|
||||
j = shiftr(r-l,1)
|
||||
enddo
|
||||
|
||||
if (.not.found) then
|
||||
print *, '3 bug in ', irp_here
|
||||
stop -1
|
||||
endif
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
deallocate(bit_tmp)
|
||||
@ -451,7 +452,7 @@ END_PROVIDER
|
||||
&BEGIN_PROVIDER [ integer, psi_configuration_sorted_order_reverse, (N_configuration) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Configurations sorted by weight
|
||||
! Configurations sorted by weight
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
integer, allocatable :: iorder(:)
|
||||
@ -463,8 +464,8 @@ END_PROVIDER
|
||||
call dsort(weight_configuration_average_sorted,iorder,N_configuration)
|
||||
do i=1,N_configuration
|
||||
do j=1,N_int
|
||||
psi_configuration_sorted(j,1,i) = psi_configuration(j,1,iorder(i))
|
||||
psi_configuration_sorted(j,2,i) = psi_configuration(j,2,iorder(i))
|
||||
psi_configuration_sorted(j,1,i) = psi_configuration(j,1,iorder(i))
|
||||
psi_configuration_sorted(j,2,i) = psi_configuration(j,2,iorder(i))
|
||||
enddo
|
||||
psi_configuration_sorted_order(iorder(i)) = i
|
||||
psi_configuration_sorted_order_reverse(i) = iorder(i)
|
||||
@ -584,3 +585,39 @@ BEGIN_PROVIDER [ integer(bit_kind), dominant_dets_of_cfgs, (N_int,2,N_dominant_d
|
||||
i += sze
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det, (2,N_configuration) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det_data, (N_det) ]
|
||||
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! psi_configuration_to_psi_det_data(k) -> i : i is the index of the
|
||||
! determinant in psi_det
|
||||
!
|
||||
! psi_configuration_to_psi_det(1:2,k) gives the first and last index of the
|
||||
! determinants of configuration k in array psi_configuration_to_psi_det_data.
|
||||
END_DOC
|
||||
|
||||
integer :: i, k, iorder
|
||||
integer, allocatable :: confs(:)
|
||||
allocate (confs(N_det))
|
||||
|
||||
do i=1,N_det
|
||||
psi_configuration_to_psi_det_data(i) = i
|
||||
confs(i) = det_to_configuration(i)
|
||||
enddo
|
||||
|
||||
call isort(confs, psi_configuration_to_psi_det_data, N_det)
|
||||
k=1
|
||||
psi_configuration_to_psi_det(1,1) = 1
|
||||
do i=2,N_det
|
||||
if (confs(i) /= confs(i-1)) then
|
||||
psi_configuration_to_psi_det(2,k) = i-1
|
||||
k = k+1
|
||||
psi_configuration_to_psi_det(1,k) = i
|
||||
endif
|
||||
enddo
|
||||
psi_configuration_to_psi_det(2,k) = N_det
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
120
src/determinants/configurations.org
Normal file
120
src/determinants/configurations.org
Normal file
@ -0,0 +1,120 @@
|
||||
# -*- mode:org -*-
|
||||
#+TITLE: CFG-CI
|
||||
#+AUTHOR: Vijay Gopal Chilkuri
|
||||
#+FILE: configurations.org
|
||||
#+EMAIL: vijay.gopal.c@gmail.com
|
||||
#+OPTIONS: toc:t
|
||||
#+LATEX_CLASS: article
|
||||
#+LATEX_HEADER: \usepackage{tabularx}
|
||||
#+LATEX_HEADER: \usepackage{braket}
|
||||
#+LATEX_HEADER: \usepackage{minted}
|
||||
|
||||
* Configuration based CI
|
||||
|
||||
Here we write the main functions that perform the functions necessary for
|
||||
the Configuration based CI.
|
||||
|
||||
There are three main functions required for doing the CI
|
||||
|
||||
- Convert wavefunction from determinant basis to configuration state function (CSF) basis
|
||||
|
||||
- Apply the Hamiltonian to the wavefunction in CSF basis
|
||||
|
||||
- Convert the converged wavefunction back to determinant basis
|
||||
|
||||
** TODO[0/3] Convert basis from DET to CSF
|
||||
|
||||
The conversion of basis is done by going via bonded functions (BFs).
|
||||
Importantly, all the CSFs of a chosen configuration (CFG) are kept.
|
||||
|
||||
The advantage is that the sigma-vector can be performed efficiently
|
||||
via BLAS level 3 operations.
|
||||
|
||||
|
||||
- [ ] Write a function to calculate the maximum dimensions required
|
||||
|
||||
Prototype array contains the \( <I|\hat{E}_{pq}|J> \) for all possible
|
||||
CFGs \( I, J\) and all \(4\) types of excitations for all possible model
|
||||
orbitals \(p,q\). Note that the orbital ids \(p,q\) here do not refer to
|
||||
the actual MO ids, they simply refer to the orbitals involved in that spefcific
|
||||
SOMO, for e.g. an excitation of the type [2 2 2 1 1 1 1 0] -> [ 2 2 1 1 1 1 1]
|
||||
implies an excitation from orbital \(3\) to orbital \(8\) which are the real MO ids.
|
||||
However, the prototype only concerns the SOMOs like so [2 1 1 1 1 0] -> [ 1 1 1 1 1 1]
|
||||
therefore \(p,q\) are model space ids \(1,6\).
|
||||
|
||||
#+begin_src f90 :main no :tangle configurations_sigma_vector.irp.f
|
||||
|
||||
BEGIN_PROVIDER [ integer, NSOMOMax]
|
||||
&BEGIN_PROVIDER [ integer, NCSFMax]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Documentation for NSOMOMax
|
||||
! The maximum number of SOMOs for the current calculation.
|
||||
! required for the calculation of prototype arrays.
|
||||
END_DOC
|
||||
NSOMOMax = 8
|
||||
NCSFMax = 14 ! TODO: NCSFs for MS=0
|
||||
END_PROVIDER
|
||||
#+end_src
|
||||
|
||||
The prototype matrix AIJpqMatrixList has the following dimensions
|
||||
\(\left(NSOMOMax, NSOMOMax, 4, NSOMOMax, NSOMOMax,NCSFMAx,NCSFMax\right)\) where the first two
|
||||
indices represent the somos in \(I,J\) followed by the type of excitation and
|
||||
finally the two model space orbitals \(p,q\).
|
||||
|
||||
- [ ] Read the transformation matrix based on the number of SOMOs
|
||||
|
||||
#+begin_src f90 :main no :tangle configurations_sigma_vector.irp.f
|
||||
BEGIN_PROVIDER [ double precision, AIJpqMatrixDimsList, (NSOMOMax,NSOMOMax,4,NSOMOMax,NSOMOMax,2)]
|
||||
use cfunctions
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Documentation for AIJpqMatrixList
|
||||
! The prototype matrix containing the <I|E_{pq}|J>
|
||||
! matrices for each I,J somo pair and orb ids.
|
||||
END_DOC
|
||||
integer i,j,k,l
|
||||
integer*8 Isomo, Jsomo
|
||||
Isomo = 0
|
||||
Jsomo = 0
|
||||
integer*8 rows, cols
|
||||
rows = -1
|
||||
cols = -1
|
||||
integer*8 MS
|
||||
MS = 0
|
||||
print *,"NSOMOMax = ",NSOMOMax
|
||||
!allocate(AIJpqMatrixDimsList(NSOMOMax,NSOMOMax,4,NSOMOMax,NSOMOMax,2))
|
||||
do i = 2, NSOMOMax, 2
|
||||
Isomo = ISHFT(1,i)-1
|
||||
do j = i-2,i+2, 2
|
||||
Jsomo = ISHFT(1,j)-1
|
||||
if(j .GT. NSOMOMax .OR. j .LE. 0) then
|
||||
cycle
|
||||
end if
|
||||
do k = 1,NSOMOMax
|
||||
do l = k,NSOMOMax
|
||||
call getApqIJMatrixDims(Isomo, &
|
||||
Jsomo, &
|
||||
MS, &
|
||||
rows, &
|
||||
cols)
|
||||
print *, i,j,k,l,">",Isomo,Jsomo,">",rows, cols
|
||||
! i -> j
|
||||
AIJpqMatrixDimsList(i,j,1,k,l,1) = rows
|
||||
AIJpqMatrixDimsList(i,j,1,k,l,2) = cols
|
||||
AIJpqMatrixDimsList(i,j,1,l,k,1) = rows
|
||||
AIJpqMatrixDimsList(i,j,1,l,k,2) = cols
|
||||
! j -> i
|
||||
AIJpqMatrixDimsList(j,i,1,k,l,1) = rows
|
||||
AIJpqMatrixDimsList(j,i,1,k,l,2) = cols
|
||||
AIJpqMatrixDimsList(j,i,1,l,k,1) = rows
|
||||
AIJpqMatrixDimsList(j,i,1,l,k,2) = cols
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
#+end_src
|
||||
|
||||
- [ ] Perform the conversion by matrix-vector BLAS level 2 call
|
61
src/determinants/configurations_sigma_vector.irp.f
Normal file
61
src/determinants/configurations_sigma_vector.irp.f
Normal file
@ -0,0 +1,61 @@
|
||||
BEGIN_PROVIDER [ integer, NSOMOMax]
|
||||
&BEGIN_PROVIDER [ integer, NCSFMax]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Documentation for NSOMOMax
|
||||
! The maximum number of SOMOs for the current calculation.
|
||||
! required for the calculation of prototype arrays.
|
||||
END_DOC
|
||||
NSOMOMax = 8
|
||||
NCSFMax = 14 ! TODO: NCSFs for MS=0
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, AIJpqMatrixDimsList, (NSOMOMax,NSOMOMax,4,NSOMOMax,NSOMOMax,2)]
|
||||
use cfunctions
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Documentation for AIJpqMatrixList
|
||||
! The prototype matrix containing the <I|E_{pq}|J>
|
||||
! matrices for each I,J somo pair and orb ids.
|
||||
END_DOC
|
||||
integer i,j,k,l
|
||||
integer*8 Isomo, Jsomo
|
||||
Isomo = 0
|
||||
Jsomo = 0
|
||||
integer*8 rows, cols
|
||||
rows = -1
|
||||
cols = -1
|
||||
integer*8 MS
|
||||
MS = 0
|
||||
print *,"NSOMOMax = ",NSOMOMax
|
||||
!allocate(AIJpqMatrixDimsList(NSOMOMax,NSOMOMax,4,NSOMOMax,NSOMOMax,2))
|
||||
do i = 2, NSOMOMax, 2
|
||||
Isomo = ISHFT(1,i)-1
|
||||
do j = i-2,i+2, 2
|
||||
Jsomo = ISHFT(1,j)-1
|
||||
if(j .GT. NSOMOMax .OR. j .LE. 0) then
|
||||
cycle
|
||||
end if
|
||||
do k = 1,NSOMOMax
|
||||
do l = k,NSOMOMax
|
||||
call getApqIJMatrixDims(Isomo, &
|
||||
Jsomo, &
|
||||
MS, &
|
||||
rows, &
|
||||
cols)
|
||||
print *, i,j,k,l,">",Isomo,Jsomo,">",rows, cols
|
||||
! i -> j
|
||||
AIJpqMatrixDimsList(i,j,1,k,l,1) = rows
|
||||
AIJpqMatrixDimsList(i,j,1,k,l,2) = cols
|
||||
AIJpqMatrixDimsList(i,j,1,l,k,1) = rows
|
||||
AIJpqMatrixDimsList(i,j,1,l,k,2) = cols
|
||||
! j -> i
|
||||
AIJpqMatrixDimsList(j,i,1,k,l,1) = rows
|
||||
AIJpqMatrixDimsList(j,i,1,k,l,2) = cols
|
||||
AIJpqMatrixDimsList(j,i,1,l,k,1) = rows
|
||||
AIJpqMatrixDimsList(j,i,1,l,k,2) = cols
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
END_PROVIDER
|
@ -24,7 +24,7 @@ subroutine do_single_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
||||
! check whether position j is occupied
|
||||
if (iand(key_in(k,ispin),mask) /= 0_bit_kind) then
|
||||
key_in(k,ispin) = ibclr(key_in(k,ispin),j)
|
||||
else
|
||||
else
|
||||
i_ok= -1
|
||||
return
|
||||
end if
|
||||
@ -35,7 +35,7 @@ subroutine do_single_excitation(key_in,i_hole,i_particle,ispin,i_ok)
|
||||
mask = ibset(0_bit_kind,j)
|
||||
if (iand(key_in(k,ispin),mask) == 0_bit_kind) then
|
||||
key_in(k,ispin) = ibset(key_in(k,ispin),j)
|
||||
else
|
||||
else
|
||||
i_ok= -1
|
||||
return
|
||||
end if
|
||||
@ -99,7 +99,8 @@ logical function is_spin_flip_possible(key_in,i_flip,ispin)
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
if(popcnt(iand(key_tmp(k,1),key_in(k,ispin))) == 1 .and. popcnt(iand(key_tmp(k,1),key_in(k,other_spin(ispin)))) == 0 )then
|
||||
! There is a spin "ispin" in the orbital i_flip AND There is no electron of opposit spin in the same orbital "i_flip"
|
||||
! There is a spin "ispin" in the orbital i_flip AND
|
||||
! There is no electron of opposit spin in the same orbital "i_flip"
|
||||
is_spin_flip_possible = .True.
|
||||
return
|
||||
else
|
||||
@ -107,3 +108,115 @@ logical function is_spin_flip_possible(key_in,i_flip,ispin)
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine do_single_excitation_cfg(key_in,key_out,i_hole,i_particle,ok)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Applies the single excitation operator to a configuration
|
||||
! If the excitation is possible, ok is True
|
||||
END_DOC
|
||||
integer, intent(in) :: i_hole,i_particle
|
||||
integer(bit_kind), intent(in) :: key_in(N_int,2)
|
||||
logical , intent(out) :: ok
|
||||
integer :: k,j,i
|
||||
integer(bit_kind) :: mask
|
||||
integer(bit_kind) :: key_out(N_int,2)
|
||||
|
||||
ASSERT (i_hole > 0)
|
||||
ASSERT (i_particle <= mo_num)
|
||||
|
||||
ok = .True.
|
||||
key_out(:,:) = key_in(:,:)
|
||||
|
||||
! hole
|
||||
k = shiftr(i_hole-1,bit_kind_shift)+1
|
||||
j = i_hole-shiftl(k-1,bit_kind_shift)-1
|
||||
mask = ibset(0_bit_kind,j)
|
||||
|
||||
! Check if the position j is singly occupied
|
||||
! 1 -> 0 (SOMO)
|
||||
! 0 0 (DOMO)
|
||||
if (iand(key_out(k,1),mask) /= 0_bit_kind) then
|
||||
key_out(k,1) = ibclr(key_out(k,1),j)
|
||||
|
||||
! Check if the position j is doubly occupied
|
||||
! 0 -> 1 (SOMO)
|
||||
! 1 0 (DOMO)
|
||||
else if (iand(key_out(k,2),mask) /= 0_bit_kind) then
|
||||
key_out(k,1) = ibset(key_out(k,1),j)
|
||||
key_out(k,2) = ibclr(key_out(k,2),j)
|
||||
|
||||
! The position j is unoccupied: Not OK
|
||||
! 0 -> 0 (SOMO)
|
||||
! 0 0 (DOMO)
|
||||
else
|
||||
ok =.False.
|
||||
return
|
||||
endif
|
||||
|
||||
|
||||
! particle
|
||||
k = shiftr(i_particle-1,bit_kind_shift)+1
|
||||
j = i_particle-shiftl(k-1,bit_kind_shift)-1
|
||||
mask = ibset(0_bit_kind,j)
|
||||
|
||||
! Check if the position j is singly occupied
|
||||
! 1 -> 0 (SOMO)
|
||||
! 0 1 (DOMO)
|
||||
if (iand(key_out(k,1),mask) /= 0_bit_kind) then
|
||||
key_out(k,1) = ibclr(key_out(k,1),j)
|
||||
key_out(k,2) = ibset(key_out(k,2),j)
|
||||
|
||||
! Check if the position j is doubly occupied : Not OK
|
||||
! 0 -> 1 (SOMO)
|
||||
! 1 0 (DOMO)
|
||||
else if (iand(key_out(k,2),mask) /= 0_bit_kind) then
|
||||
ok = .False.
|
||||
return
|
||||
|
||||
! Position at j is unoccupied
|
||||
! 0 -> 0 (SOMO)
|
||||
! 0 0 (DOMO)
|
||||
else
|
||||
key_out(k,1) = ibset(key_out(k,1),j)
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
subroutine generate_all_singles_cfg(cfg,singles,n_singles,Nint)
|
||||
implicit none
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! Generate all single excitation wrt a configuration
|
||||
!
|
||||
! n_singles : on input, max number of singles :
|
||||
! elec_alpha_num * (mo_num - elec_beta_num)
|
||||
! on output, number of generated singles
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint
|
||||
integer, intent(inout) :: n_singles
|
||||
integer(bit_kind), intent(in) :: cfg(Nint,2)
|
||||
integer(bit_kind), intent(out) :: singles(Nint,2,*)
|
||||
|
||||
integer :: i,k, n_singles_ma, i_hole, i_particle
|
||||
integer(bit_kind) :: single(Nint,2)
|
||||
logical :: i_ok
|
||||
|
||||
n_singles = 0
|
||||
!TODO
|
||||
!Make list of Somo and Domo for holes
|
||||
!Make list of Unocc and Somo for particles
|
||||
do i_hole = 1, mo_num
|
||||
do i_particle = 1, mo_num
|
||||
call do_single_excitation_cfg(cfg,single,i_hole,i_particle,i_ok)
|
||||
if (i_ok) then
|
||||
n_singles = n_singles + 1
|
||||
do k=1,Nint
|
||||
singles(k,1,n_singles) = single(k,1)
|
||||
singles(k,2,n_singles) = single(k,2)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
@ -99,9 +99,15 @@ double precision function get_two_e_integral(i,j,k,l,map)
|
||||
type(map_type), intent(inout) :: map
|
||||
real(integral_kind) :: tmp
|
||||
PROVIDE mo_two_e_integrals_in_map mo_integrals_cache
|
||||
if (banned_excitation(i,k) .or. banned_excitation(j,l)) then
|
||||
get_two_e_integral = 0.d0
|
||||
return
|
||||
if (use_banned_excitation) then
|
||||
if (banned_excitation(i,k)) then
|
||||
get_two_e_integral = 0.d0
|
||||
return
|
||||
endif
|
||||
if (banned_excitation(j,l)) then
|
||||
get_two_e_integral = 0.d0
|
||||
return
|
||||
endif
|
||||
endif
|
||||
ii = l-mo_integrals_cache_min
|
||||
ii = ior(ii, k-mo_integrals_cache_min)
|
||||
@ -282,17 +288,19 @@ subroutine get_mo_two_e_integrals_exch_ii(k,l,sze,out_val,map)
|
||||
|
||||
end
|
||||
|
||||
BEGIN_PROVIDER [ logical, banned_excitation, (mo_num,mo_num) ]
|
||||
BEGIN_PROVIDER [ logical, banned_excitation, (mo_num,mo_num) ]
|
||||
&BEGIN_PROVIDER [ logical, use_banned_excitation ]
|
||||
implicit none
|
||||
use map_module
|
||||
BEGIN_DOC
|
||||
! If true, the excitation is banned in the selection. Useful with local MOs.
|
||||
END_DOC
|
||||
banned_excitation = .False.
|
||||
integer :: i,j
|
||||
integer :: i,j, icount
|
||||
integer(key_kind) :: idx
|
||||
double precision :: tmp
|
||||
! double precision :: buffer(mo_num)
|
||||
|
||||
icount = 1 ! Avoid division by zero
|
||||
do j=1,mo_num
|
||||
do i=1,j-1
|
||||
call two_e_integrals_index(i,j,j,i,idx)
|
||||
@ -300,8 +308,14 @@ BEGIN_PROVIDER [ logical, banned_excitation, (mo_num,mo_num) ]
|
||||
call map_get(mo_integrals_map,idx,tmp)
|
||||
banned_excitation(i,j) = dabs(tmp) < 1.d-14
|
||||
banned_excitation(j,i) = banned_excitation(i,j)
|
||||
if (banned_excitation(i,j)) icount = icount+2
|
||||
enddo
|
||||
enddo
|
||||
use_banned_excitation = (mo_num*mo_num) / icount <= 100 !1%
|
||||
if (use_banned_excitation) then
|
||||
print *, 'Using sparsity of exchange integrals'
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
@ -284,3 +284,4 @@ subroutine routine_full_mos
|
||||
print*,'wee_tot_st_av_3 = ',wee_tot_st_av_3
|
||||
|
||||
end
|
||||
|
||||
|
@ -8,7 +8,7 @@ tar -zxf $HOME/cache/config.tgz
|
||||
# Configure QP2
|
||||
cd qp2
|
||||
source ./quantum_package.rc
|
||||
ninja -j 1 -v
|
||||
ninja -j 1 -v || exit -1
|
||||
|
||||
# Create cache
|
||||
cd ..
|
||||
|
@ -2,7 +2,7 @@
|
||||
# Stage 1
|
||||
|
||||
# Configure QP2
|
||||
./configure --install all --config ./config/travis.cfg
|
||||
./configure --install all --config ./config/travis.cfg || exit -1
|
||||
|
||||
# Create cache
|
||||
cd ../
|
||||
|
@ -8,7 +8,7 @@ tar -zxf $HOME/cache/compil.tgz
|
||||
# Configure QP2
|
||||
cd qp2
|
||||
source ./quantum_package.rc
|
||||
qp_test -a && rm $HOME/cache/compil.tgz
|
||||
exec qp_test -a && rm $HOME/cache/compil.tgz
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user