mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 20:34:58 +01:00
Merge branch 'dev-stable' of github.com:QuantumPackage/qp2 into dev-stable
This commit is contained in:
commit
3319d78816
@ -4,13 +4,15 @@ casscf
|
||||
|
||||
|CASSCF| program with the CIPSI algorithm.
|
||||
|
||||
Example of inputs
|
||||
-----------------
|
||||
|
||||
Example of inputs for GROUND STATE calculations
|
||||
-----------------------------------------------
|
||||
NOTICE :: FOR EXCITED STATES CALCULATIONS SEE THE FILE "example_casscf_multistate.sh"
|
||||
|
||||
a) Small active space : standard CASSCF
|
||||
---------------------------------------
|
||||
Let's do O2 (triplet) in aug-cc-pvdz with the following geometry (xyz format, Bohr units)
|
||||
3
|
||||
2
|
||||
|
||||
O 0.0000000000 0.0000000000 -1.1408000000
|
||||
O 0.0000000000 0.0000000000 1.1408000000
|
||||
@ -45,3 +47,4 @@ qp set casscf_cipsi small_active_space False
|
||||
qp run casscf | tee ${EZFIO_FILE}.casscf_large.out
|
||||
# you should find around -149.9046
|
||||
|
||||
|
||||
|
@ -54,14 +54,24 @@ subroutine run
|
||||
|
||||
call write_time(6)
|
||||
call write_int(6,iteration,'CAS-SCF iteration = ')
|
||||
call write_double(6,energy,'CAS-SCF energy = ')
|
||||
call write_double(6,energy,'State-average CAS-SCF energy = ')
|
||||
! if(n_states == 1)then
|
||||
! call ezfio_get_casscf_cipsi_energy_pt2(E_PT2)
|
||||
! call ezfio_get_casscf_cipsi_energy(PT2)
|
||||
double precision :: delta_E_istate, e_av
|
||||
e_av = 0.d0
|
||||
do istate=1,N_states
|
||||
call write_double(6,E_PT2(istate),'E + PT2 energy = ')
|
||||
call write_double(6,PT2(istate),' PT2 = ')
|
||||
e_av += state_average_weight(istate) * Ev(istate)
|
||||
if(istate.gt.1)then
|
||||
delta_E_istate = E_PT2(istate) - E_PT2(1)
|
||||
write(*,'(A6,I2,A18,F16.10)')'state ',istate,' Delta E+PT2 = ',delta_E_istate
|
||||
endif
|
||||
write(*,'(A6,I2,A18,F16.10)')'state ',istate,' E + PT2 energy = ',E_PT2(istate)
|
||||
write(*,'(A6,I2,A18,F16.10)')'state ',istate,' PT2 energy = ',PT2(istate)
|
||||
! call write_double(6,E_PT2(istate),'E + PT2 energy = ')
|
||||
! call write_double(6,PT2(istate),' PT2 = ')
|
||||
enddo
|
||||
call write_double(6,e_av,'State-average CAS-SCF energy bis = ')
|
||||
call write_double(6,pt2_max,' PT2_MAX = ')
|
||||
! endif
|
||||
|
||||
@ -99,8 +109,8 @@ subroutine run
|
||||
|
||||
mo_coef = NewOrbs
|
||||
mo_occ = occnum
|
||||
call save_mos
|
||||
if(.not.converged)then
|
||||
call save_mos
|
||||
iteration += 1
|
||||
if(norm_grad_vec2.gt.0.01d0)then
|
||||
N_det = N_states
|
||||
|
66
src/casscf_cipsi/example_casscf_multistate.sh
Executable file
66
src/casscf_cipsi/example_casscf_multistate.sh
Executable file
@ -0,0 +1,66 @@
|
||||
# This is an example for MULTI STATE CALCULATION STATE AVERAGE CASSCF
|
||||
# We will compute 3 states on the O2 molecule
|
||||
# The Ground state and 2 degenerate excited states
|
||||
# Please follow carefully the tuto :)
|
||||
|
||||
##### PREPARING THE EZFIO
|
||||
# Set the path to your QP2 directory
|
||||
QP_ROOT=my_fancy_path
|
||||
source ${QP_ROOT}/quantum_package.rc
|
||||
# Create the EZFIO folder
|
||||
qp create_ezfio -b aug-cc-pvdz O2.xyz -m 3 -a -o O2_avdz_multi_state
|
||||
# Start with ROHF orbitals
|
||||
qp run scf # ROHF energy : -149.619992871398
|
||||
# Freeze the 1s orbitals of the two oxygen
|
||||
qp set_frozen_core
|
||||
|
||||
##### PREPARING THE ORBITALS WITH NATURAL ORBITALS OF A CIS
|
||||
# Tell that you want 3 states in your WF
|
||||
qp set determinants n_states 3
|
||||
# Run a CIS wave function to start your calculation
|
||||
qp run cis | tee ${EZFIO_FILE}.cis_3_states.out # -149.6652601409258 -149.4714726176746 -149.4686165431939
|
||||
# Save the STATE AVERAGE natural orbitals for having a balanced description
|
||||
# This will also order the orbitals according to their occupation number
|
||||
# Which makes the active space selection easyer !
|
||||
qp run save_natorb | tee ${EZFIO_FILE}.natorb_3states.out
|
||||
|
||||
##### PREPARING A CIS GUESS WITHIN THE ACTIVE SPACE
|
||||
# Set an active space which has the most of important excitations
|
||||
# and that maintains symmetry : the ACTIVE ORBITALS are from """6 to 13"""
|
||||
|
||||
# YOU FIRST FREEZE THE VIRTUALS THAT ARE NOT IN THE ACTIVE SPACE
|
||||
# !!!!! WE SET TO "-D" for DELETED !!!!
|
||||
qp set_mo_class -c "[1-5]" -a "[6-13]" -d "[14-46]"
|
||||
# You create a guess of CIS type WITHIN THE ACTIVE SPACE
|
||||
qp run cis | tee ${EZFIO_FILE}.cis_3_states_active_space.out # -149.6515472533511 -149.4622878024821 -149.4622878024817
|
||||
# You tell to read the WFT stored (i.e. the guess we just created)
|
||||
qp set determinants read_wf True
|
||||
|
||||
##### DOING THE CASSCF
|
||||
### SETTING PROPERLY THE ACTIVE SPACE FOR CASSCF
|
||||
# You set the active space WITH THE VIRTUAL ORBITALS !!!
|
||||
# !!!!! NOW WE SET TO "-v" for VIRTUALS !!!!!
|
||||
qp set_mo_class -c "[1-5]" -a "[6-13]" -v "[14-46]"
|
||||
|
||||
# You tell that it is a small actice space so the CIPSI can take all Slater determinants
|
||||
qp set casscf_cipsi small_active_space True
|
||||
# You specify the output file
|
||||
output=${EZFIO_FILE}.casscf_3states.out
|
||||
# You run the CASSCF calculation
|
||||
qp run casscf | tee ${output} # -149.7175867510 -149.5059010227 -149.5059010226
|
||||
|
||||
# Some grep in order to get some numbers useful to check convergence
|
||||
# State average energy
|
||||
grep "State-average CAS-SCF energy =" $output | cut -d "=" -f 2 > data_e_average
|
||||
# Delta E anticipated for State-average energy, only usefull to check convergence
|
||||
grep "Predicted energy improvement =" $output | cut -d "=" -f 2 > data_improve
|
||||
# Ground state energy
|
||||
grep "state 1 E + PT2 energy" $output | cut -d "=" -f 2 > data_1
|
||||
# First excited state energy
|
||||
grep "state 2 E + PT2 energy" $output | cut -d "=" -f 2 > data_2
|
||||
# First excitation energy
|
||||
grep "state 2 Delta E+PT2" $output | cut -d "=" -f 2 > data_delta_E2
|
||||
# Second excited state energy
|
||||
grep "state 3 E + PT2 energy" $output | cut -d "=" -f 2 > data_3
|
||||
# Second excitation energy
|
||||
grep "state 3 Delta E+PT2" $output | cut -d "=" -f 2 > data_delta_E3
|
@ -226,27 +226,28 @@ BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
|
||||
end do
|
||||
|
||||
! Form the exponential
|
||||
call exp_matrix_taylor(Tmat,mo_num,Umat,converged)
|
||||
|
||||
Tpotmat(:,:)=0.D0
|
||||
Umat(:,:) =0.D0
|
||||
do i=1,mo_num
|
||||
Tpotmat(i,i)=1.D0
|
||||
Umat(i,i) =1.d0
|
||||
end do
|
||||
iter=0
|
||||
converged=.false.
|
||||
do while (.not.converged)
|
||||
iter+=1
|
||||
f = 1.d0 / dble(iter)
|
||||
Tpotmat2(:,:) = Tpotmat(:,:) * f
|
||||
call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
|
||||
Tpotmat2, size(Tpotmat2,1), &
|
||||
Tmat, size(Tmat,1), 0.d0, &
|
||||
Tpotmat, size(Tpotmat,1))
|
||||
Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
|
||||
|
||||
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
|
||||
end do
|
||||
! Tpotmat(:,:)=0.D0
|
||||
! Umat(:,:) =0.D0
|
||||
! do i=1,mo_num
|
||||
! Tpotmat(i,i)=1.D0
|
||||
! Umat(i,i) =1.d0
|
||||
! end do
|
||||
! iter=0
|
||||
! converged=.false.
|
||||
! do while (.not.converged)
|
||||
! iter+=1
|
||||
! f = 1.d0 / dble(iter)
|
||||
! Tpotmat2(:,:) = Tpotmat(:,:) * f
|
||||
! call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
|
||||
! Tpotmat2, size(Tpotmat2,1), &
|
||||
! Tmat, size(Tmat,1), 0.d0, &
|
||||
! Tpotmat, size(Tpotmat,1))
|
||||
! Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
|
||||
!
|
||||
! converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
|
||||
! end do
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
@ -1,9 +1,9 @@
|
||||
BEGIN_PROVIDER [double precision, act_2_rdm_trans_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! act_2_rdm_trans_spin_trace_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2rdm_trans
|
||||
! act_2_rdm_trans_spin_trace_mo(i,j,k,l,istate,jstate) = STATE SPECIFIC physicist notation for 2rdm_trans
|
||||
!
|
||||
! \sum_{\sigma,\sigma'}<Psi_{istate}| a^{\dagger}_{i \sigma} a^{\dagger}_{j \sigma'} a_{l \sigma'} a_{k \sigma} |Psi_{istate}>
|
||||
! \sum_{\sigma,\sigma'}<Psi_{istate}| a^{\dagger}_{i \sigma} a^{\dagger}_{j \sigma'} a_{l \sigma'} a_{k \sigma} |Psi_{jstate}>
|
||||
!
|
||||
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
|
||||
!
|
||||
|
@ -1897,3 +1897,140 @@ end do
|
||||
|
||||
end subroutine pivoted_cholesky
|
||||
|
||||
subroutine exp_matrix(X,n,exp_X)
|
||||
implicit none
|
||||
double precision, intent(in) :: X(n,n)
|
||||
integer, intent(in):: n
|
||||
double precision, intent(out):: exp_X(n,n)
|
||||
BEGIN_DOC
|
||||
! exponential of the matrix X: X has to be ANTI HERMITIAN !!
|
||||
!
|
||||
! taken from Hellgaker, jorgensen, Olsen book
|
||||
!
|
||||
! section evaluation of matrix exponential (Eqs. 3.1.29 to 3.1.31)
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision, allocatable :: r2_mat(:,:),eigvalues(:),eigvectors(:,:)
|
||||
double precision, allocatable :: matrix_tmp1(:,:),eigvalues_mat(:,:),matrix_tmp2(:,:)
|
||||
include 'constants.include.F'
|
||||
allocate(r2_mat(n,n),eigvalues(n),eigvectors(n,n))
|
||||
allocate(eigvalues_mat(n,n),matrix_tmp1(n,n),matrix_tmp2(n,n))
|
||||
|
||||
! r2_mat = X^2 in the 3.1.30
|
||||
call get_A_squared(X,n,r2_mat)
|
||||
call lapack_diagd(eigvalues,eigvectors,r2_mat,n,n)
|
||||
eigvalues=-eigvalues
|
||||
|
||||
if(.False.)then
|
||||
!!! For debugging and following the book intermediate
|
||||
! rebuilding the matrix : X^2 = -W t^2 W^T as in 3.1.30
|
||||
! matrix_tmp1 = W t^2
|
||||
print*,'eigvalues = '
|
||||
do i = 1, n
|
||||
print*,i,eigvalues(i)
|
||||
write(*,'(100(F16.10,X))')eigvectors(:,i)
|
||||
enddo
|
||||
eigvalues_mat=0.d0
|
||||
do i = 1,n
|
||||
! t = dsqrt(t^2) where t^2 are eigenvalues of X^2
|
||||
eigvalues(i) = dsqrt(eigvalues(i))
|
||||
eigvalues_mat(i,i) = eigvalues(i)*eigvalues(i)
|
||||
enddo
|
||||
call dgemm('N','N',n,n,n,1.d0,eigvectors,size(eigvectors,1), &
|
||||
eigvalues_mat,size(eigvalues_mat,1),0.d0,matrix_tmp1,size(matrix_tmp1,1))
|
||||
call dgemm('N','T',n,n,n,-1.d0,matrix_tmp1,size(matrix_tmp1,1), &
|
||||
eigvectors,size(eigvectors,1),0.d0,matrix_tmp2,size(matrix_tmp2,1))
|
||||
print*,'r2_mat new = '
|
||||
do i = 1, n
|
||||
write(*,'(100(F16.10,X))')matrix_tmp2(:,i)
|
||||
enddo
|
||||
endif
|
||||
|
||||
! building the exponential
|
||||
! exp(X) = W cos(t) W^T + W t^-1 sin(t) W^T X as in Eq. 3.1.31
|
||||
! matrix_tmp1 = W cos(t)
|
||||
do i = 1,n
|
||||
eigvalues_mat(i,i) = dcos(eigvalues(i))
|
||||
enddo
|
||||
! matrix_tmp2 = W cos(t)
|
||||
call dgemm('N','N',n,n,n,1.d0,eigvectors,size(eigvectors,1), &
|
||||
eigvalues_mat,size(eigvalues_mat,1),0.d0,matrix_tmp1,size(matrix_tmp1,1))
|
||||
! matrix_tmp2 = W cos(t) W^T
|
||||
call dgemm('N','T',n,n,n,-1.d0,matrix_tmp1,size(matrix_tmp1,1), &
|
||||
eigvectors,size(eigvectors,1),0.d0,matrix_tmp2,size(matrix_tmp2,1))
|
||||
exp_X = matrix_tmp2
|
||||
! matrix_tmp2 = W t^-1 sin(t) W^T X
|
||||
do i = 1,n
|
||||
if(dabs(eigvalues(i)).gt.1.d-4)then
|
||||
eigvalues_mat(i,i) = dsin(eigvalues(i))/eigvalues(i)
|
||||
else ! Taylor development of sin(x)/x near x=0 = 1 - x^2/6
|
||||
eigvalues_mat(i,i) = 1.d0 - eigvalues(i)*eigvalues(i)*c_1_3*0.5d0
|
||||
endif
|
||||
enddo
|
||||
! matrix_tmp1 = W t^-1 sin(t)
|
||||
call dgemm('N','N',n,n,n,1.d0,eigvectors,size(eigvectors,1), &
|
||||
eigvalues_mat,size(eigvalues_mat,1),0.d0,matrix_tmp1,size(matrix_tmp1,1))
|
||||
! matrix_tmp2 = W t^-1 sin(t) W^T
|
||||
call dgemm('N','T',n,n,n,-1.d0,matrix_tmp1,size(matrix_tmp1,1), &
|
||||
eigvectors,size(eigvectors,1),0.d0,matrix_tmp2,size(matrix_tmp2,1))
|
||||
! exp_X += matrix_tmp2 X
|
||||
call dgemm('N','N',n,n,n,1.d0,matrix_tmp2,size(matrix_tmp2,1), &
|
||||
X,size(X,1),1.d0,exp_X,size(exp_X,1))
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine exp_matrix_taylor(X,n,exp_X,converged)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! exponential of a general real matrix X using the Taylor expansion of exp(X)
|
||||
!
|
||||
! returns the logical converged which checks the convergence
|
||||
END_DOC
|
||||
double precision, intent(in) :: X(n,n)
|
||||
integer, intent(in):: n
|
||||
double precision, intent(out):: exp_X(n,n)
|
||||
logical :: converged
|
||||
double precision :: f
|
||||
integer :: i,iter
|
||||
double precision, allocatable :: Tpotmat(:,:),Tpotmat2(:,:)
|
||||
allocate(Tpotmat(n,n),Tpotmat2(n,n))
|
||||
BEGIN_DOC
|
||||
! exponential of X using Taylor expansion
|
||||
END_DOC
|
||||
Tpotmat(:,:)=0.D0
|
||||
exp_X(:,:) =0.D0
|
||||
do i=1,n
|
||||
Tpotmat(i,i)=1.D0
|
||||
exp_X(i,i) =1.d0
|
||||
end do
|
||||
iter=0
|
||||
converged=.false.
|
||||
do while (.not.converged)
|
||||
iter+=1
|
||||
f = 1.d0 / dble(iter)
|
||||
Tpotmat2(:,:) = Tpotmat(:,:) * f
|
||||
call dgemm('N','N', n,n,n,1.d0, &
|
||||
Tpotmat2, size(Tpotmat2,1), &
|
||||
X, size(X,1), 0.d0, &
|
||||
Tpotmat, size(Tpotmat,1))
|
||||
exp_X(:,:) = exp_X(:,:) + Tpotmat(:,:)
|
||||
|
||||
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
|
||||
end do
|
||||
if(.not.converged)then
|
||||
print*,'Warning !! exp_matrix_taylor did not converge !'
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
subroutine get_A_squared(A,n,A2)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! A2 = A A where A is n x n matrix. Use the dgemm routine
|
||||
END_DOC
|
||||
double precision, intent(in) :: A(n,n)
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(out):: A2(n,n)
|
||||
call dgemm('N','N',n,n,n,1.d0,A,size(A,1),A,size(A,1),0.d0,A2,size(A2,1))
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user