10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-10-15 12:31:45 +02:00

cd ao mo transform

This commit is contained in:
Kevin Gasperich 2022-03-09 14:30:36 -06:00
parent 1fb24382b5
commit 30483cf0fa

View File

@ -0,0 +1,313 @@
BEGIN_PROVIDER [complex*16, chol_mo_integrals_complex, (mo_num_per_kpt,mo_num_per_kpt,chol_num_max,kpt_num,chol_unique_kpt_num)]
implicit none
BEGIN_DOC
! df MO integrals
END_DOC
integer :: i,j,k,l
if (read_chol_mo_integrals) then
call ezfio_get_mo_two_e_ints_chol_mo_integrals_complex(chol_mo_integrals_complex)
print *, 'CD MO integrals read from disk'
else
call chol_mo_from_chol_ao(chol_mo_integrals_complex,chol_ao_integrals_complex,mo_num_per_kpt,ao_num_per_kpt, &
chol_num_max,kpt_num,chol_unique_kpt_num)
endif
if (write_df_mo_integrals) then
call ezfio_set_mo_two_e_ints_df_mo_integrals_complex(df_mo_integrals_complex)
print *, 'df MO integrals written to disk'
endif
END_PROVIDER
subroutine mo_map_fill_from_chol_dot
use map_module
implicit none
BEGIN_DOC
! TODO: implement this (below is just copied from df as placeholder)
! fill mo bielec integral map using 3-index cd integrals
END_DOC
integer :: i,k,j,l,mu
integer :: ki,kk,kj,kl
integer :: ii,ik,ij,il
integer :: kikk2,kjkl2,jl2,ik2
integer :: i_mo,j_mo,i_df
complex*16,allocatable :: ints_ik(:,:,:), ints_jl(:,:,:)
complex*16 :: integral,mjl,mik
integer :: n_integrals_1, n_integrals_2
integer :: size_buffer
integer(key_kind),allocatable :: buffer_i_1(:), buffer_i_2(:)
real(integral_kind),allocatable :: buffer_values_1(:), buffer_values_2(:)
double precision :: tmp_re,tmp_im
integer :: mo_num_kpt_2
double precision :: cpu_1, cpu_2, wall_1, wall_2, wall_0
double precision :: map_mb
logical :: use_map1
integer(key_kind) :: idx_tmp
double precision :: sign
!complex*16, external :: zdotc
complex*16, external :: zdotu
mo_num_kpt_2 = mo_num_per_kpt * mo_num_per_kpt
size_buffer = min(mo_num_per_kpt*mo_num_per_kpt*mo_num_per_kpt,16000000)
print*, 'Providing the mo_bielec integrals from 3-index df integrals'
call write_time(6)
! call ezfio_set_integrals_bielec_disk_access_mo_integrals('Write')
! TOUCH read_mo_integrals read_ao_integrals write_mo_integrals write_ao_integrals
call wall_time(wall_1)
call cpu_time(cpu_1)
allocate( ints_jl(df_num,mo_num_per_kpt,mo_num_per_kpt))
allocate( ints_ik(df_num,mo_num_per_kpt,mo_num_per_kpt))
wall_0 = wall_1
do kl=1, kpt_num
do kj=1, kl
call idx2_tri_int(kj,kl,kjkl2)
if (kj < kl) then
do i_mo=1,mo_num_per_kpt
do j_mo=1,mo_num_per_kpt
do i_df=1,df_num
ints_jl(i_df,i_mo,j_mo) = dconjg(df_mo_integrals_complex(j_mo,i_mo,i_df,kjkl2))
enddo
enddo
enddo
else
do i_mo=1,mo_num_per_kpt
do j_mo=1,mo_num_per_kpt
do i_df=1,df_num
ints_jl(i_df,i_mo,j_mo) = df_mo_integrals_complex(i_mo,j_mo,i_df,kjkl2)
enddo
enddo
enddo
endif
do kk=1,kl
ki=kconserv(kl,kk,kj)
if (ki>kl) cycle
call idx2_tri_int(ki,kk,kikk2)
if (ki < kk) then
do i_mo=1,mo_num_per_kpt
do j_mo=1,mo_num_per_kpt
do i_df=1,df_num
ints_ik(i_df,i_mo,j_mo) = dconjg(df_mo_integrals_complex(j_mo,i_mo,i_df,kikk2))
enddo
enddo
enddo
! ints_ik = conjg(reshape(df_mo_integral_array(:,:,:,kikk2),(/mo_num_per_kpt,mo_num_per_kpt,df_num/),order=(/2,1,3/)))
else
do i_mo=1,mo_num_per_kpt
do j_mo=1,mo_num_per_kpt
do i_df=1,df_num
ints_ik(i_df,i_mo,j_mo) = df_mo_integrals_complex(i_mo,j_mo,i_df,kikk2)
enddo
enddo
enddo
endif
!$OMP PARALLEL PRIVATE(i,k,j,l,ii,ik,ij,il,jl2,ik2, &
!$OMP mu, mik, mjl, &
!$OMP n_integrals_1, buffer_i_1, buffer_values_1, &
!$OMP n_integrals_2, buffer_i_2, buffer_values_2, &
!$OMP idx_tmp, tmp_re, tmp_im, integral,sign,use_map1) &
!$OMP DEFAULT(NONE) &
!$OMP SHARED(size_buffer, kpt_num, df_num, mo_num_per_kpt, mo_num_kpt_2, &
!$OMP kl,kj,kjkl2,ints_jl, &
!$OMP ki,kk,kikk2,ints_ik, &
!$OMP kconserv, df_mo_integrals_complex, mo_integrals_threshold, &
!$OMP mo_integrals_map, mo_integrals_map_2)
allocate( &
buffer_i_1(size_buffer), &
buffer_i_2(size_buffer), &
buffer_values_1(size_buffer), &
buffer_values_2(size_buffer) &
)
n_integrals_1=0
n_integrals_2=0
!$OMP DO SCHEDULE(guided)
do il=1,mo_num_per_kpt
l=il+(kl-1)*mo_num_per_kpt
do ij=1,mo_num_per_kpt
j=ij+(kj-1)*mo_num_per_kpt
if (j>l) exit
call idx2_tri_int(j,l,jl2)
do ik=1,mo_num_per_kpt
k=ik+(kk-1)*mo_num_per_kpt
if (k>l) exit
do ii=1,mo_num_per_kpt
i=ii+(ki-1)*mo_num_per_kpt
if ((j==l) .and. (i>k)) exit
call idx2_tri_int(i,k,ik2)
if (ik2 > jl2) exit
!integral = zdotc(df_num,ints_jl(1,ij,il),1,ints_ik(1,ii,ik),1)
integral = zdotu(df_num,ints_jl(1,ij,il),1,ints_ik(1,ii,ik),1)
! print*,i,k,j,l,real(integral),imag(integral)
if (cdabs(integral) < mo_integrals_threshold) then
cycle
endif
call ao_two_e_integral_complex_map_idx_sign(i,j,k,l,use_map1,idx_tmp,sign)
tmp_re = dble(integral)
tmp_im = dimag(integral)
if (use_map1) then
n_integrals_1 += 1
buffer_i_1(n_integrals_1)=idx_tmp
buffer_values_1(n_integrals_1)=tmp_re
if (sign.ne.0.d0) then
n_integrals_1 += 1
buffer_i_1(n_integrals_1)=idx_tmp+1
buffer_values_1(n_integrals_1)=tmp_im*sign
endif
if (n_integrals_1 >= size(buffer_i_1)-1) then
call map_append(mo_integrals_map, buffer_i_1, buffer_values_1, n_integrals_1)
!call insert_into_mo_integrals_map(n_integrals_1,buffer_i_1,buffer_values_1,mo_integrals_threshold)
n_integrals_1 = 0
endif
else
n_integrals_2 += 1
buffer_i_2(n_integrals_2)=idx_tmp
buffer_values_2(n_integrals_2)=tmp_re
if (sign.ne.0.d0) then
n_integrals_2 += 1
buffer_i_2(n_integrals_2)=idx_tmp+1
buffer_values_2(n_integrals_2)=tmp_im*sign
endif
if (n_integrals_2 >= size(buffer_i_2)-1) then
call map_append(mo_integrals_map_2, buffer_i_2, buffer_values_2, n_integrals_2)
!call insert_into_mo_integrals_map_2(n_integrals_2,buffer_i_2,buffer_values_2,mo_integrals_threshold)
n_integrals_2 = 0
endif
endif
enddo !ii
enddo !ik
enddo !ij
enddo !il
!$OMP END DO NOWAIT
if (n_integrals_1 > 0) then
call map_append(mo_integrals_map, buffer_i_1, buffer_values_1, n_integrals_1)
!call insert_into_mo_integrals_map(n_integrals_1,buffer_i_1,buffer_values_1,mo_integrals_threshold)
endif
if (n_integrals_2 > 0) then
call map_append(mo_integrals_map_2, buffer_i_2, buffer_values_2, n_integrals_2)
!call insert_into_mo_integrals_map_2(n_integrals_2,buffer_i_2,buffer_values_2,mo_integrals_threshold)
endif
deallocate( &
buffer_i_1, &
buffer_i_2, &
buffer_values_1, &
buffer_values_2 &
)
!$OMP END PARALLEL
enddo !kk
enddo !kj
call wall_time(wall_2)
if (wall_2 - wall_0 > 1.d0) then
wall_0 = wall_2
print*, 100.*float(kl)/float(kpt_num), '% in ', &
wall_2-wall_1,'s',map_mb(mo_integrals_map),'+',map_mb(mo_integrals_map_2),'MB'
endif
enddo !kl
deallocate( ints_jl,ints_ik )
call map_sort(mo_integrals_map)
call map_unique(mo_integrals_map)
call map_sort(mo_integrals_map_2)
call map_unique(mo_integrals_map_2)
!call map_merge(mo_integrals_map)
!call map_merge(mo_integrals_map_2)
!!call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints_complex_1',mo_integrals_map)
!!call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints_complex_2',mo_integrals_map_2)
!!call ezfio_set_mo_two_e_ints_io_mo_two_e_integrals('Read')
call wall_time(wall_2)
call cpu_time(cpu_2)
integer*8 :: get_mo_map_size, mo_map_size
mo_map_size = get_mo_map_size()
print*,'MO integrals provided:'
print*,' Size of MO map ', map_mb(mo_integrals_map),'+',map_mb(mo_integrals_map_2),'MB'
print*,' Number of MO integrals: ', mo_map_size
print*,' cpu time :',cpu_2 - cpu_1, 's'
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
end subroutine mo_map_fill_from_chol_dot
subroutine chol_mo_from_chol_ao(cd_mo,cd_ao,n_mo,n_ao,n_cd,n_k,n_unique_k)
use map_module
implicit none
BEGIN_DOC
! create 3-idx mo ints from 3-idx ao ints
END_DOC
integer,intent(in) :: n_mo,n_ao,n_cd,n_k,n_unique_k
complex*16,intent(out) :: cd_mo(n_mo,n_mo,n_cd,n_k,n_unique_k)
complex*16,intent(in) :: cd_ao(n_ao,n_ao,n_cd,n_k,n_unique_k)
integer :: ki,kk,mu,kQ,Q_idx
complex*16,allocatable :: coef_i(:,:), coef_k(:,:), ints_ik(:,:), ints_tmp(:,:)
double precision :: wall_1,wall_2,cpu_1,cpu_2
print*,'providing 3-index MO integrals from 3-index AO integrals'
cd_mo = 0.d0
call wall_time(wall_1)
call cpu_time(cpu_1)
allocate( &
coef_i(n_ao,n_mo),&
coef_k(n_ao,n_mo),&
ints_ik(n_ao,n_ao),&
ints_tmp(n_mo,n_ao)&
)
do ki=1, kpt_num
coef_i = mo_coef_complex_kpts(:,:,ki)
do kk=1, kpt_num
coef_k = mo_coef_complex_kpts(:,:,kk)
kQ = qktok2(kk,ki)
Q_idx = kpt_sparse_map(kQ)
if (Q_idx < 0) cycle
do mu=1, chol_num(kQ)
ints_ik = cd_ao(:,:,mu,ki,Q_idx)
call zgemm('C','N',n_mo,n_ao,n_ao, &
(1.d0,0.d0), coef_i, n_ao, &
ints_ik, n_ao, &
(0.d0,0.d0), ints_tmp, n_mo)
call zgemm('N','N',n_mo,n_mo,n_ao, &
(1.d0,0.d0), ints_tmp, n_mo, &
coef_k, n_ao, &
(0.d0,0.d0), cd_mo(:,:,mu,ki,Q_idx), n_mo)
enddo
enddo
call wall_time(wall_2)
print*,100.*float(ki)/kpt_num, '% in ', &
wall_2-wall_1, 's'
enddo
deallocate( &
coef_i, &
coef_k, &
ints_ik, &
ints_tmp &
)
call wall_time(wall_2)
call cpu_time(cpu_2)
print*,' 3-idx MO provided'
print*,' cpu time:',cpu_2-cpu_1,'s'
print*,' wall time:',wall_2-wall_1,'s ( x ',(cpu_2-cpu_1)/(wall_2-wall_1),')'
end subroutine chol_mo_from_chol_ao