10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-08 20:33:20 +01:00

significant restructuring of complex int parts

instead of real/imag parts read separately, use ezfio to read/write complex arrays with extra dimension of size 2
converter needs to be tested (might need to transpose some axes in arrays)
converter has extra garbage that needs to be removed after testing
This commit is contained in:
Kevin Gasperich 2020-02-12 16:34:32 -06:00
parent 059efc649d
commit 2cffbdcc9d
24 changed files with 648 additions and 337 deletions

View File

@ -869,3 +869,6 @@ qp_name mo_two_e_integral_periodic -r mo_two_e_integral_complex
qp_name get_mo_two_e_integrals_ij_periodic -r get_mo_two_e_integrals_ij_complex
qp_name get_mo_two_e_integrals_coulomb_ii_periodic -r get_mo_two_e_integrals_coulomb_ii_complex
qp_name get_mo_two_e_integrals_coulomb_ijij_periodic -r get_mo_two_e_integrals_coulomb_ijij_complex
qp_name ao_kpt_num -r ao_num_per_kpt
qp_name mo_kpt_num -r mo_num_per_kpt
qp_name num_kpts -r kpt_num

View File

@ -2,7 +2,6 @@ open Qptypes
open Qputils
open Sexplib.Std
module Mo_basis : sig
type t =
{ mo_num : MO_number.t ;
@ -10,7 +9,6 @@ module Mo_basis : sig
mo_class : MO_class.t array;
mo_occ : MO_occ.t array;
mo_coef : (MO_coef.t array) array;
mo_coef_imag : (MO_coef.t array) array option;
ao_md5 : MD5.t;
} [@@deriving sexp]
val read : unit -> t option
@ -25,11 +23,13 @@ end = struct
mo_class : MO_class.t array;
mo_occ : MO_occ.t array;
mo_coef : (MO_coef.t array) array;
mo_coef_imag : (MO_coef.t array) array option;
ao_md5 : MD5.t;
} [@@deriving sexp]
let get_default = Qpackage.get_ezfio_default "mo_basis"
let is_complex = lazy (Ezfio.get_nuclei_is_complex () )
let read_mo_label () =
if not (Ezfio.has_mo_basis_mo_label ()) then
Ezfio.set_mo_basis_mo_label "None"
@ -43,14 +43,7 @@ end = struct
mo_coef = Array.map (fun mo ->
Array.init (Array.length mo)
(fun i -> mo.(ordering.(i)))
) b.mo_coef ;
mo_coef_imag =
match b.mo_coef_imag with
| None -> None
| Some x -> Some ( Array.map (fun mo ->
Array.init (Array.length mo)
(fun i -> mo.(ordering.(i)))
) x )
) b.mo_coef
}
let read_ao_md5 () =
@ -69,7 +62,10 @@ end = struct
|> MD5.of_string
in
if (ao_md5 <> result) then
failwith "The current MOs don't correspond to the current AOs.";
begin
Printf.eprintf ":%s:\n:%s:\n%!" (MD5.to_string ao_md5) (MD5.to_string result);
failwith "The current MOs don't correspond to the current AOs."
end;
result
@ -120,29 +116,21 @@ end = struct
let read_mo_coef () =
let a = Ezfio.get_mo_basis_mo_coef ()
|> Ezfio.flattened_ezfio
|> Array.map MO_coef.of_float
let a =
(
if Lazy.force is_complex then
Ezfio.get_mo_basis_mo_coef_complex ()
else
Ezfio.get_mo_basis_mo_coef ()
)
|> Ezfio.flattened_ezfio
|> Array.map MO_coef.of_float
in
let mo_num = read_mo_num () |> MO_number.to_int in
let ao_num = (Array.length a)/mo_num in
Array.init mo_num (fun j ->
Array.sub a (j*ao_num) (ao_num)
)
let read_mo_coef_imag () =
if Ezfio.has_mo_basis_mo_coef_imag () then
let a =
Ezfio.get_mo_basis_mo_coef_imag ()
|> Ezfio.flattened_ezfio
|> Array.map MO_coef.of_float
in
let mo_num = read_mo_num () |> MO_number.to_int in
let ao_num = (Array.length a)/mo_num in
Some (Array.init mo_num (fun j ->
Array.init mo_num (fun j ->
Array.sub a (j*ao_num) (ao_num)
) )
else None
)
let read () =
@ -153,7 +141,6 @@ end = struct
mo_class = read_mo_class ();
mo_occ = read_mo_occ ();
mo_coef = read_mo_coef ();
mo_coef_imag = read_mo_coef_imag ();
ao_md5 = read_ao_md5 ();
}
else
@ -161,7 +148,6 @@ end = struct
let mo_coef_to_string mo_coef =
(*TODO : add imaginary part here *)
let ao_num = Array.length mo_coef.(0)
and mo_num = Array.length mo_coef in
let rec print_five imin imax =
@ -247,7 +233,6 @@ MO coefficients ::
let to_string b =
(*TODO : add imaginary part here *)
Printf.sprintf "
mo_label = \"%s\"
mo_num = %s
@ -300,31 +285,22 @@ mo_coef = %s
let write_mo_coef a =
let mo_num = Array.length a in
let ao_num = Array.length a.(0) in
let ao_num =
let x = Array.length a.(0) in
if Lazy.force is_complex then x/2 else x
in
let data =
Array.map (fun mo -> Array.map MO_coef.to_float mo
|> Array.to_list) a
|> Array.to_list
|> List.concat
in Ezfio.ezfio_array_of_list ~rank:2 ~dim:[| ao_num ; mo_num |] ~data
|> Ezfio.set_mo_basis_mo_coef
let write_mo_coef_imag a =
match a with
| None -> ()
| Some a ->
begin
let mo_num = Array.length a in
let ao_num = Array.length a.(0) in
let data =
Array.map (fun mo -> Array.map MO_coef.to_float mo
|> Array.to_list) a
|> Array.to_list
|> List.concat
in Ezfio.ezfio_array_of_list ~rank:2 ~dim:[| ao_num ; mo_num |] ~data
|> Ezfio.set_mo_basis_mo_coef_imag
end
in
if Lazy.force is_complex then
(Ezfio.ezfio_array_of_list ~rank:3 ~dim:[| 2 ; ao_num ; mo_num |] ~data
|> Ezfio.set_mo_basis_mo_coef_complex )
else
(Ezfio.ezfio_array_of_list ~rank:2 ~dim:[| ao_num ; mo_num |] ~data
|> Ezfio.set_mo_basis_mo_coef )
let write
@ -333,7 +309,6 @@ mo_coef = %s
mo_class : MO_class.t array;
mo_occ : MO_occ.t array;
mo_coef : (MO_coef.t array) array;
mo_coef_imag : (MO_coef.t array) array option;
ao_md5 : MD5.t;
} =
write_mo_num mo_num;
@ -341,7 +316,6 @@ mo_coef = %s
write_mo_class mo_class;
write_mo_occ mo_occ;
write_mo_coef mo_coef;
write_mo_coef_imag mo_coef_imag;
write_md5 ao_md5

View File

@ -166,6 +166,7 @@ let input_ezfio = "
let untouched = "
module MO_guess : sig
type t [@@deriving sexp]
val to_string : t -> string

View File

@ -55,7 +55,7 @@ doc: If |true|, use |AOs| in Cartesian coordinates (6d,10f,...)
interface: ezfio, provider
default: false
[ao_kpt_num]
[ao_num_per_kpt]
type: integer
doc: Number of |AOs| per kpt
default: =(ao_basis.ao_num/nuclei.kpt_num)

View File

@ -1,7 +1,7 @@
BEGIN_PROVIDER [ integer, ao_kpt_num ]
BEGIN_PROVIDER [ integer, ao_num_per_kpt ]
implicit none
BEGIN_DOC
! number of aos per kpt.
END_DOC
ao_kpt_num = ao_num/kpt_num
ao_num_per_kpt = ao_num/kpt_num
END_PROVIDER

View File

@ -4,10 +4,10 @@ doc: Nucleus-electron integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[ao_integrals_n_e_imag]
[ao_integrals_n_e_complex]
type: double precision
doc: Imaginary part of the nucleus-electron integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
doc: Complex nucleus-electron integrals in |AO| basis set
size: (2,ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[io_ao_integrals_n_e]
@ -23,10 +23,10 @@ doc: Kinetic energy integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[ao_integrals_kinetic_imag]
[ao_integrals_kinetic_complex]
type: double precision
doc: Imaginary part of the kinetic energy integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
doc: Complex kinetic energy integrals in |AO| basis set
size: (2,ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[io_ao_integrals_kinetic]
@ -42,10 +42,10 @@ doc: Pseudopotential integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[ao_integrals_pseudo_imag]
[ao_integrals_pseudo_complex]
type: double precision
doc: Imaginary part of the pseudopotential integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
doc: Complex pseudopotential integrals in |AO| basis set
size: (2,ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[io_ao_integrals_pseudo]
@ -61,10 +61,10 @@ doc: Overlap integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[ao_integrals_overlap_imag]
[ao_integrals_overlap_complex]
type: double precision
doc: Imaginary part of the overlap integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
doc: Complex overlap integrals in |AO| basis set
size: (2,ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[io_ao_integrals_overlap]
@ -80,10 +80,10 @@ doc: Combined integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[ao_one_e_integrals_imag]
[ao_one_e_integrals_complex]
type: double precision
doc: Imaginary part of the combined integrals in |AO| basis set
size: (ao_basis.ao_num,ao_basis.ao_num)
doc: Complex combined integrals in |AO| basis set
size: (2,ao_basis.ao_num,ao_basis.ao_num)
interface: ezfio
[io_ao_one_e_integrals]

View File

@ -5,7 +5,10 @@
BEGIN_DOC
! One-electron Hamiltonian in the |AO| basis.
END_DOC
if (is_complex) then
print*,"you shouldn't be here for complex",irp_here
stop -1
endif
IF (read_ao_one_e_integrals) THEN
call ezfio_get_ao_one_e_ints_ao_one_e_integrals(ao_one_e_integrals)
ELSE
@ -27,43 +30,55 @@
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_one_e_integrals_imag,(ao_num,ao_num)]
implicit none
integer :: i,j,n,l
BEGIN_DOC
! One-electron Hamiltonian in the |AO| basis.
END_DOC
!BEGIN_PROVIDER [ double precision, ao_one_e_integrals_imag,(ao_num,ao_num)]
! implicit none
! integer :: i,j,n,l
! BEGIN_DOC
! ! One-electron Hamiltonian in the |AO| basis.
! END_DOC
!
! IF (read_ao_one_e_integrals) THEN
! call ezfio_get_ao_one_e_ints_ao_one_e_integrals_imag(ao_one_e_integrals_imag)
! ELSE
! ao_one_e_integrals_imag = ao_integrals_n_e_imag + ao_kinetic_integrals_imag
!
! IF (DO_PSEUDO) THEN
! ao_one_e_integrals_imag += ao_pseudo_integrals_imag
! ENDIF
! ENDIF
!
! IF (write_ao_one_e_integrals) THEN
! call ezfio_set_ao_one_e_ints_ao_one_e_integrals_imag(ao_one_e_integrals_imag)
! print *, 'AO one-e integrals written to disk'
! ENDIF
!
!END_PROVIDER
IF (read_ao_one_e_integrals) THEN
call ezfio_get_ao_one_e_ints_ao_one_e_integrals_imag(ao_one_e_integrals_imag)
ELSE
ao_one_e_integrals_imag = ao_integrals_n_e_imag + ao_kinetic_integrals_imag
IF (DO_PSEUDO) THEN
ao_one_e_integrals_imag += ao_pseudo_integrals_imag
ENDIF
ENDIF
IF (write_ao_one_e_integrals) THEN
call ezfio_set_ao_one_e_ints_ao_one_e_integrals_imag(ao_one_e_integrals_imag)
print *, 'AO one-e integrals written to disk'
ENDIF
END_PROVIDER
BEGIN_PROVIDER [ complex*16, ao_one_e_integrals_complex,(ao_num,ao_num)]
BEGIN_PROVIDER [ complex*16, ao_one_e_integrals_complex,(ao_num,ao_num)]
&BEGIN_PROVIDER [ double precision, ao_one_e_integrals_diag_complex,(ao_num)]
implicit none
integer :: i,j,n,l
BEGIN_DOC
! One-electron Hamiltonian in the |AO| basis.
END_DOC
do i=1,ao_num
do j=1,ao_num
ao_one_e_integrals_complex(j,i)=dcmplx(ao_one_e_integrals(j,i), &
ao_one_e_integrals_imag(j,i))
enddo
enddo
IF (read_ao_one_e_integrals) THEN
call ezfio_get_ao_one_e_ints_ao_one_e_integrals_complex(ao_one_e_integrals_complex)
ELSE
ao_one_e_integrals_complex = ao_integrals_n_e_complex + ao_kinetic_integrals_complex
IF (DO_PSEUDO) THEN
ao_one_e_integrals_complex += ao_pseudo_integrals_complex
ENDIF
ENDIF
DO j = 1, ao_num
ao_one_e_integrals_diag_complex(j) = dble(ao_one_e_integrals_complex(j,j))
ENDDO
IF (write_ao_one_e_integrals) THEN
call ezfio_set_ao_one_e_ints_ao_one_e_integrals_complex(ao_one_e_integrals_complex)
print *, 'AO one-e integrals written to disk'
ENDIF
END_PROVIDER

View File

@ -70,34 +70,38 @@
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_overlap_imag, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Imaginary part of the overlap
END_DOC
if (read_ao_integrals_overlap) then
call ezfio_get_ao_one_e_ints_ao_integrals_overlap_imag(ao_overlap_imag(1:ao_num, 1:ao_num))
print *, 'AO overlap integrals read from disk'
else
ao_overlap_imag = 0.d0
endif
if (write_ao_integrals_overlap) then
call ezfio_set_ao_one_e_ints_ao_integrals_overlap_imag(ao_overlap_imag(1:ao_num, 1:ao_num))
print *, 'AO overlap integrals written to disk'
endif
END_PROVIDER
!BEGIN_PROVIDER [ double precision, ao_overlap_imag, (ao_num, ao_num) ]
! implicit none
! BEGIN_DOC
! ! Imaginary part of the overlap
! END_DOC
! if (read_ao_integrals_overlap) then
! call ezfio_get_ao_one_e_ints_ao_integrals_overlap_imag(ao_overlap_imag(1:ao_num, 1:ao_num))
! print *, 'AO overlap integrals read from disk'
! else
! ao_overlap_imag = 0.d0
! endif
! if (write_ao_integrals_overlap) then
! call ezfio_set_ao_one_e_ints_ao_integrals_overlap_imag(ao_overlap_imag(1:ao_num, 1:ao_num))
! print *, 'AO overlap integrals written to disk'
! endif
!END_PROVIDER
BEGIN_PROVIDER [ complex*16, ao_overlap_complex, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Overlap for complex AOs
END_DOC
integer :: i,j
do j=1,ao_num
do i=1,ao_num
ao_overlap_complex(i,j) = dcmplx( ao_overlap(i,j), ao_overlap_imag(i,j) )
enddo
enddo
if (read_ao_integrals_overlap) then
call ezfio_get_ao_one_e_ints_ao_integrals_overlap_complex(ao_overlap_complex)
print *, 'AO overlap integrals read from disk'
else
print*,'complex AO overlap ints must be provided',irp_here
endif
if (write_ao_integrals_overlap) then
call ezfio_set_ao_one_e_ints_ao_integrals_overlap_complex(ao_overlap_complex)
print *, 'AO overlap integrals written to disk'
endif
END_PROVIDER

View File

@ -149,27 +149,27 @@ BEGIN_PROVIDER [double precision, ao_kinetic_integrals, (ao_num,ao_num)]
endif
END_PROVIDER
BEGIN_PROVIDER [double precision, ao_kinetic_integrals_imag, (ao_num,ao_num)]
implicit none
BEGIN_DOC
! Kinetic energy integrals in the |AO| basis.
!
! $\langle \chi_i |\hat{T}| \chi_j \rangle$
!
END_DOC
integer :: i,j,k,l
if (read_ao_integrals_kinetic) then
call ezfio_get_ao_one_e_ints_ao_integrals_kinetic_imag(ao_kinetic_integrals_imag)
print *, 'AO kinetic integrals read from disk'
else
print *, irp_here, ': Not yet implemented'
endif
if (write_ao_integrals_kinetic) then
call ezfio_set_ao_one_e_ints_ao_integrals_kinetic_imag(ao_kinetic_integrals_imag)
print *, 'AO kinetic integrals written to disk'
endif
END_PROVIDER
!BEGIN_PROVIDER [double precision, ao_kinetic_integrals_imag, (ao_num,ao_num)]
! implicit none
! BEGIN_DOC
! ! Kinetic energy integrals in the |AO| basis.
! !
! ! $\langle \chi_i |\hat{T}| \chi_j \rangle$
! !
! END_DOC
! integer :: i,j,k,l
!
! if (read_ao_integrals_kinetic) then
! call ezfio_get_ao_one_e_ints_ao_integrals_kinetic_imag(ao_kinetic_integrals_imag)
! print *, 'AO kinetic integrals read from disk'
! else
! print *, irp_here, ': Not yet implemented'
! endif
! if (write_ao_integrals_kinetic) then
! call ezfio_set_ao_one_e_ints_ao_integrals_kinetic_imag(ao_kinetic_integrals_imag)
! print *, 'AO kinetic integrals written to disk'
! endif
!END_PROVIDER
BEGIN_PROVIDER [complex*16, ao_kinetic_integrals_complex, (ao_num,ao_num)]
implicit none
@ -179,11 +179,15 @@ BEGIN_PROVIDER [complex*16, ao_kinetic_integrals_complex, (ao_num,ao_num)]
! $\langle \chi_i |\hat{T}| \chi_j \rangle$
!
END_DOC
integer :: i,j
do i=1,ao_num
do j=1,ao_num
ao_kinetic_integrals_complex(j,i) = dcmplx(ao_kinetic_integrals(j,i), &
ao_kinetic_integrals_imag(j,i))
enddo
enddo
if (read_ao_integrals_kinetic) then
call ezfio_get_ao_one_e_ints_ao_integrals_kinetic_complex(ao_kinetic_integrals_complex)
print *, 'AO kinetic integrals read from disk'
else
print *, irp_here, ': Not yet implemented'
stop -1
endif
if (write_ao_integrals_kinetic) then
call ezfio_set_ao_one_e_ints_ao_integrals_kinetic_complex(ao_kinetic_integrals_complex)
print *, 'AO kinetic integrals written to disk'
endif
END_PROVIDER

View File

@ -83,27 +83,27 @@ BEGIN_PROVIDER [ double precision, ao_integrals_n_e, (ao_num,ao_num)]
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_integrals_n_e_imag, (ao_num,ao_num)]
BEGIN_DOC
! Nucleus-electron interaction, in the |AO| basis set.
!
! :math:`\langle \chi_i | -\sum_A \frac{1}{|r-R_A|} | \chi_j \rangle`
END_DOC
implicit none
double precision :: alpha, beta, gama, delta
integer :: num_A,num_B
double precision :: A_center(3),B_center(3),C_center(3)
integer :: power_A(3),power_B(3)
integer :: i,j,k,l,n_pt_in,m
double precision :: overlap_x,overlap_y,overlap_z,overlap,dx,NAI_pol_mult
if (read_ao_integrals_n_e) then
call ezfio_get_ao_one_e_ints_ao_integrals_n_e_imag(ao_integrals_n_e_imag)
print *, 'AO N-e integrals read from disk'
else
print *, irp_here, ': Not yet implemented'
endif
END_PROVIDER
!BEGIN_PROVIDER [ double precision, ao_integrals_n_e_imag, (ao_num,ao_num)]
! BEGIN_DOC
! ! Nucleus-electron interaction, in the |AO| basis set.
! !
! ! :math:`\langle \chi_i | -\sum_A \frac{1}{|r-R_A|} | \chi_j \rangle`
! END_DOC
! implicit none
! double precision :: alpha, beta, gama, delta
! integer :: num_A,num_B
! double precision :: A_center(3),B_center(3),C_center(3)
! integer :: power_A(3),power_B(3)
! integer :: i,j,k,l,n_pt_in,m
! double precision :: overlap_x,overlap_y,overlap_z,overlap,dx,NAI_pol_mult
!
! if (read_ao_integrals_n_e) then
! call ezfio_get_ao_one_e_ints_ao_integrals_n_e_imag(ao_integrals_n_e_imag)
! print *, 'AO N-e integrals read from disk'
! else
! print *, irp_here, ': Not yet implemented'
! endif
!END_PROVIDER
BEGIN_PROVIDER [complex*16, ao_integrals_n_e_complex, (ao_num,ao_num)]
implicit none
@ -112,13 +112,12 @@ BEGIN_PROVIDER [complex*16, ao_integrals_n_e_complex, (ao_num,ao_num)]
!
! :math:`\langle \chi_i | -\sum_A \frac{1}{|r-R_A|} | \chi_j \rangle`
END_DOC
integer :: i,j
do i=1,ao_num
do j=1,ao_num
ao_integrals_n_e_complex(j,i) = dcmplx(ao_integrals_n_e(j,i), &
ao_integrals_n_e_imag(j,i))
enddo
enddo
if (read_ao_integrals_n_e) then
call ezfio_get_ao_one_e_ints_ao_integrals_n_e_complex(ao_integrals_n_e_complex)
print *, 'AO N-e integrals read from disk'
else
print *, irp_here, ': Not yet implemented'
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_integrals_n_e_per_atom, (ao_num,ao_num,nucl_num)]

View File

@ -27,34 +27,39 @@ BEGIN_PROVIDER [ double precision, ao_pseudo_integrals, (ao_num,ao_num)]
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_pseudo_integrals_imag, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Imaginary part of the pseudo_integrals
END_DOC
if (read_ao_integrals_pseudo) then
call ezfio_get_ao_one_e_ints_ao_integrals_pseudo_imag(ao_pseudo_integrals_imag(1:ao_num, 1:ao_num))
print *, 'AO pseudo_integrals integrals read from disk'
else
ao_pseudo_integrals_imag = 0.d0
endif
if (write_ao_integrals_pseudo) then
call ezfio_set_ao_one_e_ints_ao_integrals_pseudo_imag(ao_pseudo_integrals_imag(1:ao_num, 1:ao_num))
print *, 'AO pseudo_integrals integrals written to disk'
endif
END_PROVIDER
!BEGIN_PROVIDER [ double precision, ao_pseudo_integrals_imag, (ao_num, ao_num) ]
! implicit none
! BEGIN_DOC
! ! Imaginary part of the pseudo_integrals
! END_DOC
! if (read_ao_integrals_pseudo) then
! call ezfio_get_ao_one_e_ints_ao_integrals_pseudo_imag(ao_pseudo_integrals_imag(1:ao_num, 1:ao_num))
! print *, 'AO pseudo_integrals integrals read from disk'
! else
! ao_pseudo_integrals_imag = 0.d0
! endif
! if (write_ao_integrals_pseudo) then
! call ezfio_set_ao_one_e_ints_ao_integrals_pseudo_imag(ao_pseudo_integrals_imag(1:ao_num, 1:ao_num))
! print *, 'AO pseudo_integrals integrals written to disk'
! endif
!END_PROVIDER
BEGIN_PROVIDER [ complex*16, ao_pseudo_integrals_complex, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Overlap for complex AOs
END_DOC
integer :: i,j
do j=1,ao_num
do i=1,ao_num
ao_pseudo_integrals_complex(i,j) = dcmplx( ao_pseudo_integrals(i,j), ao_pseudo_integrals_imag(i,j) )
enddo
enddo
if (read_ao_integrals_pseudo) then
call ezfio_get_ao_one_e_ints_ao_integrals_pseudo_complex(ao_pseudo_integrals_complex)
print *, 'AO pseudo_integrals integrals read from disk'
else
print*,irp_here,'not implemented'
stop -1
endif
if (write_ao_integrals_pseudo) then
call ezfio_set_ao_one_e_ints_ao_integrals_pseudo_complex(ao_pseudo_integrals_complex)
print *, 'AO pseudo_integrals integrals written to disk'
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_pseudo_integrals_local, (ao_num,ao_num)]

View File

@ -29,15 +29,9 @@ doc: Read/Write df |AO| integrals from/to disk [ Write | Read | None ]
interface: ezfio,provider,ocaml
default: None
[df_ao_integrals_real]
[df_ao_integrals_complex]
type: double precision
doc: Real part of the df integrals over AOs
size: (ao_basis.ao_kpt_num,ao_basis.ao_kpt_num,ao_two_e_ints.df_num,nuclei.kpt_pair_num)
interface: ezfio
[df_ao_integrals_imag]
type: double precision
doc: Imaginary part of the df integrals over AOs
size: (ao_basis.ao_kpt_num,ao_basis.ao_kpt_num,ao_two_e_ints.df_num,nuclei.kpt_pair_num)
size: (2,ao_basis.ao_num_per_kpt,ao_basis.ao_num_per_kpt,ao_two_e_ints.df_num,nuclei.kpt_pair_num)
interface: ezfio

View File

@ -1,6 +1,52 @@
BEGIN_PROVIDER [double precision, df_ao_integrals_real, (ao_kpt_num,ao_kpt_num,df_num,kpt_pair_num)]
&BEGIN_PROVIDER [double precision, df_ao_integrals_imag, (ao_kpt_num,ao_kpt_num,df_num,kpt_pair_num)]
&BEGIN_PROVIDER [complex*16, df_ao_integrals_complex, (ao_kpt_num,ao_kpt_num,df_num,kpt_pair_num)]
! BEGIN_PROVIDER [double precision, df_ao_integrals_real, (ao_num_per_kpt,ao_num_per_kpt,df_num,kpt_pair_num)]
! &BEGIN_PROVIDER [double precision, df_ao_integrals_imag, (ao_num_per_kpt,ao_num_per_kpt,df_num,kpt_pair_num)]
! &BEGIN_PROVIDER [complex*16, df_ao_integrals_complex, (ao_num_per_kpt,ao_num_per_kpt,df_num,kpt_pair_num)]
! implicit none
! BEGIN_DOC
! ! df AO integrals
! END_DOC
! integer :: i,j,k,l
!
! if (read_df_ao_integrals) then
! df_ao_integrals_real = 0.d0
! df_ao_integrals_imag = 0.d0
! call ezfio_get_ao_two_e_ints_df_ao_integrals_real(df_ao_integrals_real)
! call ezfio_get_ao_two_e_ints_df_ao_integrals_imag(df_ao_integrals_imag)
! print *, 'df AO integrals read from disk'
! do l=1,kpt_pair_num
! do k=1,df_num
! do j=1,ao_num_per_kpt
! do i=1,ao_num_per_kpt
! df_ao_integrals_complex(i,j,k,l) = dcmplx(df_ao_integrals_real(i,j,k,l), &
! df_ao_integrals_imag(i,j,k,l))
! enddo
! enddo
! enddo
! enddo
! else
! print*,'df ao integrals must be provided',irp_here
! stop -1
! endif
!
! if (write_df_ao_integrals) then
! ! this probably shouldn't happen
! do l=1,kpt_pair_num
! do k=1,df_num
! do j=1,ao_num_per_kpt
! do i=1,ao_num_per_kpt
! df_ao_integrals_real(i,j,k,l) = dble(df_ao_integrals_complex(i,j,k,l))
! df_ao_integrals_imag(i,j,k,l) = dimag(df_ao_integrals_complex(i,j,k,l))
! enddo
! enddo
! enddo
! enddo
! call ezfio_set_ao_two_e_ints_df_ao_integrals_real(df_ao_integrals_real)
! call ezfio_set_ao_two_e_ints_df_ao_integrals_imag(df_ao_integrals_imag)
! print *, 'df AO integrals written to disk'
! endif
!
! END_PROVIDER
BEGIN_PROVIDER [complex*16, df_ao_integrals_complex, (ao_num_per_kpt,ao_num_per_kpt,df_num,kpt_pair_num)]
implicit none
BEGIN_DOC
! df AO integrals
@ -8,42 +54,217 @@
integer :: i,j,k,l
if (read_df_ao_integrals) then
df_ao_integrals_real = 0.d0
df_ao_integrals_imag = 0.d0
call ezfio_get_ao_two_e_ints_df_ao_integrals_real(df_ao_integrals_real)
call ezfio_get_ao_two_e_ints_df_ao_integrals_imag(df_ao_integrals_imag)
call ezfio_get_ao_two_e_ints_df_ao_integrals_complex(df_ao_integrals_complex)
print *, 'df AO integrals read from disk'
do l=1,kpt_pair_num
do k=1,df_num
do j=1,ao_kpt_num
do i=1,ao_kpt_num
df_ao_integrals_complex(i,j,k,l) = dcmplx(df_ao_integrals_real(i,j,k,l), &
df_ao_integrals_imag(i,j,k,l))
enddo
enddo
enddo
enddo
else
print*,'df ao integrals must be provided',irp_here
stop -1
endif
if (write_df_ao_integrals) then
! this probably shouldn't happen
do l=1,kpt_pair_num
do k=1,df_num
do j=1,ao_kpt_num
do i=1,ao_kpt_num
df_ao_integrals_real(i,j,k,l) = dble(df_ao_integrals_complex(i,j,k,l))
df_ao_integrals_imag(i,j,k,l) = dimag(df_ao_integrals_complex(i,j,k,l))
enddo
enddo
enddo
enddo
call ezfio_set_ao_two_e_ints_df_ao_integrals_real(df_ao_integrals_real)
call ezfio_set_ao_two_e_ints_df_ao_integrals_imag(df_ao_integrals_imag)
call ezfio_set_ao_two_e_ints_df_ao_integrals_complex(df_ao_integrals_complex)
print *, 'df AO integrals written to disk'
endif
END_PROVIDER
subroutine ao_map_fill_from_df
use map_module
implicit none
BEGIN_DOC
! fill ao bielec integral map using 3-index df integrals
END_DOC
integer :: i,k,j,l
integer :: ki,kk,kj,kl
integer :: ii,ik,ij,il
integer :: kikk2,kjkl2,jl2,ik2
integer :: i_ao,j_ao,i_df
complex*16,allocatable :: ints_ik(:,:,:), ints_jl(:,:,:), ints_ikjl(:,:,:,:)
complex*16 :: integral
integer :: n_integrals_1, n_integrals_2
integer :: size_buffer
integer(key_kind),allocatable :: buffer_i_1(:), buffer_i_2(:)
real(integral_kind),allocatable :: buffer_values_1(:), buffer_values_2(:)
double precision :: tmp_re,tmp_im
integer :: ao_num_kpt_2
double precision :: cpu_1, cpu_2, wall_1, wall_2, wall_0
double precision :: map_mb
logical :: use_map1
integer(keY_kind) :: idx_tmp
double precision :: sign
ao_num_kpt_2 = ao_num_per_kpt * ao_num_per_kpt
size_buffer = min(ao_num_per_kpt*ao_num_per_kpt*ao_num_per_kpt,16000000)
print*, 'Providing the ao_bielec integrals from 3-index df integrals'
call write_time(6)
! call ezfio_set_integrals_bielec_disk_access_mo_integrals('Write')
! TOUCH read_mo_integrals read_ao_integrals write_mo_integrals write_ao_integrals
call wall_time(wall_1)
call cpu_time(cpu_1)
allocate( ints_jl(ao_num_per_kpt,ao_num_per_kpt,df_num))
wall_0 = wall_1
do kl=1, kpt_num
do kj=1, kl
call idx2_tri_int(kj,kl,kjkl2)
ints_jl = df_ao_integrals_complex(:,:,:,kjkl2)
!$OMP PARALLEL PRIVATE(i,k,j,l,ki,kk,ii,ik,ij,il,kikk2,jl2,ik2, &
!$OMP ints_ik, ints_ikjl, i_ao, j_ao, i_df, &
!$OMP n_integrals_1, buffer_i_1, buffer_values_1, &
!$OMP n_integrals_2, buffer_i_2, buffer_values_2, &
!$OMP idx_tmp, tmp_re, tmp_im, integral,sign,use_map1) &
!$OMP DEFAULT(NONE) &
!$OMP SHARED(size_buffer, kpt_num, df_num, ao_num_per_kpt, ao_num_kpt_2, &
!$OMP kl,kj,kjkl2,ints_jl, &
!$OMP kconserv, df_ao_integrals_complex, ao_integrals_threshold, ao_integrals_map, ao_integrals_map_2)
allocate( &
ints_ik(ao_num_per_kpt,ao_num_per_kpt,df_num), &
ints_ikjl(ao_num_per_kpt,ao_num_per_kpt,ao_num_per_kpt,ao_num_per_kpt), &
buffer_i_1(size_buffer), &
buffer_i_2(size_buffer), &
buffer_values_1(size_buffer), &
buffer_values_2(size_buffer) &
)
!$OMP DO SCHEDULE(guided)
do kk=1,kl
ki=kconserv(kl,kk,kj)
if ((kl == kj) .and. (ki > kk)) cycle
call idx2_tri_int(ki,kk,kikk2)
if (kikk2 > kjkl2) cycle
if (ki >= kk) then
do i_ao=1,ao_num_per_kpt
do j_ao=1,ao_num_per_kpt
do i_df=1,df_num
ints_ik(i_ao,j_ao,i_df) = dconjg(df_ao_integrals_complex(j_ao,i_ao,i_df,kikk2))
enddo
enddo
enddo
! ints_ik = conjg(reshape(df_mo_integral_array(:,:,:,kikk2),(/mo_num_per_kpt,mo_num_per_kpt,df_num/),order=(/2,1,3/)))
else
ints_ik = df_ao_integrals_complex(:,:,:,kikk2)
endif
call zgemm('N','T', ao_num_kpt_2, ao_num_kpt_2, df_num, &
(1.d0,0.d0), ints_ik, ao_num_kpt_2, &
ints_jl, ao_num_kpt_2, &
(0.d0,0.d0), ints_ikjl, ao_num_kpt_2)
n_integrals_1=0
n_integrals_2=0
do il=1,ao_num_per_kpt
l=il+(kl-1)*ao_num_per_kpt
do ij=1,ao_num_per_kpt
j=ij+(kj-1)*ao_num_per_kpt
if (j>l) exit
call idx2_tri_int(j,l,jl2)
do ik=1,ao_num_per_kpt
k=ik+(kk-1)*ao_num_per_kpt
if (k>l) exit
do ii=1,ao_num_per_kpt
i=ii+(ki-1)*ao_num_per_kpt
if ((j==l) .and. (i>k)) exit
call idx2_tri_int(i,k,ik2)
if (ik2 > jl2) exit
integral = ints_ikjl(ii,ik,ij,il)
! print*,i,k,j,l,real(integral),imag(integral)
if (cdabs(integral) < ao_integrals_threshold) then
cycle
endif
call ao_two_e_integral_complex_map_idx_sign(i,j,k,l,use_map1,idx_tmp,sign)
tmp_re = dble(integral)
tmp_im = dimag(integral)
if (use_map1) then
n_integrals_1 += 1
buffer_i_1(n_integrals_1)=idx_tmp
buffer_values_1(n_integrals_1)=tmp_re
if (sign.ne.0.d0) then
n_integrals_1 += 1
buffer_i_1(n_integrals_1)=idx_tmp+1
buffer_values_1(n_integrals_1)=tmp_im*sign
endif
if (n_integrals_1 >= size(buffer_i_1)-1) then
call insert_into_ao_integrals_map(n_integrals_1,buffer_i_1,buffer_values_1)
n_integrals_1 = 0
endif
else
n_integrals_2 += 1
buffer_i_2(n_integrals_2)=idx_tmp
buffer_values_2(n_integrals_2)=tmp_re
if (sign.ne.0.d0) then
n_integrals_2 += 1
buffer_i_2(n_integrals_2)=idx_tmp+1
buffer_values_2(n_integrals_2)=tmp_im*sign
endif
if (n_integrals_2 >= size(buffer_i_2)-1) then
call insert_into_ao_integrals_map_2(n_integrals_2,buffer_i_2,buffer_values_2)
n_integrals_2 = 0
endif
endif
enddo !ii
enddo !ik
enddo !ij
enddo !il
if (n_integrals_1 > 0) then
call insert_into_ao_integrals_map(n_integrals_1,buffer_i_1,buffer_values_1)
endif
if (n_integrals_2 > 0) then
call insert_into_ao_integrals_map_2(n_integrals_2,buffer_i_2,buffer_values_2)
endif
enddo !kk
!$OMP END DO NOWAIT
deallocate( &
ints_ik, &
ints_ikjl, &
buffer_i_1, &
buffer_i_2, &
buffer_values_1, &
buffer_values_2 &
)
!$OMP END PARALLEL
enddo !kj
call wall_time(wall_2)
if (wall_2 - wall_0 > 1.d0) then
wall_0 = wall_2
print*, 100.*float(kl)/float(kpt_num), '% in ', &
wall_2-wall_1,'s',map_mb(ao_integrals_map),'+',map_mb(ao_integrals_map_2),'MB'
endif
enddo !kl
deallocate( ints_jl )
call map_sort(ao_integrals_map)
call map_unique(ao_integrals_map)
call map_sort(ao_integrals_map_2)
call map_unique(ao_integrals_map_2)
!call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints_complex_1',ao_integrals_map)
!call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints_complex_2',ao_integrals_map_2)
!call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read')
call wall_time(wall_2)
call cpu_time(cpu_2)
integer*8 :: get_ao_map_size, ao_map_size
ao_map_size = get_ao_map_size()
print*,'AO integrals provided:'
print*,' Size of AO map ', map_mb(ao_integrals_map),'+',map_mb(ao_integrals_map_2),'MB'
print*,' Number of AO integrals: ', ao_map_size
print*,' cpu time :',cpu_2 - cpu_1, 's'
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
end subroutine ao_map_fill_from_df

View File

@ -1,6 +1,26 @@
use map_module
subroutine idx2_tri_int(i,j,ij)
implicit none
integer, intent(in) :: i,j
integer, intent(out) :: ij
integer :: p,q
p = max(i,j)
q = min(i,j)
ij = q+ishft(p*p-p,-1)
end
subroutine idx2_tri_key(i,j,ij)
use map_module
implicit none
integer, intent(in) :: i,j
integer(key_kind), intent(out) :: ij
integer(key_kind) :: p,q
p = max(i,j)
q = min(i,j)
ij = q+ishft(p*p-p,-1)
end
subroutine two_e_integrals_index_complex(i,j,k,l,i1,p,q)
use map_module
implicit none

View File

@ -359,6 +359,11 @@ BEGIN_PROVIDER [ logical, ao_two_e_integrals_in_map ]
print*, 'AO integrals provided (periodic)'
ao_two_e_integrals_in_map = .True.
return
else if (read_df_ao_integrals) then
call ao_map_fill_from_df
print*, 'AO integrals provided from 3-index ao ints (periodic)'
ao_two_e_integrals_in_map = .True.
return
else
print*,'calculation of periodic AOs not implemented'
stop -1

View File

@ -9,17 +9,11 @@ doc: Coefficient of the i-th |AO| on the j-th |MO|
interface: ezfio
size: (ao_basis.ao_num,mo_basis.mo_num)
[mo_coef_real]
[mo_coef_complex]
type: double precision
doc: Imaginary part of the MO coefficient of the i-th |AO| on the j-th |MO|
doc: Complex MO coefficient of the i-th |AO| on the j-th |MO|
interface: ezfio
size: (ao_basis.ao_num,mo_basis.mo_num)
[mo_coef_imag]
type: double precision
doc: Imaginary part of the MO coefficient of the i-th |AO| on the j-th |MO|
interface: ezfio
size: (ao_basis.ao_num,mo_basis.mo_num)
size: (2,ao_basis.ao_num,mo_basis.mo_num)
[mo_label]
type: character*(64)
@ -43,7 +37,7 @@ type: character*(32)
doc: MD5 checksum characterizing the |AO| basis set.
interface: ezfio
[mo_kpt_num]
[mo_num_per_kpt]
type: integer
doc: Number of |MOs| per kpt
interface: ezfio

View File

@ -1,11 +1,74 @@
BEGIN_PROVIDER [ integer, mo_kpt_num ]
BEGIN_PROVIDER [ integer, mo_num_per_kpt ]
implicit none
BEGIN_DOC
! number of mos per kpt.
END_DOC
mo_kpt_num = mo_num/kpt_num
mo_num_per_kpt = mo_num/kpt_num
END_PROVIDER
!BEGIN_PROVIDER [ complex*16, mo_coef_complex, (ao_num,mo_num) ]
! implicit none
! BEGIN_DOC
! ! Molecular orbital coefficients on |AO| basis set
! !
! ! mo_coef_imag(i,j) = coefficient of the i-th |AO| on the jth |MO|
! !
! ! mo_label : Label characterizing the |MOs| (local, canonical, natural, etc)
! END_DOC
! integer :: i, j
! double precision, allocatable :: buffer_re(:,:),buffer_im(:,:)
! logical :: exists_re,exists_im,exists
! PROVIDE ezfio_filename
!
!
! if (mpi_master) then
! ! Coefs
! call ezfio_has_mo_basis_mo_coef_real(exists_re)
! call ezfio_has_mo_basis_mo_coef_imag(exists_im)
! exists = (exists_re.and.exists_im)
! endif
! IRP_IF MPI_DEBUG
! print *, irp_here, mpi_rank
! call MPI_BARRIER(MPI_COMM_WORLD, ierr)
! IRP_ENDIF
! IRP_IF MPI
! include 'mpif.h'
! integer :: ierr
! call MPI_BCAST(exists, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
! if (ierr /= MPI_SUCCESS) then
! stop 'Unable to read mo_coef_real/imag with MPI'
! endif
! IRP_ENDIF
!
! if (exists) then
! if (mpi_master) then
! allocate(buffer_re(ao_num,mo_num),buffer_im(ao_num,mo_num))
! call ezfio_get_mo_basis_mo_coef_real(buffer_re)
! call ezfio_get_mo_basis_mo_coef_imag(buffer_im)
! write(*,*) 'Read mo_coef_real/imag'
! do i=1,mo_num
! do j=1,ao_num
! mo_coef_complex(j,i) = dcmplx(buffer_re(j,i),buffer_im(j,i))
! enddo
! enddo
! deallocate(buffer_re,buffer_im)
! endif
! IRP_IF MPI
! call MPI_BCAST( mo_coef_complex, mo_num*ao_num, MPI_DOUBLE_COMPLEX, 0, MPI_COMM_WORLD, ierr)
! if (ierr /= MPI_SUCCESS) then
! stop 'Unable to read mo_coef_real with MPI'
! endif
! IRP_ENDIF
! else
! ! Orthonormalized AO basis
! do i=1,mo_num
! do j=1,ao_num
! mo_coef_complex(j,i) = ao_ortho_canonical_coef_complex(j,i)
! enddo
! enddo
! endif
!END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_complex, (ao_num,mo_num) ]
implicit none
BEGIN_DOC
@ -16,16 +79,13 @@ BEGIN_PROVIDER [ complex*16, mo_coef_complex, (ao_num,mo_num) ]
! mo_label : Label characterizing the |MOs| (local, canonical, natural, etc)
END_DOC
integer :: i, j
double precision, allocatable :: buffer_re(:,:),buffer_im(:,:)
logical :: exists_re,exists_im,exists
logical :: exists
PROVIDE ezfio_filename
if (mpi_master) then
! Coefs
call ezfio_has_mo_basis_mo_coef_real(exists_re)
call ezfio_has_mo_basis_mo_coef_imag(exists_im)
exists = (exists_re.and.exists_im)
call ezfio_has_mo_basis_mo_coef_complex(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
@ -36,27 +96,19 @@ BEGIN_PROVIDER [ complex*16, mo_coef_complex, (ao_num,mo_num) ]
integer :: ierr
call MPI_BCAST(exists, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_real/imag with MPI'
stop 'Unable to read mo_coef_complex with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
allocate(buffer_re(ao_num,mo_num),buffer_im(ao_num,mo_num))
call ezfio_get_mo_basis_mo_coef_real(buffer_re)
call ezfio_get_mo_basis_mo_coef_imag(buffer_im)
write(*,*) 'Read mo_coef_real/imag'
do i=1,mo_num
do j=1,ao_num
mo_coef_complex(j,i) = dcmplx(buffer_re(j,i),buffer_im(j,i))
enddo
enddo
deallocate(buffer_re,buffer_im)
call ezfio_get_mo_basis_mo_coef_complex(mo_coef_complex)
write(*,*) 'Read mo_coef_complex'
endif
IRP_IF MPI
call MPI_BCAST( mo_coef_complex, mo_num*ao_num, MPI_DOUBLE_COMPLEX, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_real with MPI'
stop 'Unable to read mo_coef_complex with MPI'
endif
IRP_ENDIF
else

View File

@ -1,6 +1,7 @@
subroutine save_mos
implicit none
double precision, allocatable :: buffer(:,:),buffer_im(:,:)
double precision, allocatable :: buffer(:,:)
complex*16, allocatable :: buffer_c(:,:)
integer :: i,j
!TODO: change this for periodic?
! save real/imag parts of mo_coef_complex
@ -11,18 +12,15 @@ subroutine save_mos
call ezfio_set_mo_basis_mo_label(mo_label)
call ezfio_set_mo_basis_ao_md5(ao_md5)
if (is_complex) then
allocate ( buffer(ao_num,mo_num),buffer_im(ao_num,mo_num))
buffer = 0.d0
buffer_im = 0.d0
allocate ( buffer_c(ao_num,mo_num))
buffer_c = (0.d0,0.d0)
do j = 1, mo_num
do i = 1, ao_num
buffer(i,j) = dble(mo_coef_complex(i,j))
buffer_im(i,j) = dimag(mo_coef_complex(i,j))
buffer_c(i,j) = mo_coef_complex(i,j)
enddo
enddo
call ezfio_set_mo_basis_mo_coef_real(buffer)
call ezfio_set_mo_basis_mo_coef_imag(buffer_im)
deallocate (buffer,buffer_im)
call ezfio_set_mo_basis_mo_coef_complex(buffer_c)
deallocate (buffer_c)
else
allocate ( buffer(ao_num,mo_num) )
buffer = 0.d0
@ -42,7 +40,8 @@ end
subroutine save_mos_no_occ
implicit none
double precision, allocatable :: buffer(:,:),buffer_im(:,:)
double precision, allocatable :: buffer(:,:)
complex*16, allocatable :: buffer_c(:,:)
integer :: i,j
call system('$QP_ROOT/scripts/save_current_mos.sh '//trim(ezfio_filename))
@ -50,18 +49,15 @@ subroutine save_mos_no_occ
!call ezfio_set_mo_basis_mo_label(mo_label)
!call ezfio_set_mo_basis_ao_md5(ao_md5)
if (is_complex) then
allocate ( buffer(ao_num,mo_num),buffer_im(ao_num,mo_num))
buffer = 0.d0
buffer_im = 0.d0
allocate ( buffer_c(ao_num,mo_num))
buffer_c = (0.d0,0.d0)
do j = 1, mo_num
do i = 1, ao_num
buffer(i,j) = dble(mo_coef_complex(i,j))
buffer_im(i,j) = dimag(mo_coef_complex(i,j))
buffer_c(i,j) = mo_coef_complex(i,j)
enddo
enddo
call ezfio_set_mo_basis_mo_coef_real(buffer)
call ezfio_set_mo_basis_mo_coef_imag(buffer_im)
deallocate (buffer,buffer_im)
call ezfio_set_mo_basis_mo_coef_complex(buffer_c)
deallocate (buffer_c)
else
allocate ( buffer(ao_num,mo_num) )
buffer = 0.d0
@ -78,7 +74,8 @@ end
subroutine save_mos_truncated(n)
implicit none
double precision, allocatable :: buffer(:,:),buffer_im(:,:)
double precision, allocatable :: buffer(:,:)
complex*16, allocatable :: buffer_c(:,:)
integer :: i,j,n
call system('$QP_ROOT/scripts/save_current_mos.sh '//trim(ezfio_filename))
@ -87,18 +84,15 @@ subroutine save_mos_truncated(n)
call ezfio_set_mo_basis_mo_label(mo_label)
call ezfio_set_mo_basis_ao_md5(ao_md5)
if (is_complex) then
allocate ( buffer(ao_num,n),buffer_im(ao_num,n))
buffer = 0.d0
buffer_im = 0.d0
allocate ( buffer_c(ao_num,mo_num))
buffer_c = (0.d0,0.d0)
do j = 1, n
do i = 1, ao_num
buffer(i,j) = dble(mo_coef_complex(i,j))
buffer_im(i,j) = dimag(mo_coef_complex(i,j))
buffer_c(i,j) = mo_coef_complex(i,j)
enddo
enddo
call ezfio_set_mo_basis_mo_coef_real(buffer)
call ezfio_set_mo_basis_mo_coef_imag(buffer_im)
deallocate (buffer,buffer_im)
call ezfio_set_mo_basis_mo_coef_complex(buffer_c)
deallocate (buffer_c)
else
allocate ( buffer(ao_num,n) )
buffer = 0.d0

View File

@ -20,12 +20,12 @@ default: None
[df_mo_integrals_real]
type: double precision
doc: Real part of the df integrals over MOs
size: (mo_basis.mo_kpt_num,mo_basis.mo_kpt_num,ao_two_e_ints.df_num,nuclei.kpt_pair_num)
size: (mo_basis.mo_num_per_kpt,mo_basis.mo_num_per_kpt,ao_two_e_ints.df_num,nuclei.kpt_pair_num)
interface: ezfio
[df_mo_integrals_imag]
type: double precision
doc: Imaginary part of the df integrals over MOs
size: (mo_basis.mo_kpt_num,mo_basis.mo_kpt_num,ao_two_e_ints.df_num,nuclei.kpt_pair_num)
size: (mo_basis.mo_num_per_kpt,mo_basis.mo_num_per_kpt,ao_two_e_ints.df_num,nuclei.kpt_pair_num)
interface: ezfio

View File

@ -1,6 +1,6 @@
BEGIN_PROVIDER [double precision, df_mo_integrals_real, (mo_kpt_num,mo_kpt_num,df_num,kpt_pair_num)]
&BEGIN_PROVIDER [double precision, df_mo_integrals_imag, (mo_kpt_num,mo_kpt_num,df_num,kpt_pair_num)]
&BEGIN_PROVIDER [complex*16, df_mo_integrals_complex, (mo_kpt_num,mo_kpt_num,df_num,kpt_pair_num)]
BEGIN_PROVIDER [double precision, df_mo_integrals_real, (mo_num_per_kpt,mo_num_per_kpt,df_num,kpt_pair_num)]
&BEGIN_PROVIDER [double precision, df_mo_integrals_imag, (mo_num_per_kpt,mo_num_per_kpt,df_num,kpt_pair_num)]
&BEGIN_PROVIDER [complex*16, df_mo_integrals_complex, (mo_num_per_kpt,mo_num_per_kpt,df_num,kpt_pair_num)]
implicit none
BEGIN_DOC
! df AO integrals
@ -15,8 +15,8 @@
print *, 'df AO integrals read from disk'
do l=1,kpt_pair_num
do k=1,df_num
do j=1,mo_kpt_num
do i=1,mo_kpt_num
do j=1,mo_num_per_kpt
do i=1,mo_num_per_kpt
df_mo_integrals_complex(i,j,k,l) = dcmplx(df_mo_integrals_real(i,j,k,l), &
df_mo_integrals_imag(i,j,k,l))
enddo
@ -24,14 +24,14 @@
enddo
enddo
else
call df_mo_from_df_ao(df_mo_integrals_complex,df_ao_integrals_complex,mo_kpt_num,ao_kpt_num,df_num,kpt_pair_num)
call df_mo_from_df_ao(df_mo_integrals_complex,df_ao_integrals_complex,mo_num_per_kpt,ao_num_per_kpt,df_num,kpt_pair_num)
endif
if (write_df_mo_integrals) then
do l=1,kpt_pair_num
do k=1,df_num
do j=1,mo_kpt_num
do i=1,mo_kpt_num
do j=1,mo_num_per_kpt
do i=1,mo_num_per_kpt
df_mo_integrals_real(i,j,k,l) = dble(df_mo_integrals_complex(i,j,k,l))
df_mo_integrals_imag(i,j,k,l) = dimag(df_mo_integrals_complex(i,j,k,l))
enddo

View File

@ -15,9 +15,9 @@ subroutine huckel_guess_complex
A = 0.d0
do j=1,ao_num
do i=1,ao_num
A(i,j) = c * ao_overlap_complex(i,j) * (ao_one_e_integrals_diag(i) + ao_one_e_integrals_diag(j))
A(i,j) = c * ao_overlap_complex(i,j) * (ao_one_e_integrals_diag_complex(i) + ao_one_e_integrals_diag_complex(j))
enddo
A(j,j) = ao_one_e_integrals_diag(j) + dble(ao_two_e_integral_alpha_complex(j,j))
A(j,j) = ao_one_e_integrals_diag_complex(j) + dble(ao_two_e_integral_alpha_complex(j,j))
if (dabs(dimag(ao_two_e_integral_alpha_complex(j,j))) .gt. 1.0d-10) then
stop 'diagonal elements of ao_bi_elec_integral_alpha should be real'
endif

View File

@ -9,16 +9,16 @@ echo 'Create EZFIO'
#read nel nmo natom <<< $(cat param)
#read e_nucl <<< $(cat e_nuc)
#read nao <<< $(cat num_ao)
#read nkpts <<< $(cat num_kpts)
#read nkpts <<< $(cat kpt_num)
#read ndf <<< $(cat num_df)
##./create_ezfio_complex_4idx.py $ezfio $nel $natom $nmo $e_nucl $nao $nkpts
./create_ezfio_complex_3idx.py $ezfio $h5file #$nel $natom $nmo $e_nucl $nao $nkpts $ndf
#Handle the orbital consitensy check
qp_edit -c $ezfio &> /dev/null
cp $ezfio/{ao,mo}_basis/ao_md5
#cp $ezfio/{ao,mo}_basis/ao_md5
#Read the integral
echo 'Read Integral'
#echo 'Read Integral'
################################################

View File

@ -251,7 +251,7 @@ def pyscf2QP(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
with open('num_ao','w') as f:
f.write(str(nao*Nk))
with open('num_kpts','w') as f:
with open('kpt_num','w') as f:
f.write(str(Nk))
# _
# |\ | _ | _ _. ._ |_) _ ._ | _ o _ ._

View File

@ -3,6 +3,7 @@ from ezfio import ezfio
import h5py
import sys
import numpy as np
filename = sys.argv[1]
h5filename = sys.argv[2]
#num_elec, nucl_num, mo_num = map(int,sys.argv[2:5])
@ -94,10 +95,6 @@ ezfio.set_ao_basis_ao_power(d)
ezfio.set_ao_basis_ao_coef(d)
ezfio.set_ao_basis_ao_expo(d)
#Dummy one
ao_md5 = '3b8b464dfc95f282129bde3efef3c502'
ezfio.set_ao_basis_ao_md5(ao_md5)
ezfio.set_mo_basis_ao_md5(ao_md5)
ezfio.set_mo_basis_mo_num(mo_num)
@ -105,34 +102,63 @@ ezfio.set_mo_basis_mo_num(mo_num)
#ezfio.set_mo_basis_mo_coef([ [0]*mo_num] * ao_num)
##ezfio.set_mo_basis_mo_coef_real(c_mo)
mo_coef_re0 = qph5['mo_basis/mo_coef_real'][()].T
mo_coef_im0 = qph5['mo_basis/mo_coef_imag'][()].T
mo_coef_cmplx0 = np.stack((mo_coef_re0,mo_coef_im0),axis=-1).tolist()
ezfio.set_mo_basis_mo_coef_real(qph5['mo_basis/mo_coef_real'][()].tolist())
ezfio.set_mo_basis_mo_coef_imag(qph5['mo_basis/mo_coef_imag'][()].tolist())
#ezfio.set_mo_basis_mo_coef_real(qph5['mo_basis/mo_coef_real'][()].tolist())
#ezfio.set_mo_basis_mo_coef_imag(qph5['mo_basis/mo_coef_imag'][()].tolist())
ezfio.set_mo_basis_mo_coef_complex(mo_coef_cmplx0)
#maybe fix qp so we don't need this?
ezfio.set_mo_basis_mo_coef([[i for i in range(mo_num)] * ao_num])
ezfio.set_nuclei_is_complex(True)
# fortran-ordered re,im parts
kin_ao_re0=qph5['ao_one_e_ints/ao_integrals_kinetic_real'][()].T
kin_ao_im0=qph5['ao_one_e_ints/ao_integrals_kinetic_imag'][()].T
#test where to stack? (axis=0 or -1?)
kin_ao_cmplx0=np.stack((kin_ao_re0,kin_ao_im0),axis=-1).tolist()
kin_ao_re=qph5['ao_one_e_ints/ao_integrals_kinetic_real'][()].T.tolist()
kin_ao_im=qph5['ao_one_e_ints/ao_integrals_kinetic_imag'][()].T.tolist()
ovlp_ao_re=qph5['ao_one_e_ints/ao_integrals_overlap_real'][()].T.tolist()
ovlp_ao_im=qph5['ao_one_e_ints/ao_integrals_overlap_imag'][()].T.tolist()
ne_ao_re=qph5['ao_one_e_ints/ao_integrals_n_e_real'][()].T.tolist()
ne_ao_im=qph5['ao_one_e_ints/ao_integrals_n_e_imag'][()].T.tolist()
ovlp_ao_re0=qph5['ao_one_e_ints/ao_integrals_overlap_real'][()].T
ovlp_ao_im0=qph5['ao_one_e_ints/ao_integrals_overlap_imag'][()].T
#test where to stack? (axis=0 or -1?)
ovlp_ao_cmplx0=np.stack((ovlp_ao_re0,ovlp_ao_im0),axis=-1).tolist()
ezfio.set_ao_one_e_ints_ao_integrals_kinetic(kin_ao_re)
ezfio.set_ao_one_e_ints_ao_integrals_kinetic_imag(kin_ao_im)
ezfio.set_ao_one_e_ints_ao_integrals_overlap(ovlp_ao_re)
ezfio.set_ao_one_e_ints_ao_integrals_overlap_imag(ovlp_ao_im)
ezfio.set_ao_one_e_ints_ao_integrals_n_e(ne_ao_re)
ezfio.set_ao_one_e_ints_ao_integrals_n_e_imag(ne_ao_im)
ne_ao_re0=qph5['ao_one_e_ints/ao_integrals_n_e_real'][()].T
ne_ao_im0=qph5['ao_one_e_ints/ao_integrals_n_e_imag'][()].T
#test where to stack? (axis=0 or -1?)
ne_ao_cmplx0=np.stack((ne_ao_re0,ne_ao_im0),axis=-1).tolist()
kin_ao_re=kin_ao_re0.tolist()
kin_ao_im=kin_ao_im0.tolist()
ovlp_ao_re=ovlp_ao_re0.tolist()
ovlp_ao_im=ovlp_ao_im0.tolist()
ne_ao_re=ne_ao_re0.tolist()
ne_ao_im=ne_ao_im0.tolist()
#kin_ao_c = np.stack(kin_ao_re0,kin_ao_im0
#ezfio.set_ao_one_e_ints_ao_integrals_kinetic(kin_ao_re)
#ezfio.set_ao_one_e_ints_ao_integrals_kinetic_imag(kin_ao_im)
ezfio.set_ao_one_e_ints_ao_integrals_kinetic_complex(kin_ao_cmplx0)
#ezfio.set_ao_one_e_ints_ao_integrals_overlap(ovlp_ao_re)
#ezfio.set_ao_one_e_ints_ao_integrals_overlap_imag(ovlp_ao_im)
ezfio.set_ao_one_e_ints_ao_integrals_overlap_complex(ovlp_ao_cmplx0)
#ezfio.set_ao_one_e_ints_ao_integrals_n_e(ne_ao_re)
#ezfio.set_ao_one_e_ints_ao_integrals_n_e_imag(ne_ao_im)
ezfio.set_ao_one_e_ints_ao_integrals_n_e_complex(ne_ao_cmplx0)
dfao_re0=qph5['ao_two_e_ints/df_ao_integrals_real'][()].transpose((3,2,1,0))
dfao_im0=qph5['ao_two_e_ints/df_ao_integrals_imag'][()].transpose((3,2,1,0))
#ezfio.set_ao_two_e_ints_df_ao_integrals_real(dfao_re.tolist())
#ezfio.set_ao_two_e_ints_df_ao_integrals_imag(dfao_im.tolist())
dfao_cmplx0 = np.stack((dfao_re0,dfao_im0),axis=-1).tolist()
ezfio.set_ao_two_e_ints_df_ao_integrals_complex(dfao_cmplx0)
dfao_re=qph5['ao_two_e_ints/df_ao_integrals_real'][()].transpose((3,2,1,0)).tolist()
dfao_im=qph5['ao_two_e_ints/df_ao_integrals_imag'][()].transpose((3,2,1,0)).tolist()
ezfio.set_ao_two_e_ints_df_ao_integrals_real(dfao_re)
ezfio.set_ao_two_e_ints_df_ao_integrals_imag(dfao_im)
#TODO: add check and only do this if ints exist
#dfmo_re=qph5['mo_two_e_ints/df_mo_integrals_real'][()].transpose((3,2,1,0)).tolist()