mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 12:23:43 +01:00
commit
2bf529ebf6
@ -38,7 +38,8 @@ let run slave ?prefix exe ezfio_file =
|
||||
| Unix.Unix_error _ -> try_new_port (port_number+100)
|
||||
in
|
||||
let result =
|
||||
try_new_port 41279
|
||||
let port = 10*(Unix.getpid () mod 2823) + 32_769 in
|
||||
try_new_port port
|
||||
in
|
||||
Zmq.Socket.close dummy_socket;
|
||||
Zmq.Context.terminate zmq_context;
|
||||
|
@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Save the .o from a .f90
|
||||
and is the .o is asked a second time, retur it
|
||||
and is the .o is asked a second time, return it
|
||||
Take in argv command like:
|
||||
ifort -g -openmp -I IRPF90_temp/Ezfio_files/ -c IRPF90_temp/Integrals_Monoelec/kin_ao_ints.irp.module.F90 -o IRPF90_temp/Integrals_Monoelec/kin_ao_ints.irp.module.o
|
||||
"""
|
||||
|
@ -104,6 +104,9 @@ BEGIN_PROVIDER [ double precision, ao_integrals_n_e, (ao_num,ao_num)]
|
||||
IF(do_pseudo) THEN
|
||||
ao_integrals_n_e += ao_pseudo_integrals
|
||||
ENDIF
|
||||
IF(point_charges) THEN
|
||||
ao_integrals_n_e += ao_integrals_pt_chrg
|
||||
ENDIF
|
||||
|
||||
endif
|
||||
|
||||
|
@ -4,7 +4,7 @@ BEGIN_PROVIDER [ integer, cholesky_ao_num_guess ]
|
||||
! Number of Cholesky vectors in AO basis
|
||||
END_DOC
|
||||
|
||||
cholesky_ao_num_guess = ao_num*ao_num / 2
|
||||
cholesky_ao_num_guess = ao_num*ao_num
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, cholesky_ao_num ]
|
||||
@ -44,19 +44,12 @@ END_PROVIDER
|
||||
do m=0,9
|
||||
do l=1+m,ao_num,10
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do j=1,l
|
||||
do j=1,ao_num
|
||||
do k=1,ao_num
|
||||
do i=1,min(k,j)
|
||||
do i=1,ao_num
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) cycle
|
||||
integral = get_ao_two_e_integral(i,j,k,l, ao_integrals_map)
|
||||
ao_integrals(i,k,j,l) = integral
|
||||
ao_integrals(k,i,j,l) = integral
|
||||
ao_integrals(i,k,l,j) = integral
|
||||
ao_integrals(k,i,l,j) = integral
|
||||
ao_integrals(j,l,i,k) = integral
|
||||
ao_integrals(j,l,k,i) = integral
|
||||
ao_integrals(l,j,i,k) = integral
|
||||
ao_integrals(l,j,k,i) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
@ -29,14 +29,14 @@ double precision function ao_two_e_integral_cosgtos(i, j, k, l)
|
||||
complex*16 :: integral5, integral6, integral7, integral8
|
||||
complex*16 :: integral_tot
|
||||
|
||||
double precision :: ao_two_e_integral_cosgtos_schwartz_accel
|
||||
double precision :: ao_2e_cosgtos_schwartz_accel
|
||||
complex*16 :: ERI_cosgtos
|
||||
complex*16 :: general_primitive_integral_cosgtos
|
||||
|
||||
if(ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024) then
|
||||
|
||||
!print *, ' with shwartz acc '
|
||||
ao_two_e_integral_cosgtos = ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
|
||||
ao_two_e_integral_cosgtos = ao_2e_cosgtos_schwartz_accel(i, j, k, l)
|
||||
|
||||
else
|
||||
!print *, ' without shwartz acc '
|
||||
@ -294,7 +294,7 @@ end function ao_two_e_integral_cosgtos
|
||||
|
||||
! ---
|
||||
|
||||
double precision function ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
|
||||
double precision function ao_2e_cosgtos_schwartz_accel(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
! integral of the AO basis <ik|jl> or (ij|kl)
|
||||
@ -329,7 +329,7 @@ double precision function ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
|
||||
complex*16 :: ERI_cosgtos
|
||||
complex*16 :: general_primitive_integral_cosgtos
|
||||
|
||||
ao_two_e_integral_cosgtos_schwartz_accel = 0.d0
|
||||
ao_2e_cosgtos_schwartz_accel = 0.d0
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
@ -519,8 +519,7 @@ double precision function ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
|
||||
|
||||
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||||
|
||||
ao_two_e_integral_cosgtos_schwartz_accel = ao_two_e_integral_cosgtos_schwartz_accel &
|
||||
+ coef4 * 2.d0 * real(integral_tot)
|
||||
ao_2e_cosgtos_schwartz_accel = ao_2e_cosgtos_schwartz_accel + coef4 * 2.d0 * real(integral_tot)
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
@ -698,8 +697,7 @@ double precision function ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
|
||||
|
||||
integral_tot = integral1 + integral2 + integral3 + integral4 + integral5 + integral6 + integral7 + integral8
|
||||
|
||||
ao_two_e_integral_cosgtos_schwartz_accel = ao_two_e_integral_cosgtos_schwartz_accel &
|
||||
+ coef4 * 2.d0 * real(integral_tot)
|
||||
ao_2e_cosgtos_schwartz_accel = ao_2e_cosgtos_schwartz_accel + coef4 * 2.d0 * real(integral_tot)
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
@ -709,11 +707,11 @@ double precision function ao_two_e_integral_cosgtos_schwartz_accel(i, j, k, l)
|
||||
|
||||
deallocate(schwartz_kl)
|
||||
|
||||
end function ao_two_e_integral_cosgtos_schwartz_accel
|
||||
end function ao_2e_cosgtos_schwartz_accel
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_two_e_integral_cosgtos_schwartz, (ao_num,ao_num) ]
|
||||
BEGIN_PROVIDER [ double precision, ao_2e_cosgtos_schwartz, (ao_num,ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Needed to compute Schwartz inequalities
|
||||
@ -723,16 +721,16 @@ BEGIN_PROVIDER [ double precision, ao_two_e_integral_cosgtos_schwartz, (ao_num,a
|
||||
integer :: i, k
|
||||
double precision :: ao_two_e_integral_cosgtos
|
||||
|
||||
ao_two_e_integral_cosgtos_schwartz(1,1) = ao_two_e_integral_cosgtos(1, 1, 1, 1)
|
||||
ao_2e_cosgtos_schwartz(1,1) = ao_two_e_integral_cosgtos(1, 1, 1, 1)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,k) &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP SHARED(ao_num, ao_two_e_integral_cosgtos_schwartz) &
|
||||
!$OMP PARALLEL DO PRIVATE(i,k) &
|
||||
!$OMP DEFAULT(NONE) &
|
||||
!$OMP SHARED(ao_num, ao_2e_cosgtos_schwartz) &
|
||||
!$OMP SCHEDULE(dynamic)
|
||||
do i = 1, ao_num
|
||||
do k = 1, i
|
||||
ao_two_e_integral_cosgtos_schwartz(i,k) = dsqrt(ao_two_e_integral_cosgtos(i, i, k, k))
|
||||
ao_two_e_integral_cosgtos_schwartz(k,i) = ao_two_e_integral_cosgtos_schwartz(i,k)
|
||||
ao_2e_cosgtos_schwartz(i,k) = dsqrt(ao_two_e_integral_cosgtos(i, i, k, k))
|
||||
ao_2e_cosgtos_schwartz(k,i) = ao_2e_cosgtos_schwartz(i,k)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
@ -1,10 +1,13 @@
|
||||
|
||||
BEGIN_PROVIDER [integer, n_points_final_grid]
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Number of points which are non zero
|
||||
END_DOC
|
||||
integer :: i,j,k,l
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, l
|
||||
|
||||
n_points_final_grid = 0
|
||||
do j = 1, nucl_num
|
||||
do i = 1, n_points_radial_grid -1
|
||||
@ -16,9 +19,11 @@ BEGIN_PROVIDER [integer, n_points_final_grid]
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'n_points_final_grid = ',n_points_final_grid
|
||||
print*,'n max point = ',n_points_integration_angular*(n_points_radial_grid*nucl_num - 1)
|
||||
|
||||
print*,' n_points_final_grid = ', n_points_final_grid
|
||||
print*,' n max point = ', n_points_integration_angular*(n_points_radial_grid*nucl_num - 1)
|
||||
call ezfio_set_becke_numerical_grid_n_points_final_grid(n_points_final_grid)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
@ -41,6 +46,10 @@ END_PROVIDER
|
||||
implicit none
|
||||
integer :: i, j, k, l, i_count
|
||||
double precision :: r(3)
|
||||
double precision :: wall0, wall1
|
||||
|
||||
call wall_time(wall0)
|
||||
print *, ' Providing final_grid_points ...'
|
||||
|
||||
i_count = 0
|
||||
do j = 1, nucl_num
|
||||
@ -62,20 +71,34 @@ END_PROVIDER
|
||||
enddo
|
||||
enddo
|
||||
|
||||
FREE grid_points_per_atom
|
||||
FREE final_weight_at_r
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for final_grid_points,', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_grid_points_transp, (n_points_final_grid,3)]
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Transposed final_grid_points
|
||||
! Transposed final_grid_points
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,j
|
||||
do j=1,3
|
||||
do i=1,n_points_final_grid
|
||||
|
||||
do j = 1, 3
|
||||
do i = 1, n_points_final_grid
|
||||
final_grid_points_transp(i,j) = final_grid_points(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
@ -1,21 +1,38 @@
|
||||
! ---
|
||||
|
||||
program bi_ort_ints
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 10
|
||||
my_n_pt_a_grid = 14
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
!my_n_pt_r_grid = 10
|
||||
!my_n_pt_a_grid = 14
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
! call test_3e
|
||||
! call test_5idx
|
||||
! call test_5idx2
|
||||
!call test_4idx
|
||||
call test_4idx2()
|
||||
call test_5idx2
|
||||
call test_5idx
|
||||
! call test_5idx2
|
||||
end
|
||||
|
||||
subroutine test_5idx2
|
||||
PROVIDE three_e_5_idx_cycle_2_bi_ort
|
||||
end
|
||||
|
||||
subroutine test_4idx2()
|
||||
!PROVIDE three_e_4_idx_direct_bi_ort
|
||||
PROVIDE three_e_4_idx_exch23_bi_ort
|
||||
end
|
||||
|
||||
subroutine test_3e
|
||||
implicit none
|
||||
integer :: i,k,j,l,m,n,ipoint
|
||||
@ -60,6 +77,8 @@ subroutine test_5idx
|
||||
k = 1
|
||||
n = 0
|
||||
accu = 0.d0
|
||||
PROVIDE three_e_5_idx_direct_bi_ort_old
|
||||
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
@ -68,29 +87,73 @@ subroutine test_5idx
|
||||
! if (dabs(three_e_5_idx_direct_bi_ort(m,l,j,k,i) - three_e_5_idx_exch12_bi_ort(m,l,i,k,j)) > 1.d-10) then
|
||||
! stop
|
||||
! endif
|
||||
|
||||
! new = three_e_5_idx_direct_bi_ort(m,l,j,k,i)
|
||||
! ref = three_e_5_idx_direct_bi_ort_old(m,l,j,k,i)
|
||||
new = three_e_5_idx_direct_bi_ort(m,l,j,k,i)
|
||||
ref = three_e_5_idx_direct_bi_ort_old(m,l,j,k,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. 1.d-10)then
|
||||
print*,'direct'
|
||||
print*,i,k,j,l,m
|
||||
print*,ref,new,contrib
|
||||
stop
|
||||
endif
|
||||
!
|
||||
! new = three_e_5_idx_exch12_bi_ort(m,l,j,k,i)
|
||||
! ref = three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i)
|
||||
! contrib = dabs(new - ref)
|
||||
! accu += contrib
|
||||
! if(contrib .gt. 1.d-10)then
|
||||
! print*,'direct'
|
||||
! print*,'exch12'
|
||||
! print*,i,k,j,l,m
|
||||
! print*,ref,new,contrib
|
||||
! stop
|
||||
! endif
|
||||
!
|
||||
new = three_e_5_idx_exch12_bi_ort(m,l,j,k,i)
|
||||
ref = three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. 1.d-10)then
|
||||
print*,'exch12'
|
||||
print*,i,k,j,l,m
|
||||
print*,ref,new,contrib
|
||||
stop
|
||||
endif
|
||||
!
|
||||
! new = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i)
|
||||
! ref = three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i)
|
||||
! contrib = dabs(new - ref)
|
||||
! accu += contrib
|
||||
! if(contrib .gt. 1.d-10)then
|
||||
! print*,'cycle1'
|
||||
|
||||
! print*,i,k,j,l,m
|
||||
! print*,ref,new,contrib
|
||||
! stop
|
||||
! endif
|
||||
!
|
||||
! new = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i)
|
||||
! ref = three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i)
|
||||
! contrib = dabs(new - ref)
|
||||
! accu += contrib
|
||||
! if(contrib .gt. 1.d-10)then
|
||||
! print*,'cycle2'
|
||||
! print*,i,k,j,l,m
|
||||
! print*,ref,new,contrib
|
||||
! stop
|
||||
! endif
|
||||
!
|
||||
! new = three_e_5_idx_exch23_bi_ort(m,l,j,k,i)
|
||||
! ref = three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i)
|
||||
! contrib = dabs(new - ref)
|
||||
! accu += contrib
|
||||
! if(contrib .gt. 1.d-10)then
|
||||
! print*,'exch23'
|
||||
! print*,i,k,j,l,m
|
||||
! print*,ref,new,contrib
|
||||
! stop
|
||||
! endif
|
||||
!
|
||||
! new = three_e_5_idx_exch13_bi_ort(m,l,j,k,i)
|
||||
! ref = three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i)
|
||||
! contrib = dabs(new - ref)
|
||||
! accu += contrib
|
||||
! if(contrib .gt. 1.d-10)then
|
||||
! print*,'exch13'
|
||||
! print*,i,k,j,l,m
|
||||
! print*,ref,new,contrib
|
||||
! stop
|
||||
! endif
|
||||
!
|
||||
! new = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i)
|
||||
! ref = three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i)
|
||||
@ -145,3 +208,184 @@ subroutine test_5idx
|
||||
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine test_4idx()
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, l
|
||||
double precision :: accu, contrib, new, ref, thr
|
||||
|
||||
thr = 1d-5
|
||||
|
||||
PROVIDE three_e_4_idx_direct_bi_ort_old
|
||||
PROVIDE three_e_4_idx_direct_bi_ort
|
||||
|
||||
accu = 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
|
||||
new = three_e_4_idx_direct_bi_ort (l,k,j,i)
|
||||
ref = three_e_4_idx_direct_bi_ort_old(l,k,j,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. thr) then
|
||||
print*, ' problem in three_e_4_idx_direct_bi_ort'
|
||||
print*, l, k, j, i
|
||||
print*, ref, new, contrib
|
||||
stop
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*, ' accu on three_e_4_idx_direct_bi_ort = ', accu / dble(mo_num)**4
|
||||
|
||||
! ---
|
||||
|
||||
PROVIDE three_e_4_idx_exch13_bi_ort_old
|
||||
PROVIDE three_e_4_idx_exch13_bi_ort
|
||||
|
||||
accu = 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
|
||||
new = three_e_4_idx_exch13_bi_ort (l,k,j,i)
|
||||
ref = three_e_4_idx_exch13_bi_ort_old(l,k,j,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. thr) then
|
||||
print*, ' problem in three_e_4_idx_exch13_bi_ort'
|
||||
print*, l, k, j, i
|
||||
print*, ref, new, contrib
|
||||
stop
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*, ' accu on three_e_4_idx_exch13_bi_ort = ', accu / dble(mo_num)**4
|
||||
|
||||
! ---
|
||||
|
||||
! PROVIDE three_e_4_idx_exch12_bi_ort_old
|
||||
! PROVIDE three_e_4_idx_exch12_bi_ort
|
||||
!
|
||||
! accu = 0.d0
|
||||
! do i = 1, mo_num
|
||||
! do j = 1, mo_num
|
||||
! do k = 1, mo_num
|
||||
! do l = 1, mo_num
|
||||
!
|
||||
! new = three_e_4_idx_exch12_bi_ort (l,k,j,i)
|
||||
! ref = three_e_4_idx_exch12_bi_ort_old(l,k,j,i)
|
||||
! contrib = dabs(new - ref)
|
||||
! accu += contrib
|
||||
! if(contrib .gt. thr) then
|
||||
! print*, ' problem in three_e_4_idx_exch12_bi_ort'
|
||||
! print*, l, k, j, i
|
||||
! print*, ref, new, contrib
|
||||
! stop
|
||||
! endif
|
||||
!
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
! print*, ' accu on three_e_4_idx_exch12_bi_ort = ', accu / dble(mo_num)**4
|
||||
|
||||
! ---
|
||||
|
||||
PROVIDE three_e_4_idx_cycle_1_bi_ort_old
|
||||
PROVIDE three_e_4_idx_cycle_1_bi_ort
|
||||
|
||||
accu = 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
|
||||
new = three_e_4_idx_cycle_1_bi_ort (l,k,j,i)
|
||||
ref = three_e_4_idx_cycle_1_bi_ort_old(l,k,j,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. thr) then
|
||||
print*, ' problem in three_e_4_idx_cycle_1_bi_ort'
|
||||
print*, l, k, j, i
|
||||
print*, ref, new, contrib
|
||||
stop
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*, ' accu on three_e_4_idx_cycle_1_bi_ort = ', accu / dble(mo_num)**4
|
||||
|
||||
! ---
|
||||
|
||||
! PROVIDE three_e_4_idx_cycle_2_bi_ort_old
|
||||
! PROVIDE three_e_4_idx_cycle_2_bi_ort
|
||||
!
|
||||
! accu = 0.d0
|
||||
! do i = 1, mo_num
|
||||
! do j = 1, mo_num
|
||||
! do k = 1, mo_num
|
||||
! do l = 1, mo_num
|
||||
!
|
||||
! new = three_e_4_idx_cycle_2_bi_ort (l,k,j,i)
|
||||
! ref = three_e_4_idx_cycle_2_bi_ort_old(l,k,j,i)
|
||||
! contrib = dabs(new - ref)
|
||||
! accu += contrib
|
||||
! if(contrib .gt. thr) then
|
||||
! print*, ' problem in three_e_4_idx_cycle_2_bi_ort'
|
||||
! print*, l, k, j, i
|
||||
! print*, ref, new, contrib
|
||||
! stop
|
||||
! endif
|
||||
!
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
! print*, ' accu on three_e_4_idx_cycle_2_bi_ort = ', accu / dble(mo_num)**4
|
||||
|
||||
! ---
|
||||
|
||||
PROVIDE three_e_4_idx_exch23_bi_ort_old
|
||||
PROVIDE three_e_4_idx_exch23_bi_ort
|
||||
|
||||
accu = 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
|
||||
new = three_e_4_idx_exch23_bi_ort (l,k,j,i)
|
||||
ref = three_e_4_idx_exch23_bi_ort_old(l,k,j,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. thr) then
|
||||
print*, ' problem in three_e_4_idx_exch23_bi_ort'
|
||||
print*, l, k, j, i
|
||||
print*, ref, new, contrib
|
||||
stop
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*, ' accu on three_e_4_idx_exch23_bi_ort = ', accu / dble(mo_num)**4
|
||||
|
||||
! ---
|
||||
|
||||
return
|
||||
end
|
||||
|
@ -54,7 +54,7 @@ BEGIN_PROVIDER [ double precision, mo_v_ki_bi_ortho_erf_rk_cst_mu_transp, (n_poi
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! FREE mo_v_ki_bi_ortho_erf_rk_cst_mu
|
||||
!FREE mo_v_ki_bi_ortho_erf_rk_cst_mu
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
@ -124,6 +124,8 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3,
|
||||
enddo
|
||||
enddo
|
||||
|
||||
FREE int2_grad1_u12_ao_test
|
||||
|
||||
else
|
||||
|
||||
PROVIDE int2_grad1_u12_ao
|
||||
@ -153,7 +155,7 @@ END_PROVIDER
|
||||
BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num, 3, n_points_final_grid)]
|
||||
|
||||
implicit none
|
||||
integer :: ipoint
|
||||
integer :: ipoint
|
||||
double precision :: wall0, wall1
|
||||
|
||||
PROVIDE mo_l_coef mo_r_coef
|
||||
@ -180,6 +182,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num,
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print *, ' Wall time for providing int2_grad1_u12_bimo_transp',wall1 - wall0
|
||||
!call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
@ -188,7 +191,11 @@ END_PROVIDER
|
||||
BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_t, (n_points_final_grid, 3, mo_num, mo_num)]
|
||||
|
||||
implicit none
|
||||
integer :: i, j, ipoint
|
||||
integer :: i, j, ipoint
|
||||
double precision :: wall0, wall1
|
||||
|
||||
!call wall_time(wall0)
|
||||
!print *, ' Providing int2_grad1_u12_bimo_t ...'
|
||||
|
||||
PROVIDE mo_l_coef mo_r_coef
|
||||
PROVIDE int2_grad1_u12_bimo_transp
|
||||
@ -205,6 +212,10 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_t, (n_points_final_grid,
|
||||
|
||||
FREE int2_grad1_u12_bimo_transp
|
||||
|
||||
!call wall_time(wall1)
|
||||
!print *, ' wall time for int2_grad1_u12_bimo_t,', wall1 - wall0
|
||||
!call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
@ -23,11 +23,11 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_direct_bi_ort, (mo_num, mo_num,
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_3_idx_direct_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_3_idx_direct_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = j, mo_num
|
||||
@ -36,8 +36,8 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_direct_bi_ort, (mo_num, mo_num,
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
|
@ -1,287 +1,481 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
!&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
|
||||
!&BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_direct_bi_ort(m,j,k,i) = <mjk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
! three_e_4_idx_direct_bi_ort (m,j,k,i) = < m j k | -L | m j i > ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
! three_e_4_idx_exch13_bi_ort (m,j,k,i) = < m j k | -L | i j m > ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
! three_e_4_idx_exch12_bi_ort (m,j,k,i) = < m j k | -L | m i j > ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
! = three_e_4_idx_exch13_bi_ort (j,m,k,i)
|
||||
! three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = < m j k | -L | j i m > ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
! three_e_4_idx_cycle_2_bi_ort(m,j,k,i) = < m j k | -L | i m j > ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
! = three_e_4_idx_cycle_1_bi_ort(j,m,k,i)
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
! notice the -1 sign: in this way three_e_4_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_4_idx_direct_bi_ort = 0.d0
|
||||
print *, ' Providing the three_e_4_idx_direct_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_direct_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, j, k, m, j, i, integral)
|
||||
three_e_4_idx_direct_bi_ort(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_direct_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = <mjk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
! three_e_4_idx_direct_bi_ort (m,j,k,i) : Lk Ri Imm Ijj + Lj Rj Imm Iki + Lm Rm Ijj Iki
|
||||
! three_e_4_idx_exch13_bi_ort (m,j,k,i) : Lk Rm Imi Ijj + Lj Rj Imi Ikm + Lm Ri Ijj Ikm
|
||||
! three_e_4_idx_cycle_1_bi_ort(m,j,k,i) : Lk Rm Imj Iji + Lj Ri Imj Ikm + Lm Rj Iji Ikm
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0
|
||||
integer :: ipoint, i, j, k, l, m
|
||||
double precision :: wall1, wall0
|
||||
double precision, allocatable :: tmp1(:,:,:,:), tmp2(:,:,:,:), tmp3(:,:,:,:)
|
||||
double precision, allocatable :: tmp_4d(:,:,:,:)
|
||||
double precision, allocatable :: tmp4(:,:,:)
|
||||
double precision, allocatable :: tmp5(:,:)
|
||||
double precision, allocatable :: tmp_3d(:,:,:)
|
||||
|
||||
three_e_4_idx_cycle_1_bi_ort = 0.d0
|
||||
print *, ' Providing the three_e_4_idx_cycle_1_bi_ort ...'
|
||||
print *, ' Providing the three_e_4_idx_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_cycle_1_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
|
||||
allocate(tmp_4d(mo_num,mo_num,mo_num,mo_num))
|
||||
|
||||
allocate(tmp1(n_points_final_grid,3,mo_num,mo_num))
|
||||
allocate(tmp2(n_points_final_grid,3,mo_num,mo_num))
|
||||
allocate(tmp3(n_points_final_grid,3,mo_num,mo_num))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, l, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, &
|
||||
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP tmp1, tmp2, tmp3)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, j, k, j, i, m, integral)
|
||||
three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
do l = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_cycle_1_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
tmp1(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
|
||||
tmp1(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
|
||||
tmp1(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
|
||||
|
||||
END_PROVIDER
|
||||
tmp2(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_r_in_r_array_transp(ipoint,i)
|
||||
tmp2(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_r_in_r_array_transp(ipoint,i)
|
||||
tmp2(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_r_in_r_array_transp(ipoint,i)
|
||||
|
||||
! --
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_cycle_2_bi_ort(m,j,k,i) = <mjk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_4_idx_cycle_2_bi_ort = 0.d0
|
||||
print *, ' Providing the three_e_4_idx_cycle_2_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_cycle_2_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, j, k, i, m, j, integral)
|
||||
three_e_4_idx_cycle_2_bi_ort(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_cycle_2_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_exch23_bi_ort(m,j,k,i) = <mjk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_4_idx_exch23_bi_ort = 0.d0
|
||||
print *, ' Providing the three_e_4_idx_exch23_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_exch23_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, j, k, j, m, i, integral)
|
||||
three_e_4_idx_exch23_bi_ort(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_exch23_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_exch13_bi_ort(m,j,k,i) = <mjk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_4_idx_exch13_bi_ort = 0.d0
|
||||
print *, ' Providing the three_e_4_idx_exch13_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_exch13_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, j, k, i, j, m, integral)
|
||||
three_e_4_idx_exch13_bi_ort(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_exch13_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_exch12_bi_ort(m,j,k,i) = <mjk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_4_idx_exch12_bi_ort = 0.d0
|
||||
print *, ' Providing the three_e_4_idx_exch12_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_exch12_bi_ort)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, j, k, m, i, j, integral)
|
||||
three_e_4_idx_exch12_bi_ort(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
tmp3(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,i) * mos_r_in_r_array_transp(ipoint,l)
|
||||
tmp3(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,i) * mos_r_in_r_array_transp(ipoint,l)
|
||||
tmp3(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,i) * mos_r_in_r_array_transp(ipoint,l)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
|
||||
, tmp1, 3*n_points_final_grid, tmp2, 3*n_points_final_grid &
|
||||
, 0.d0, tmp_4d, mo_num*mo_num)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
three_e_4_idx_direct_bi_ort(m,j,k,i) = -tmp_4d(m,k,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
|
||||
, tmp3, 3*n_points_final_grid, tmp1, 3*n_points_final_grid &
|
||||
, 0.d0, tmp_4d, mo_num*mo_num)
|
||||
|
||||
deallocate(tmp1)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
three_e_4_idx_exch13_bi_ort(m,j,k,i) = -tmp_4d(m,i,j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, l, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, &
|
||||
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP tmp1)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
tmp1(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
|
||||
tmp1(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
|
||||
tmp1(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
|
||||
, tmp1, 3*n_points_final_grid, tmp2, 3*n_points_final_grid &
|
||||
, 0.d0, tmp_4d, mo_num*mo_num)
|
||||
|
||||
deallocate(tmp2)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
three_e_4_idx_exch13_bi_ort(m,j,k,i) = three_e_4_idx_exch13_bi_ort(m,j,k,i) - tmp_4d(m,k,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
|
||||
, tmp1, 3*n_points_final_grid, tmp3, 3*n_points_final_grid &
|
||||
, 0.d0, tmp_4d, mo_num*mo_num)
|
||||
|
||||
deallocate(tmp3)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = -tmp_4d(m,k,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, l, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, &
|
||||
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP tmp1)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
tmp1(ipoint,1,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
|
||||
tmp1(ipoint,2,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
|
||||
tmp1(ipoint,3,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
|
||||
, tmp1, 3*n_points_final_grid, int2_grad1_u12_bimo_t, 3*n_points_final_grid &
|
||||
, 0.d0, tmp_4d, mo_num*mo_num)
|
||||
|
||||
deallocate(tmp1)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
three_e_4_idx_direct_bi_ort(m,j,k,i) = three_e_4_idx_direct_bi_ort(m,j,k,i) - tmp_4d(m,j,k,i) - tmp_4d(j,m,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
deallocate(tmp_4d)
|
||||
|
||||
|
||||
allocate(tmp_3d(mo_num,mo_num,mo_num))
|
||||
allocate(tmp5(n_points_final_grid,mo_num))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, &
|
||||
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
|
||||
!$OMP final_weight_at_r_vector, &
|
||||
!$OMP tmp5)
|
||||
!$OMP DO
|
||||
do i = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
tmp5(ipoint,i) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
allocate(tmp4(n_points_final_grid,mo_num,mo_num))
|
||||
|
||||
do m = 1, mo_num
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, k, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, m, &
|
||||
!$OMP int2_grad1_u12_bimo_t, &
|
||||
!$OMP tmp4)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
tmp4(ipoint,k,i) = int2_grad1_u12_bimo_t(ipoint,1,k,m) * int2_grad1_u12_bimo_t(ipoint,1,m,i) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,2,k,m) * int2_grad1_u12_bimo_t(ipoint,2,m,i) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,3,k,m) * int2_grad1_u12_bimo_t(ipoint,3,m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dgemm( 'T', 'N', mo_num, mo_num*mo_num, n_points_final_grid, 1.d0 &
|
||||
, tmp5, n_points_final_grid, tmp4, n_points_final_grid &
|
||||
, 0.d0, tmp_3d, mo_num)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
three_e_4_idx_exch13_bi_ort(m,j,k,i) = three_e_4_idx_exch13_bi_ort(m,j,k,i) - tmp_3d(j,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (j, k, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, m, &
|
||||
!$OMP mos_l_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP tmp4)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
tmp4(ipoint,j,k) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,j) &
|
||||
* ( int2_grad1_u12_bimo_t(ipoint,1,m,j) * int2_grad1_u12_bimo_t(ipoint,1,k,m) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,2,m,j) * int2_grad1_u12_bimo_t(ipoint,2,k,m) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,3,m,j) * int2_grad1_u12_bimo_t(ipoint,3,k,m) )
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, n_points_final_grid, 1.d0 &
|
||||
, tmp4, n_points_final_grid, mos_r_in_r_array_transp, n_points_final_grid &
|
||||
, 0.d0, tmp_3d, mo_num*mo_num)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = three_e_4_idx_cycle_1_bi_ort(m,j,k,i) - tmp_3d(j,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
enddo
|
||||
|
||||
deallocate(tmp5)
|
||||
deallocate(tmp_3d)
|
||||
|
||||
|
||||
|
||||
do i = 1, mo_num
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (m, j, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, i, &
|
||||
!$OMP mos_r_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP tmp4)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
tmp4(ipoint,m,j) = final_weight_at_r_vector(ipoint) * mos_r_in_r_array_transp(ipoint,m) &
|
||||
* ( int2_grad1_u12_bimo_t(ipoint,1,m,j) * int2_grad1_u12_bimo_t(ipoint,1,j,i) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,2,m,j) * int2_grad1_u12_bimo_t(ipoint,2,j,i) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,3,m,j) * int2_grad1_u12_bimo_t(ipoint,3,j,i) )
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, n_points_final_grid, -1.d0 &
|
||||
, tmp4, n_points_final_grid, mos_l_in_r_array_transp, n_points_final_grid &
|
||||
, 1.d0, three_e_4_idx_cycle_1_bi_ort(1,1,1,i), mo_num*mo_num)
|
||||
|
||||
enddo
|
||||
|
||||
deallocate(tmp4)
|
||||
|
||||
|
||||
! !$OMP PARALLEL DO PRIVATE(i,j,k,m)
|
||||
! do i = 1, mo_num
|
||||
! do k = 1, mo_num
|
||||
! do j = 1, mo_num
|
||||
! do m = 1, mo_num
|
||||
! three_e_4_idx_exch12_bi_ort (m,j,k,i) = three_e_4_idx_exch13_bi_ort (j,m,k,i)
|
||||
! three_e_4_idx_cycle_2_bi_ort(m,j,k,i) = three_e_4_idx_cycle_1_bi_ort(j,m,k,i)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
! !$OMP END PARALLEL DO
|
||||
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_exch12_bi_ort', wall1 - wall0
|
||||
print *, ' wall time for three_e_4_idx_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_exch23_bi_ort (m,j,k,i) = < m j k | -L | j m i > ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_4_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
! three_e_4_idx_exch23_bi_ort (m,j,k,i) : Lk Ri Imj Ijm + Lj Rm Imj Iki + Lm Rj Ijm Iki
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, l, m, ipoint
|
||||
double precision :: wall1, wall0
|
||||
double precision, allocatable :: tmp1(:,:,:,:), tmp_4d(:,:,:,:)
|
||||
double precision, allocatable :: tmp5(:,:,:), tmp6(:,:,:)
|
||||
|
||||
print *, ' Providing the three_e_4_idx_exch23_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
|
||||
allocate(tmp5(n_points_final_grid,mo_num,mo_num))
|
||||
allocate(tmp6(n_points_final_grid,mo_num,mo_num))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, l, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, &
|
||||
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP tmp5, tmp6)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
|
||||
tmp5(ipoint,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,i) * int2_grad1_u12_bimo_t(ipoint,1,i,l) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,2,l,i) * int2_grad1_u12_bimo_t(ipoint,2,i,l) &
|
||||
+ int2_grad1_u12_bimo_t(ipoint,3,l,i) * int2_grad1_u12_bimo_t(ipoint,3,i,l)
|
||||
|
||||
tmp6(ipoint,l,i) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, n_points_final_grid, -1.d0 &
|
||||
, tmp5, n_points_final_grid, tmp6, n_points_final_grid &
|
||||
, 0.d0, three_e_4_idx_exch23_bi_ort, mo_num*mo_num)
|
||||
|
||||
deallocate(tmp5)
|
||||
deallocate(tmp6)
|
||||
|
||||
|
||||
allocate(tmp_4d(mo_num,mo_num,mo_num,mo_num))
|
||||
allocate(tmp1(n_points_final_grid,3,mo_num,mo_num))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, l, ipoint) &
|
||||
!$OMP SHARED (mo_num, n_points_final_grid, &
|
||||
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP tmp1)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do ipoint = 1, n_points_final_grid
|
||||
tmp1(ipoint,1,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
|
||||
tmp1(ipoint,2,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
|
||||
tmp1(ipoint,3,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
|
||||
, tmp1, 3*n_points_final_grid, int2_grad1_u12_bimo_t, 3*n_points_final_grid &
|
||||
, 0.d0, tmp_4d, mo_num*mo_num)
|
||||
|
||||
deallocate(tmp1)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
three_e_4_idx_exch23_bi_ort(m,j,k,i) = three_e_4_idx_exch23_bi_ort(m,j,k,i) - tmp_4d(m,j,k,i) - tmp_4d(j,m,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
deallocate(tmp_4d)
|
||||
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_exch23_bi_ort', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
290
src/bi_ort_ints/three_body_ijmk_old.irp.f
Normal file
290
src/bi_ort_ints/three_body_ijmk_old.irp.f
Normal file
@ -0,0 +1,290 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_direct_bi_ort_old(m,j,k,i) = <mjk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_4_idx_direct_bi_ort_old = 0.d0
|
||||
print *, ' Providing the three_e_4_idx_direct_bi_ort_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_direct_bi_ort_old)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, j, k, m, j, i, integral)
|
||||
three_e_4_idx_direct_bi_ort_old(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_direct_bi_ort_old', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_cycle_1_bi_ort_old(m,j,k,i) = <mjk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_4_idx_cycle_1_bi_ort_old = 0.d0
|
||||
print *, ' Providing the three_e_4_idx_cycle_1_bi_ort_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_cycle_1_bi_ort_old)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, j, k, j, i, m, integral)
|
||||
three_e_4_idx_cycle_1_bi_ort_old(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_cycle_1_bi_ort_old', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! --
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_cycle_2_bi_ort_old(m,j,k,i) = <mjk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_4_idx_cycle_2_bi_ort_old = 0.d0
|
||||
print *, ' Providing the three_e_4_idx_cycle_2_bi_ort_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_cycle_2_bi_ort_old)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, j, k, i, m, j, integral)
|
||||
three_e_4_idx_cycle_2_bi_ort_old(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_cycle_2_bi_ort_old', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_exch23_bi_ort_old(m,j,k,i) = <mjk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_4_idx_exch23_bi_ort_old = 0.d0
|
||||
print *, ' Providing the three_e_4_idx_exch23_bi_ort_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_exch23_bi_ort_old)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, j, k, j, m, i, integral)
|
||||
three_e_4_idx_exch23_bi_ort_old(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_exch23_bi_ort_old', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_exch13_bi_ort_old(m,j,k,i) = <mjk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_4_idx_exch13_bi_ort_old = 0.d0
|
||||
print *, ' Providing the three_e_4_idx_exch13_bi_ort_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_exch13_bi_ort_old)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, j, k, i, j, m, integral)
|
||||
three_e_4_idx_exch13_bi_ort_old(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_exch13_bi_ort_old', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_4_idx_exch12_bi_ort_old(m,j,k,i) = <mjk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0
|
||||
|
||||
three_e_4_idx_exch12_bi_ort_old = 0.d0
|
||||
print *, ' Providing the three_e_4_idx_exch12_bi_ort_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_4_idx_exch12_bi_ort_old)
|
||||
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
call give_integrals_3_body_bi_ort(m, j, k, m, i, j, integral)
|
||||
three_e_4_idx_exch12_bi_ort_old(m,j,k,i) = -1.d0 * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_4_idx_exch12_bi_ort_old', wall1 - wall0
|
||||
call print_memory_usage()
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
@ -15,224 +15,227 @@ end
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_5_idx_direct_bi_ort(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
! three_e_5_idx_direct_bi_ort(m,l,j,k,i) = <mlk|-L|mji> :: : notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: wall1, wall0
|
||||
integer :: ipoint
|
||||
double precision, allocatable :: grad_mli(:,:,:), orb_mat(:,:,:)
|
||||
double precision, allocatable :: lk_grad_mi(:,:,:,:), rk_grad_im(:,:,:,:)
|
||||
double precision, allocatable :: lm_grad_ik(:,:,:,:), rm_grad_ik(:,:,:,:)
|
||||
double precision, allocatable :: tmp_mat(:,:,:,:)
|
||||
allocate(tmp_mat(mo_num,mo_num,mo_num,mo_num))
|
||||
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: wall1, wall0
|
||||
integer :: ipoint
|
||||
double precision, allocatable :: grad_mli(:,:), orb_mat(:,:,:)
|
||||
double precision, allocatable :: lk_grad_mi(:,:,:,:), rk_grad_im(:,:,:)
|
||||
double precision, allocatable :: lm_grad_ik(:,:,:,:), rm_grad_ik(:,:,:)
|
||||
double precision, allocatable :: tmp_mat(:,:,:)
|
||||
|
||||
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
|
||||
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
|
||||
|
||||
call print_memory_usage
|
||||
print *, ' Providing the three_e_5_idx_bi_ort ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
do m = 1, mo_num
|
||||
three_e_5_idx_direct_bi_ort (:,:,:,:,:) = 0.d0
|
||||
three_e_5_idx_cycle_1_bi_ort(:,:,:,:,:) = 0.d0
|
||||
three_e_5_idx_cycle_2_bi_ort(:,:,:,:,:) = 0.d0
|
||||
three_e_5_idx_exch23_bi_ort (:,:,:,:,:) = 0.d0
|
||||
three_e_5_idx_exch13_bi_ort (:,:,:,:,:) = 0.d0
|
||||
|
||||
allocate(grad_mli(n_points_final_grid,mo_num,mo_num))
|
||||
call print_memory_usage
|
||||
|
||||
allocate(tmp_mat(mo_num,mo_num,mo_num))
|
||||
allocate(orb_mat(n_points_final_grid,mo_num,mo_num))
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,l,ipoint) &
|
||||
!$OMP SHARED (m,mo_num,n_points_final_grid, &
|
||||
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP grad_mli, orb_mat)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE (i,l,ipoint)
|
||||
do i=1,mo_num
|
||||
do l=1,mo_num
|
||||
do ipoint=1, n_points_final_grid
|
||||
do ipoint=1, n_points_final_grid
|
||||
|
||||
grad_mli(ipoint,l,i) = final_weight_at_r_vector(ipoint) * ( &
|
||||
int2_grad1_u12_bimo_t(ipoint,1,m,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) + &
|
||||
int2_grad1_u12_bimo_t(ipoint,2,m,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) + &
|
||||
int2_grad1_u12_bimo_t(ipoint,3,m,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i) )
|
||||
orb_mat(ipoint,l,i) = final_weight_at_r_vector(ipoint) &
|
||||
* mos_l_in_r_array_transp(ipoint,l) &
|
||||
* mos_r_in_r_array_transp(ipoint,i)
|
||||
|
||||
orb_mat(ipoint,l,i) = mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,i)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, n_points_final_grid, 1.d0, &
|
||||
orb_mat, n_points_final_grid, &
|
||||
grad_mli, n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = - tmp_mat(l,j,k,i) - tmp_mat(k,i,l,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
deallocate(orb_mat,grad_mli)
|
||||
tmp_mat = 0.d0
|
||||
call print_memory_usage
|
||||
|
||||
do m = 1, mo_num
|
||||
|
||||
allocate(lm_grad_ik(n_points_final_grid,3,mo_num,mo_num))
|
||||
allocate(rm_grad_ik(n_points_final_grid,3,mo_num,mo_num))
|
||||
allocate(rk_grad_im(n_points_final_grid,3,mo_num,mo_num))
|
||||
allocate(grad_mli(n_points_final_grid,mo_num))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,l,ipoint) &
|
||||
!$OMP SHARED (m,mo_num,n_points_final_grid, &
|
||||
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP rm_grad_ik, lm_grad_ik, rk_grad_im, lk_grad_mi)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i=1,mo_num
|
||||
do l=1,mo_num
|
||||
do ipoint=1, n_points_final_grid
|
||||
do i=1,mo_num
|
||||
!$OMP PARALLEL DO PRIVATE (l,ipoint)
|
||||
do l=1,mo_num
|
||||
do ipoint=1, n_points_final_grid
|
||||
|
||||
lm_grad_ik(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) * final_weight_at_r_vector(ipoint)
|
||||
lm_grad_ik(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) * final_weight_at_r_vector(ipoint)
|
||||
lm_grad_ik(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i) * final_weight_at_r_vector(ipoint)
|
||||
grad_mli(ipoint,l) = &
|
||||
int2_grad1_u12_bimo_t(ipoint,1,m,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) +&
|
||||
int2_grad1_u12_bimo_t(ipoint,2,m,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) +&
|
||||
int2_grad1_u12_bimo_t(ipoint,3,m,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i)
|
||||
|
||||
rm_grad_ik(ipoint,1,l,i) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i)
|
||||
rm_grad_ik(ipoint,2,l,i) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i)
|
||||
rm_grad_ik(ipoint,3,l,i) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
rk_grad_im(ipoint,1,l,i) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,i,m)
|
||||
rk_grad_im(ipoint,2,l,i) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,i,m)
|
||||
rk_grad_im(ipoint,3,l,i) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,i,m)
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num, n_points_final_grid, 1.d0,&
|
||||
orb_mat, n_points_final_grid, &
|
||||
grad_mli, n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, &
|
||||
lm_grad_ik, 3*n_points_final_grid, &
|
||||
rm_grad_ik, 3*n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
!$OMP PARALLEL PRIVATE(j,k,l)
|
||||
!$OMP DO
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = three_e_5_idx_direct_bi_ort(m,l,j,k,i) - tmp_mat(l,j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP DO
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = three_e_5_idx_direct_bi_ort(m,l,j,k,i) - tmp_mat(l,j,k,i)
|
||||
do k = 1, mo_num
|
||||
three_e_5_idx_direct_bi_ort(m,k,i,l,j) = three_e_5_idx_direct_bi_ort(m,k,i,l,j) - tmp_mat(l,j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
enddo
|
||||
|
||||
deallocate(grad_mli)
|
||||
|
||||
allocate(lm_grad_ik(n_points_final_grid,3,mo_num,mo_num))
|
||||
allocate(lk_grad_mi(n_points_final_grid,3,mo_num,mo_num))
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE (i,l,ipoint)
|
||||
do i=1,mo_num
|
||||
do l=1,mo_num
|
||||
do ipoint=1, n_points_final_grid
|
||||
|
||||
lm_grad_ik(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) * final_weight_at_r_vector(ipoint)
|
||||
lm_grad_ik(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) * final_weight_at_r_vector(ipoint)
|
||||
lm_grad_ik(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i) * final_weight_at_r_vector(ipoint)
|
||||
|
||||
lk_grad_mi(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,m,i) * final_weight_at_r_vector(ipoint)
|
||||
lk_grad_mi(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,m,i) * final_weight_at_r_vector(ipoint)
|
||||
lk_grad_mi(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,m,i) * final_weight_at_r_vector(ipoint)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
allocate(rm_grad_ik(n_points_final_grid,3,mo_num))
|
||||
allocate(rk_grad_im(n_points_final_grid,3,mo_num))
|
||||
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, &
|
||||
lm_grad_ik, 3*n_points_final_grid, &
|
||||
rk_grad_im, 3*n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
do i=1,mo_num
|
||||
!$OMP PARALLEL DO PRIVATE (l,ipoint)
|
||||
do l=1,mo_num
|
||||
do ipoint=1, n_points_final_grid
|
||||
|
||||
rm_grad_ik(ipoint,1,l) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i)
|
||||
rm_grad_ik(ipoint,2,l) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i)
|
||||
rm_grad_ik(ipoint,3,l) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i)
|
||||
|
||||
rk_grad_im(ipoint,1,l) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,i,m)
|
||||
rk_grad_im(ipoint,2,l) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,i,m)
|
||||
rk_grad_im(ipoint,3,l) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,i,m)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = - tmp_mat(l,i,j,k)
|
||||
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = - tmp_mat(k,j,i,l)
|
||||
three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = - tmp_mat(k,i,j,l)
|
||||
three_e_5_idx_exch13_bi_ort (m,l,j,k,i) = - tmp_mat(l,j,i,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0,&
|
||||
lm_grad_ik, 3*n_points_final_grid, &
|
||||
rm_grad_ik, 3*n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
deallocate(lm_grad_ik)
|
||||
|
||||
allocate(lk_grad_mi(n_points_final_grid,3,mo_num,mo_num))
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,l,ipoint) &
|
||||
!$OMP SHARED (m,mo_num,n_points_final_grid, &
|
||||
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
|
||||
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
|
||||
!$OMP lk_grad_mi)
|
||||
!$OMP DO COLLAPSE(2)
|
||||
do i=1,mo_num
|
||||
do l=1,mo_num
|
||||
do ipoint=1, n_points_final_grid
|
||||
|
||||
lk_grad_mi(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,m,i) * final_weight_at_r_vector(ipoint)
|
||||
lk_grad_mi(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,m,i) * final_weight_at_r_vector(ipoint)
|
||||
lk_grad_mi(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,m,i) * final_weight_at_r_vector(ipoint)
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, &
|
||||
lk_grad_mi, 3*n_points_final_grid, &
|
||||
rm_grad_ik, 3*n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) - tmp_mat(k,j,l,i)
|
||||
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) - tmp_mat(l,i,k,j)
|
||||
three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = three_e_5_idx_exch23_bi_ort (m,l,j,k,i) - tmp_mat(l,j,k,i)
|
||||
three_e_5_idx_exch13_bi_ort (m,l,j,k,i) = three_e_5_idx_exch13_bi_ort (m,l,j,k,i) - tmp_mat(k,i,l,j)
|
||||
!$OMP PARALLEL DO PRIVATE(j,k,l)
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = three_e_5_idx_direct_bi_ort(m,l,j,k,i) - tmp_mat(l,j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0,&
|
||||
lm_grad_ik, 3*n_points_final_grid, &
|
||||
rk_grad_im, 3*n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, &
|
||||
lk_grad_mi, 3*n_points_final_grid, &
|
||||
rk_grad_im, 3*n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) - tmp_mat(l,j,i,k)
|
||||
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) - tmp_mat(k,i,j,l)
|
||||
three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = three_e_5_idx_exch23_bi_ort (m,l,j,k,i) - tmp_mat(k,j,i,l)
|
||||
three_e_5_idx_exch13_bi_ort (m,l,j,k,i) = three_e_5_idx_exch13_bi_ort (m,l,j,k,i) - tmp_mat(l,i,j,k)
|
||||
!$OMP PARALLEL DO PRIVATE(j,k,l)
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
three_e_5_idx_cycle_1_bi_ort(m,l,j,i,k) = three_e_5_idx_cycle_1_bi_ort(m,l,j,i,k) - tmp_mat(l,k,j)
|
||||
three_e_5_idx_cycle_2_bi_ort(m,i,j,k,l) = three_e_5_idx_cycle_2_bi_ort(m,i,j,k,l) - tmp_mat(k,j,l)
|
||||
three_e_5_idx_exch23_bi_ort (m,i,j,k,l) = three_e_5_idx_exch23_bi_ort (m,i,j,k,l) - tmp_mat(k,l,j)
|
||||
three_e_5_idx_exch13_bi_ort (m,l,j,i,k) = three_e_5_idx_exch13_bi_ort (m,l,j,i,k) - tmp_mat(l,j,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0,&
|
||||
lk_grad_mi, 3*n_points_final_grid, &
|
||||
rm_grad_ik, 3*n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(j,k,l)
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) - tmp_mat(k,j,l)
|
||||
three_e_5_idx_cycle_2_bi_ort(m,l,i,k,j) = three_e_5_idx_cycle_2_bi_ort(m,l,i,k,j) - tmp_mat(l,j,k)
|
||||
three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = three_e_5_idx_exch23_bi_ort (m,l,j,k,i) - tmp_mat(l,j,k)
|
||||
three_e_5_idx_exch13_bi_ort (m,l,i,k,j) = three_e_5_idx_exch13_bi_ort (m,l,i,k,j) - tmp_mat(k,j,l)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
call dgemm('T','N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0,&
|
||||
lk_grad_mi, 3*n_points_final_grid, &
|
||||
rk_grad_im, 3*n_points_final_grid, 0.d0, &
|
||||
tmp_mat, mo_num*mo_num)
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE(j,k,l)
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
three_e_5_idx_cycle_1_bi_ort(m,l,j,i,k) = three_e_5_idx_cycle_1_bi_ort(m,l,j,i,k) - tmp_mat(l,j,k)
|
||||
three_e_5_idx_cycle_2_bi_ort(m,i,j,k,l) = three_e_5_idx_cycle_2_bi_ort(m,i,j,k,l) - tmp_mat(k,l,j)
|
||||
three_e_5_idx_exch23_bi_ort (m,i,j,k,l) = three_e_5_idx_exch23_bi_ort (m,i,j,k,l) - tmp_mat(k,j,l)
|
||||
three_e_5_idx_exch13_bi_ort (m,l,j,i,k) = three_e_5_idx_exch13_bi_ort (m,l,j,i,k) - tmp_mat(l,k,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
deallocate(lk_grad_mi)
|
||||
deallocate(rm_grad_ik)
|
||||
deallocate(rk_grad_im)
|
||||
deallocate(rm_grad_ik)
|
||||
deallocate(rk_grad_im)
|
||||
deallocate(lk_grad_mi)
|
||||
deallocate(lm_grad_ik)
|
||||
|
||||
enddo
|
||||
|
||||
deallocate(tmp_mat)
|
||||
|
||||
deallocate(orb_mat)
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_5_idx_bi_ort', wall1 - wall0
|
||||
|
@ -46,7 +46,7 @@ BEGIN_PROVIDER[double precision, mos_r_in_r_array_transp, (n_points_final_grid,
|
||||
mos_r_in_r_array_transp(i,j) = mos_r_in_r_array(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
@ -116,7 +116,7 @@ end subroutine give_all_mos_l_at_r
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER[double precision, mos_l_in_r_array_transp,(n_points_final_grid,mo_num)]
|
||||
BEGIN_PROVIDER[double precision, mos_l_in_r_array_transp, (n_points_final_grid,mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! mos_l_in_r_array_transp(i,j) = value of the jth mo on the ith grid point
|
||||
@ -130,7 +130,7 @@ BEGIN_PROVIDER[double precision, mos_l_in_r_array_transp,(n_points_final_grid,mo
|
||||
mos_l_in_r_array_transp(i,j) = mos_l_in_r_array(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
11
src/ccsd/EZFIO.cfg
Normal file
11
src/ccsd/EZFIO.cfg
Normal file
@ -0,0 +1,11 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: CCSD energy
|
||||
interface: ezfio
|
||||
|
||||
[energy_t]
|
||||
type: double precision
|
||||
doc: CCSD(T) energy
|
||||
interface: ezfio
|
||||
|
||||
|
@ -135,8 +135,11 @@ subroutine run_ccsd_space_orb
|
||||
write(*,'(A15,1pE10.2,A3)')' Conv = ', max_r
|
||||
print*,''
|
||||
|
||||
call write_t1(nO,nV,t1)
|
||||
call write_t2(nO,nV,t2)
|
||||
if (write_amplitudes) then
|
||||
call write_t1(nO,nV,t1)
|
||||
call write_t2(nO,nV,t2)
|
||||
call ezfio_set_utils_cc_io_amplitudes('Read')
|
||||
endif
|
||||
|
||||
! Deallocation
|
||||
if (cc_update_method == 'diis') then
|
||||
@ -147,6 +150,7 @@ subroutine run_ccsd_space_orb
|
||||
|
||||
! CCSD(T)
|
||||
double precision :: e_t
|
||||
e_t = 0.d0
|
||||
|
||||
if (cc_par_t .and. elec_alpha_num + elec_beta_num > 2) then
|
||||
|
||||
@ -182,8 +186,7 @@ subroutine run_ccsd_space_orb
|
||||
print*,''
|
||||
endif
|
||||
|
||||
print*,'Reference determinant:'
|
||||
call print_det(det,N_int)
|
||||
call save_energy(uncorr_energy + energy, e_t)
|
||||
|
||||
deallocate(t1,t2)
|
||||
|
||||
|
@ -269,8 +269,11 @@ subroutine run_ccsd_spin_orb
|
||||
write(*,'(A15,1pE10.2,A3)')' Conv = ', max_r
|
||||
print*,''
|
||||
|
||||
call write_t1(nO,nV,t1)
|
||||
call write_t2(nO,nV,t2)
|
||||
if (write_amplitudes) then
|
||||
call write_t1(nO,nV,t1)
|
||||
call write_t2(nO,nV,t2)
|
||||
call ezfio_set_utils_cc_io_amplitudes('Read')
|
||||
endif
|
||||
|
||||
! Deallocate
|
||||
if (cc_update_method == 'diis') then
|
||||
@ -284,8 +287,9 @@ subroutine run_ccsd_spin_orb
|
||||
deallocate(v_ovoo,v_oovo)
|
||||
deallocate(v_ovvo,v_ovov,v_oovv)
|
||||
|
||||
double precision :: t_corr
|
||||
t_corr = 0.d0
|
||||
if (cc_par_t .and. elec_alpha_num +elec_beta_num > 2) then
|
||||
double precision :: t_corr
|
||||
print*,'CCSD(T) calculation...'
|
||||
call wall_time(ta)
|
||||
!allocate(v_vvvo(nV,nV,nV,nO))
|
||||
@ -307,8 +311,8 @@ subroutine run_ccsd_spin_orb
|
||||
write(*,'(A15,F18.12,A3)') ' Correlation = ', energy + t_corr, ' Ha'
|
||||
print*,''
|
||||
endif
|
||||
print*,'Reference determinant:'
|
||||
call print_det(det,N_int)
|
||||
|
||||
call save_energy(uncorr_energy + energy, t_corr)
|
||||
|
||||
deallocate(f_oo,f_ov,f_vv,f_o,f_v)
|
||||
deallocate(v_ooov,v_vvoo,t1,t2)
|
||||
|
13
src/ccsd/save_energy.irp.f
Normal file
13
src/ccsd/save_energy.irp.f
Normal file
@ -0,0 +1,13 @@
|
||||
subroutine save_energy(E,ET)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Saves the energy in |EZFIO|.
|
||||
END_DOC
|
||||
double precision, intent(in) :: E, ET
|
||||
call ezfio_set_ccsd_energy(E)
|
||||
if (ET /= 0.d0) then
|
||||
call ezfio_set_ccsd_energy_t(E+ET)
|
||||
endif
|
||||
end
|
||||
|
||||
|
@ -88,6 +88,10 @@ subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
|
||||
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) )
|
||||
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) )
|
||||
enddo
|
||||
if ((subset == 1).and.(sum(hole_mask(:,2)) == 0_bit_kind)) then
|
||||
! No beta electron to excite
|
||||
call select_singles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b)
|
||||
endif
|
||||
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b,subset,csubset)
|
||||
deallocate(fock_diag_tmp)
|
||||
end subroutine
|
||||
@ -142,7 +146,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
use selection_types
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted
|
||||
! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: i_generator, subset, csubset
|
||||
@ -237,7 +241,6 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
enddo
|
||||
|
||||
! Iterate on 0S alpha, and find betas TQ such that exc_degree <= 4
|
||||
! Remove also contributions < 1.d-20)
|
||||
do j=1,N_det_alpha_unique
|
||||
call get_excitation_degree_spin(psi_det_alpha_unique(1,j), &
|
||||
psi_det_generators(1,1,i_generator), nt, N_int)
|
||||
@ -480,7 +483,9 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
do s2=s1,2
|
||||
sp = s1
|
||||
|
||||
if(s1 /= s2) sp = 3
|
||||
if(s1 /= s2) then
|
||||
sp = 3
|
||||
endif
|
||||
|
||||
ib = 1
|
||||
if(s1 == s2) ib = i1+1
|
||||
@ -528,7 +533,10 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
|
||||
deallocate(banned, bannedOrb,mat)
|
||||
end subroutine
|
||||
subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
|
||||
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine fill_buffer_$DOUBLE(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
|
||||
use bitmasks
|
||||
use selection_types
|
||||
implicit none
|
||||
@ -562,7 +570,20 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
s1 = sp
|
||||
s2 = sp
|
||||
end if
|
||||
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
|
||||
|
||||
if ($IS_DOUBLE) then
|
||||
if (h2 == 0) then
|
||||
print *, 'h2=0 in '//trim(irp_here)
|
||||
stop
|
||||
endif
|
||||
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
|
||||
else
|
||||
if (h2 /= 0) then
|
||||
print *, 'h2 /= in '//trim(irp_here)
|
||||
stop
|
||||
endif
|
||||
call apply_hole(psi_det_generators(1,1,i_generator), s1, h1, mask, ok, N_int)
|
||||
endif
|
||||
E_shift = 0.d0
|
||||
|
||||
if (h0_type == 'CFG') then
|
||||
@ -570,12 +591,15 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
E_shift = psi_det_Hii(i_generator) - psi_configuration_Hii(j)
|
||||
endif
|
||||
|
||||
do p1=1,mo_num
|
||||
if(bannedOrb(p1, s1)) cycle
|
||||
$DO_p1
|
||||
! do p1=1,mo_num
|
||||
|
||||
if (bannedOrb(p1, s1)) cycle
|
||||
ib = 1
|
||||
if(sp /= 3) ib = p1+1
|
||||
|
||||
do p2=ib,mo_num
|
||||
$DO_p2
|
||||
! do p2=ib,mo_num
|
||||
|
||||
! -----
|
||||
! /!\ Generating only single excited determinants doesn't work because a
|
||||
@ -584,9 +608,10 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
! detected as already generated when generating in the future with a
|
||||
! double excitation.
|
||||
! -----
|
||||
|
||||
if(bannedOrb(p2, s2)) cycle
|
||||
if(banned(p1,p2)) cycle
|
||||
if ($IS_DOUBLE) then
|
||||
if(bannedOrb(p2, s2)) cycle
|
||||
if(banned(p1,p2)) cycle
|
||||
endif
|
||||
|
||||
if(pseudo_sym)then
|
||||
if(dabs(mat(1, p1, p2)).lt.thresh_sym)then
|
||||
@ -596,7 +621,11 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
|
||||
val = maxval(abs(mat(1:N_states, p1, p2)))
|
||||
if( val == 0d0) cycle
|
||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
||||
if ($IS_DOUBLE) then
|
||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
||||
else
|
||||
call apply_particle(mask, s1, p1, det, ok, N_int)
|
||||
endif
|
||||
|
||||
if (do_only_cas) then
|
||||
integer, external :: number_of_holes, number_of_particles
|
||||
@ -797,7 +826,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
case(5)
|
||||
! Variance selection
|
||||
if (h0_type == 'CFG') then
|
||||
w = min(w, - alpha_h_psi * alpha_h_psi * s_weight(istate,istate)) &
|
||||
w = min(w, - alpha_h_psi * alpha_h_psi * s_weight(istate,istate)) &
|
||||
/ c0_weight(istate)
|
||||
else
|
||||
w = min(w, - alpha_h_psi * alpha_h_psi * s_weight(istate,istate))
|
||||
@ -857,10 +886,19 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
if(w <= buf%mini) then
|
||||
call add_to_selection_buffer(buf, det, w)
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
! enddo
|
||||
$ENDDO_p1
|
||||
! enddo
|
||||
$ENDDO_p2
|
||||
end
|
||||
|
||||
SUBST [ DOUBLE , DO_p1 , ENDDO_p1 , DO_p2 , ENDDO_p2 , IS_DOUBLE ]
|
||||
|
||||
double ; do p1=1,mo_num ; enddo ; do p2=ib,mo_num ; enddo ; .True. ;;
|
||||
single ; do p1=1,mo_num ; enddo ; p2=1 ; ; .False. ;;
|
||||
|
||||
END_TEMPLATE
|
||||
|
||||
subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting)
|
||||
use bitmasks
|
||||
implicit none
|
||||
@ -882,6 +920,7 @@ subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, intere
|
||||
|
||||
PROVIDE psi_selectors_coef_transp psi_det_sorted
|
||||
mat = 0d0
|
||||
p=0
|
||||
|
||||
do i=1,N_int
|
||||
negMask(i,1) = not(mask(i,1))
|
||||
@ -1435,7 +1474,7 @@ subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
p1 = p(1,sp)
|
||||
p2 = p(2,sp)
|
||||
do puti=1, mo_num
|
||||
if(bannedOrb(puti, sp)) cycle
|
||||
if (bannedOrb(puti, sp)) cycle
|
||||
call get_mo_two_e_integrals(puti,p2,p1,mo_num,hij_cache1,mo_integrals_map)
|
||||
call get_mo_two_e_integrals(puti,p1,p2,mo_num,hij_cache2,mo_integrals_map)
|
||||
do putj=puti+1, mo_num
|
||||
@ -1446,7 +1485,7 @@ subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
if (hij == 0.d0) cycle
|
||||
else
|
||||
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))
|
||||
hij = hij_cache1(putj) - hij_cache2(putj)
|
||||
if (hij == 0.d0) cycle
|
||||
hij = hij * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
|
||||
end if
|
||||
@ -1506,7 +1545,7 @@ subroutine spot_isinwf(mask, det, i_gen, N, banned, fullMatch, interesting)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Identify the determinants in det which are in the internal space. These are
|
||||
! Identify the determinants in det that are in the internal space. These are
|
||||
! the determinants that can be produced by creating two particles on the mask.
|
||||
END_DOC
|
||||
|
||||
@ -1534,7 +1573,7 @@ subroutine spot_isinwf(mask, det, i_gen, N, banned, fullMatch, interesting)
|
||||
if(iand(det(j,2,i), mask(j,2)) /= mask(j, 2)) cycle genl
|
||||
end do
|
||||
|
||||
! If det(i) < det(i_gen), it hs already been considered
|
||||
! If det(i) < det(i_gen), it has already been considered
|
||||
if(interesting(i) < i_gen) then
|
||||
fullMatch = .true.
|
||||
return
|
||||
@ -1585,352 +1624,4 @@ end
|
||||
|
||||
|
||||
|
||||
! OLD unoptimized routines for debugging
|
||||
! ======================================
|
||||
|
||||
subroutine get_d0_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
integer(bit_kind) :: det(N_int, 2)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
||||
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
||||
|
||||
integer :: i, j, s, h1, h2, p1, p2, puti, putj
|
||||
double precision :: hij, phase
|
||||
double precision, external :: get_phase_bi, mo_two_e_integral
|
||||
logical :: ok
|
||||
|
||||
integer :: bant
|
||||
bant = 1
|
||||
|
||||
|
||||
if(sp == 3) then ! AB
|
||||
h1 = p(1,1)
|
||||
h2 = p(1,2)
|
||||
do p1=1, mo_num
|
||||
if(bannedOrb(p1, 1)) cycle
|
||||
do p2=1, mo_num
|
||||
if(bannedOrb(p2,2)) cycle
|
||||
if(banned(p1, p2, bant)) cycle ! rentable?
|
||||
if(p1 == h1 .or. p2 == h2) then
|
||||
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
else
|
||||
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) * phase
|
||||
end if
|
||||
mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
else ! AA BB
|
||||
p1 = p(1,sp)
|
||||
p2 = p(2,sp)
|
||||
do puti=1, mo_num
|
||||
if(bannedOrb(puti, sp)) cycle
|
||||
do putj=puti+1, mo_num
|
||||
if(bannedOrb(putj, sp)) cycle
|
||||
if(banned(puti, putj, bant)) cycle ! rentable?
|
||||
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
|
||||
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
else
|
||||
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))* get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
|
||||
end if
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
end
|
||||
|
||||
subroutine get_d1_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
integer(bit_kind) :: det(N_int, 2)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
||||
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
||||
double precision :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num)
|
||||
double precision, external :: get_phase_bi, mo_two_e_integral
|
||||
logical :: ok
|
||||
|
||||
logical, allocatable :: lbanned(:,:)
|
||||
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
|
||||
integer :: hfix, pfix, h1, h2, p1, p2, ib
|
||||
|
||||
integer, parameter :: turn2(2) = (/2,1/)
|
||||
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
|
||||
|
||||
integer :: bant
|
||||
|
||||
|
||||
allocate (lbanned(mo_num, 2))
|
||||
lbanned = bannedOrb
|
||||
|
||||
do i=1, p(0,1)
|
||||
lbanned(p(i,1), 1) = .true.
|
||||
end do
|
||||
do i=1, p(0,2)
|
||||
lbanned(p(i,2), 2) = .true.
|
||||
end do
|
||||
|
||||
ma = 1
|
||||
if(p(0,2) >= 2) ma = 2
|
||||
mi = turn2(ma)
|
||||
|
||||
bant = 1
|
||||
|
||||
if(sp == 3) then
|
||||
!move MA
|
||||
if(ma == 2) bant = 2
|
||||
puti = p(1,mi)
|
||||
hfix = h(1,ma)
|
||||
p1 = p(1,ma)
|
||||
p2 = p(2,ma)
|
||||
if(.not. bannedOrb(puti, mi)) then
|
||||
tmp_row = 0d0
|
||||
do putj=1, hfix-1
|
||||
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
tmp_row(1:N_states,putj) = tmp_row(1:N_states,putj) + hij * coefs(1:N_states)
|
||||
end do
|
||||
do putj=hfix+1, mo_num
|
||||
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
tmp_row(1:N_states,putj) = tmp_row(1:N_states,putj) + hij * coefs(1:N_states)
|
||||
end do
|
||||
|
||||
if(ma == 1) then
|
||||
mat(1:N_states,1:mo_num,puti) = mat(1:N_states,1:mo_num,puti) + tmp_row(1:N_states,1:mo_num)
|
||||
else
|
||||
mat(1:N_states,puti,1:mo_num) = mat(1:N_states,puti,1:mo_num) + tmp_row(1:N_states,1:mo_num)
|
||||
end if
|
||||
end if
|
||||
|
||||
!MOVE MI
|
||||
pfix = p(1,mi)
|
||||
tmp_row = 0d0
|
||||
tmp_row2 = 0d0
|
||||
do puti=1,mo_num
|
||||
if(lbanned(puti,mi)) cycle
|
||||
!p1 fixed
|
||||
putj = p1
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hij = mo_two_e_integral(p2,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
|
||||
tmp_row(:,puti) = tmp_row(:,puti) + hij * coefs(:)
|
||||
end if
|
||||
|
||||
putj = p2
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hij = mo_two_e_integral(p1,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
|
||||
tmp_row2(:,puti) = tmp_row2(:,puti) + hij * coefs(:)
|
||||
end if
|
||||
end do
|
||||
|
||||
if(mi == 1) then
|
||||
mat(:,:,p1) = mat(:,:,p1) + tmp_row(:,:)
|
||||
mat(:,:,p2) = mat(:,:,p2) + tmp_row2(:,:)
|
||||
else
|
||||
mat(:,p1,:) = mat(:,p1,:) + tmp_row(:,:)
|
||||
mat(:,p2,:) = mat(:,p2,:) + tmp_row2(:,:)
|
||||
end if
|
||||
else
|
||||
if(p(0,ma) == 3) then
|
||||
do i=1,3
|
||||
hfix = h(1,ma)
|
||||
puti = p(i, ma)
|
||||
p1 = p(turn3(1,i), ma)
|
||||
p2 = p(turn3(2,i), ma)
|
||||
tmp_row = 0d0
|
||||
do putj=1,hfix-1
|
||||
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
|
||||
end do
|
||||
do putj=hfix+1,mo_num
|
||||
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
|
||||
end do
|
||||
|
||||
mat(:, :puti-1, puti) = mat(:, :puti-1, puti) + tmp_row(:,:puti-1)
|
||||
mat(:, puti, puti:) = mat(:, puti, puti:) + tmp_row(:,puti:)
|
||||
end do
|
||||
else
|
||||
hfix = h(1,mi)
|
||||
pfix = p(1,mi)
|
||||
p1 = p(1,ma)
|
||||
p2 = p(2,ma)
|
||||
tmp_row = 0d0
|
||||
tmp_row2 = 0d0
|
||||
do puti=1,mo_num
|
||||
if(lbanned(puti,ma)) cycle
|
||||
putj = p2
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
hij = mo_two_e_integral(pfix, p1, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
|
||||
tmp_row(:,puti) = tmp_row(:,puti) + hij * coefs(:)
|
||||
end if
|
||||
|
||||
putj = p1
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
hij = mo_two_e_integral(pfix, p2, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
|
||||
tmp_row2(:,puti) = tmp_row2(:,puti) + hij * coefs(:)
|
||||
end if
|
||||
end do
|
||||
mat(:,:p2-1,p2) = mat(:,:p2-1,p2) + tmp_row(:,:p2-1)
|
||||
mat(:,p2,p2:) = mat(:,p2,p2:) + tmp_row(:,p2:)
|
||||
mat(:,:p1-1,p1) = mat(:,:p1-1,p1) + tmp_row2(:,:p1-1)
|
||||
mat(:,p1,p1:) = mat(:,p1,p1:) + tmp_row2(:,p1:)
|
||||
end if
|
||||
end if
|
||||
deallocate(lbanned)
|
||||
|
||||
!! MONO
|
||||
if(sp == 3) then
|
||||
s1 = 1
|
||||
s2 = 2
|
||||
else
|
||||
s1 = sp
|
||||
s2 = sp
|
||||
end if
|
||||
|
||||
do i1=1,p(0,s1)
|
||||
ib = 1
|
||||
if(s1 == s2) ib = i1+1
|
||||
do i2=ib,p(0,s2)
|
||||
p1 = p(i1,s1)
|
||||
p2 = p(i2,s2)
|
||||
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
|
||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
end
|
||||
|
||||
subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(2,N_int)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
||||
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
||||
|
||||
double precision, external :: get_phase_bi, mo_two_e_integral
|
||||
|
||||
integer :: i, j, tip, ma, mi, puti, putj
|
||||
integer :: h1, h2, p1, p2, i1, i2
|
||||
double precision :: hij, phase
|
||||
|
||||
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
|
||||
integer, parameter :: turn2(2) = (/2, 1/)
|
||||
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
|
||||
|
||||
integer :: bant
|
||||
bant = 1
|
||||
|
||||
tip = p(0,1) * p(0,2)
|
||||
|
||||
ma = sp
|
||||
if(p(0,1) > p(0,2)) ma = 1
|
||||
if(p(0,1) < p(0,2)) ma = 2
|
||||
mi = mod(ma, 2) + 1
|
||||
|
||||
if(sp == 3) then
|
||||
if(ma == 2) bant = 2
|
||||
|
||||
if(tip == 3) then
|
||||
puti = p(1, mi)
|
||||
do i = 1, 3
|
||||
putj = p(i, ma)
|
||||
if(banned(putj,puti,bant)) cycle
|
||||
i1 = turn3(1,i)
|
||||
i2 = turn3(2,i)
|
||||
p1 = p(i1, ma)
|
||||
p2 = p(i2, ma)
|
||||
h1 = h(1, ma)
|
||||
h2 = h(2, ma)
|
||||
|
||||
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
||||
if(ma == 1) then
|
||||
mat(:, putj, puti) = mat(:, putj, puti) + coefs(:) * hij
|
||||
else
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end if
|
||||
end do
|
||||
else
|
||||
h1 = h(1,1)
|
||||
h2 = h(1,2)
|
||||
do j = 1,2
|
||||
putj = p(j, 2)
|
||||
p2 = p(turn2(j), 2)
|
||||
do i = 1,2
|
||||
puti = p(i, 1)
|
||||
|
||||
if(banned(puti,putj,bant)) cycle
|
||||
p1 = p(turn2(i), 1)
|
||||
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2,N_int)
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
else
|
||||
if(tip == 0) then
|
||||
h1 = h(1, ma)
|
||||
h2 = h(2, ma)
|
||||
do i=1,3
|
||||
puti = p(i, ma)
|
||||
do j=i+1,4
|
||||
putj = p(j, ma)
|
||||
if(banned(puti,putj,1)) cycle
|
||||
|
||||
i1 = turn2d(1, i, j)
|
||||
i2 = turn2d(2, i, j)
|
||||
p1 = p(i1, ma)
|
||||
p2 = p(i2, ma)
|
||||
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2,N_int)
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
else if(tip == 3) then
|
||||
h1 = h(1, mi)
|
||||
h2 = h(1, ma)
|
||||
p1 = p(1, mi)
|
||||
do i=1,3
|
||||
puti = p(turn3(1,i), ma)
|
||||
putj = p(turn3(2,i), ma)
|
||||
if(banned(puti,putj,1)) cycle
|
||||
p2 = p(i, ma)
|
||||
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2,N_int)
|
||||
mat(:, min(puti, putj), max(puti, putj)) = mat(:, min(puti, putj), max(puti, putj)) + coefs(:) * hij
|
||||
end do
|
||||
else ! tip == 4
|
||||
puti = p(1, sp)
|
||||
putj = p(2, sp)
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
p1 = p(1, mi)
|
||||
p2 = p(2, mi)
|
||||
h1 = h(1, mi)
|
||||
h2 = h(2, mi)
|
||||
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2,N_int)
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end if
|
||||
end if
|
||||
end if
|
||||
end
|
||||
|
||||
|
||||
|
350
src/cipsi/selection_old.irp.f
Normal file
350
src/cipsi/selection_old.irp.f
Normal file
@ -0,0 +1,350 @@
|
||||
|
||||
! OLD unoptimized routines for debugging
|
||||
! ======================================
|
||||
|
||||
subroutine get_d0_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
integer(bit_kind) :: det(N_int, 2)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
||||
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
||||
|
||||
integer :: i, j, s, h1, h2, p1, p2, puti, putj
|
||||
double precision :: hij, phase
|
||||
double precision, external :: get_phase_bi, mo_two_e_integral
|
||||
logical :: ok
|
||||
|
||||
integer :: bant
|
||||
bant = 1
|
||||
|
||||
|
||||
if(sp == 3) then ! AB
|
||||
h1 = p(1,1)
|
||||
h2 = p(1,2)
|
||||
do p1=1, mo_num
|
||||
if(bannedOrb(p1, 1)) cycle
|
||||
do p2=1, mo_num
|
||||
if(bannedOrb(p2,2)) cycle
|
||||
if(banned(p1, p2, bant)) cycle ! rentable?
|
||||
if(p1 == h1 .or. p2 == h2) then
|
||||
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
else
|
||||
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) * phase
|
||||
end if
|
||||
mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
else ! AA BB
|
||||
p1 = p(1,sp)
|
||||
p2 = p(2,sp)
|
||||
do puti=1, mo_num
|
||||
! do not cycle here? otherwise singles will be missed??
|
||||
if(bannedOrb(puti, sp)) cycle
|
||||
do putj=puti+1, mo_num
|
||||
if(bannedOrb(putj, sp)) cycle
|
||||
if(banned(puti, putj, bant)) cycle ! rentable?
|
||||
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
|
||||
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
else
|
||||
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))* get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
|
||||
end if
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
end
|
||||
|
||||
subroutine get_d1_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
integer(bit_kind) :: det(N_int, 2)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
||||
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
||||
double precision :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num)
|
||||
double precision, external :: get_phase_bi, mo_two_e_integral
|
||||
logical :: ok
|
||||
|
||||
logical, allocatable :: lbanned(:,:)
|
||||
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
|
||||
integer :: hfix, pfix, h1, h2, p1, p2, ib
|
||||
|
||||
integer, parameter :: turn2(2) = (/2,1/)
|
||||
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
|
||||
|
||||
integer :: bant
|
||||
|
||||
|
||||
allocate (lbanned(mo_num, 2))
|
||||
lbanned = bannedOrb
|
||||
|
||||
do i=1, p(0,1)
|
||||
lbanned(p(i,1), 1) = .true.
|
||||
end do
|
||||
do i=1, p(0,2)
|
||||
lbanned(p(i,2), 2) = .true.
|
||||
end do
|
||||
|
||||
ma = 1
|
||||
if(p(0,2) >= 2) ma = 2
|
||||
mi = turn2(ma)
|
||||
|
||||
bant = 1
|
||||
|
||||
if(sp == 3) then
|
||||
!move MA
|
||||
if(ma == 2) bant = 2
|
||||
puti = p(1,mi)
|
||||
hfix = h(1,ma)
|
||||
p1 = p(1,ma)
|
||||
p2 = p(2,ma)
|
||||
if(.not. bannedOrb(puti, mi)) then
|
||||
tmp_row = 0d0
|
||||
do putj=1, hfix-1
|
||||
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
tmp_row(1:N_states,putj) = tmp_row(1:N_states,putj) + hij * coefs(1:N_states)
|
||||
end do
|
||||
do putj=hfix+1, mo_num
|
||||
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
tmp_row(1:N_states,putj) = tmp_row(1:N_states,putj) + hij * coefs(1:N_states)
|
||||
end do
|
||||
|
||||
if(ma == 1) then
|
||||
mat(1:N_states,1:mo_num,puti) = mat(1:N_states,1:mo_num,puti) + tmp_row(1:N_states,1:mo_num)
|
||||
else
|
||||
mat(1:N_states,puti,1:mo_num) = mat(1:N_states,puti,1:mo_num) + tmp_row(1:N_states,1:mo_num)
|
||||
end if
|
||||
end if
|
||||
|
||||
!MOVE MI
|
||||
pfix = p(1,mi)
|
||||
tmp_row = 0d0
|
||||
tmp_row2 = 0d0
|
||||
do puti=1,mo_num
|
||||
if(lbanned(puti,mi)) cycle
|
||||
!p1 fixed
|
||||
putj = p1
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hij = mo_two_e_integral(p2,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
|
||||
tmp_row(:,puti) = tmp_row(:,puti) + hij * coefs(:)
|
||||
end if
|
||||
|
||||
putj = p2
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hij = mo_two_e_integral(p1,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
|
||||
tmp_row2(:,puti) = tmp_row2(:,puti) + hij * coefs(:)
|
||||
end if
|
||||
end do
|
||||
|
||||
if(mi == 1) then
|
||||
mat(:,:,p1) = mat(:,:,p1) + tmp_row(:,:)
|
||||
mat(:,:,p2) = mat(:,:,p2) + tmp_row2(:,:)
|
||||
else
|
||||
mat(:,p1,:) = mat(:,p1,:) + tmp_row(:,:)
|
||||
mat(:,p2,:) = mat(:,p2,:) + tmp_row2(:,:)
|
||||
end if
|
||||
else
|
||||
if(p(0,ma) == 3) then
|
||||
do i=1,3
|
||||
hfix = h(1,ma)
|
||||
puti = p(i, ma)
|
||||
p1 = p(turn3(1,i), ma)
|
||||
p2 = p(turn3(2,i), ma)
|
||||
tmp_row = 0d0
|
||||
do putj=1,hfix-1
|
||||
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
|
||||
end do
|
||||
do putj=hfix+1,mo_num
|
||||
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:)
|
||||
end do
|
||||
|
||||
mat(:, :puti-1, puti) = mat(:, :puti-1, puti) + tmp_row(:,:puti-1)
|
||||
mat(:, puti, puti:) = mat(:, puti, puti:) + tmp_row(:,puti:)
|
||||
end do
|
||||
else
|
||||
hfix = h(1,mi)
|
||||
pfix = p(1,mi)
|
||||
p1 = p(1,ma)
|
||||
p2 = p(2,ma)
|
||||
tmp_row = 0d0
|
||||
tmp_row2 = 0d0
|
||||
do puti=1,mo_num
|
||||
if(lbanned(puti,ma)) cycle
|
||||
putj = p2
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
hij = mo_two_e_integral(pfix, p1, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
|
||||
tmp_row(:,puti) = tmp_row(:,puti) + hij * coefs(:)
|
||||
end if
|
||||
|
||||
putj = p1
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
hij = mo_two_e_integral(pfix, p2, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
|
||||
tmp_row2(:,puti) = tmp_row2(:,puti) + hij * coefs(:)
|
||||
end if
|
||||
end do
|
||||
mat(:,:p2-1,p2) = mat(:,:p2-1,p2) + tmp_row(:,:p2-1)
|
||||
mat(:,p2,p2:) = mat(:,p2,p2:) + tmp_row(:,p2:)
|
||||
mat(:,:p1-1,p1) = mat(:,:p1-1,p1) + tmp_row2(:,:p1-1)
|
||||
mat(:,p1,p1:) = mat(:,p1,p1:) + tmp_row2(:,p1:)
|
||||
end if
|
||||
end if
|
||||
deallocate(lbanned)
|
||||
|
||||
!! MONO
|
||||
if(sp == 3) then
|
||||
s1 = 1
|
||||
s2 = 2
|
||||
else
|
||||
s1 = sp
|
||||
s2 = sp
|
||||
end if
|
||||
|
||||
do i1=1,p(0,s1)
|
||||
ib = 1
|
||||
if(s1 == s2) ib = i1+1
|
||||
do i2=ib,p(0,s2)
|
||||
p1 = p(i1,s1)
|
||||
p2 = p(i2,s2)
|
||||
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
|
||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
end
|
||||
|
||||
subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(2,N_int)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
||||
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
||||
|
||||
double precision, external :: get_phase_bi, mo_two_e_integral
|
||||
|
||||
integer :: i, j, tip, ma, mi, puti, putj
|
||||
integer :: h1, h2, p1, p2, i1, i2
|
||||
double precision :: hij, phase
|
||||
|
||||
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
|
||||
integer, parameter :: turn2(2) = (/2, 1/)
|
||||
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
|
||||
|
||||
integer :: bant
|
||||
bant = 1
|
||||
|
||||
tip = p(0,1) * p(0,2)
|
||||
|
||||
ma = sp
|
||||
if(p(0,1) > p(0,2)) ma = 1
|
||||
if(p(0,1) < p(0,2)) ma = 2
|
||||
mi = mod(ma, 2) + 1
|
||||
|
||||
if(sp == 3) then
|
||||
if(ma == 2) bant = 2
|
||||
|
||||
if(tip == 3) then
|
||||
puti = p(1, mi)
|
||||
do i = 1, 3
|
||||
putj = p(i, ma)
|
||||
if(banned(putj,puti,bant)) cycle
|
||||
i1 = turn3(1,i)
|
||||
i2 = turn3(2,i)
|
||||
p1 = p(i1, ma)
|
||||
p2 = p(i2, ma)
|
||||
h1 = h(1, ma)
|
||||
h2 = h(2, ma)
|
||||
|
||||
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
||||
if(ma == 1) then
|
||||
mat(:, putj, puti) = mat(:, putj, puti) + coefs(:) * hij
|
||||
else
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end if
|
||||
end do
|
||||
else
|
||||
h1 = h(1,1)
|
||||
h2 = h(1,2)
|
||||
do j = 1,2
|
||||
putj = p(j, 2)
|
||||
p2 = p(turn2(j), 2)
|
||||
do i = 1,2
|
||||
puti = p(i, 1)
|
||||
|
||||
if(banned(puti,putj,bant)) cycle
|
||||
p1 = p(turn2(i), 1)
|
||||
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2,N_int)
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
else
|
||||
if(tip == 0) then
|
||||
h1 = h(1, ma)
|
||||
h2 = h(2, ma)
|
||||
do i=1,3
|
||||
puti = p(i, ma)
|
||||
do j=i+1,4
|
||||
putj = p(j, ma)
|
||||
if(banned(puti,putj,1)) cycle
|
||||
|
||||
i1 = turn2d(1, i, j)
|
||||
i2 = turn2d(2, i, j)
|
||||
p1 = p(i1, ma)
|
||||
p2 = p(i2, ma)
|
||||
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2,N_int)
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
else if(tip == 3) then
|
||||
h1 = h(1, mi)
|
||||
h2 = h(1, ma)
|
||||
p1 = p(1, mi)
|
||||
do i=1,3
|
||||
puti = p(turn3(1,i), ma)
|
||||
putj = p(turn3(2,i), ma)
|
||||
if(banned(puti,putj,1)) cycle
|
||||
p2 = p(i, ma)
|
||||
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2,N_int)
|
||||
mat(:, min(puti, putj), max(puti, putj)) = mat(:, min(puti, putj), max(puti, putj)) + coefs(:) * hij
|
||||
end do
|
||||
else ! tip == 4
|
||||
puti = p(1, sp)
|
||||
putj = p(2, sp)
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
p1 = p(1, mi)
|
||||
p2 = p(2, mi)
|
||||
h1 = h(1, mi)
|
||||
h2 = h(2, mi)
|
||||
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2,N_int)
|
||||
mat(:, puti, putj) = mat(:, puti, putj) + coefs(:) * hij
|
||||
end if
|
||||
end if
|
||||
end if
|
||||
end
|
||||
|
356
src/cipsi/selection_singles.irp.f
Normal file
356
src/cipsi/selection_singles.irp.f
Normal file
@ -0,0 +1,356 @@
|
||||
use bitmasks
|
||||
|
||||
subroutine select_singles(i_gen,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,buf)
|
||||
use bitmasks
|
||||
use selection_types
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Select determinants connected to i_det by H
|
||||
END_DOC
|
||||
integer, intent(in) :: i_gen
|
||||
integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2)
|
||||
double precision, intent(in) :: fock_diag_tmp(mo_num)
|
||||
double precision, intent(in) :: E0(N_states)
|
||||
type(pt2_type), intent(inout) :: pt2_data
|
||||
type(selection_buffer), intent(inout) :: buf
|
||||
|
||||
logical, allocatable :: banned(:,:), bannedOrb(:)
|
||||
double precision, allocatable :: mat(:,:,:)
|
||||
integer :: i, j, k
|
||||
integer :: h1,h2,s1,s2,i1,i2,ib,sp
|
||||
integer(bit_kind) :: hole(N_int,2), particle(N_int,2), mask(N_int, 2)
|
||||
logical :: fullMatch, ok
|
||||
|
||||
|
||||
do k=1,N_int
|
||||
hole (k,1) = iand(psi_det_generators(k,1,i_gen), hole_mask(k,1))
|
||||
hole (k,2) = iand(psi_det_generators(k,2,i_gen), hole_mask(k,2))
|
||||
particle(k,1) = iand(not(psi_det_generators(k,1,i_gen)), particle_mask(k,1))
|
||||
particle(k,2) = iand(not(psi_det_generators(k,2,i_gen)), particle_mask(k,2))
|
||||
enddo
|
||||
|
||||
allocate(banned(mo_num,mo_num), bannedOrb(mo_num), mat(N_states, mo_num, 1))
|
||||
banned = .False.
|
||||
|
||||
! Create lists of holes and particles
|
||||
! -----------------------------------
|
||||
|
||||
integer :: N_holes(2), N_particles(2)
|
||||
integer :: hole_list(N_int*bit_kind_size,2)
|
||||
integer :: particle_list(N_int*bit_kind_size,2)
|
||||
|
||||
call bitstring_to_list_ab(hole , hole_list , N_holes , N_int)
|
||||
call bitstring_to_list_ab(particle, particle_list, N_particles, N_int)
|
||||
|
||||
do sp=1,2
|
||||
do i=1, N_holes(sp)
|
||||
h1 = hole_list(i,sp)
|
||||
call apply_hole(psi_det_generators(1,1,i_gen), sp, h1, mask, ok, N_int)
|
||||
bannedOrb = .true.
|
||||
do j=1,N_particles(sp)
|
||||
bannedOrb(particle_list(j, sp)) = .false.
|
||||
end do
|
||||
call spot_hasBeen(mask, sp, psi_det_sorted, i_gen, N_det, bannedOrb, fullMatch)
|
||||
if(fullMatch) cycle
|
||||
mat = 0d0
|
||||
call splash_p(mask, sp, psi_selectors(1,1,i_gen), psi_selectors_coef_transp(1,i_gen), N_det_selectors - i_gen + 1, bannedOrb, mat(1,1,1))
|
||||
call fill_buffer_single(i_gen, sp, h1, 0, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
|
||||
end do
|
||||
enddo
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine spot_hasBeen(mask, sp, det, i_gen, N, banned, fullMatch)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N)
|
||||
integer, intent(in) :: i_gen, N, sp
|
||||
logical, intent(inout) :: banned(mo_num)
|
||||
logical, intent(out) :: fullMatch
|
||||
|
||||
|
||||
integer :: i, j, na, nb, list(3), nt
|
||||
integer(bit_kind) :: myMask(N_int, 2), negMask(N_int, 2)
|
||||
|
||||
fullMatch = .false.
|
||||
|
||||
do i=1,N_int
|
||||
negMask(i,1) = not(mask(i,1))
|
||||
negMask(i,2) = not(mask(i,2))
|
||||
end do
|
||||
|
||||
genl : do i=1, N
|
||||
nt = 0
|
||||
|
||||
do j=1, N_int
|
||||
myMask(j, 1) = iand(det(j, 1, i), negMask(j, 1))
|
||||
myMask(j, 2) = iand(det(j, 2, i), negMask(j, 2))
|
||||
nt += popcnt(myMask(j, 1)) + popcnt(myMask(j, 2))
|
||||
end do
|
||||
|
||||
if(nt > 3) cycle
|
||||
|
||||
if(nt <= 2 .and. i < i_gen) then
|
||||
fullMatch = .true.
|
||||
return
|
||||
end if
|
||||
|
||||
call bitstring_to_list(myMask(1,sp), list(1), na, N_int)
|
||||
|
||||
if(nt == 3 .and. i < i_gen) then
|
||||
do j=1,na
|
||||
banned(list(j)) = .true.
|
||||
end do
|
||||
else if(nt == 1 .and. na == 1) then
|
||||
banned(list(1)) = .true.
|
||||
end if
|
||||
end do genl
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine splash_p(mask, sp, det, coefs, N_sel, bannedOrb, vect)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int,2,N_sel)
|
||||
double precision, intent(in) :: coefs(N_states, N_sel)
|
||||
integer, intent(in) :: sp, N_sel
|
||||
logical, intent(inout) :: bannedOrb(mo_num)
|
||||
double precision, intent(inout) :: vect(N_states, mo_num)
|
||||
|
||||
integer :: i, j, h(0:2,2), p(0:3,2), nt
|
||||
integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2)
|
||||
integer(bit_kind) :: phasemask(N_int, 2)
|
||||
|
||||
do i=1,N_int
|
||||
negMask(i,1) = not(mask(i,1))
|
||||
negMask(i,2) = not(mask(i,2))
|
||||
end do
|
||||
|
||||
do i=1, N_sel
|
||||
nt = 0
|
||||
do j=1,N_int
|
||||
mobMask(j,1) = iand(negMask(j,1), det(j,1,i))
|
||||
mobMask(j,2) = iand(negMask(j,2), det(j,2,i))
|
||||
nt += popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
|
||||
end do
|
||||
|
||||
if(nt > 3) cycle
|
||||
|
||||
do j=1,N_int
|
||||
perMask(j,1) = iand(mask(j,1), not(det(j,1,i)))
|
||||
perMask(j,2) = iand(mask(j,2), not(det(j,2,i)))
|
||||
end do
|
||||
|
||||
call bitstring_to_list(perMask(1,1), h(1,1), h(0,1), N_int)
|
||||
call bitstring_to_list(perMask(1,2), h(1,2), h(0,2), N_int)
|
||||
|
||||
call bitstring_to_list(mobMask(1,1), p(1,1), p(0,1), N_int)
|
||||
call bitstring_to_list(mobMask(1,2), p(1,2), p(0,2), N_int)
|
||||
|
||||
call get_mask_phase(psi_det_sorted(1,1,i), phasemask, N_int)
|
||||
|
||||
if(nt == 3) then
|
||||
call get_m2(det(1,1,i), phasemask, bannedOrb, vect, mask, h, p, sp, coefs(1, i))
|
||||
else if(nt == 2) then
|
||||
call get_m1(det(1,1,i), phasemask, bannedOrb, vect, mask, h, p, sp, coefs(1, i))
|
||||
else
|
||||
call get_m0(det(1,1,i), phasemask, bannedOrb, vect, mask, h, p, sp, coefs(1, i))
|
||||
end if
|
||||
end do
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine get_m2(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int, 2)
|
||||
logical, intent(in) :: bannedOrb(mo_num)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
double precision, intent(inout) :: vect(N_states, mo_num)
|
||||
integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2)
|
||||
integer :: i, j, h1, h2, p1, p2, sfix, hfix, pfix, hmob, pmob, puti
|
||||
double precision :: hij
|
||||
double precision, external :: get_phase_bi, mo_two_e_integral
|
||||
|
||||
integer, parameter :: turn3_2(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
|
||||
integer, parameter :: turn2(2) = (/2,1/)
|
||||
|
||||
if(h(0,sp) == 2) then
|
||||
h1 = h(1, sp)
|
||||
h2 = h(2, sp)
|
||||
do i=1,3
|
||||
puti = p(i, sp)
|
||||
if(bannedOrb(puti)) cycle
|
||||
p1 = p(turn3_2(1,i), sp)
|
||||
p2 = p(turn3_2(2,i), sp)
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2, p1, h1, h2)
|
||||
hij *= get_phase_bi(phasemask, sp, sp, h1, p1, h2, p2)
|
||||
vect(:, puti) += hij * coefs
|
||||
end do
|
||||
else if(h(0,sp) == 1) then
|
||||
sfix = turn2(sp)
|
||||
hfix = h(1,sfix)
|
||||
pfix = p(1,sfix)
|
||||
hmob = h(1,sp)
|
||||
do j=1,2
|
||||
puti = p(j, sp)
|
||||
if(bannedOrb(puti)) cycle
|
||||
pmob = p(turn2(j), sp)
|
||||
hij = mo_two_e_integral(pfix, pmob, hfix, hmob)
|
||||
hij *= get_phase_bi(phasemask, sp, sfix, hmob, pmob, hfix, pfix)
|
||||
vect(:, puti) += hij * coefs
|
||||
end do
|
||||
else
|
||||
puti = p(1,sp)
|
||||
if(.not. bannedOrb(puti)) then
|
||||
sfix = turn2(sp)
|
||||
p1 = p(1,sfix)
|
||||
p2 = p(2,sfix)
|
||||
h1 = h(1,sfix)
|
||||
h2 = h(2,sfix)
|
||||
hij = (mo_two_e_integral(p1,p2,h1,h2) - mo_two_e_integral(p2,p1,h1,h2))
|
||||
hij *= get_phase_bi(phasemask, sfix, sfix, h1, p1, h2, p2)
|
||||
vect(:, puti) += hij * coefs
|
||||
end if
|
||||
end if
|
||||
end subroutine
|
||||
|
||||
subroutine get_m1(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int, 2)
|
||||
logical, intent(in) :: bannedOrb(mo_num)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
double precision, intent(inout) :: vect(N_states, mo_num)
|
||||
integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2)
|
||||
integer :: i, hole, p1, p2, sh
|
||||
logical :: ok, lbanned(mo_num)
|
||||
integer(bit_kind) :: det(N_int, 2)
|
||||
double precision :: hij
|
||||
double precision, external :: get_phase_bi,mo_two_e_integral
|
||||
|
||||
lbanned = bannedOrb
|
||||
sh = 1
|
||||
if(h(0,2) == 1) sh = 2
|
||||
hole = h(1, sh)
|
||||
lbanned(p(1,sp)) = .true.
|
||||
if(p(0,sp) == 2) lbanned(p(2,sp)) = .true.
|
||||
!print *, "SPm1", sp, sh
|
||||
|
||||
p1 = p(1, sp)
|
||||
|
||||
if(sp == sh) then
|
||||
p2 = p(2, sp)
|
||||
lbanned(p2) = .true.
|
||||
|
||||
do i=1,hole-1
|
||||
if(lbanned(i)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, i, hole) - mo_two_e_integral(p2, p1, i, hole))
|
||||
hij *= get_phase_bi(phasemask, sp, sp, i, p1, hole, p2)
|
||||
vect(:,i) += hij * coefs
|
||||
end do
|
||||
do i=hole+1,mo_num
|
||||
if(lbanned(i)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, hole, i) - mo_two_e_integral(p2, p1, hole, i))
|
||||
hij *= get_phase_bi(phasemask, sp, sp, hole, p1, i, p2)
|
||||
vect(:,i) += hij * coefs
|
||||
end do
|
||||
|
||||
call apply_particle(mask, sp, p2, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
vect(:, p2) += hij * coefs
|
||||
else
|
||||
p2 = p(1, sh)
|
||||
do i=1,mo_num
|
||||
if(lbanned(i)) cycle
|
||||
hij = mo_two_e_integral(p1, p2, i, hole)
|
||||
hij *= get_phase_bi(phasemask, sp, sh, i, p1, hole, p2)
|
||||
vect(:,i) += hij * coefs
|
||||
end do
|
||||
end if
|
||||
|
||||
call apply_particle(mask, sp, p1, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
vect(:, p1) += hij * coefs
|
||||
end subroutine
|
||||
|
||||
subroutine get_m0(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int, 2)
|
||||
logical, intent(in) :: bannedOrb(mo_num)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
double precision, intent(inout) :: vect(N_states, mo_num)
|
||||
integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2)
|
||||
integer :: i
|
||||
logical :: ok, lbanned(mo_num)
|
||||
integer(bit_kind) :: det(N_int, 2)
|
||||
double precision :: hij
|
||||
|
||||
lbanned = bannedOrb
|
||||
lbanned(p(1,sp)) = .true.
|
||||
do i=1,mo_num
|
||||
if(lbanned(i)) cycle
|
||||
call apply_particle(mask, sp, i, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
vect(:, i) += hij * coefs
|
||||
end do
|
||||
end subroutine
|
||||
|
||||
|
||||
|
||||
!
|
||||
!subroutine fill_buffer_single(i_generator, sp, h1, bannedOrb, fock_diag_tmp, E0, pt2, vect, buf)
|
||||
! use bitmasks
|
||||
! use selection_types
|
||||
! implicit none
|
||||
!
|
||||
! integer, intent(in) :: i_generator, sp, h1
|
||||
! double precision, intent(in) :: vect(N_states, mo_num)
|
||||
! logical, intent(in) :: bannedOrb(mo_num)
|
||||
! double precision, intent(in) :: fock_diag_tmp(mo_num)
|
||||
! double precision, intent(in) :: E0(N_states)
|
||||
! double precision, intent(inout) :: pt2(N_states)
|
||||
! type(selection_buffer), intent(inout) :: buf
|
||||
! logical :: ok
|
||||
! integer :: s1, s2, p1, p2, ib, istate
|
||||
! integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
|
||||
! double precision :: e_pert, delta_E, val, Hii, max_e_pert, tmp
|
||||
! double precision, external :: diag_H_mat_elem_fock
|
||||
!
|
||||
!
|
||||
! call apply_hole(psi_det_generators(1,1,i_generator), sp, h1, mask, ok, N_int)
|
||||
!
|
||||
! do p1=1,mo_num
|
||||
! if(bannedOrb(p1)) cycle
|
||||
! if(vect(1, p1) == 0d0) cycle
|
||||
! call apply_particle(mask, sp, p1, det, ok, N_int)
|
||||
!
|
||||
!
|
||||
! Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
|
||||
! max_e_pert = 0d0
|
||||
!
|
||||
! do istate=1,N_states
|
||||
! val = vect(istate, p1) + vect(istate, p1)
|
||||
! delta_E = E0(istate) - Hii
|
||||
! tmp = dsqrt(delta_E * delta_E + val * val)
|
||||
! if (delta_E < 0.d0) then
|
||||
! tmp = -tmp
|
||||
! endif
|
||||
! e_pert = 0.5d0 * ( tmp - delta_E)
|
||||
! pt2(istate) += e_pert
|
||||
! if(dabs(e_pert) > dabs(max_e_pert)) max_e_pert = e_pert
|
||||
! end do
|
||||
!
|
||||
! if(dabs(max_e_pert) > buf%mini) call add_to_selection_buffer(buf, det, max_e_pert)
|
||||
! end do
|
||||
!end subroutine
|
||||
!
|
@ -23,6 +23,34 @@ function run {
|
||||
qp set mo_two_e_ints io_mo_two_e_integrals "Write"
|
||||
}
|
||||
|
||||
@test "H2_1" {
|
||||
run h2_1.xyz 1 0 cc-pvdz
|
||||
}
|
||||
|
||||
@test "H2_3" {
|
||||
run h2_3.xyz 3 0 cc-pvdz
|
||||
}
|
||||
|
||||
@test "H3_2" {
|
||||
run h3_2.xyz 2 0 cc-pvdz
|
||||
}
|
||||
|
||||
@test "H3_4" {
|
||||
run h3_4.xyz 4 0 cc-pvdz
|
||||
}
|
||||
|
||||
@test "H4_1" {
|
||||
run h4_1.xyz 1 0 cc-pvdz
|
||||
}
|
||||
|
||||
@test "H4_3" {
|
||||
run h4_3.xyz 3 0 cc-pvdz
|
||||
}
|
||||
|
||||
@test "H4_5" {
|
||||
run h4_5.xyz 5 0 cc-pvdz
|
||||
}
|
||||
|
||||
|
||||
@test "B-B" {
|
||||
qp set_file b2_stretched.ezfio
|
||||
|
@ -10,8 +10,8 @@ function run() {
|
||||
qp set perturbation do_pt2 False
|
||||
qp set determinants n_det_max 8000
|
||||
qp set determinants n_states 1
|
||||
qp set davidson threshold_davidson 1.e-10
|
||||
qp set davidson n_states_diag 8
|
||||
qp set davidson_keywords threshold_davidson 1.e-10
|
||||
qp set davidson_keywords n_states_diag 8
|
||||
qp run fci
|
||||
energy1="$(ezfio get fci energy | tr '[]' ' ' | cut -d ',' -f 1)"
|
||||
eq $energy1 $1 $thresh
|
||||
@ -24,99 +24,134 @@ function run_stoch() {
|
||||
qp set perturbation do_pt2 True
|
||||
qp set determinants n_det_max $3
|
||||
qp set determinants n_states 1
|
||||
qp set davidson threshold_davidson 1.e-10
|
||||
qp set davidson n_states_diag 1
|
||||
qp set davidson_keywords threshold_davidson 1.e-10
|
||||
qp set davidson_keywords n_states_diag 1
|
||||
qp run fci
|
||||
energy1="$(ezfio get fci energy_pt2 | tr '[]' ' ' | cut -d ',' -f 1)"
|
||||
eq $energy1 $1 $thresh
|
||||
}
|
||||
|
||||
@test "B-B" {
|
||||
@test "H2_1" { # 1s
|
||||
qp set_file h2_1.ezfio
|
||||
qp set perturbation pt2_max 0.
|
||||
run_stoch -1.06415255 1.e-8 10000
|
||||
}
|
||||
|
||||
@test "H2_3" { # 1s
|
||||
qp set_file h2_3.ezfio
|
||||
qp set perturbation pt2_max 0.
|
||||
run_stoch -0.96029881 1.e-8 10000
|
||||
}
|
||||
|
||||
@test "H3_2" { # 3s
|
||||
qp set_file h3_2.ezfio
|
||||
qp set perturbation pt2_max 0.
|
||||
run_stoch -1.61003132 1.e-8 10000
|
||||
}
|
||||
|
||||
@test "H3_4" { # 2s
|
||||
qp set_file h3_4.ezfio
|
||||
qp set perturbation pt2_max 0.
|
||||
run_stoch -1.02434843 1.e-8 10000
|
||||
}
|
||||
|
||||
@test "H4_1" { # 13s
|
||||
qp set_file h4_1.ezfio
|
||||
qp set perturbation pt2_max 0.
|
||||
run_stoch -2.01675062 1.e-8 10000
|
||||
}
|
||||
|
||||
@test "H4_3" { # 10s
|
||||
qp set_file h4_3.ezfio
|
||||
qp set perturbation pt2_max 0.
|
||||
run_stoch -1.95927626 1.e-8 10000
|
||||
}
|
||||
|
||||
@test "H4_5" { # 3s
|
||||
qp set_file h4_5.ezfio
|
||||
qp set perturbation pt2_max 0.
|
||||
run_stoch -1.25852765 1.e-8 10000
|
||||
}
|
||||
|
||||
@test "B-B" { # 10s
|
||||
qp set_file b2_stretched.ezfio
|
||||
qp set determinants n_det_max 10000
|
||||
qp set_frozen_core
|
||||
run_stoch -49.14103054419 3.e-4 10000
|
||||
}
|
||||
|
||||
@test "F2" { # 4.07m
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file f2.ezfio
|
||||
qp set_frozen_core
|
||||
run_stoch -199.304922384814 3.e-3 100000
|
||||
}
|
||||
|
||||
@test "NH3" { # 10.6657s
|
||||
@test "NH3" { # 8s
|
||||
qp set_file nh3.ezfio
|
||||
qp set_mo_class --core="[1-4]" --act="[5-72]"
|
||||
run -56.244753429144986 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "DHNO" { # 11.4721s
|
||||
@test "DHNO" { # 8s
|
||||
qp set_file dhno.ezfio
|
||||
qp set_mo_class --core="[1-7]" --act="[8-64]"
|
||||
run -130.459020029816 3.e-4 100000
|
||||
run -130.466208113547 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "HCO" { # 12.2868s
|
||||
@test "HCO" { # 32s
|
||||
qp set_file hco.ezfio
|
||||
run -113.393356604085 1.e-3 100000
|
||||
run -113.395751656985 1.e-3 100000
|
||||
}
|
||||
|
||||
@test "H2O2" { # 12.9214s
|
||||
@test "H2O2" { # 21s
|
||||
qp set_file h2o2.ezfio
|
||||
qp set_mo_class --core="[1-2]" --act="[3-24]" --del="[25-38]"
|
||||
run -151.005848404095 1.e-3 100000
|
||||
}
|
||||
|
||||
@test "HBO" { # 13.3144s
|
||||
@test "HBO" { # 18s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file hbo.ezfio
|
||||
run -100.213 1.5e-3 100000
|
||||
run -100.214 1.5e-3 100000
|
||||
}
|
||||
|
||||
@test "H2O" { # 11.3727s
|
||||
@test "H2O" { # 16s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file h2o.ezfio
|
||||
run -76.2361605151999 5.e-4 100000
|
||||
run -76.238051555276 5.e-4 100000
|
||||
}
|
||||
|
||||
@test "ClO" { # 13.3755s
|
||||
@test "ClO" { # 47s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file clo.ezfio
|
||||
run -534.546453546852 1.e-3 100000
|
||||
run -534.548529710256 1.e-3 100000
|
||||
}
|
||||
|
||||
@test "SO" { # 13.4952s
|
||||
@test "SO" { # 23s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file so.ezfio
|
||||
run -26.015 3.e-3 100000
|
||||
}
|
||||
|
||||
@test "H2S" { # 13.6745s
|
||||
@test "H2S" { # 37s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file h2s.ezfio
|
||||
run -398.859577605891 5.e-4 100000
|
||||
run -398.864853669111 5.e-4 100000
|
||||
}
|
||||
|
||||
@test "OH" { # 13.865s
|
||||
@test "OH" { # 12s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file oh.ezfio
|
||||
run -75.6121856748294 3.e-4 100000
|
||||
run -75.615 1.5e-3 100000
|
||||
}
|
||||
|
||||
@test "SiH2_3B1" { # 13.938ss
|
||||
@test "SiH2_3B1" { # 10s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file sih2_3b1.ezfio
|
||||
run -290.0175411299477 3.e-4 100000
|
||||
run -290.0206626734517 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "H3COH" { # 14.7299s
|
||||
@test "H3COH" { # 33s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file h3coh.ezfio
|
||||
run -115.205632960026 1.e-3 100000
|
||||
run -115.206784386204 1.e-3 100000
|
||||
}
|
||||
|
||||
@test "SiH3" { # 15.99s
|
||||
@test "SiH3" { # 15s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file sih3.ezfio
|
||||
run -5.572 1.e-3 100000
|
||||
@ -132,7 +167,7 @@ function run_stoch() {
|
||||
@test "ClF" { # 16.8864s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file clf.ezfio
|
||||
run -559.169748890031 1.5e-3 100000
|
||||
run -559.174371468224 1.5e-3 100000
|
||||
}
|
||||
|
||||
@test "SO2" { # 17.5645s
|
||||
@ -170,12 +205,11 @@ function run_stoch() {
|
||||
run -187.970184372047 1.6e-3 100000
|
||||
}
|
||||
|
||||
|
||||
@test "[Cu(NH3)4]2+" { # 25.0417s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file cu_nh3_4_2plus.ezfio
|
||||
qp set_mo_class --core="[1-24]" --act="[25-45]" --del="[46-87]"
|
||||
run -1862.9869374387192 3.e-04 100000
|
||||
run -1862.98320066637 3.e-04 100000
|
||||
}
|
||||
|
||||
@test "HCN" { # 20.3273s
|
||||
@ -185,3 +219,10 @@ function run_stoch() {
|
||||
run -93.078 2.e-3 100000
|
||||
}
|
||||
|
||||
@test "F2" { # 4.07m
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file f2.ezfio
|
||||
qp set_frozen_core
|
||||
run_stoch -199.304922384814 3.e-3 100000
|
||||
}
|
||||
|
||||
|
@ -54,14 +54,18 @@ subroutine run_cipsi_tc
|
||||
|
||||
implicit none
|
||||
|
||||
if (.not.is_zmq_slave) then
|
||||
if (.not. is_zmq_slave) then
|
||||
|
||||
PROVIDE psi_det psi_coef mo_bi_ortho_tc_two_e mo_bi_ortho_tc_one_e
|
||||
if(elec_alpha_num+elec_beta_num.ge.3)then
|
||||
|
||||
if(elec_alpha_num+elec_beta_num .ge. 3) then
|
||||
if(three_body_h_tc)then
|
||||
call provide_all_three_ints_bi_ortho
|
||||
call provide_all_three_ints_bi_ortho()
|
||||
endif
|
||||
endif
|
||||
! ---
|
||||
|
||||
FREE int2_grad1_u12_bimo_transp int2_grad1_u12_ao_transp
|
||||
|
||||
write(json_unit,json_array_open_fmt) 'fci_tc'
|
||||
|
||||
if (do_pt2) then
|
||||
@ -76,13 +80,16 @@ subroutine run_cipsi_tc
|
||||
call json_close
|
||||
|
||||
else
|
||||
|
||||
PROVIDE mo_bi_ortho_tc_one_e mo_bi_ortho_tc_two_e pt2_min_parallel_tasks
|
||||
|
||||
if(elec_alpha_num+elec_beta_num.ge.3)then
|
||||
if(three_body_h_tc)then
|
||||
call provide_all_three_ints_bi_ortho
|
||||
endif
|
||||
endif
|
||||
! ---
|
||||
|
||||
FREE int2_grad1_u12_bimo_transp int2_grad1_u12_ao_transp
|
||||
|
||||
call run_slave_cipsi
|
||||
|
||||
|
@ -43,11 +43,39 @@ python write_pt_charges.py ${EZFIO}
|
||||
qp set nuclei point_charges True
|
||||
qp run scf | tee ${EZFIO}.pt_charges.out
|
||||
energy="$(ezfio get hartree_fock energy)"
|
||||
good=-92.76613324421798
|
||||
good=-92.79920682236470
|
||||
eq $energy $good $thresh
|
||||
rm -rf $EZFIO
|
||||
}
|
||||
|
||||
@test "H2_1" { # 1s
|
||||
run h2_1.ezfio -1.005924963288527
|
||||
}
|
||||
|
||||
@test "H2_3" { # 1s
|
||||
run h2_3.ezfio -0.9591011604845440
|
||||
}
|
||||
|
||||
@test "H3_2" { # 1s
|
||||
run h3_2.ezfio -1.558273529860488
|
||||
}
|
||||
|
||||
@test "H3_4" { # 1s
|
||||
run h3_4.ezfio -1.0158684760025190
|
||||
}
|
||||
|
||||
@test "H4_1" { # 1s
|
||||
run h4_1.ezfio -1.932022805374405
|
||||
}
|
||||
|
||||
@test "H4_3" { # 1s
|
||||
run h4_3.ezfio -1.8948449927787350
|
||||
}
|
||||
|
||||
@test "H4_5" { # 1s
|
||||
run h4_5.ezfio -1.2408338805496990
|
||||
}
|
||||
|
||||
@test "point charges" {
|
||||
run_pt_charges
|
||||
}
|
||||
@ -56,6 +84,8 @@ rm -rf $EZFIO
|
||||
run hcn.ezfio -92.88717500035233
|
||||
}
|
||||
|
||||
|
||||
|
||||
@test "B-B" { # 3s
|
||||
run b2_stretched.ezfio -48.9950585434279
|
||||
}
|
||||
|
@ -1,141 +0,0 @@
|
||||
! Dimensions of MOs
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_mo_dim ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of different pairs (i,j) of MOs we can build,
|
||||
! with i>j
|
||||
END_DOC
|
||||
|
||||
n_mo_dim = mo_num*(mo_num-1)/2
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_mo_dim_core ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of different pairs (i,j) of core MOs we can build,
|
||||
! with i>j
|
||||
END_DOC
|
||||
|
||||
n_mo_dim_core = dim_list_core_orb*(dim_list_core_orb-1)/2
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_mo_dim_act ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of different pairs (i,j) of active MOs we can build,
|
||||
! with i>j
|
||||
END_DOC
|
||||
|
||||
n_mo_dim_act = dim_list_act_orb*(dim_list_act_orb-1)/2
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_mo_dim_inact ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of different pairs (i,j) of inactive MOs we can build,
|
||||
! with i>j
|
||||
END_DOC
|
||||
|
||||
n_mo_dim_inact = dim_list_inact_orb*(dim_list_inact_orb-1)/2
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_mo_dim_virt ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of different pairs (i,j) of virtual MOs we can build,
|
||||
! with i>j
|
||||
END_DOC
|
||||
|
||||
n_mo_dim_virt = dim_list_virt_orb*(dim_list_virt_orb-1)/2
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! Energies/criterions
|
||||
|
||||
BEGIN_PROVIDER [ double precision, my_st_av_energy ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! State average CI energy
|
||||
END_DOC
|
||||
|
||||
!call update_st_av_ci_energy(my_st_av_energy)
|
||||
call state_average_energy(my_st_av_energy)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! With all the MOs
|
||||
|
||||
BEGIN_PROVIDER [ double precision, my_gradient_opt, (n_mo_dim) ]
|
||||
&BEGIN_PROVIDER [ double precision, my_CC1_opt ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! - Gradient of the energy with respect to the MO rotations, for all the MOs.
|
||||
! - Maximal element of the gradient in absolute value
|
||||
END_DOC
|
||||
|
||||
double precision :: norm_grad
|
||||
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
|
||||
call gradient_opt(n_mo_dim, my_gradient_opt, my_CC1_opt, norm_grad)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, my_hessian_opt, (n_mo_dim, n_mo_dim) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! - Gradient of the energy with respect to the MO rotations, for all the MOs.
|
||||
! - Maximal element of the gradient in absolute value
|
||||
END_DOC
|
||||
|
||||
double precision, allocatable :: h_f(:,:,:,:)
|
||||
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
|
||||
allocate(h_f(mo_num, mo_num, mo_num, mo_num))
|
||||
|
||||
call hessian_list_opt(n_mo_dim, my_hessian_opt, h_f)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! With the list of active MOs
|
||||
! Can be generalized to any mo_class by changing the list/dimension
|
||||
|
||||
BEGIN_PROVIDER [ double precision, my_gradient_list_opt, (n_mo_dim_act) ]
|
||||
&BEGIN_PROVIDER [ double precision, my_CC2_opt ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! - Gradient of the energy with respect to the MO rotations, only for the active MOs !
|
||||
! - Maximal element of the gradient in absolute value
|
||||
END_DOC
|
||||
|
||||
double precision :: norm_grad
|
||||
|
||||
PROVIDE mo_two_e_integrals_in_map !one_e_dm_mo two_e_dm_mo mo_one_e_integrals
|
||||
|
||||
call gradient_list_opt(n_mo_dim_act, dim_list_act_orb, list_act, my_gradient_list_opt, my_CC2_opt, norm_grad)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, my_hessian_list_opt, (n_mo_dim_act, n_mo_dim_act) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! - Gradient of the energy with respect to the MO rotations, only for the active MOs !
|
||||
! - Maximal element of the gradient in absolute value
|
||||
END_DOC
|
||||
|
||||
double precision, allocatable :: h_f(:,:,:,:)
|
||||
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
|
||||
allocate(h_f(dim_list_act_orb, dim_list_act_orb, dim_list_act_orb, dim_list_act_orb))
|
||||
|
||||
call hessian_list_opt(n_mo_dim_act, dim_list_act_orb, list_act, my_hessian_list_opt, h_f)
|
||||
|
||||
END_PROVIDER
|
@ -27,6 +27,8 @@ BEGIN_PROVIDER [ double precision, cholesky_mo_transp, (cholesky_ao_num, mo_num,
|
||||
double precision, allocatable :: buffer(:,:)
|
||||
|
||||
print *, 'AO->MO Transformation of Cholesky vectors .'
|
||||
|
||||
call set_multiple_levels_omp(.False.)
|
||||
!$OMP PARALLEL PRIVATE(i,j,k,buffer)
|
||||
allocate(buffer(mo_num,mo_num))
|
||||
!$OMP DO SCHEDULE(static)
|
||||
|
@ -206,7 +206,12 @@ BEGIN_PROVIDER [ double precision, nuclear_repulsion ]
|
||||
enddo
|
||||
nuclear_repulsion *= 0.5d0
|
||||
if(point_charges)then
|
||||
nuclear_repulsion += pt_chrg_nuclei_interaction + pt_chrg_interaction
|
||||
print*,'bear nuclear repulsion = ',nuclear_repulsion
|
||||
print*,'adding the interaction between the nuclein and the point charges'
|
||||
print*,'to the usual nuclear repulsion '
|
||||
nuclear_repulsion += pt_chrg_nuclei_interaction
|
||||
print*,'new nuclear repulsion = ',nuclear_repulsion
|
||||
print*,'WARNING: we do not add the interaction between the point charges themselves'
|
||||
endif
|
||||
end if
|
||||
|
||||
|
@ -205,5 +205,8 @@ BEGIN_PROVIDER [ double precision, pt_chrg_nuclei_interaction]
|
||||
enddo
|
||||
print*,'Interaction between point charges and nuclei'
|
||||
print*,'pt_chrg_nuclei_interaction = ',pt_chrg_nuclei_interaction
|
||||
if(point_charges)then
|
||||
provide pt_chrg_interaction
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -5,6 +5,90 @@
|
||||
! Fock matrix on the MO basis.
|
||||
! For open shells, the ROHF Fock Matrix is ::
|
||||
!
|
||||
! | Rcc | F^b | Fcv |
|
||||
! |-----------------------|
|
||||
! | F^b | Roo | F^a |
|
||||
! |-----------------------|
|
||||
! | Fcv | F^a | Rvv |
|
||||
!
|
||||
! C: Core, O: Open, V: Virtual
|
||||
!
|
||||
! Rcc = Acc Fcc^a + Bcc Fcc^b
|
||||
! Roo = Aoo Foo^a + Boo Foo^b
|
||||
! Rvv = Avv Fvv^a + Bvv Fvv^b
|
||||
! Fcv = (F^a + F^b)/2
|
||||
!
|
||||
! F^a: Fock matrix alpha (MO), F^b: Fock matrix beta (MO)
|
||||
! A,B: Coupling parameters
|
||||
!
|
||||
! J. Chem. Phys. 133, 141102 (2010), https://doi.org/10.1063/1.3503173
|
||||
! Coupling parameters from J. Chem. Phys. 125, 204110 (2006); https://doi.org/10.1063/1.2393223.
|
||||
! cc oo vv
|
||||
! A -0.5 0.5 1.5
|
||||
! B 1.5 0.5 -0.5
|
||||
!
|
||||
END_DOC
|
||||
integer :: i,j,n
|
||||
if (elec_alpha_num == elec_beta_num) then
|
||||
Fock_matrix_mo = Fock_matrix_mo_alpha
|
||||
else
|
||||
! Core
|
||||
do j = 1, elec_beta_num
|
||||
! Core
|
||||
do i = 1, elec_beta_num
|
||||
fock_matrix_mo(i,j) = - 0.5d0 * fock_matrix_mo_alpha(i,j) &
|
||||
+ 1.5d0 * fock_matrix_mo_beta(i,j)
|
||||
enddo
|
||||
! Open
|
||||
do i = elec_beta_num+1, elec_alpha_num
|
||||
fock_matrix_mo(i,j) = fock_matrix_mo_beta(i,j)
|
||||
enddo
|
||||
! Virtual
|
||||
do i = elec_alpha_num+1, mo_num
|
||||
fock_matrix_mo(i,j) = 0.5d0 * fock_matrix_mo_alpha(i,j) &
|
||||
+ 0.5d0 * fock_matrix_mo_beta(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! Open
|
||||
do j = elec_beta_num+1, elec_alpha_num
|
||||
! Core
|
||||
do i = 1, elec_beta_num
|
||||
fock_matrix_mo(i,j) = fock_matrix_mo_beta(i,j)
|
||||
enddo
|
||||
! Open
|
||||
do i = elec_beta_num+1, elec_alpha_num
|
||||
fock_matrix_mo(i,j) = 0.5d0 * fock_matrix_mo_alpha(i,j) &
|
||||
+ 0.5d0 * fock_matrix_mo_beta(i,j)
|
||||
enddo
|
||||
! Virtual
|
||||
do i = elec_alpha_num+1, mo_num
|
||||
fock_matrix_mo(i,j) = fock_matrix_mo_alpha(i,j)
|
||||
enddo
|
||||
enddo
|
||||
! Virtual
|
||||
do j = elec_alpha_num+1, mo_num
|
||||
! Core
|
||||
do i = 1, elec_beta_num
|
||||
fock_matrix_mo(i,j) = 0.5d0 * fock_matrix_mo_alpha(i,j) &
|
||||
+ 0.5d0 * fock_matrix_mo_beta(i,j)
|
||||
enddo
|
||||
! Open
|
||||
do i = elec_beta_num+1, elec_alpha_num
|
||||
fock_matrix_mo(i,j) = fock_matrix_mo_alpha(i,j)
|
||||
enddo
|
||||
! Virtual
|
||||
do i = elec_alpha_num+1, mo_num
|
||||
fock_matrix_mo(i,j) = 1.5d0 * fock_matrix_mo_alpha(i,j) &
|
||||
- 0.5d0 * fock_matrix_mo_beta(i,j)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
! Old
|
||||
! BEGIN_DOC
|
||||
! Fock matrix on the MO basis.
|
||||
! For open shells, the ROHF Fock Matrix is ::
|
||||
!
|
||||
! | F-K | F + K/2 | F |
|
||||
! |---------------------------------|
|
||||
! | F + K/2 | F | F - K/2 |
|
||||
@ -16,64 +100,64 @@
|
||||
!
|
||||
! K = Fb - Fa
|
||||
!
|
||||
END_DOC
|
||||
integer :: i,j,n
|
||||
if (elec_alpha_num == elec_beta_num) then
|
||||
Fock_matrix_mo = Fock_matrix_mo_alpha
|
||||
else
|
||||
! END_DOC
|
||||
!integer :: i,j,n
|
||||
!if (elec_alpha_num == elec_beta_num) then
|
||||
! Fock_matrix_mo = Fock_matrix_mo_alpha
|
||||
!else
|
||||
|
||||
do j=1,elec_beta_num
|
||||
! F-K
|
||||
do i=1,elec_beta_num !CC
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
||||
- (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
||||
enddo
|
||||
! F+K/2
|
||||
do i=elec_beta_num+1,elec_alpha_num !CA
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
||||
+ 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
||||
enddo
|
||||
! F
|
||||
do i=elec_alpha_num+1, mo_num !CV
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
|
||||
enddo
|
||||
enddo
|
||||
! do j=1,elec_beta_num
|
||||
! ! F-K
|
||||
! do i=1,elec_beta_num !CC
|
||||
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
||||
! - (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
||||
! enddo
|
||||
! ! F+K/2
|
||||
! do i=elec_beta_num+1,elec_alpha_num !CA
|
||||
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
||||
! + 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
||||
! enddo
|
||||
! ! F
|
||||
! do i=elec_alpha_num+1, mo_num !CV
|
||||
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
|
||||
! enddo
|
||||
! enddo
|
||||
|
||||
do j=elec_beta_num+1,elec_alpha_num
|
||||
! F+K/2
|
||||
do i=1,elec_beta_num !AC
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
||||
+ 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
||||
enddo
|
||||
! F
|
||||
do i=elec_beta_num+1,elec_alpha_num !AA
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
|
||||
enddo
|
||||
! F-K/2
|
||||
do i=elec_alpha_num+1, mo_num !AV
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
||||
- 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
||||
enddo
|
||||
enddo
|
||||
! do j=elec_beta_num+1,elec_alpha_num
|
||||
! ! F+K/2
|
||||
! do i=1,elec_beta_num !AC
|
||||
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
||||
! + 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
||||
! enddo
|
||||
! ! F
|
||||
! do i=elec_beta_num+1,elec_alpha_num !AA
|
||||
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
|
||||
! enddo
|
||||
! ! F-K/2
|
||||
! do i=elec_alpha_num+1, mo_num !AV
|
||||
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
||||
! - 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
||||
! enddo
|
||||
! enddo
|
||||
|
||||
do j=elec_alpha_num+1, mo_num
|
||||
! F
|
||||
do i=1,elec_beta_num !VC
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
|
||||
enddo
|
||||
! F-K/2
|
||||
do i=elec_beta_num+1,elec_alpha_num !VA
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
||||
- 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
||||
enddo
|
||||
! F+K
|
||||
do i=elec_alpha_num+1,mo_num !VV
|
||||
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j)) &
|
||||
+ (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
||||
enddo
|
||||
enddo
|
||||
! do j=elec_alpha_num+1, mo_num
|
||||
! ! F
|
||||
! do i=1,elec_beta_num !VC
|
||||
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
|
||||
! enddo
|
||||
! ! F-K/2
|
||||
! do i=elec_beta_num+1,elec_alpha_num !VA
|
||||
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
||||
! - 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
||||
! enddo
|
||||
! ! F+K
|
||||
! do i=elec_alpha_num+1,mo_num !VV
|
||||
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j)) &
|
||||
! + (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
||||
! enddo
|
||||
! enddo
|
||||
|
||||
endif
|
||||
!endif
|
||||
|
||||
do i = 1, mo_num
|
||||
Fock_matrix_diag_mo(i) = Fock_matrix_mo(i,i)
|
||||
@ -115,8 +199,6 @@
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, Fock_matrix_mo_alpha, (mo_num,mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
|
File diff suppressed because it is too large
Load Diff
1062
src/tc_bi_ortho/normal_ordered_contractions.irp.f
Normal file
1062
src/tc_bi_ortho/normal_ordered_contractions.irp.f
Normal file
File diff suppressed because it is too large
Load Diff
392
src/tc_bi_ortho/normal_ordered_old.irp.f
Normal file
392
src/tc_bi_ortho/normal_ordered_old.irp.f
Normal file
@ -0,0 +1,392 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_old, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Normal ordering of the three body interaction on the HF density
|
||||
END_DOC
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i, h1, p1, h2, p2
|
||||
integer :: hh1, hh2, pp1, pp2
|
||||
integer :: Ne(2)
|
||||
double precision :: hthree_aba, hthree_aaa, hthree_aab
|
||||
double precision :: wall0, wall1
|
||||
integer, allocatable :: occ(:,:)
|
||||
integer(bit_kind), allocatable :: key_i_core(:,:)
|
||||
|
||||
print*,' Providing normal_two_body_bi_orth_old ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
if(read_tc_norm_ord) then
|
||||
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/normal_two_body_bi_orth_old', action="read")
|
||||
read(11) normal_two_body_bi_orth_old
|
||||
close(11)
|
||||
|
||||
else
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
allocate( occ(N_int*bit_kind_size,2) )
|
||||
allocate( key_i_core(N_int,2) )
|
||||
|
||||
if(core_tc_op) then
|
||||
do i = 1, N_int
|
||||
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
|
||||
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
|
||||
enddo
|
||||
call bitstring_to_list_ab(key_i_core,occ,Ne,N_int)
|
||||
else
|
||||
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
|
||||
endif
|
||||
|
||||
normal_two_body_bi_orth_old = 0.d0
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, hthree_aba, hthree_aab, hthree_aaa) &
|
||||
!$OMP SHARED (N_int, n_act_orb, list_act, Ne, occ, normal_two_body_bi_orth_old)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do hh1 = 1, n_act_orb
|
||||
h1 = list_act(hh1)
|
||||
do pp1 = 1, n_act_orb
|
||||
p1 = list_act(pp1)
|
||||
do hh2 = 1, n_act_orb
|
||||
h2 = list_act(hh2)
|
||||
do pp2 = 1, n_act_orb
|
||||
p2 = list_act(pp2)
|
||||
! all contributions from the 3-e terms to the double excitations
|
||||
! s1:(h1-->p1), s2:(h2-->p2) from the HF reference determinant
|
||||
|
||||
|
||||
! opposite spin double excitations : s1 /= s2
|
||||
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aba)
|
||||
|
||||
! same spin double excitations : s1 == s2
|
||||
if(h1<h2.and.p1.gt.p2)then
|
||||
! with opposite spin contributions
|
||||
call give_aab_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aab) ! exchange h1<->h2
|
||||
! same spin double excitations with same spin contributions
|
||||
if(Ne(2).ge.3)then
|
||||
call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2
|
||||
else
|
||||
hthree_aaa = 0.d0
|
||||
endif
|
||||
else
|
||||
! with opposite spin contributions
|
||||
call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab)
|
||||
if(Ne(2).ge.3)then
|
||||
! same spin double excitations with same spin contributions
|
||||
call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa)
|
||||
else
|
||||
hthree_aaa = 0.d0
|
||||
endif
|
||||
endif
|
||||
|
||||
normal_two_body_bi_orth_old(p2,h2,p1,h1) = 0.5d0*(hthree_aba + hthree_aab + hthree_aaa)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate( occ )
|
||||
deallocate( key_i_core )
|
||||
endif
|
||||
|
||||
if(write_tc_norm_ord.and.mpi_master) then
|
||||
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/normal_two_body_bi_orth_old', action="write")
|
||||
call ezfio_set_work_empty(.False.)
|
||||
write(11) normal_two_body_bi_orth_old
|
||||
close(11)
|
||||
call ezfio_set_tc_keywords_io_tc_integ('Read')
|
||||
endif
|
||||
|
||||
call wall_time(wall1)
|
||||
print*,' Wall time for normal_two_body_bi_orth_old ', wall1-wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_aba_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint, h1, h2, p1, p2
|
||||
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
|
||||
double precision, intent(out) :: hthree
|
||||
integer :: ii, i
|
||||
double precision :: int_direct, int_exc_12, int_exc_13, integral
|
||||
|
||||
!!!! double alpha/beta
|
||||
hthree = 0.d0
|
||||
|
||||
do ii = 1, Ne(2) ! purely closed shell part
|
||||
i = occ(ii,2)
|
||||
|
||||
call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral)
|
||||
int_direct = -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral)
|
||||
int_exc_13 = -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
|
||||
int_exc_12 = -1.d0 * integral
|
||||
|
||||
hthree += 2.d0 * int_direct - 1.d0 * (int_exc_13 + int_exc_12)
|
||||
enddo
|
||||
|
||||
do ii = Ne(2) + 1, Ne(1) ! purely open-shell part
|
||||
i = occ(ii,1)
|
||||
|
||||
call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral)
|
||||
int_direct = -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral)
|
||||
int_exc_13 = -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
|
||||
int_exc_12 = -1.d0 * integral
|
||||
|
||||
hthree += 1.d0 * int_direct - 0.5d0 * (int_exc_13 + int_exc_12)
|
||||
enddo
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_ab, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Normal ordered two-body sector of the three-body terms for opposite spin double excitations
|
||||
END_DOC
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
integer :: h1, p1, h2, p2, i
|
||||
integer :: hh1, hh2, pp1, pp2
|
||||
integer :: Ne(2)
|
||||
integer, allocatable :: occ(:,:)
|
||||
integer(bit_kind), allocatable :: key_i_core(:,:)
|
||||
double precision :: hthree
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
allocate( key_i_core(N_int,2) )
|
||||
allocate( occ(N_int*bit_kind_size,2) )
|
||||
|
||||
if(core_tc_op) then
|
||||
do i = 1, N_int
|
||||
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
|
||||
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
|
||||
enddo
|
||||
call bitstring_to_list_ab(key_i_core,occ,Ne,N_int)
|
||||
else
|
||||
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
|
||||
endif
|
||||
|
||||
normal_two_body_bi_orth_ab = 0.d0
|
||||
do hh1 = 1, n_act_orb
|
||||
h1 = list_act(hh1)
|
||||
do pp1 = 1, n_act_orb
|
||||
p1 = list_act(pp1)
|
||||
do hh2 = 1, n_act_orb
|
||||
h2 = list_act(hh2)
|
||||
do pp2 = 1, n_act_orb
|
||||
p2 = list_act(pp2)
|
||||
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree)
|
||||
|
||||
normal_two_body_bi_orth_ab(p2,h2,p1,h1) = hthree
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate( key_i_core )
|
||||
deallocate( occ )
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_aa_bb, (n_act_orb, n_act_orb, n_act_orb, n_act_orb)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Normal ordered two-body sector of the three-body terms for same spin double excitations
|
||||
END_DOC
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
integer :: i,ii,j,h1,p1,h2,p2
|
||||
integer :: hh1,hh2,pp1,pp2
|
||||
integer :: Ne(2)
|
||||
integer, allocatable :: occ(:,:)
|
||||
integer(bit_kind), allocatable :: key_i_core(:,:)
|
||||
double precision :: hthree_aab, hthree_aaa
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
allocate( key_i_core(N_int,2) )
|
||||
allocate( occ(N_int*bit_kind_size,2) )
|
||||
|
||||
if(core_tc_op)then
|
||||
do i = 1, N_int
|
||||
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
|
||||
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
|
||||
enddo
|
||||
call bitstring_to_list_ab(key_i_core, occ, Ne, N_int)
|
||||
else
|
||||
call bitstring_to_list_ab(ref_bitmask, occ, Ne, N_int)
|
||||
endif
|
||||
|
||||
normal_two_body_bi_orth_aa_bb = 0.d0
|
||||
do hh1 = 1, n_act_orb
|
||||
h1 = list_act(hh1)
|
||||
do pp1 = 1 , n_act_orb
|
||||
p1 = list_act(pp1)
|
||||
do hh2 = 1, n_act_orb
|
||||
h2 = list_act(hh2)
|
||||
do pp2 = 1 , n_act_orb
|
||||
p2 = list_act(pp2)
|
||||
if(h1<h2.and.p1.gt.p2)then
|
||||
call give_aab_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aab) ! exchange h1<->h2
|
||||
if(Ne(2).ge.3)then
|
||||
call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2
|
||||
else
|
||||
hthree_aaa = 0.d0
|
||||
endif
|
||||
else
|
||||
call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab)
|
||||
if(Ne(2).ge.3)then
|
||||
call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa)
|
||||
else
|
||||
hthree_aaa = 0.d0
|
||||
endif
|
||||
endif
|
||||
normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1) = hthree_aab + hthree_aaa
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate( key_i_core )
|
||||
deallocate( occ )
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_aaa_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
|
||||
|
||||
BEGIN_DOC
|
||||
! pure same spin contribution to same spin double excitation s1=h1,p1, s2=h2,p2, with s1==s2
|
||||
END_DOC
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint, h1, h2, p1, p2
|
||||
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
|
||||
double precision, intent(out) :: hthree
|
||||
integer :: ii,i
|
||||
double precision :: int_direct,int_exc_12,int_exc_13,int_exc_23
|
||||
double precision :: integral,int_exc_l,int_exc_ll
|
||||
|
||||
hthree = 0.d0
|
||||
do ii = 1, Ne(2) ! purely closed shell part
|
||||
i = occ(ii,2)
|
||||
|
||||
call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral)
|
||||
int_direct = -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p2, p1, i, i, h2, h1, integral)
|
||||
int_exc_l = -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p1, i, p2, i, h2, h1, integral)
|
||||
int_exc_ll= -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
|
||||
int_exc_12= -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral)
|
||||
int_exc_13= -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(i, p1, p2, i, h2, h1, integral)
|
||||
int_exc_23= -1.d0 * integral
|
||||
|
||||
hthree += 1.d0 * int_direct + int_exc_l + int_exc_ll - (int_exc_12 + int_exc_13 + int_exc_23)
|
||||
enddo
|
||||
|
||||
do ii = Ne(2)+1,Ne(1) ! purely open-shell part
|
||||
i = occ(ii,1)
|
||||
|
||||
call give_integrals_3_body_bi_ort(i, p2, p1, i, h2, h1, integral)
|
||||
int_direct = -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p2, p1, i , i, h2, h1, integral)
|
||||
int_exc_l = -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p1, i, p2, i, h2, h1, integral)
|
||||
int_exc_ll = -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p2, i, p1, i, h2, h1, integral)
|
||||
int_exc_12 = -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p1, p2, i, i, h2, h1, integral)
|
||||
int_exc_13 = -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(i, p1, p2, i, h2, h1, integral)
|
||||
int_exc_23 = -1.d0 * integral
|
||||
|
||||
!hthree += 1.d0 * int_direct + 0.5d0 * (int_exc_l + int_exc_ll - (int_exc_12 + int_exc_13 + int_exc_23))
|
||||
hthree += 0.5d0 * int_direct + 0.5d0 * (int_exc_l + int_exc_ll - (int_exc_12 + int_exc_13 + int_exc_23))
|
||||
enddo
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine give_aab_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint, h1, h2, p1, p2
|
||||
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
|
||||
double precision, intent(out) :: hthree
|
||||
integer :: ii, i
|
||||
double precision :: int_direct, int_exc_12, int_exc_13, int_exc_23
|
||||
double precision :: integral, int_exc_l, int_exc_ll
|
||||
|
||||
hthree = 0.d0
|
||||
do ii = 1, Ne(2) ! purely closed shell part
|
||||
i = occ(ii,2)
|
||||
|
||||
call give_integrals_3_body_bi_ort(p2, p1, i, h2, h1, i, integral)
|
||||
int_direct = -1.d0 * integral
|
||||
|
||||
call give_integrals_3_body_bi_ort(p1, p2, i, h2, h1, i, integral)
|
||||
int_exc_23= -1.d0 * integral
|
||||
|
||||
hthree += 1.d0 * int_direct - int_exc_23
|
||||
enddo
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
@ -1,25 +1,37 @@
|
||||
subroutine provide_all_three_ints_bi_ortho
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! routine that provides all necessary three-electron integrals
|
||||
END_DOC
|
||||
if(three_body_h_tc)then
|
||||
if(three_e_3_idx_term)then
|
||||
PROVIDE three_e_3_idx_direct_bi_ort three_e_3_idx_cycle_1_bi_ort three_e_3_idx_cycle_2_bi_ort
|
||||
PROVIDE three_e_3_idx_exch23_bi_ort three_e_3_idx_exch13_bi_ort three_e_3_idx_exch12_bi_ort
|
||||
endif
|
||||
if(three_e_4_idx_term)then
|
||||
PROVIDE three_e_4_idx_direct_bi_ort three_e_4_idx_cycle_1_bi_ort three_e_4_idx_cycle_2_bi_ort
|
||||
PROVIDE three_e_4_idx_exch23_bi_ort three_e_4_idx_exch13_bi_ort three_e_4_idx_exch12_bi_ort
|
||||
endif
|
||||
if(.not.double_normal_ord.and.three_e_5_idx_term)then
|
||||
PROVIDE three_e_5_idx_direct_bi_ort
|
||||
elseif (double_normal_ord .and. (.not. three_e_5_idx_term))then
|
||||
PROVIDE normal_two_body_bi_orth
|
||||
endif
|
||||
! ---
|
||||
|
||||
subroutine provide_all_three_ints_bi_ortho()
|
||||
|
||||
BEGIN_DOC
|
||||
! routine that provides all necessary three-electron integrals
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
if(three_body_h_tc) then
|
||||
|
||||
if(three_e_3_idx_term) then
|
||||
PROVIDE three_e_3_idx_direct_bi_ort three_e_3_idx_cycle_1_bi_ort three_e_3_idx_cycle_2_bi_ort
|
||||
PROVIDE three_e_3_idx_exch23_bi_ort three_e_3_idx_exch13_bi_ort three_e_3_idx_exch12_bi_ort
|
||||
endif
|
||||
|
||||
if(three_e_4_idx_term) then
|
||||
PROVIDE three_e_4_idx_direct_bi_ort three_e_4_idx_cycle_1_bi_ort three_e_4_idx_exch23_bi_ort three_e_4_idx_exch13_bi_ort
|
||||
endif
|
||||
|
||||
if(.not. double_normal_ord .and. three_e_5_idx_term) then
|
||||
PROVIDE three_e_5_idx_direct_bi_ort
|
||||
elseif(double_normal_ord .and. (.not. three_e_5_idx_term)) then
|
||||
PROVIDE normal_two_body_bi_orth
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine htilde_mu_mat_opt_bi_ortho_tot(key_j, key_i, Nint, htot)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
|
@ -243,7 +243,9 @@ subroutine fock_ac_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,
|
||||
do j = 1, nb
|
||||
jj = occ(j,other_spin)
|
||||
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
exchange_int = three_e_4_idx_exch12_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
! TODO
|
||||
! use transpose
|
||||
exchange_int = three_e_4_idx_exch13_bi_ort(iorb,jj,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
else !! ispin NE to ispin_fock
|
||||
@ -322,7 +324,8 @@ subroutine fock_a_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,N
|
||||
do j = 1, nb
|
||||
jj = occ(j,other_spin)
|
||||
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
exchange_int = three_e_4_idx_exch12_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
! TODO use transpose
|
||||
exchange_int = three_e_4_idx_exch13_bi_ort(iorb,jj,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
hthree -= direct_int - exchange_int
|
||||
enddo
|
||||
else !! ispin NE to ispin_fock
|
||||
|
@ -96,9 +96,11 @@ double precision function three_e_single_parrallel_spin(m,j,k,i)
|
||||
implicit none
|
||||
integer, intent(in) :: i,k,j,m
|
||||
three_e_single_parrallel_spin = three_e_4_idx_direct_bi_ort(m,j,k,i) ! direct
|
||||
three_e_single_parrallel_spin += three_e_4_idx_cycle_1_bi_ort(m,j,k,i) + three_e_4_idx_cycle_2_bi_ort(m,j,k,i) & ! two cyclic permutations
|
||||
three_e_single_parrallel_spin += three_e_4_idx_cycle_1_bi_ort(m,j,k,i) + three_e_4_idx_cycle_1_bi_ort(j,m,k,i) & ! two cyclic permutations
|
||||
- three_e_4_idx_exch23_bi_ort(m,j,k,i) - three_e_4_idx_exch13_bi_ort(m,j,k,i) & ! two first exchange
|
||||
- three_e_4_idx_exch12_bi_ort(m,j,k,i) ! last exchange
|
||||
- three_e_4_idx_exch13_bi_ort(j,m,k,i) ! last exchange
|
||||
! TODO
|
||||
! use transpose
|
||||
end
|
||||
|
||||
double precision function three_e_double_parrallel_spin(m,l,j,k,i)
|
||||
|
@ -38,15 +38,16 @@ subroutine write_tc_var()
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k
|
||||
double precision :: hmono, htwoe, hthree, htot
|
||||
double precision :: hmono, htwoe, hthree, htot_1j, htot_j1
|
||||
double precision :: SIGMA_TC
|
||||
|
||||
do k = 1, n_states
|
||||
|
||||
SIGMA_TC = 0.d0
|
||||
do j = 2, N_det
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,1), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot)
|
||||
SIGMA_TC = SIGMA_TC + htot * htot
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,1), psi_det(1,1,j), N_int, hmono, htwoe, hthree, htot_1j)
|
||||
call htilde_mu_mat_bi_ortho_slow(psi_det(1,1,j), psi_det(1,1,1), N_int, hmono, htwoe, hthree, htot_j1)
|
||||
SIGMA_TC = SIGMA_TC + htot_1j * htot_j1
|
||||
enddo
|
||||
|
||||
print *, " state : ", k
|
||||
|
@ -11,12 +11,14 @@ program tc_bi_ortho
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
call test_h_u0
|
||||
! call test_h_u0
|
||||
! call test_slater_tc_opt
|
||||
! call timing_tot
|
||||
! call timing_diag
|
||||
! call timing_single
|
||||
! call timing_double
|
||||
|
||||
call test_no()
|
||||
end
|
||||
|
||||
subroutine test_h_u0
|
||||
@ -252,3 +254,47 @@ subroutine timing_double
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine test_no()
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, l
|
||||
double precision :: accu, contrib, new, ref, thr
|
||||
|
||||
print*, ' testing normal_two_body_bi_orth ...'
|
||||
|
||||
thr = 1d-8
|
||||
|
||||
PROVIDE normal_two_body_bi_orth_old
|
||||
PROVIDE normal_two_body_bi_orth
|
||||
|
||||
accu = 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
|
||||
new = normal_two_body_bi_orth (l,k,j,i)
|
||||
ref = normal_two_body_bi_orth_old(l,k,j,i)
|
||||
contrib = dabs(new - ref)
|
||||
accu += contrib
|
||||
if(contrib .gt. thr) then
|
||||
print*, ' problem on normal_two_body_bi_orth'
|
||||
print*, l, k, j, i
|
||||
print*, ref, new, contrib
|
||||
stop
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*, ' accu on normal_two_body_bi_orth = ', accu / dble(mo_num)**4
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
@ -47,6 +47,7 @@ subroutine routine
|
||||
do i = 1, min(N_det_print_wf,N_det)
|
||||
print*,''
|
||||
print*,'i = ',i
|
||||
print *,psi_det_sorted(1,1,i)
|
||||
call debug_det(psi_det_sorted(1,1,i),N_int)
|
||||
call get_excitation_degree(psi_det_sorted(1,1,i),psi_det_sorted(1,1,1),degree,N_int)
|
||||
print*,'degree = ',degree
|
||||
|
@ -1831,7 +1831,7 @@ double precision, intent(in) :: tol
|
||||
|
||||
integer, dimension(:), allocatable :: piv
|
||||
double precision, dimension(:), allocatable :: work
|
||||
character, parameter :: uplo = "U"
|
||||
character, parameter :: uplo = 'L'
|
||||
integer :: LDA
|
||||
integer :: info
|
||||
integer :: k, l, rank0
|
||||
@ -1848,14 +1848,14 @@ if (rank > rank0) then
|
||||
end if
|
||||
|
||||
do k = 1, ndim
|
||||
A(k+1:ndim, k) = 0.00D+0
|
||||
A(k,k+1:ndim) = 0.00D+0
|
||||
end do
|
||||
! TODO: It should be possible to use only one vector of size (1:rank) as a buffer
|
||||
! to do the swapping in-place
|
||||
U(:,:) = 0.00D+0
|
||||
do k = 1, ndim
|
||||
l = piv(k)
|
||||
U(l, 1:rank) = A(1:rank, k)
|
||||
U(l, 1:rank) = A(k,1:rank)
|
||||
end do
|
||||
|
||||
end subroutine pivoted_cholesky
|
||||
|
@ -490,7 +490,7 @@ end subroutine check_sym
|
||||
subroutine sum_A_At(A, N)
|
||||
|
||||
!BEGIN_DOC
|
||||
! useful for symmetrizing a tensor without a temporary tensor
|
||||
! add a tensor with its transpose without a temporary tensor
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
@ -521,3 +521,38 @@ subroutine sum_A_At(A, N)
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine sub_A_At(A, N)
|
||||
|
||||
!BEGIN_DOC
|
||||
! substruct a tensor with its transpose without a temporary tensor
|
||||
!END_DOC
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: N
|
||||
double precision, intent(inout) :: A(N,N)
|
||||
integer :: i, j
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j) &
|
||||
!$OMP SHARED (A, N)
|
||||
!$OMP DO
|
||||
do j = 1, N
|
||||
do i = j, N
|
||||
A(i,j) -= A(j,i)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO
|
||||
do j = 2, N
|
||||
do i = 1, j-1
|
||||
A(i,j) = -A(j,i)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
end
|
||||
|
@ -46,17 +46,11 @@ doc: Guess used to initialize the T2 amplitudes. none -> 0, MP -> perturbation t
|
||||
interface: ezfio,ocaml,provider
|
||||
default: MP
|
||||
|
||||
[cc_write_t1]
|
||||
type: logical
|
||||
doc: If true, it will write on disk the T1 amplitudes at the end of the calculation.
|
||||
interface: ezfio,ocaml,provider
|
||||
default: False
|
||||
|
||||
[cc_write_t2]
|
||||
type: logical
|
||||
doc: If true, it will write on disk the T2 amplitudes at the end of the calculation.
|
||||
interface: ezfio,ocaml,provider
|
||||
default: False
|
||||
[io_amplitudes]
|
||||
type: Disk_access
|
||||
doc: Read/Write |CCSD| amplitudes from/to disk [ Write | Read | None ]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: None
|
||||
|
||||
[cc_par_t]
|
||||
type: logical
|
||||
|
@ -91,16 +91,17 @@ subroutine write_t1(nO,nV,t1)
|
||||
double precision, intent(in) :: t1(nO, nV)
|
||||
|
||||
! internal
|
||||
integer :: i,a
|
||||
integer :: i,a, iunit
|
||||
integer, external :: getunitandopen
|
||||
|
||||
if (cc_write_t1) then
|
||||
open(unit=11, file=trim(ezfio_filename)//'/cc_utils/T1')
|
||||
if (write_amplitudes) then
|
||||
iunit = getUnitAndOpen(trim(ezfio_filename)//'/work/T1','w')
|
||||
do a = 1, nV
|
||||
do i = 1, nO
|
||||
write(11,'(F20.12)') t1(i,a)
|
||||
write(iunit,'(F20.12)') t1(i,a)
|
||||
enddo
|
||||
enddo
|
||||
close(11)
|
||||
close(iunit)
|
||||
endif
|
||||
|
||||
end
|
||||
@ -120,20 +121,21 @@ subroutine write_t2(nO,nV,t2)
|
||||
double precision, intent(in) :: t2(nO, nO, nV, nV)
|
||||
|
||||
! internal
|
||||
integer :: i,j,a,b
|
||||
integer :: i,j,a,b, iunit
|
||||
integer, external :: getunitandopen
|
||||
|
||||
if (cc_write_t2) then
|
||||
open(unit=11, file=trim(ezfio_filename)//'/cc_utils/T2')
|
||||
if (write_amplitudes) then
|
||||
iunit = getUnitAndOpen(trim(ezfio_filename)//'/work/T2','w')
|
||||
do b = 1, nV
|
||||
do a = 1, nV
|
||||
do j = 1, nO
|
||||
do i = 1, nO
|
||||
write(11,'(F20.12)') t2(i,j,a,b)
|
||||
write(iunit,'(F20.12)') t2(i,j,a,b)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
close(11)
|
||||
close(iunit)
|
||||
endif
|
||||
|
||||
end
|
||||
@ -153,23 +155,19 @@ subroutine read_t1(nO,nV,t1)
|
||||
double precision, intent(out) :: t1(nO, nV)
|
||||
|
||||
! internal
|
||||
integer :: i,a
|
||||
integer :: i,a, iunit
|
||||
logical :: ok
|
||||
integer, external :: getunitandopen
|
||||
|
||||
inquire(file=trim(ezfio_filename)//'/cc_utils/T1', exist=ok)
|
||||
if (.not. ok) then
|
||||
print*, 'There is no file'// trim(ezfio_filename)//'/cc_utils/T1'
|
||||
print*, 'Do a first calculation with cc_write_t1 = True'
|
||||
print*, 'and cc_guess_t1 /= read before setting cc_guess_t1 = read'
|
||||
call abort
|
||||
endif
|
||||
open(unit=11, file=trim(ezfio_filename)//'/cc_utils/T1')
|
||||
do a = 1, nV
|
||||
do i = 1, nO
|
||||
read(11,'(F20.12)') t1(i,a)
|
||||
if (read_amplitudes) then
|
||||
iunit = getUnitAndOpen(trim(ezfio_filename)//'/work/T1','r')
|
||||
do a = 1, nV
|
||||
do i = 1, nO
|
||||
read(iunit,'(F20.12)') t1(i,a)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
close(11)
|
||||
close(iunit)
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
@ -188,26 +186,23 @@ subroutine read_t2(nO,nV,t2)
|
||||
double precision, intent(out) :: t2(nO, nO, nV, nV)
|
||||
|
||||
! internal
|
||||
integer :: i,j,a,b
|
||||
integer :: i,j,a,b, iunit
|
||||
logical :: ok
|
||||
|
||||
inquire(file=trim(ezfio_filename)//'/cc_utils/T1', exist=ok)
|
||||
if (.not. ok) then
|
||||
print*, 'There is no file'// trim(ezfio_filename)//'/cc_utils/T1'
|
||||
print*, 'Do a first calculation with cc_write_t2 = True'
|
||||
print*, 'and cc_guess_t2 /= read before setting cc_guess_t2 = read'
|
||||
call abort
|
||||
endif
|
||||
open(unit=11, file=trim(ezfio_filename)//'/cc_utils/T2')
|
||||
do b = 1, nV
|
||||
do a = 1, nV
|
||||
do j = 1, nO
|
||||
do i = 1, nO
|
||||
read(11,'(F20.12)') t2(i,j,a,b)
|
||||
integer, external :: getunitandopen
|
||||
|
||||
if (read_amplitudes) then
|
||||
iunit = getUnitAndOpen(trim(ezfio_filename)//'/work/T2','r')
|
||||
do b = 1, nV
|
||||
do a = 1, nV
|
||||
do j = 1, nO
|
||||
do i = 1, nO
|
||||
read(iunit,'(F20.12)') t2(i,j,a,b)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
close(11)
|
||||
close(iunit)
|
||||
endif
|
||||
|
||||
end
|
||||
|
@ -137,6 +137,7 @@ subroutine get_excitation_general(det1,det2,degree,n,list_anni,list_crea,phase,N
|
||||
do j = 1, 2
|
||||
k = 1
|
||||
do i = 1, n1(j)
|
||||
if (k > n_anni(j)) exit
|
||||
if (l1(i,j) /= list_anni(k,j)) cycle
|
||||
pos_anni(k,j) = i
|
||||
k = k + 1
|
||||
@ -147,6 +148,7 @@ subroutine get_excitation_general(det1,det2,degree,n,list_anni,list_crea,phase,N
|
||||
do j = 1, 2
|
||||
k = 1
|
||||
do i = 1, n2(j)
|
||||
if (k > n_crea(j)) exit
|
||||
if (l2(i,j) /= list_crea(k,j)) cycle
|
||||
pos_crea(k,j) = i
|
||||
k = k + 1
|
||||
|
@ -96,6 +96,7 @@ subroutine get_excitation_general(det1,det2,degree,n,list_anni,list_crea,phase,N
|
||||
do j = 1, 2
|
||||
k = 1
|
||||
do i = 1, n1(j)
|
||||
if (k > n_anni(j)) exit
|
||||
if (l1(i,j) /= list_anni(k,j)) cycle
|
||||
pos_anni(k,j) = i
|
||||
k = k + 1
|
||||
@ -106,6 +107,7 @@ subroutine get_excitation_general(det1,det2,degree,n,list_anni,list_crea,phase,N
|
||||
do j = 1, 2
|
||||
k = 1
|
||||
do i = 1, n2(j)
|
||||
if (k > n_crea(j)) exit
|
||||
if (l2(i,j) /= list_crea(k,j)) cycle
|
||||
pos_crea(k,j) = i
|
||||
k = k + 1
|
||||
|
6
tests/input/h2_1.xyz
Normal file
6
tests/input/h2_1.xyz
Normal file
@ -0,0 +1,6 @@
|
||||
2
|
||||
H2
|
||||
H 0.0 0.0 -0.74
|
||||
H 0.0 0.0 0.74
|
||||
|
||||
|
6
tests/input/h2_3.xyz
Normal file
6
tests/input/h2_3.xyz
Normal file
@ -0,0 +1,6 @@
|
||||
2
|
||||
H2
|
||||
H 0.0 0.0 -0.74
|
||||
H 0.0 0.0 0.74
|
||||
|
||||
|
7
tests/input/h3_2.xyz
Normal file
7
tests/input/h3_2.xyz
Normal file
@ -0,0 +1,7 @@
|
||||
3
|
||||
h3
|
||||
H 0.0 0.0 -0.74
|
||||
H 0.0 0.0 0.74
|
||||
H 0.0 0.0 0.0
|
||||
|
||||
|
7
tests/input/h3_4.xyz
Normal file
7
tests/input/h3_4.xyz
Normal file
@ -0,0 +1,7 @@
|
||||
3
|
||||
h3
|
||||
H 0.0 0.0 -0.74
|
||||
H 0.0 0.0 0.74
|
||||
H 0.0 0.0 0.0
|
||||
|
||||
|
7
tests/input/h4_1.xyz
Normal file
7
tests/input/h4_1.xyz
Normal file
@ -0,0 +1,7 @@
|
||||
4
|
||||
h4
|
||||
H 0.0 0.0 -0.74
|
||||
H 0.0 0.0 0.74
|
||||
H 0.0 0.74 0.0
|
||||
H 0.0 0.0 0.0
|
||||
|
7
tests/input/h4_3.xyz
Normal file
7
tests/input/h4_3.xyz
Normal file
@ -0,0 +1,7 @@
|
||||
4
|
||||
h4
|
||||
H 0.0 0.0 -0.74
|
||||
H 0.0 0.0 0.74
|
||||
H 0.0 0.74 0.0
|
||||
H 0.0 0.0 0.0
|
||||
|
7
tests/input/h4_5.xyz
Normal file
7
tests/input/h4_5.xyz
Normal file
@ -0,0 +1,7 @@
|
||||
4
|
||||
h4
|
||||
H 0.0 0.0 -0.74
|
||||
H 0.0 0.0 0.74
|
||||
H 0.0 0.74 0.0
|
||||
H 0.0 0.0 0.0
|
||||
|
Loading…
Reference in New Issue
Block a user