10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-05 10:59:45 +01:00
This commit is contained in:
Anthony Scemama 2021-01-25 22:32:52 +01:00
parent b21088af52
commit 2785a7f4cd
3 changed files with 254 additions and 18 deletions

View File

@ -125,6 +125,41 @@ subroutine bitstring_to_str( output, string, Nint )
output(ibuf:ibuf) = '|' output(ibuf:ibuf) = '|'
end end
subroutine configuration_to_str( output, string, Nint )
use bitmasks
implicit none
BEGIN_DOC
! Transform the bit string of a configuration to a string for printing
END_DOC
character*(*), intent(out) :: output
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: string(Nint,2)
integer :: i, j, ibuf
integer(bit_kind) :: itemp
ibuf = 1
output = ''
output(ibuf:ibuf) = '|'
ibuf = ibuf+1
do i=1,Nint
itemp = 1_bit_kind
do j=1,bit_kind_size
if (iand(itemp,string(i,2)) == itemp) then
output(ibuf:ibuf) = '2'
else if (iand(itemp,string(i,1)) == itemp) then
output(ibuf:ibuf) = '1'
else
output(ibuf:ibuf) = '0'
endif
ibuf = ibuf+1
itemp = shiftl(itemp,1)
enddo
enddo
output(ibuf:ibuf) = '|'
end
subroutine bitstring_to_hexa( output, string, Nint ) subroutine bitstring_to_hexa( output, string, Nint )
use bitmasks use bitmasks
@ -166,6 +201,25 @@ subroutine debug_det(string,Nint)
end end
subroutine debug_cfg(string,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Subroutine to print the content of a determinant in '+-' notation and
! hexadecimal representation.
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: string(Nint,2)
character*(2048) :: output(2)
call bitstring_to_hexa( output(1), string(1,1), Nint )
call bitstring_to_hexa( output(2), string(1,2), Nint )
print *, trim(output(1)) , '|', trim(output(2))
call configuration_to_str( output(1), string, Nint )
print *, trim(output(1))
end
subroutine print_det(string,Nint) subroutine print_det(string,Nint)
use bitmasks use bitmasks
implicit none implicit none

View File

@ -255,16 +255,13 @@ end
endif endif
dup = .True. dup = .True.
do k=1,N_int do k=1,N_int
if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) & dup = dup .and. (tmp_array(k,1,i) == tmp_array(k,1,j)) &
.or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then .and. (tmp_array(k,2,i) == tmp_array(k,2,j))
dup = .False.
exit
endif
enddo enddo
if (dup) then if (dup) then
duplicate(j) = .True. duplicate(j) = .True.
endif endif
j+=1 j = j+1
if (j>N_det) then if (j>N_det) then
exit exit
endif endif
@ -287,7 +284,7 @@ end
enddo enddo
!- Check !- Check
! print *, 'Checking for duplicates in occ pattern' ! print *, 'Checking for duplicates in configuration'
! do i=1,N_configuration ! do i=1,N_configuration
! do j=i+1,N_configuration ! do j=i+1,N_configuration
! duplicate(1) = .True. ! duplicate(1) = .True.
@ -314,6 +311,28 @@ end
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num) ]
implicit none
BEGIN_DOC
! Returns the index in psi_configuration of the first cfg with
! the requested seniority
END_DOC
integer :: i, k, s, sold
cfg_seniority_index(:) = -1
sold = -1
do i=1,N_configuration
s = 0
do k=1,N_int
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
s = s + popcnt(psi_configuration(k,1,i))
enddo
if (s /= sold) then
sold = s
cfg_seniority_index(s) = i
endif
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer, det_to_configuration, (N_det) ] BEGIN_PROVIDER [ integer, det_to_configuration, (N_det) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -326,7 +345,8 @@ BEGIN_PROVIDER [ integer, det_to_configuration, (N_det) ]
integer*8, allocatable :: bit_tmp(:) integer*8, allocatable :: bit_tmp(:)
integer*8, external :: configuration_search_key integer*8, external :: configuration_search_key
allocate(bit_tmp(N_configuration)) allocate(bit_tmp(0:N_configuration))
bit_tmp(0) = 0
do i=1,N_configuration do i=1,N_configuration
bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int) bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
enddo enddo
@ -341,16 +361,30 @@ BEGIN_PROVIDER [ integer, det_to_configuration, (N_det) ]
key = configuration_search_key(occ,N_int) key = configuration_search_key(occ,N_int)
! Binary search
l = 0 l = 0
r = N_configuration+1 r = N_configuration+1
j = shiftr(r-l,1) j = shiftr(r-l,1)
do while (j>=1) do while (j>=1)
j = j+l j = j+l
key2 = configuration_search_key(psi_configuration(1,1,j),N_int) if (bit_tmp(j) == key) then
if (key2 == key) then do while (bit_tmp(j) == bit_tmp(j-1))
det_to_configuration(i) = j j = j-1
exit enddo
else if (key2 > key) then do while (bit_tmp(j) == key)
found = .True.
do k=1,N_int
found = found .and. (psi_configuration(k,1,j) == occ(k,1)) &
.and. (psi_configuration(k,2,j) == occ(k,2))
enddo
if (found) then
det_to_configuration(i) = j
exit
endif
j = j+1
enddo
if (found) exit
else if (bit_tmp(j) > key) then
r = j r = j
else else
l = j l = j
@ -551,3 +585,39 @@ BEGIN_PROVIDER [ integer(bit_kind), dominant_dets_of_cfgs, (N_int,2,N_dominant_d
i += sze i += sze
enddo enddo
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det, (2,N_configuration) ]
&BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det_data, (N_det) ]
implicit none
BEGIN_DOC
! psi_configuration_to_psi_det_data(k) -> i : i is the index of the
! determinant in psi_det_sorted_bit. !
!
! psi_configuration_to_psi_det(1:2,k) gives the first and last index of the
! determinants of configuration k in array psi_configuration_to_psi_det_data.
END_DOC
integer :: i, k, iorder
integer, allocatable :: confs(:)
allocate (confs(N_det))
do i=1,N_det
psi_configuration_to_psi_det_data(i) = i
confs(i) = det_to_configuration(i)
enddo
call isort(confs, psi_configuration_to_psi_det_data, N_det)
k=1
psi_configuration_to_psi_det(1,1) = 1
do i=2,N_det
if (confs(i) /= confs(i-1)) then
psi_configuration_to_psi_det(2,k) = i-1
k = k+1
psi_configuration_to_psi_det(1,k) = i
endif
enddo
psi_configuration_to_psi_det(2,k) = N_det
END_PROVIDER

View File

@ -107,3 +107,115 @@ logical function is_spin_flip_possible(key_in,i_flip,ispin)
endif endif
end end
subroutine do_single_excitation_cfg(key_in,key_out,i_hole,i_particle,ok)
use bitmasks
implicit none
BEGIN_DOC
! Applies the signle excitation operator to a configuration
! If the excitation is possible, ok is True
END_DOC
integer, intent(in) :: i_hole,i_particle
integer(bit_kind), intent(in) :: key_in(N_int,2)
logical , intent(out) :: ok
integer :: k,j,i
integer(bit_kind) :: mask
integer(bit_kind) :: key_out(N_int,2)
ASSERT (i_hole > 0)
ASSERT (i_particle <= mo_num)
ok = .True.
key_out(:,:) = key_in(:,:)
! hole
k = shiftr(i_hole-1,bit_kind_shift)+1
j = i_hole-shiftl(k-1,bit_kind_shift)-1
mask = ibset(0_bit_kind,j)
! Check if the position j is singly occupied
! 1 -> 0 (SOMO)
! 0 0 (DOMO)
if (iand(key_out(k,1),mask) /= 0_bit_kind) then
key_out(k,1) = ibclr(key_out(k,1),j)
! Check if the position j is doubly occupied
! 0 -> 1 (SOMO)
! 1 0 (DOMO)
else if (iand(key_out(k,2),mask) /= 0_bit_kind) then
key_out(k,1) = ibset(key_out(k,1),j)
key_out(k,2) = ibclr(key_out(k,2),j)
! The position j is unoccupied: Not OK
! 0 -> 0 (SOMO)
! 0 0 (DOMO)
else
ok =.False.
return
endif
! particle
k = shiftr(i_particle-1,bit_kind_shift)+1
j = i_particle-shiftl(k-1,bit_kind_shift)-1
mask = ibset(0_bit_kind,j)
! Check if the position j is singly occupied
! 1 -> 0 (SOMO)
! 0 1 (DOMO)
if (iand(key_out(k,1),mask) /= 0_bit_kind) then
key_out(k,1) = ibclr(key_out(k,1),j)
key_out(k,2) = ibset(key_out(k,2),j)
! Check if the position j is doubly occupied : Not OK
! 0 -> 1 (SOMO)
! 1 0 (DOMO)
else if (iand(key_out(k,2),mask) /= 0_bit_kind) then
ok = .False.
return
! Position at j is unoccupied
! 0 -> 0 (SOMO)
! 0 0 (DOMO)
else
key_out(k,1) = ibset(key_out(k,1),j)
endif
end
subroutine generate_all_singles_cfg(cfg,singles,n_singles,Nint)
implicit none
use bitmasks
BEGIN_DOC
! Generate all single excitation wrt a configuration
!
! n_singles : on input, max number of singles :
! elec_alpha_num * (mo_num - elec_beta_num)
! on output, number of generated singles
END_DOC
integer, intent(in) :: Nint
integer, intent(inout) :: n_singles
integer(bit_kind), intent(in) :: cfg(Nint,2)
integer(bit_kind), intent(out) :: singles(Nint,2,*)
integer :: i,k, n_singles_ma, i_hole, i_particle
integer(bit_kind) :: single(Nint,2)
logical :: i_ok
n_singles = 0
!TODO
!Make list of Somo and Domo for holes
!Make list of Unocc and Somo for particles
do i_hole = 1, mo_num
do i_particle = 1, mo_num
call do_single_excitation_cfg(cfg,single,i_hole,i_particle,i_ok)
if (i_ok) then
n_singles = n_singles + 1
do k=1,Nint
singles(k,1,n_singles) = single(k,1)
singles(k,2,n_singles) = single(k,2)
enddo
endif
enddo
enddo
end