10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-10 21:18:24 +01:00
This commit is contained in:
Anthony Scemama 2019-06-25 16:46:14 +02:00
parent 328ab2dadf
commit 26be853c18
12 changed files with 2126 additions and 2220 deletions

View File

@ -1,104 +1,151 @@
! -*- F90 -*-
BEGIN_PROVIDER[real*8, bielec_PQxx, (mo_num, mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb)]
&BEGIN_PROVIDER[real*8, bielec_PxxQ, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb, mo_num)]
BEGIN_DOC
! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
! all integrals are read from files
END_DOC
implicit none
integer :: i,j,p,q,indx,kk
real*8 :: hhh
logical :: lread
BEGIN_PROVIDER [real*8, bielec_PQxx, (mo_num, mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb)]
BEGIN_DOC
! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
double precision, allocatable :: integrals_array(:,:)
real*8 :: mo_two_e_integral
allocate(integrals_array(mo_num,mo_num))
bielec_PQxx = 0.d0
do i=1,n_core_orb
ii=list_core(i)
do j=i,n_core_orb
jj=list_core(j)
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxx(p,q,i,j)=integrals_array(p,q)
bielec_PQxx(p,q,j,i)=integrals_array(p,q)
end do
end do
end do
do j=1,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxx(p,q,i,j3)=integrals_array(p,q)
bielec_PQxx(p,q,j3,i)=integrals_array(p,q)
end do
end do
end do
end do
do i=1,n_core_orb+n_act_orb
do j=1,n_core_orb+n_act_orb
do p=1,mo_num
do q=1,mo_num
bielec_PQxx(p,q,i,j)=0.D0
bielec_PxxQ(p,i,j,q)=0.D0
end do
end do
end do
end do
open(unit=12,form='formatted',status='old',file='bielec_PQxx.tmp')
lread=.true.
indx=0
do while (lread)
read(12,*,iostat=kk) p,q,i,j,hhh
if (kk.ne.0) then
lread=.false.
else
! stored with p.le.q, i.le.j
bielec_PQxx(p,q,i,j)=hhh
bielec_PQxx(q,p,i,j)=hhh
bielec_PQxx(q,p,j,i)=hhh
bielec_PQxx(p,q,j,i)=hhh
indx+=1
end if
end do
close(12)
write(6,*) ' read ',indx,' integrals PQxx into core '
open(unit=12,form='formatted',status='old',file='bielec_PxxQ.tmp')
lread=.true.
indx=0
do while (lread)
read(12,*,iostat=kk) p,i,j,q,hhh
if (kk.ne.0) then
lread=.false.
else
! stored with (ip).le.(jq)
bielec_PxxQ(p,i,j,q)=hhh
bielec_PxxQ(q,j,i,p)=hhh
indx+=1
end if
end do
write(6,*) ' read ',indx,' integrals PxxQ into core '
close(12)
write(6,*) ' provided integrals (PQ|xx) and (Px|xQ) '
! (ij|pq)
do i=1,n_act_orb
ii=list_act(i)
i3=i+n_core_orb
do j=i,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxx(p,q,i3,j3)=integrals_array(p,q)
bielec_PQxx(p,q,j3,i3)=integrals_array(p,q)
end do
end do
end do
end do
write(6,*) ' provided integrals (PQ|xx) '
END_PROVIDER
BEGIN_PROVIDER[real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! bielecCI : integrals (tu|vp) with p arbitrary, tuv active
! index p runs over the whole basis, t,u,v only over the active orbitals
! inegrals read from file
END_DOC
implicit none
integer :: i,j,k,p,t,u,v,kk,indx
real*8 :: hhh
logical :: lread
write(6,*) ' reading integrals bielecCI '
do i=1,n_act_orb
do j=1,n_act_orb
do k=1,n_act_orb
do p=1,mo_num
bielecCI(i,k,j,p)=0.D0
end do
end do
end do
end do
BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb, mo_num)]
BEGIN_DOC
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
double precision, allocatable :: integrals_array(:,:)
real*8 :: mo_two_e_integral
allocate(integrals_array(mo_num,mo_num))
bielec_PxxQ = 0.d0
do i=1,n_core_orb
ii=list_core(i)
do j=i,n_core_orb
jj=list_core(j)
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PxxQ(p,i,j,q)=integrals_array(p,q)
bielec_PxxQ(p,j,i,q)=integrals_array(q,p)
end do
end do
end do
do j=1,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PxxQ(p,i,j3,q)=integrals_array(p,q)
bielec_PxxQ(p,j3,i,q)=integrals_array(q,p)
end do
end do
end do
end do
open(unit=12,form='formatted',status='old',file='bielecCI.tmp')
lread=.true.
indx=0
do while (lread)
read(12,*,iostat=kk) i,j,k,p,hhh
if (kk.ne.0) then
lread=.false.
else
bielecCI(i,j,k,p)=hhh
bielecCI(j,i,k,p)=hhh
indx+=1
end if
end do
write(6,*) ' read ',indx,' integrals (aa|aP) into core '
close(12)
write(6,*) ' provided integrals (tu|xP) '
! (ip|qj)
do i=1,n_act_orb
ii=list_act(i)
i3=i+n_core_orb
do j=i,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PxxQ(p,i3,j3,q)=integrals_array(p,q)
bielec_PxxQ(p,j3,i3,q)=integrals_array(q,p)
end do
end do
end do
end do
write(6,*) ' provided integrals (Px|xQ) '
END_PROVIDER
BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! bielecCI : integrals (tu|vp) with p arbitrary, tuv active
! index p runs over the whole basis, t,u,v only over the active orbitals
END_DOC
implicit none
integer :: i,j,k,p,t,u,v
double precision, allocatable :: integrals_array(:)
real*8 :: mo_two_e_integral
allocate(integrals_array(mo_num))
do i=1,n_act_orb
t=list_act(i)
do j=1,n_act_orb
u=list_act(j)
do k=1,n_act_orb
v=list_act(k)
! (tu|vp)
call get_mo_two_e_integrals(t,u,v,mo_num,integrals_array,mo_integrals_map)
do p=1,mo_num
bielecCI(i,k,j,p)=integrals_array(p)
end do
end do
end do
end do
write(6,*) ' provided integrals (tu|xP) '
END_PROVIDER

View File

@ -1,118 +0,0 @@
! -*- F90 -*-
BEGIN_PROVIDER[real*8, bielec_PQxxtmp, (mo_num, mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb)]
&BEGIN_PROVIDER[real*8, bielec_PxxQtmp, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb, mo_num)]
&BEGIN_PROVIDER[integer, num_PQxx_written]
&BEGIN_PROVIDER[integer, num_PxxQ_written]
BEGIN_DOC
! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
double precision, allocatable :: integrals_array1(:,:)
double precision, allocatable :: integrals_array2(:,:)
real*8 :: mo_two_e_integral
allocate(integrals_array1(mo_num,mo_num))
allocate(integrals_array2(mo_num,mo_num))
do i=1,n_core_orb+n_act_orb
do j=1,n_core_orb+n_act_orb
do p=1,mo_num
do q=1,mo_num
bielec_PQxxtmp(p,q,i,j)=0.D0
bielec_PxxQtmp(p,i,j,q)=0.D0
end do
end do
end do
end do
do i=1,n_core_orb
ii=list_core(i)
do j=i,n_core_orb
jj=list_core(j)
! (ij|pq)
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array1,mo_integrals_map)
! (ip|qj)
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array2,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxxtmp(p,q,i,j)=integrals_array1(p,q)
bielec_PQxxtmp(p,q,j,i)=integrals_array1(p,q)
bielec_PxxQtmp(p,i,j,q)=integrals_array2(p,q)
bielec_PxxQtmp(p,j,i,q)=integrals_array2(q,p)
end do
end do
end do
do j=1,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
! (ij|pq)
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array1,mo_integrals_map)
! (ip|qj)
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array2,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxxtmp(p,q,i,j3)=integrals_array1(p,q)
bielec_PQxxtmp(p,q,j3,i)=integrals_array1(p,q)
bielec_PxxQtmp(p,i,j3,q)=integrals_array2(p,q)
bielec_PxxQtmp(p,j3,i,q)=integrals_array2(q,p)
end do
end do
end do
end do
do i=1,n_act_orb
ii=list_act(i)
i3=i+n_core_orb
do j=i,n_act_orb
jj=list_act(j)
j3=j+n_core_orb
! (ij|pq)
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,integrals_array1,mo_integrals_map)
! (ip|qj)
call get_mo_two_e_integrals_ij (ii,jj,mo_num,integrals_array2,mo_integrals_map)
do p=1,mo_num
do q=1,mo_num
bielec_PQxxtmp(p,q,i3,j3)=integrals_array1(p,q)
bielec_PQxxtmp(p,q,j3,i3)=integrals_array1(p,q)
bielec_PxxQtmp(p,i3,j3,q)=integrals_array2(p,q)
bielec_PxxQtmp(p,j3,i3,q)=integrals_array2(q,p)
end do
end do
end do
end do
write(6,*) ' provided integrals (PQ|xx) '
write(6,*) ' provided integrals (Px|xQ) '
!!$ write(6,*) ' 1 1 1 2 = ',bielec_PQxxtmp(2,2,2,3),bielec_PxxQtmp(2,2,2,3)
END_PROVIDER
BEGIN_PROVIDER[real*8, bielecCItmp, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! bielecCI : integrals (tu|vp) with p arbitrary, tuv active
! index p runs over the whole basis, t,u,v only over the active orbitals
END_DOC
implicit none
integer :: i,j,k,p,t,u,v
double precision, allocatable :: integrals_array1(:)
real*8 :: mo_two_e_integral
allocate(integrals_array1(mo_num))
do i=1,n_act_orb
t=list_act(i)
do j=1,n_act_orb
u=list_act(j)
do k=1,n_act_orb
v=list_act(k)
! (tu|vp)
call get_mo_two_e_integrals(t,u,v,mo_num,integrals_array1,mo_integrals_map)
do p=1,mo_num
bielecCItmp(i,k,j,p)=integrals_array1(p)
end do
end do
end do
end do
write(6,*) ' provided integrals (tu|xP) '
END_PROVIDER

View File

@ -0,0 +1,273 @@
BEGIN_PROVIDER [real*8, bielec_PQxx_no, (mo_num, mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb)]
BEGIN_DOC
! integral (pq|xx) in the basis of natural MOs
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb)
bielec_PQxx_no(:,:,:,:) = bielec_PQxx(:,:,:,:)
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PQxx_no(list_act(q),j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxx_no(list_act(p),j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PQxx_no(j,list_act(q),k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxx_no(j,list_act(p),k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PQxx_no(j,k,n_core_orb+q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxx_no(j,k,n_core_orb+p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PQxx_no(j,k,l,n_core_orb+q)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxx_no(j,k,l,n_core_orb+p)=d(p)
end do
end do
end do
end do
write(6,*) ' transformed PQxx'
END_PROVIDER
BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_act_orb, mo_num)]
BEGIN_DOC
! integral (px|xq) in the basis of natural MOs
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb)
bielec_PxxQ_no(:,:,:,:) = bielec_PxxQ(:,:,:,:)
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PxxQ_no(list_act(q),k,l,j)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PxxQ_no(list_act(p),k,l,j)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PxxQ_no(j,k,l,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PxxQ_no(j,k,l,list_act(p))=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PxxQ_no(j,n_core_orb+q,l,k)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PxxQ_no(j,n_core_orb+p,l,k)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielec_PxxQ_no(j,l,n_core_orb+q,k)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PxxQ_no(j,l,n_core_orb+p,k)=d(p)
end do
end do
end do
end do
write(6,*) ' transformed PxxQ '
END_PROVIDER
BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! integrals (tu|vp) in the basis of natural MOs
! index p runs over the whole basis, t,u,v only over the active orbitals
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb)
bielecCI_no(:,:,:,:) = bielecCI(:,:,:,:)
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCI_no(q,j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCI_no(p,j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCI_no(j,q,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCI_no(j,p,k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCI_no(j,k,q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCI_no(j,k,p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCI_no(j,k,l,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCI_no(j,k,l,list_act(p))=d(p)
end do
end do
end do
end do
write(6,*) ' transformed tuvP '
END_PROVIDER

View File

@ -1,177 +1,216 @@
! -*- F90 -*-
use bitmasks ! you need to include the bitmasks_module.f90 features
use bitmasks
BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ]
&BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
BEGIN_DOC
! the first-order density matrix in the basis of the starting MOs
! the second-order density matrix in the basis of the starting MOs
! matrices are state averaged
!
! we use the spin-free generators of mono-excitations
! E_pq destroys q and creates p
! D_pq = <0|E_pq|0> = D_qp
! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
!
END_DOC
implicit none
integer :: t,u,v,x,mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
integer :: ierr
integer(bit_kind), allocatable :: det_mu(:,:)
integer(bit_kind), allocatable :: det_mu_ex(:,:)
integer(bit_kind), allocatable :: det_mu_ex1(:,:)
integer(bit_kind), allocatable :: det_mu_ex11(:,:)
integer(bit_kind), allocatable :: det_mu_ex12(:,:)
integer(bit_kind), allocatable :: det_mu_ex2(:,:)
integer(bit_kind), allocatable :: det_mu_ex21(:,:)
integer(bit_kind), allocatable :: det_mu_ex22(:,:)
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
integer :: nu1,nu2,nu11,nu12,nu21,nu22
integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22
real*8 :: cI_mu(N_states),term
allocate(det_mu(N_int,2))
allocate(det_mu_ex(N_int,2))
allocate(det_mu_ex1(N_int,2))
allocate(det_mu_ex11(N_int,2))
allocate(det_mu_ex12(N_int,2))
allocate(det_mu_ex2(N_int,2))
allocate(det_mu_ex21(N_int,2))
allocate(det_mu_ex22(N_int,2))
write(6,*) ' providing density matrices D0 and P0 '
! set all to zero
do t=1,n_act_orb
do u=1,n_act_orb
D0tu(u,t)=0.D0
do v=1,n_act_orb
do x=1,n_act_orb
P0tuvx(x,v,u,t)=0.D0
end do
end do
end do
end do
! first loop: we apply E_tu, once for D_tu, once for -P_tvvu
do mu=1,n_det
call det_extract(det_mu,mu,N_int)
do istate=1,n_states
cI_mu(istate)=psi_coef(mu,istate)
end do
do t=1,n_act_orb
ipart=list_act(t)
do u=1,n_act_orb
ihole=list_act(u)
! apply E_tu
call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ]
BEGIN_DOC
! the first-order density matrix in the basis of the starting MOs
! matrices are state averaged
!
! we use the spin-free generators of mono-excitations
! E_pq destroys q and creates p
! D_pq = <0|E_pq|0> = D_qp
!
END_DOC
implicit none
integer :: t,u,v,x,mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
integer :: ierr
integer(bit_kind) :: det_mu(N_int,2)
integer(bit_kind) :: det_mu_ex(N_int,2)
integer(bit_kind) :: det_mu_ex1(N_int,2)
integer(bit_kind) :: det_mu_ex2(N_int,2)
real*8 :: phase1,phase2,term
integer :: nu1,nu2
integer :: ierr1,ierr2
real*8 :: cI_mu(N_states)
write(6,*) ' providing density matrices D0 and P0 '
D0tu = 0.d0
! first loop: we apply E_tu, once for D_tu, once for -P_tvvu
do mu=1,n_det
call det_extract(det_mu,mu,N_int)
do istate=1,n_states
cI_mu(istate)=psi_coef(mu,istate)
end do
do t=1,n_act_orb
ipart=list_act(t)
do u=1,n_act_orb
ihole=list_act(u)
! apply E_tu
call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! det_mu_ex1 is in the list
if (nu1.ne.-1) then
! det_mu_ex1 is in the list
if (nu1.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu1,istate)*phase1
D0tu(t,u)+=term
! and we fill P0_tvvu
do v=1,n_act_orb
P0tuvx(t,v,v,u)-=term
end do
term=cI_mu(istate)*psi_coef(nu1,istate)*phase1
D0tu(t,u)+=term
end do
end if
! det_mu_ex2 is in the list
if (nu2.ne.-1) then
end if
! det_mu_ex2 is in the list
if (nu2.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu2,istate)*phase2
D0tu(t,u)+=term
do v=1,n_act_orb
P0tuvx(t,v,v,u)-=term
end do
term=cI_mu(istate)*psi_coef(nu2,istate)*phase2
D0tu(t,u)+=term
end do
end if
end do
end do
end if
end do
! now we do the double excitation E_tu E_vx |0>
do mu=1,n_det
call det_extract(det_mu,mu,N_int)
do istate=1,n_states
cI_mu(istate)=psi_coef(mu,istate)
end do
do v=1,n_act_orb
ipart=list_act(v)
do x=1,n_act_orb
ihole=list_act(x)
! apply E_vx
call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! we apply E_tu to the first resultant determinant, thus E_tu E_vx |0>
if (ierr1.eq.1) then
do t=1,n_act_orb
jpart=list_act(t)
do u=1,n_act_orb
jhole=list_act(u)
call det_copy(det_mu_ex1,det_mu_ex11,N_int)
call det_copy(det_mu_ex1,det_mu_ex12,N_int)
call do_spinfree_mono_excitation(det_mu_ex1,det_mu_ex11 &
,det_mu_ex12,nu11,nu12,jhole,jpart,phase11,phase12,ierr11,ierr12)
if (nu11.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu11,istate) &
*phase11*phase1
end do
end if
if (nu12.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu12,istate) &
*phase12*phase1
end do
end if
end do
end do
end if
! we apply E_tu to the second resultant determinant
if (ierr2.eq.1) then
do t=1,n_act_orb
jpart=list_act(t)
do u=1,n_act_orb
jhole=list_act(u)
call det_copy(det_mu_ex2,det_mu_ex21,N_int)
call det_copy(det_mu_ex2,det_mu_ex22,N_int)
call do_spinfree_mono_excitation(det_mu_ex2,det_mu_ex21 &
,det_mu_ex22,nu21,nu22,jhole,jpart,phase21,phase22,ierr21,ierr22)
if (nu21.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu21,istate) &
*phase21*phase2
end do
end if
if (nu22.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu22,istate) &
*phase22*phase2
end do
end if
end do
end do
end if
end do
end do
end do
! we average by just dividing by the number of states
do x=1,n_act_orb
do v=1,n_act_orb
D0tu(v,x)*=1.0D0/dble(N_states)
do u=1,n_act_orb
do t=1,n_act_orb
P0tuvx(t,u,v,x)*=0.5D0/dble(N_states)
end do
end do
end do
end do
end do
end do
! we average by just dividing by the number of states
do x=1,n_act_orb
do v=1,n_act_orb
D0tu(v,x)*=1.0D0/dble(N_states)
end do
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
BEGIN_DOC
! the second-order density matrix in the basis of the starting MOs
! matrices are state averaged
!
! we use the spin-free generators of mono-excitations
! E_pq destroys q and creates p
! D_pq = <0|E_pq|0> = D_qp
! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
!
END_DOC
implicit none
integer :: t,u,v,x,mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
integer :: ierr
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
integer :: nu1,nu2,nu11,nu12,nu21,nu22
integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22
real*8 :: cI_mu(N_states),term
integer(bit_kind), dimension(N_int,2) :: det_mu, det_mu_ex
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
write(6,*) ' providing density matrices D0 and P0 '
P0tuvx = 0.d0
! first loop: we apply E_tu, once for D_tu, once for -P_tvvu
do mu=1,n_det
call det_extract(det_mu,mu,N_int)
do istate=1,n_states
cI_mu(istate)=psi_coef(mu,istate)
end do
do t=1,n_act_orb
ipart=list_act(t)
do u=1,n_act_orb
ihole=list_act(u)
! apply E_tu
call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! det_mu_ex1 is in the list
if (nu1.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu1,istate)*phase1
! and we fill P0_tvvu
do v=1,n_act_orb
P0tuvx(t,v,v,u)-=term
end do
end do
end if
! det_mu_ex2 is in the list
if (nu2.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu2,istate)*phase2
do v=1,n_act_orb
P0tuvx(t,v,v,u)-=term
end do
end do
end if
end do
end do
end do
! now we do the double excitation E_tu E_vx |0>
do mu=1,n_det
call det_extract(det_mu,mu,N_int)
do istate=1,n_states
cI_mu(istate)=psi_coef(mu,istate)
end do
do v=1,n_act_orb
ipart=list_act(v)
do x=1,n_act_orb
ihole=list_act(x)
! apply E_vx
call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! we apply E_tu to the first resultant determinant, thus E_tu E_vx |0>
if (ierr1.eq.1) then
do t=1,n_act_orb
jpart=list_act(t)
do u=1,n_act_orb
jhole=list_act(u)
call det_copy(det_mu_ex1,det_mu_ex11,N_int)
call det_copy(det_mu_ex1,det_mu_ex12,N_int)
call do_spinfree_mono_excitation(det_mu_ex1,det_mu_ex11&
,det_mu_ex12,nu11,nu12,jhole,jpart,phase11,phase12,ierr11,ierr12)
if (nu11.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu11,istate)&
*phase11*phase1
end do
end if
if (nu12.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu12,istate)&
*phase12*phase1
end do
end if
end do
end do
end if
! we apply E_tu to the second resultant determinant
if (ierr2.eq.1) then
do t=1,n_act_orb
jpart=list_act(t)
do u=1,n_act_orb
jhole=list_act(u)
call det_copy(det_mu_ex2,det_mu_ex21,N_int)
call det_copy(det_mu_ex2,det_mu_ex22,N_int)
call do_spinfree_mono_excitation(det_mu_ex2,det_mu_ex21&
,det_mu_ex22,nu21,nu22,jhole,jpart,phase21,phase22,ierr21,ierr22)
if (nu21.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu21,istate)&
*phase21*phase2
end do
end if
if (nu22.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu22,istate)&
*phase22*phase2
end do
end if
end do
end do
end if
end do
end do
end do
! we average by just dividing by the number of states
do x=1,n_act_orb
do v=1,n_act_orb
do u=1,n_act_orb
do t=1,n_act_orb
P0tuvx(t,u,v,x)*=0.5D0/dble(N_states)
end do
end do
end do
end do
END_PROVIDER

View File

@ -1,131 +1,130 @@
! -*- F90 -*-
use bitmasks ! you need to include the bitmasks_module.f90 features
use bitmasks
subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
ispin,phase,ierr)
BEGIN_DOC
! we create the mono-excitation, and determine, if possible,
! the phase and the number in the list of determinants
END_DOC
implicit none
integer(bit_kind) :: key1(N_int,2),key2(N_int,2)
integer(bit_kind), allocatable :: keytmp(:,:)
integer :: exc(0:2,2,2),ihole,ipart,ierr,nu,ispin
real*8 :: phase
logical :: found
allocate(keytmp(N_int,2))
nu=-1
phase=1.D0
ierr=0
call det_copy(key1,key2,N_int)
! write(6,*) ' key2 before excitation ',ihole,' -> ',ipart,' spin = ',ispin
! call print_det(key2,N_int)
call do_single_excitation(key2,ihole,ipart,ispin,ierr)
! write(6,*) ' key2 after ',ihole,' -> ',ipart,' spin = ',ispin
! call print_det(key2,N_int)
! write(6,*) ' excitation ',ihole,' -> ',ipart,' gives ierr = ',ierr
if (ierr.eq.1) then
! excitation is possible
! get the phase
call get_single_excitation(key1,key2,exc,phase,N_int)
! get the number in the list
found=.false.
nu=0
do while (.not.found)
nu+=1
if (nu.gt.N_det) then
! the determinant is possible, but not in the list
found=.true.
nu=-1
else
call det_extract(keytmp,nu,N_int)
integer :: i,ii
found=.true.
do ii=1,2
do i=1,N_int
if (keytmp(i,ii).ne.key2(i,ii)) then
found=.false.
end if
end do
end do
end if
subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
ispin,phase,ierr)
BEGIN_DOC
! we create the mono-excitation, and determine, if possible,
! the phase and the number in the list of determinants
END_DOC
implicit none
integer(bit_kind) :: key1(N_int,2),key2(N_int,2)
integer(bit_kind), allocatable :: keytmp(:,:)
integer :: exc(0:2,2,2),ihole,ipart,ierr,nu,ispin
real*8 :: phase
logical :: found
allocate(keytmp(N_int,2))
nu=-1
phase=1.D0
ierr=0
call det_copy(key1,key2,N_int)
! write(6,*) ' key2 before excitation ',ihole,' -> ',ipart,' spin = ',ispin
! call print_det(key2,N_int)
call do_single_excitation(key2,ihole,ipart,ispin,ierr)
! write(6,*) ' key2 after ',ihole,' -> ',ipart,' spin = ',ispin
! call print_det(key2,N_int)
! write(6,*) ' excitation ',ihole,' -> ',ipart,' gives ierr = ',ierr
if (ierr.eq.1) then
! excitation is possible
! get the phase
call get_single_excitation(key1,key2,exc,phase,N_int)
! get the number in the list
found=.false.
nu=0
do while (.not.found)
nu+=1
if (nu.gt.N_det) then
! the determinant is possible, but not in the list
found=.true.
nu=-1
else
call det_extract(keytmp,nu,N_int)
integer :: i,ii
found=.true.
do ii=1,2
do i=1,N_int
if (keytmp(i,ii).ne.key2(i,ii)) then
found=.false.
end if
end do
! if (found) then
! if (nu.eq.-1) then
! write(6,*) ' image not found in the list, thus nu = ',nu
! else
! write(6,*) ' found in the list as No ',nu,' phase = ',phase
! end if
! end if
end if
!
! we found the new string, the phase, and possibly the number in the list
!
end subroutine do_signed_mono_excitation
end do
end if
end do
! if (found) then
! if (nu.eq.-1) then
! write(6,*) ' image not found in the list, thus nu = ',nu
! else
! write(6,*) ' found in the list as No ',nu,' phase = ',phase
! end if
! end if
end if
!
! we found the new string, the phase, and possibly the number in the list
!
end subroutine do_signed_mono_excitation
subroutine det_extract(key,nu,Nint)
BEGIN_DOC
! extract a determinant from the list of determinants
END_DOC
implicit none
integer :: ispin,i,nu,Nint
integer(bit_kind) :: key(Nint,2)
do ispin=1,2
do i=1,Nint
key(i,ispin)=psi_det(i,ispin,nu)
end do
end do
end subroutine det_extract
subroutine det_extract(key,nu,Nint)
BEGIN_DOC
! extract a determinant from the list of determinants
END_DOC
implicit none
integer :: ispin,i,nu,Nint
integer(bit_kind) :: key(Nint,2)
do ispin=1,2
do i=1,Nint
key(i,ispin)=psi_det(i,ispin,nu)
end do
end do
end subroutine det_extract
subroutine det_copy(key1,key2,Nint)
use bitmasks ! you need to include the bitmasks_module.f90 features
BEGIN_DOC
! copy a determinant from key1 to key2
END_DOC
implicit none
integer :: ispin,i,Nint
integer(bit_kind) :: key1(Nint,2),key2(Nint,2)
do ispin=1,2
do i=1,Nint
key2(i,ispin)=key1(i,ispin)
end do
end do
end subroutine det_copy
subroutine do_spinfree_mono_excitation(key_in,key_out1,key_out2 &
,nu1,nu2,ihole,ipart,phase1,phase2,ierr,jerr)
BEGIN_DOC
! we create the spin-free mono-excitation E_pq=(a^+_p a_q + a^+_P a_Q)
! we may create two determinants as result
!
END_DOC
implicit none
integer(bit_kind) :: key_in(N_int,2),key_out1(N_int,2)
integer(bit_kind) :: key_out2(N_int,2)
integer :: ihole,ipart,ierr,jerr,nu1,nu2
integer :: ispin
real*8 :: phase1,phase2
! write(6,*) ' applying E_',ipart,ihole,' on determinant '
! call print_det(key_in,N_int)
! spin alpha
ispin=1
call do_signed_mono_excitation(key_in,key_out1,nu1,ihole &
,ipart,ispin,phase1,ierr)
! if (ierr.eq.1) then
! write(6,*) ' 1 result is ',nu1,phase1
! call print_det(key_out1,N_int)
! end if
! spin beta
ispin=2
call do_signed_mono_excitation(key_in,key_out2,nu2,ihole &
,ipart,ispin,phase2,jerr)
! if (jerr.eq.1) then
! write(6,*) ' 2 result is ',nu2,phase2
! call print_det(key_out2,N_int)
! end if
subroutine det_copy(key1,key2,Nint)
use bitmasks ! you need to include the bitmasks_module.f90 features
BEGIN_DOC
! copy a determinant from key1 to key2
END_DOC
implicit none
integer :: ispin,i,Nint
integer(bit_kind) :: key1(Nint,2),key2(Nint,2)
do ispin=1,2
do i=1,Nint
key2(i,ispin)=key1(i,ispin)
end do
end do
end subroutine det_copy
end subroutine do_spinfree_mono_excitation
subroutine do_spinfree_mono_excitation(key_in,key_out1,key_out2 &
,nu1,nu2,ihole,ipart,phase1,phase2,ierr,jerr)
BEGIN_DOC
! we create the spin-free mono-excitation E_pq=(a^+_p a_q + a^+_P a_Q)
! we may create two determinants as result
!
END_DOC
implicit none
integer(bit_kind) :: key_in(N_int,2),key_out1(N_int,2)
integer(bit_kind) :: key_out2(N_int,2)
integer :: ihole,ipart,ierr,jerr,nu1,nu2
integer :: ispin
real*8 :: phase1,phase2
! write(6,*) ' applying E_',ipart,ihole,' on determinant '
! call print_det(key_in,N_int)
! spin alpha
ispin=1
call do_signed_mono_excitation(key_in,key_out1,nu1,ihole &
,ipart,ispin,phase1,ierr)
! if (ierr.eq.1) then
! write(6,*) ' 1 result is ',nu1,phase1
! call print_det(key_out1,N_int)
! end if
! spin beta
ispin=2
call do_signed_mono_excitation(key_in,key_out2,nu2,ihole &
,ipart,ispin,phase2,jerr)
! if (jerr.eq.1) then
! write(6,*) ' 2 result is ',nu2,phase2
! call print_det(key_out2,N_int)
! end if
end subroutine do_spinfree_mono_excitation

View File

@ -7,58 +7,13 @@
write(6,*) ' generating natural orbitals '
write(6,*)
write(6,*)
call trf_to_natorb
write(6,*) ' all data available ! '
write(6,*) ' writing out files '
open(unit=12,file='D0tu.dat',form='formatted',status='unknown')
do p=1,n_act_orb
do q=1,n_act_orb
if (abs(D0tu(p,q)).gt.1.D-12) then
write(12,'(2i8,E20.12)') p,q,D0tu(p,q)
end if
end do
end do
close(12)
call trf_to_natorb
real*8 :: approx,np,nq,nr,ns
logical :: lpq,lrs,lps,lqr
open(unit=12,file='P0tuvx.dat',form='formatted',status='unknown')
do p=1,n_act_orb
np=D0tu(p,p)
do q=1,n_act_orb
lpq=p.eq.q
nq=D0tu(q,q)
do r=1,n_act_orb
lqr=q.eq.r
nr=D0tu(r,r)
do s=1,n_act_orb
lrs=r.eq.s
lps=p.eq.s
approx=0.D0
if (lpq.and.lrs) then
if (lqr) then
! pppp
approx=0.5D0*np*(np-1.D0)
else
! pprr
approx=0.5D0*np*nr
end if
else
if (lps.and.lqr.and..not.lpq) then
! pqqp
approx=-0.25D0*np*nq
end if
end if
if (abs(P0tuvx(p,q,r,s)).gt.1.D-12) then
write(12,'(4i4,2E20.12)') p,q,r,s,P0tuvx(p,q,r,s),approx
end if
end do
end do
end do
end do
close(12)
open(unit=12,form='formatted',status='unknown',file='onetrf.tmp')
indx=0
@ -74,63 +29,6 @@ logical :: lpq,lrs,lps,lqr
close(12)
open(unit=12,form='formatted',status='unknown',file='bielec_PQxx.tmp')
indx=0
do p=1,mo_num
do q=p,mo_num
do r=1,n_core_orb+n_act_orb
do s=r,n_core_orb+n_act_orb
if (abs(bielec_PQxxtmp(p,q,r,s)).gt.1.D-12) then
write(12,'(4i8,E20.12)') p,q,r,s,bielec_PQxxtmp(p,q,r,s)
indx+=1
end if
end do
end do
end do
end do
write(6,*) ' wrote ',indx,' integrals (PQ|xx)'
close(12)
open(unit=12,form='formatted',status='unknown',file='bielec_PxxQ.tmp')
indx=0
do p=1,mo_num
do q=1,n_core_orb+n_act_orb
do r=q,n_core_orb+n_act_orb
integer ::s_start
if (q.eq.r) then
s_start=p
else
s_start=1
end if
do s=s_start,mo_num
if (abs(bielec_PxxQtmp(p,q,r,s)).gt.1.D-12) then
write(12,'(4i8,E20.12)') p,q,r,s,bielec_PxxQtmp(p,q,r,s)
indx+=1
end if
end do
end do
end do
end do
write(6,*) ' wrote ',indx,' integrals (Px|xQ)'
close(12)
open(unit=12,form='formatted',status='unknown',file='bielecCI.tmp')
indx=0
do p=1,n_act_orb
do q=p,n_act_orb
do r=1,n_act_orb
do s=1,mo_num
if (abs(bielecCItmp(p,q,r,s)).gt.1.D-12) then
write(12,'(4i8,E20.12)') p,q,r,s,bielecCItmp(p,q,r,s)
indx+=1
end if
end do
end do
end do
end do
write(6,*) ' wrote ',indx,' integrals (tu|xP)'
close(12)
write(6,*)
write(6,*) ' creating new orbitals '
do i=1,mo_num

View File

@ -1,251 +1,249 @@
! -*- F90 -*-
use bitmasks ! you need to include the bitmasks_module.f90 features
use bitmasks
BEGIN_PROVIDER [ integer, nMonoEx ]
BEGIN_DOC
!
END_DOC
implicit none
nMonoEx=n_core_orb*n_act_orb+n_core_orb*n_virt_orb+n_act_orb*n_virt_orb
write(6,*) ' nMonoEx = ',nMonoEx
BEGIN_DOC
! Number of single excitations
END_DOC
implicit none
nMonoEx=n_core_orb*n_act_orb+n_core_orb*n_virt_orb+n_act_orb*n_virt_orb
write(6,*) ' nMonoEx = ',nMonoEx
END_PROVIDER
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
BEGIN_DOC
! a list of the orbitals involved in the excitation
END_DOC
implicit none
integer :: i,t,a,ii,tt,aa,indx
indx=0
do ii=1,n_core_orb
i=list_core(ii)
do tt=1,n_act_orb
t=list_act(tt)
indx+=1
excit(1,indx)=i
excit(2,indx)=t
excit_class(indx)='c-a'
end do
end do
do ii=1,n_core_orb
i=list_core(ii)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=i
excit(2,indx)=a
excit_class(indx)='c-v'
end do
end do
do tt=1,n_act_orb
BEGIN_DOC
! a list of the orbitals involved in the excitation
END_DOC
implicit none
integer :: i,t,a,ii,tt,aa,indx
indx=0
do ii=1,n_core_orb
i=list_core(ii)
do tt=1,n_act_orb
t=list_act(tt)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=t
excit(2,indx)=a
excit_class(indx)='a-v'
end do
end do
if (bavard) then
write(6,*) ' Filled the table of the Monoexcitations '
do indx=1,nMonoEx
write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' &
,excit(2,indx),' ',excit_class(indx)
end do
end if
indx+=1
excit(1,indx)=i
excit(2,indx)=t
excit_class(indx)='c-a'
end do
end do
do ii=1,n_core_orb
i=list_core(ii)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=i
excit(2,indx)=a
excit_class(indx)='c-v'
end do
end do
do tt=1,n_act_orb
t=list_act(tt)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=t
excit(2,indx)=a
excit_class(indx)='a-v'
end do
end do
if (bavard) then
write(6,*) ' Filled the table of the Monoexcitations '
do indx=1,nMonoEx
write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' &
,excit(2,indx),' ',excit_class(indx)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, gradvec, (nMonoEx)]
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for
! each determinant I we determine the string E_pq |I> (alpha and beta
! separately) and generate <Psi|H E_pq |I>
! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital
! gradient
! E_pq = a^+_pa_q + a^+_Pa_Q
END_DOC
implicit none
integer :: ii,tt,aa,indx,ihole,ipart,istate
real*8 :: res
do indx=1,nMonoEx
ihole=excit(1,indx)
ipart=excit(2,indx)
call calc_grad_elem(ihole,ipart,res)
gradvec(indx)=res
end do
real*8 :: norm_grad
norm_grad=0.d0
do indx=1,nMonoEx
norm_grad+=gradvec(indx)*gradvec(indx)
end do
norm_grad=sqrt(norm_grad)
write(6,*)
write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad
write(6,*)
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for
! each determinant I we determine the string E_pq |I> (alpha and beta
! separately) and generate <Psi|H E_pq |I>
! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital
! gradient
! E_pq = a^+_pa_q + a^+_Pa_Q
END_DOC
implicit none
integer :: ii,tt,aa,indx,ihole,ipart,istate
real*8 :: res
do indx=1,nMonoEx
ihole=excit(1,indx)
ipart=excit(2,indx)
call calc_grad_elem(ihole,ipart,res)
gradvec(indx)=res
end do
real*8 :: norm_grad
norm_grad=0.d0
do indx=1,nMonoEx
norm_grad+=gradvec(indx)*gradvec(indx)
end do
norm_grad=sqrt(norm_grad)
write(6,*)
write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad
write(6,*)
END_PROVIDER
subroutine calc_grad_elem(ihole,ipart,res)
BEGIN_DOC
! eq 18 of Siegbahn et al, Physica Scripta 1980
! we calculate 2 <Psi| H E_pq | Psi>, q=hole, p=particle
END_DOC
implicit none
integer :: ihole,ipart,mu,iii,ispin,ierr,nu,istate
real*8 :: res
integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:)
real*8 :: i_H_psi_array(N_states),phase
allocate(det_mu(N_int,2))
allocate(det_mu_ex(N_int,2))
res=0.D0
do mu=1,n_det
! get the string of the determinant
call det_extract(det_mu,mu,N_int)
do ispin=1,2
! do the monoexcitation on it
call det_copy(det_mu,det_mu_ex,N_int)
call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
,ihole,ipart,ispin,phase,ierr)
if (ierr.eq.1) then
! write(6,*)
! write(6,*) ' mu = ',mu
! call print_det(det_mu,N_int)
! write(6,*) ' generated nu = ',nu,' for excitation ',ihole,' -> ',ipart,' ierr = ',ierr,' phase = ',phase,' ispin = ',ispin
! call print_det(det_mu_ex,N_int)
call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase
end do
! write(6,*) ' contribution = ',i_H_psi_array(1)*psi_coef(mu,1)*phase,res
end if
subroutine calc_grad_elem(ihole,ipart,res)
BEGIN_DOC
! eq 18 of Siegbahn et al, Physica Scripta 1980
! we calculate 2 <Psi| H E_pq | Psi>, q=hole, p=particle
END_DOC
implicit none
integer :: ihole,ipart,mu,iii,ispin,ierr,nu,istate
real*8 :: res
integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:)
real*8 :: i_H_psi_array(N_states),phase
allocate(det_mu(N_int,2))
allocate(det_mu_ex(N_int,2))
res=0.D0
do mu=1,n_det
! get the string of the determinant
call det_extract(det_mu,mu,N_int)
do ispin=1,2
! do the monoexcitation on it
call det_copy(det_mu,det_mu_ex,N_int)
call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
,ihole,ipart,ispin,phase,ierr)
if (ierr.eq.1) then
! write(6,*)
! write(6,*) ' mu = ',mu
! call print_det(det_mu,N_int)
! write(6,*) ' generated nu = ',nu,' for excitation ',ihole,' -> ',ipart,' ierr = ',ierr,' phase = ',phase,' ispin = ',ispin
! call print_det(det_mu_ex,N_int)
call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase
end do
end do
! state-averaged gradient
res*=2.D0/dble(N_states)
end subroutine calc_grad_elem
! write(6,*) ' contribution = ',i_H_psi_array(1)*psi_coef(mu,1)*phase,res
end if
end do
end do
! state-averaged gradient
res*=2.D0/dble(N_states)
end subroutine calc_grad_elem
BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> from density
! matrices and integrals; Siegbahn et al, Phys Scr 1980
! eqs 14 a,b,c
END_DOC
implicit none
integer :: i,t,a,indx
real*8 :: gradvec_it,gradvec_ia,gradvec_ta
real*8 :: norm_grad
indx=0
do i=1,n_core_orb
do t=1,n_act_orb
indx+=1
gradvec2(indx)=gradvec_it(i,t)
end do
end do
do i=1,n_core_orb
do a=1,n_virt_orb
indx+=1
gradvec2(indx)=gradvec_ia(i,a)
end do
end do
do t=1,n_act_orb
do a=1,n_virt_orb
indx+=1
gradvec2(indx)=gradvec_ta(t,a)
end do
end do
norm_grad=0.d0
do indx=1,nMonoEx
norm_grad+=gradvec2(indx)*gradvec2(indx)
end do
norm_grad=sqrt(norm_grad)
write(6,*)
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad
write(6,*)
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> from density
! matrices and integrals; Siegbahn et al, Phys Scr 1980
! eqs 14 a,b,c
END_DOC
implicit none
integer :: i,t,a,indx
real*8 :: gradvec_it,gradvec_ia,gradvec_ta
real*8 :: norm_grad
indx=0
do i=1,n_core_orb
do t=1,n_act_orb
indx+=1
gradvec2(indx)=gradvec_it(i,t)
end do
end do
do i=1,n_core_orb
do a=1,n_virt_orb
indx+=1
gradvec2(indx)=gradvec_ia(i,a)
end do
end do
do t=1,n_act_orb
do a=1,n_virt_orb
indx+=1
gradvec2(indx)=gradvec_ta(t,a)
end do
end do
norm_grad=0.d0
do indx=1,nMonoEx
norm_grad+=gradvec2(indx)*gradvec2(indx)
end do
norm_grad=sqrt(norm_grad)
write(6,*)
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad
write(6,*)
END_PROVIDER
real*8 function gradvec_it(i,t)
BEGIN_DOC
! the orbital gradient core -> active
! we assume natural orbitals
END_DOC
implicit none
integer :: i,t
real*8 function gradvec_it(i,t)
BEGIN_DOC
! the orbital gradient core -> active
! we assume natural orbitals
END_DOC
implicit none
integer :: i,t
integer :: ii,tt,v,vv,x,y
integer :: x3,y3
ii=list_core(i)
tt=list_act(t)
gradvec_it=2.D0*(Fipq(tt,ii)+Fapq(tt,ii))
gradvec_it-=occnum(tt)*Fipq(ii,tt)
do v=1,n_act_orb
vv=list_act(v)
do x=1,n_act_orb
x3=x+n_core_orb
do y=1,n_act_orb
y3=y+n_core_orb
gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx_no(ii,vv,x3,y3)
end do
end do
end do
gradvec_it*=2.D0
end function gradvec_it
integer :: ii,tt,v,vv,x,y
integer :: x3,y3
real*8 function gradvec_ia(i,a)
BEGIN_DOC
! the orbital gradient core -> virtual
END_DOC
implicit none
integer :: i,a,ii,aa
ii=list_core(i)
aa=list_virt(a)
gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii))
gradvec_ia*=2.D0
end function gradvec_ia
ii=list_core(i)
tt=list_act(t)
gradvec_it=2.D0*(Fipq(tt,ii)+Fapq(tt,ii))
gradvec_it-=occnum(tt)*Fipq(ii,tt)
do v=1,n_act_orb
vv=list_act(v)
do x=1,n_act_orb
x3=x+n_core_orb
do y=1,n_act_orb
y3=y+n_core_orb
gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx(ii,vv,x3,y3)
end do
end do
end do
gradvec_it*=2.D0
end function gradvec_it
real*8 function gradvec_ia(i,a)
BEGIN_DOC
! the orbital gradient core -> virtual
END_DOC
implicit none
integer :: i,a,ii,aa
ii=list_core(i)
aa=list_virt(a)
gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii))
gradvec_ia*=2.D0
end function gradvec_ia
real*8 function gradvec_ta(t,a)
BEGIN_DOC
! the orbital gradient active -> virtual
! we assume natural orbitals
END_DOC
implicit none
integer :: t,a,tt,aa,v,vv,x,y
tt=list_act(t)
aa=list_virt(a)
gradvec_ta=0.D0
gradvec_ta+=occnum(tt)*Fipq(aa,tt)
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI(x,y,v,aa)
end do
end do
end do
gradvec_ta*=2.D0
end function gradvec_ta
real*8 function gradvec_ta(t,a)
BEGIN_DOC
! the orbital gradient active -> virtual
! we assume natural orbitals
END_DOC
implicit none
integer :: t,a,tt,aa,v,vv,x,y
tt=list_act(t)
aa=list_virt(a)
gradvec_ta=0.D0
gradvec_ta+=occnum(tt)*Fipq(aa,tt)
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
end do
end do
end do
gradvec_ta*=2.D0
end function gradvec_ta

File diff suppressed because it is too large Load Diff

View File

@ -1,67 +1,80 @@
! -*- F90 -*-
BEGIN_PROVIDER [real*8, Fipq, (mo_num,mo_num) ]
&BEGIN_PROVIDER [real*8, Fapq, (mo_num,mo_num) ]
BEGIN_DOC
! the inactive and the active Fock matrices, in molecular
! orbitals
! we create them in MOs, quite expensive
!
! for an implementation in AOs we need first the natural orbitals
! for forming an active density matrix in AOs
!
END_DOC
implicit none
double precision, allocatable :: integrals_array1(:,:)
double precision, allocatable :: integrals_array2(:,:)
integer :: p,q,k,kk,t,tt,u,uu
allocate(integrals_array1(mo_num,mo_num))
allocate(integrals_array2(mo_num,mo_num))
BEGIN_PROVIDER [real*8, Fipq, (mo_num,mo_num) ]
BEGIN_DOC
! the inactive Fock matrix, in molecular orbitals
END_DOC
implicit none
integer :: p,q,k,kk,t,tt,u,uu
do q=1,mo_num
do p=1,mo_num
Fipq(p,q)=one_ints(p,q)
end do
end do
! the inactive Fock matrix
do k=1,n_core_orb
kk=list_core(k)
do q=1,mo_num
do p=1,mo_num
do q=1,mo_num
Fipq(p,q)=one_ints(p,q)
Fapq(p,q)=0.D0
end do
Fipq(p,q)+=2.D0*bielec_pqxx_no(p,q,k,k) -bielec_pxxq_no(p,k,k,q)
end do
! the inactive Fock matrix
do k=1,n_core_orb
kk=list_core(k)
do p=1,mo_num
do q=1,mo_num
Fipq(p,q)+=2.D0*bielec_pqxx(p,q,k,k) -bielec_pxxq(p,k,k,q)
end do
end do
end do
! the active Fock matrix, D0tu is diagonal
do t=1,n_act_orb
tt=list_act(t)
do p=1,mo_num
do q=1,mo_num
Fapq(p,q)+=occnum(tt) &
*(bielec_pqxx(p,q,tt,tt)-0.5D0*bielec_pxxq(p,tt,tt,q))
end do
end do
end do
if (bavard) then
integer :: i
write(6,*)
write(6,*) ' the effective Fock matrix over MOs'
write(6,*)
write(6,*)
write(6,*) ' the diagonal of the inactive effective Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
write(6,*)
write(6,*)
write(6,*) ' the diagonal of the active Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fapq(i,i),i=1,mo_num)
write(6,*)
end if
end do
end do
if (bavard) then
integer :: i
write(6,*)
write(6,*) ' the diagonal of the inactive effective Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
write(6,*)
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, Fapq, (mo_num,mo_num) ]
BEGIN_DOC
! the active active Fock matrix, in molecular orbitals
! we create them in MOs, quite expensive
!
! for an implementation in AOs we need first the natural orbitals
! for forming an active density matrix in AOs
!
END_DOC
implicit none
integer :: p,q,k,kk,t,tt,u,uu
Fapq = 0.d0
! the active Fock matrix, D0tu is diagonal
do t=1,n_act_orb
tt=list_act(t)
do q=1,mo_num
do p=1,mo_num
Fapq(p,q)+=occnum(tt) &
*(bielec_pqxx_no(p,q,tt,tt)-0.5D0*bielec_pxxq_no(p,tt,tt,q))
end do
end do
end do
if (bavard) then
integer :: i
write(6,*)
write(6,*) ' the effective Fock matrix over MOs'
write(6,*)
write(6,*)
write(6,*) ' the diagonal of the inactive effective Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
write(6,*)
write(6,*)
write(6,*) ' the diagonal of the active Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fapq(i,i),i=1,mo_num)
write(6,*)
end if
END_PROVIDER

View File

@ -1,548 +1,373 @@
! -*- F90 -*-
! diagonalize D0tu
! save the diagonal somewhere, in inverse order
! 4-index-transform the 2-particle density matrix over active orbitals
! correct the bielectronic integrals
! correct the monoelectronic integrals
! put integrals on file, as well orbitals, and the density matrices
!
subroutine trf_to_natorb
implicit none
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: eigval(n_act_orb),natorbsCI(n_act_orb,n_act_orb)
real*8 :: d(n_act_orb),d1(n_act_orb),d2(n_act_orb)
BEGIN_PROVIDER [real*8, occnum, (mo_num)]
implicit none
BEGIN_DOC
! MO occupation numbers
END_DOC
integer :: i
occnum=0.D0
do i=1,n_core_orb
occnum(list_core(i))=2.D0
end do
do i=1,n_act_orb
occnum(list_act(i))=occ_act(n_act_orb-i+1)
end do
call lapack_diag(eigval,natorbsCI,D0tu,n_act_orb,n_act_orb)
write(6,*) ' found occupation numbers as '
do i=1,n_act_orb
write(6,*) i,eigval(i)
end do
write(6,*) ' occupation numbers '
do i=1,mo_num
write(6,*) i,occnum(i)
end do
if (bavard) then
!
integer :: nmx
real*8 :: xmx
do i=1,n_act_orb
! largest element of the eigenvector should be positive
xmx=0.D0
nmx=0
do j=1,n_act_orb
if (abs(natOrbsCI(j,i)).gt.xmx) then
nmx=j
xmx=abs(natOrbsCI(j,i))
end if
end do
xmx=sign(1.D0,natOrbsCI(nmx,i))
do j=1,n_act_orb
natOrbsCI(j,i)*=xmx
end do
write(6,*) ' Eigenvector No ',i
write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb)
end do
end if
do i=1,n_act_orb
do j=1,n_act_orb
D0tu(i,j)=0.D0
end do
! fill occupation numbers in descending order
D0tu(i,i)=eigval(n_act_orb-i+1)
end do
!
! 4-index transformation of 2part matrices
!
! index per index
! first quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=P0tuvx(q,j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx(p,j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=P0tuvx(j,q,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx(j,p,k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=P0tuvx(j,k,q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx(j,k,p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=P0tuvx(j,k,l,q)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx(j,k,l,p)=d(p)
end do
end do
end do
end do
write(6,*) ' transformed P0tuvx '
!
! one-electron integrals
!
do i=1,mo_num
do j=1,mo_num
onetrf(i,j)=mo_one_e_integrals(i,j)
end do
end do
! 1st half-trf
do j=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=onetrf(list_act(q),j)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
onetrf(list_act(p),j)=d(p)
end do
end do
! 2nd half-trf
do j=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=onetrf(j,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
onetrf(j,list_act(p))=d(p)
end do
end do
write(6,*) ' transformed onetrf '
!
! Orbitals
!
do j=1,ao_num
do i=1,mo_num
NatOrbsFCI(j,i)=mo_coef(j,i)
end do
end do
do j=1,ao_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=NatOrbsFCI(j,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
NatOrbsFCI(j,list_act(p))=d(p)
end do
end do
write(6,*) ' transformed orbitals '
!
! now the bielectronic integrals
!
!!$ write(6,*) ' before the transformation '
!!$integer :: kk,ll,ii,jj
!!$real*8 :: h1,h2,h3
!!$ do i=1,n_act_orb
!!$ ii=list_act(i)
!!$ do j=1,n_act_orb
!!$ jj=list_act(j)
!!$ do k=1,n_act_orb
!!$ kk=list_act(k)
!!$ do l=1,n_act_orb
!!$ ll=list_act(l)
!!$ h1=bielec_PQxxtmp(ii,jj,k+n_core_orb,l+n_core_orb)
!!$ h2=bielec_PxxQtmp(ii,j+n_core_orb,k+n_core_orb,ll)
!!$ h3=bielecCItmp(i,j,k,ll)
!!$ if ((h1.ne.h2).or.(h1.ne.h3)) then
!!$ write(6,9901) i,j,k,l,h1,h2,h3
!!$9901 format(' aie ',4i4,3E20.12)
!!$9902 format('correct',4i4,3E20.12)
!!$ else
!!$ write(6,9902) i,j,k,l,h1,h2,h3
!!$ end if
!!$ end do
!!$ end do
!!$ end do
!!$ end do
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d1(p)=0.D0
d2(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d1(pp)+=bielec_PQxxtmp(list_act(q),j,k,l)*natorbsCI(q,p)
d2(pp)+=bielec_PxxQtmp(list_act(q),k,l,j)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxxtmp(list_act(p),j,k,l)=d1(p)
bielec_PxxQtmp(list_act(p),k,l,j)=d2(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,mo_num
do k=1,n_core_orb+n_act_orb
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d1(p)=0.D0
d2(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d1(pp)+=bielec_PQxxtmp(j,list_act(q),k,l)*natorbsCI(q,p)
d2(pp)+=bielec_PxxQtmp(j,k,l,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxxtmp(j,list_act(p),k,l)=d1(p)
bielec_PxxQtmp(j,k,l,list_act(p))=d2(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d1(p)=0.D0
d2(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d1(pp)+=bielec_PQxxtmp(j,k,n_core_orb+q,l)*natorbsCI(q,p)
d2(pp)+=bielec_PxxQtmp(j,n_core_orb+q,l,k)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxxtmp(j,k,n_core_orb+p,l)=d1(p)
bielec_PxxQtmp(j,n_core_orb+p,l,k)=d2(p)
end do
end do
end do
end do
! 4th quarter
do j=1,mo_num
do k=1,mo_num
do l=1,n_core_orb+n_act_orb
do p=1,n_act_orb
d1(p)=0.D0
d2(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d1(pp)+=bielec_PQxxtmp(j,k,l,n_core_orb+q)*natorbsCI(q,p)
d2(pp)+=bielec_PxxQtmp(j,l,n_core_orb+q,k)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielec_PQxxtmp(j,k,l,n_core_orb+p)=d1(p)
bielec_PxxQtmp(j,l,n_core_orb+p,k)=d2(p)
end do
end do
end do
end do
write(6,*) ' transformed PQxx and PxxQ '
!
! and finally the bielecCI integrals
!
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCItmp(q,j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCItmp(p,j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCItmp(j,q,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCItmp(j,p,k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCItmp(j,k,q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCItmp(j,k,p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=bielecCItmp(j,k,l,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
bielecCItmp(j,k,l,list_act(p))=d(p)
end do
end do
end do
end do
write(6,*) ' transformed tuvP '
!
! that's all
!
!!$
!!$! test coherence of the bielectronic integals
!!$! PQxx = PxxQ = tuvP for some of the indices
!!$ write(6,*) ' after the transformation '
!!$ do i=1,n_act_orb
!!$ ii=list_act(i)
!!$ do j=1,n_act_orb
!!$ jj=list_act(j)
!!$ do k=1,n_act_orb
!!$ kk=list_act(k)
!!$ do l=1,n_act_orb
!!$ ll=list_act(l)
!!$ h1=bielec_PQxxtmp(ii,jj,k+n_core_orb,l+n_core_orb)
!!$ h2=bielec_PxxQtmp(ii,j+n_core_orb,k+n_core_orb,ll)
!!$ h3=bielecCItmp(i,j,k,ll)
!!$ if ((abs(h1-h2).gt.1.D-14).or.(abs(h1-h3).gt.1.D-14)) then
!!$ write(6,9901) i,j,k,l,h1,h1-h2,h1-h3
!!$ else
!!$ write(6,9902) i,j,k,l,h1,h2,h3
!!$ end if
!!$ end do
!!$ end do
!!$ end do
!!$ end do
! we recalculate total energies
write(6,*)
write(6,*) ' recalculating energies after the transformation '
write(6,*)
write(6,*)
real*8 :: e_one_all
real*8 :: e_two_all
integer :: ii
integer :: jj
integer :: t3
integer :: tt
integer :: u3
integer :: uu
integer :: v
integer :: v3
integer :: vv
integer :: x
integer :: x3
integer :: xx
e_one_all=0.D0
e_two_all=0.D0
do i=1,n_core_orb
ii=list_core(i)
e_one_all+=2.D0*onetrf(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
e_two_all+=2.D0*bielec_PQxxtmp(ii,ii,j,j)-bielec_PQxxtmp(ii,jj,j,i)
end do
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_orb
e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxxtmp(tt,uu,i,i) &
-bielec_PQxxtmp(tt,ii,i,u3))
end do
end do
end do
do t=1,n_act_orb
tt=list_act(t)
do u=1,n_act_orb
uu=list_act(u)
e_one_all+=D0tu(t,u)*onetrf(tt,uu)
do v=1,n_act_orb
v3=v+n_core_orb
do x=1,n_act_orb
x3=x+n_core_orb
e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxxtmp(tt,uu,v3,x3)
end do
end do
end do
end do
write(6,*) ' e_one_all = ',e_one_all
write(6,*) ' e_two_all = ',e_two_all
ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion
do i=1,n_core_orb
ii=list_core(i)
ecore +=2.D0*onetrf(ii,ii)
ecore_bis+=2.D0*onetrf(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
ecore +=2.D0*bielec_PQxxtmp(ii,ii,j,j)-bielec_PQxxtmp(ii,jj,j,i)
ecore_bis+=2.D0*bielec_PxxQtmp(ii,i,j,jj)-bielec_PxxQtmp(ii,j,j,ii)
end do
end do
eone =0.D0
eone_bis=0.D0
etwo =0.D0
etwo_bis=0.D0
etwo_ter=0.D0
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_orb
eone +=D0tu(t,u)*onetrf(tt,uu)
eone_bis+=D0tu(t,u)*onetrf(tt,uu)
do i=1,n_core_orb
ii=list_core(i)
eone +=D0tu(t,u)*(2.D0*bielec_PQxxtmp(tt,uu,i,i) &
-bielec_PQxxtmp(tt,ii,i,u3))
eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQtmp(tt,u3,i,ii) &
-bielec_PxxQtmp(tt,i,i,uu))
end do
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_orb
real*8 :: h1,h2,h3
h1=bielec_PQxxtmp(tt,uu,v3,x3)
h2=bielec_PxxQtmp(tt,u3,v3,xx)
h3=bielecCItmp(t,u,v,xx)
etwo +=P0tuvx(t,u,v,x)*h1
etwo_bis+=P0tuvx(t,u,v,x)*h2
etwo_ter+=P0tuvx(t,u,v,x)*h3
if ((abs(h1-h2).gt.1.D-14).or.(abs(h1-h3).gt.1.D-14)) then
write(6,9901) t,u,v,x,h1,h2,h3
9901 format('aie: ',4I4,3E20.12)
end if
end do
end do
end do
end do
write(6,*) ' energy contributions '
write(6,*) ' core energy = ',ecore,' using PQxx integrals '
write(6,*) ' core energy (bis) = ',ecore,' using PxxQ integrals '
write(6,*) ' 1el energy = ',eone ,' using PQxx integrals '
write(6,*) ' 1el energy (bis) = ',eone ,' using PxxQ integrals '
write(6,*) ' 2el energy = ',etwo ,' using PQxx integrals '
write(6,*) ' 2el energy (bis) = ',etwo_bis,' using PxxQ integrals '
write(6,*) ' 2el energy (ter) = ',etwo_ter,' using tuvP integrals '
write(6,*) ' ----------------------------------------- '
write(6,*) ' sum of all = ',eone+etwo+ecore
write(6,*)
end subroutine trf_to_natorb
BEGIN_PROVIDER [real*8, onetrf, (mo_num,mo_num)]
&BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
END_PROVIDER
BEGIN_PROVIDER [ real*8, natorbsCI, (n_act_orb,n_act_orb) ]
&BEGIN_PROVIDER [ real*8, occ_act, (n_act_orb) ]
implicit none
BEGIN_DOC
! Natural orbitals of CI
END_DOC
integer :: i, j
call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
write(6,*) ' found occupation numbers as '
do i=1,n_act_orb
write(6,*) i,occ_act(i)
end do
if (bavard) then
!
integer :: nmx
real*8 :: xmx
do i=1,n_act_orb
! largest element of the eigenvector should be positive
xmx=0.D0
nmx=0
do j=1,n_act_orb
if (abs(natOrbsCI(j,i)).gt.xmx) then
nmx=j
xmx=abs(natOrbsCI(j,i))
end if
end do
xmx=sign(1.D0,natOrbsCI(nmx,i))
do j=1,n_act_orb
natOrbsCI(j,i)*=xmx
end do
write(6,*) ' Eigenvector No ',i
write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
BEGIN_DOC
! 4-index transformation of 2part matrices
END_DOC
integer :: i,j,k,l,p,q,pp
real*8 :: d(n_act_orb)
! index per index
! first quarter
P0tuvx_no(:,:,:,:) = P0tuvx(:,:,:,:)
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(p,j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,p,k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,k,p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,k,l,p)=d(p)
end do
end do
end do
end do
write(6,*) ' transformed P0tuvx '
END_PROVIDER
BEGIN_PROVIDER [real*8, onetrf, (mo_num,mo_num)]
implicit none
BEGIN_DOC
! Transformed one-e integrals
END_DOC
integer :: i,j, p, pp, q
real*8 :: d(n_act_orb)
onetrf(:,:)=mo_one_e_integrals(:,:)
! 1st half-trf
do j=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=onetrf(list_act(q),j)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
onetrf(list_act(p),j)=d(p)
end do
end do
! 2nd half-trf
do j=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=onetrf(j,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
onetrf(j,list_act(p))=d(p)
end do
end do
write(6,*) ' transformed onetrf '
END_PROVIDER
BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
implicit none
BEGIN_DOC
! FCI natural orbitals
END_DOC
integer :: i,j, p, pp, q
real*8 :: d(n_act_orb)
NatOrbsFCI(:,:)=mo_coef(:,:)
do j=1,ao_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
pp=n_act_orb-p+1
do q=1,n_act_orb
d(pp)+=NatOrbsFCI(j,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
NatOrbsFCI(j,list_act(p))=d(p)
end do
end do
write(6,*) ' transformed orbitals '
END_PROVIDER
subroutine trf_to_natorb()
implicit none
BEGIN_DOC
! save the diagonal somewhere, in inverse order
! 4-index-transform the 2-particle density matrix over active orbitals
! correct the bielectronic integrals
! correct the monoelectronic integrals
! put integrals on file, as well orbitals, and the density matrices
!
END_DOC
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb),d1(n_act_orb),d2(n_act_orb)
! we recalculate total energies
write(6,*)
write(6,*) ' recalculating energies after the transformation '
write(6,*)
write(6,*)
real*8 :: e_one_all
real*8 :: e_two_all
integer :: ii
integer :: jj
integer :: t3
integer :: tt
integer :: u3
integer :: uu
integer :: v
integer :: v3
integer :: vv
integer :: x
integer :: x3
integer :: xx
e_one_all=0.D0
e_two_all=0.D0
do i=1,n_core_orb
ii=list_core(i)
e_one_all+=2.D0*onetrf(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
e_two_all+=2.D0*bielec_PQxx_no(ii,ii,j,j)-bielec_PQxx_no(ii,jj,j,i)
end do
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
e_two_all += occnum(list_act(t)) * &
(2.d0*bielec_PQxx_no(tt,tt,i,i) - bielec_PQxx_no(tt,ii,i,t3))
end do
end do
do t=1,n_act_orb
tt=list_act(t)
e_one_all += occnum(list_act(t))*onetrf(tt,tt)
do u=1,n_act_orb
uu=list_act(u)
do v=1,n_act_orb
v3=v+n_core_orb
do x=1,n_act_orb
x3=x+n_core_orb
e_two_all +=P0tuvx_no(t,u,v,x)*bielec_PQxx_no(tt,uu,v3,x3)
end do
end do
end do
end do
write(6,*) ' e_one_all = ',e_one_all
write(6,*) ' e_two_all = ',e_two_all
ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion
do i=1,n_core_orb
ii=list_core(i)
ecore +=2.D0*onetrf(ii,ii)
ecore_bis+=2.D0*onetrf(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
ecore +=2.D0*bielec_PQxx_no(ii,ii,j,j)-bielec_PQxx_no(ii,jj,j,i)
ecore_bis+=2.D0*bielec_PxxQ_no(ii,i,j,jj)-bielec_PxxQ_no(ii,j,j,ii)
end do
end do
eone =0.D0
eone_bis=0.D0
etwo =0.D0
etwo_bis=0.D0
etwo_ter=0.D0
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
eone += occnum(list_act(t))*onetrf(tt,tt)
eone_bis += occnum(list_act(t))*onetrf(tt,tt)
do i=1,n_core_orb
ii=list_core(i)
eone += occnum(list_act(t)) * &
(2.D0*bielec_PQxx_no(tt,tt,i,i ) - bielec_PQxx_no(tt,ii,i,t3))
eone_bis += occnum(list_act(t)) * &
(2.D0*bielec_PxxQ_no(tt,t3,i,ii) - bielec_PxxQ_no(tt,i ,i,tt))
end do
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_orb
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_orb
real*8 :: h1,h2,h3
h1=bielec_PQxx_no(tt,uu,v3,x3)
h2=bielec_PxxQ_no(tt,u3,v3,xx)
h3=bielecCI_no(t,u,v,xx)
etwo +=P0tuvx_no(t,u,v,x)*h1
etwo_bis+=P0tuvx_no(t,u,v,x)*h2
etwo_ter+=P0tuvx_no(t,u,v,x)*h3
if ((abs(h1-h2).gt.1.D-14).or.(abs(h1-h3).gt.1.D-14)) then
write(6,9901) t,u,v,x,h1,h2,h3
9901 format('aie: ',4I4,3E20.12)
end if
end do
end do
end do
end do
write(6,*) ' energy contributions '
write(6,*) ' core energy = ',ecore,' using PQxx integrals '
write(6,*) ' core energy (bis) = ',ecore,' using PxxQ integrals '
write(6,*) ' 1el energy = ',eone ,' using PQxx integrals '
write(6,*) ' 1el energy (bis) = ',eone ,' using PxxQ integrals '
write(6,*) ' 2el energy = ',etwo ,' using PQxx integrals '
write(6,*) ' 2el energy (bis) = ',etwo_bis,' using PxxQ integrals '
write(6,*) ' 2el energy (ter) = ',etwo_ter,' using tuvP integrals '
write(6,*) ' ----------------------------------------- '
write(6,*) ' sum of all = ',eone+etwo+ecore
write(6,*)
SOFT_TOUCH ecore ecore_bis eone eone_bis etwo etwo_bis etwo_ter
end subroutine trf_to_natorb

View File

@ -1,65 +0,0 @@
! -*- F90 -*-
BEGIN_PROVIDER [real*8, occnum, (mo_num)]
implicit none
integer :: i,kk,j
logical :: lread
real*8 :: rdum
do i=1,mo_num
occnum(i)=0.D0
end do
do i=1,n_core_orb
occnum(list_core(i))=2.D0
end do
open(unit=12,file='D0tu.dat',form='formatted',status='old')
lread=.true.
do while (lread)
read(12,*,iostat=kk) i,j,rdum
if (kk.ne.0) then
lread=.false.
else
if (i.eq.j) then
occnum(list_act(i))=rdum
else
write(6,*) ' WARNING - no natural orbitals !'
write(6,*) i,j,rdum
end if
end if
end do
close(12)
write(6,*) ' read occupation numbers '
do i=1,mo_num
write(6,*) i,occnum(i)
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
integer :: i,j,k,l,kk
real*8 :: rdum
logical :: lread
do i=1,n_act_orb
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
P0tuvx_no(l,k,j,i)=0.D0
end do
end do
end do
end do
open(unit=12,file='P0tuvx.dat',form='formatted',status='old')
lread=.true.
do while (lread)
read(12,*,iostat=kk) i,j,k,l,rdum
if (kk.ne.0) then
lread=.false.
else
P0tuvx_no(i,j,k,l)=rdum
end if
end do
close(12)
write(6,*) ' read the 2-particle density matrix '
END_PROVIDER

View File

@ -1,4 +1,3 @@
! -*- F90 -*-
BEGIN_PROVIDER [real*8, etwo]
&BEGIN_PROVIDER [real*8, eone]
&BEGIN_PROVIDER [real*8, eone_bis]
@ -6,117 +5,117 @@
&BEGIN_PROVIDER [real*8, etwo_ter]
&BEGIN_PROVIDER [real*8, ecore]
&BEGIN_PROVIDER [real*8, ecore_bis]
implicit none
integer :: t,u,v,x,i,ii,tt,uu,vv,xx,j,jj,t3,u3,v3,x3
real*8 :: e_one_all,e_two_all
e_one_all=0.D0
e_two_all=0.D0
do i=1,n_core_orb
ii=list_core(i)
e_one_all+=2.D0*mo_one_e_integrals(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
e_two_all+=2.D0*bielec_PQxxtmp(ii,ii,j,j)-bielec_PQxxtmp(ii,jj,j,i)
end do
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_orb
e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxxtmp(tt,uu,i,i) &
-bielec_PQxxtmp(tt,ii,i,u3))
end do
end do
end do
do t=1,n_act_orb
tt=list_act(t)
do u=1,n_act_orb
uu=list_act(u)
e_one_all+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
do v=1,n_act_orb
v3=v+n_core_orb
do x=1,n_act_orb
x3=x+n_core_orb
e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxxtmp(tt,uu,v3,x3)
end do
end do
end do
end do
write(6,*) ' e_one_all = ',e_one_all
write(6,*) ' e_two_all = ',e_two_all
ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion
do i=1,n_core_orb
ii=list_core(i)
ecore +=2.D0*mo_one_e_integrals(ii,ii)
ecore_bis+=2.D0*mo_one_e_integrals(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
ecore +=2.D0*bielec_PQxxtmp(ii,ii,j,j)-bielec_PQxxtmp(ii,jj,j,i)
ecore_bis+=2.D0*bielec_PxxQtmp(ii,i,j,jj)-bielec_PxxQtmp(ii,j,j,ii)
end do
end do
eone =0.D0
eone_bis=0.D0
etwo =0.D0
etwo_bis=0.D0
etwo_ter=0.D0
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
do u=1,n_act_orb
implicit none
integer :: t,u,v,x,i,ii,tt,uu,vv,xx,j,jj,t3,u3,v3,x3
real*8 :: e_one_all,e_two_all
e_one_all=0.D0
e_two_all=0.D0
do i=1,n_core_orb
ii=list_core(i)
e_one_all+=2.D0*mo_one_e_integrals(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
e_two_all+=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
end do
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_orb
eone +=D0tu(t,u)*mo_one_e_integrals(tt,uu)
eone_bis+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
do i=1,n_core_orb
ii=list_core(i)
eone +=D0tu(t,u)*(2.D0*bielec_PQxxtmp(tt,uu,i,i) &
-bielec_PQxxtmp(tt,ii,i,u3))
eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQtmp(tt,u3,i,ii) &
-bielec_PxxQtmp(tt,i,i,uu))
e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
-bielec_PQxx(tt,ii,i,u3))
end do
end do
end do
do t=1,n_act_orb
tt=list_act(t)
do u=1,n_act_orb
uu=list_act(u)
e_one_all+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
do v=1,n_act_orb
v3=v+n_core_orb
do x=1,n_act_orb
x3=x+n_core_orb
e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxx(tt,uu,v3,x3)
end do
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_orb
do x=1,n_act_orb
end do
end do
end do
write(6,*) ' e_one_all = ',e_one_all
write(6,*) ' e_two_all = ',e_two_all
ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion
do i=1,n_core_orb
ii=list_core(i)
ecore +=2.D0*mo_one_e_integrals(ii,ii)
ecore_bis+=2.D0*mo_one_e_integrals(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
ecore +=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
ecore_bis+=2.D0*bielec_PxxQ(ii,i,j,jj)-bielec_PxxQ(ii,j,j,ii)
end do
end do
eone =0.D0
eone_bis=0.D0
etwo =0.D0
etwo_bis=0.D0
etwo_ter=0.D0
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_orb
eone +=D0tu(t,u)*mo_one_e_integrals(tt,uu)
eone_bis+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
do i=1,n_core_orb
ii=list_core(i)
eone +=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
-bielec_PQxx(tt,ii,i,u3))
eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQ(tt,u3,i,ii) &
-bielec_PxxQ(tt,i,i,uu))
end do
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_orb
real*8 :: h1,h2,h3
h1=bielec_PQxxtmp(tt,uu,v3,x3)
h2=bielec_PxxQtmp(tt,u3,v3,xx)
h3=bielecCItmp(t,u,v,xx)
real*8 :: h1,h2,h3
h1=bielec_PQxx(tt,uu,v3,x3)
h2=bielec_PxxQ(tt,u3,v3,xx)
h3=bielecCI(t,u,v,xx)
etwo +=P0tuvx(t,u,v,x)*h1
etwo_bis+=P0tuvx(t,u,v,x)*h2
etwo_ter+=P0tuvx(t,u,v,x)*h3
if ((h1.ne.h2).or.(h1.ne.h3)) then
write(6,9901) t,u,v,x,h1,h2,h3
9901 format('aie: ',4I4,3E20.12)
write(6,9901) t,u,v,x,h1,h2,h3
9901 format('aie: ',4I4,3E20.12)
end if
end do
end do
end do
end do
write(6,*) ' energy contributions '
write(6,*) ' core energy = ',ecore,' using PQxx integrals '
write(6,*) ' core energy (bis) = ',ecore,' using PxxQ integrals '
write(6,*) ' 1el energy = ',eone ,' using PQxx integrals '
write(6,*) ' 1el energy (bis) = ',eone ,' using PxxQ integrals '
write(6,*) ' 2el energy = ',etwo ,' using PQxx integrals '
write(6,*) ' 2el energy (bis) = ',etwo_bis,' using PxxQ integrals '
write(6,*) ' 2el energy (ter) = ',etwo_ter,' using tuvP integrals '
write(6,*) ' ----------------------------------------- '
write(6,*) ' sum of all = ',eone+etwo+ecore
write(6,*)
write(6,*) ' nuclear (qp) = ',nuclear_repulsion
write(6,*) ' core energy (qp) = ',core_energy
write(6,*) ' 1el energy (qp) = ',psi_energy_h_core(1)
write(6,*) ' 2el energy (qp) = ',psi_energy_two_e(1)
write(6,*) ' nuc + 1 + 2 (qp) = ',nuclear_repulsion+psi_energy_h_core(1)+psi_energy_two_e(1)
write(6,*) ' <0|H|0> (qp) = ',psi_energy_with_nucl_rep(1)
end do
end do
write(6,*) ' energy contributions '
write(6,*) ' core energy = ',ecore,' using PQxx integrals '
write(6,*) ' core energy (bis) = ',ecore,' using PxxQ integrals '
write(6,*) ' 1el energy = ',eone ,' using PQxx integrals '
write(6,*) ' 1el energy (bis) = ',eone ,' using PxxQ integrals '
write(6,*) ' 2el energy = ',etwo ,' using PQxx integrals '
write(6,*) ' 2el energy (bis) = ',etwo_bis,' using PxxQ integrals '
write(6,*) ' 2el energy (ter) = ',etwo_ter,' using tuvP integrals '
write(6,*) ' ----------------------------------------- '
write(6,*) ' sum of all = ',eone+etwo+ecore
write(6,*)
write(6,*) ' nuclear (qp) = ',nuclear_repulsion
write(6,*) ' core energy (qp) = ',core_energy
write(6,*) ' 1el energy (qp) = ',psi_energy_h_core(1)
write(6,*) ' 2el energy (qp) = ',psi_energy_two_e(1)
write(6,*) ' nuc + 1 + 2 (qp) = ',nuclear_repulsion+psi_energy_h_core(1)+psi_energy_two_e(1)
write(6,*) ' <0|H|0> (qp) = ',psi_energy_with_nucl_rep(1)
END_PROVIDER