mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-03 10:05:52 +01:00
commit
231b071d78
96
CITATION.cff
96
CITATION.cff
@ -1,32 +1,100 @@
|
||||
# YAML 1.2
|
||||
# Metadata for citation of this software according to the CFF format (https://citation-file-format.github.io/)
|
||||
cff-version: 1.0.3
|
||||
message: If you use this software, please cite it using these metadata.
|
||||
message: "If you use this software, please cite it using these metadata."
|
||||
title: Quantum Package
|
||||
doi: 10.5281/zenodo.825872
|
||||
doi: 10.1021/acs.jctc.9b00176
|
||||
authors:
|
||||
- given-names: Anthony
|
||||
family-names: Scemama
|
||||
affiliation: Laboratoire de Chimie et Physique Quantiques / CNRS
|
||||
- given-names: Yann
|
||||
family-names: Garniron
|
||||
affiliation: Laboratoire de Chimie et Physique Quantiques / CNRS
|
||||
- given-names: Michel
|
||||
family-names: Caffarel
|
||||
affiliation: Laboratoire de Chimie et Physique Quantiques / CNRS
|
||||
affiliation: Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
|
||||
- given-names: Thomas
|
||||
family-names: Applencourt
|
||||
affiliation: Argonne National Lab
|
||||
affiliation: Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
|
||||
- given-names: Kevin
|
||||
family-names: Gasperich
|
||||
affiliation: Argonne National Lab
|
||||
affiliation: Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
|
||||
- given-names: Anouar
|
||||
family-names: Benali
|
||||
affiliation: Argonne National Lab
|
||||
affiliation: Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
|
||||
- given-names: Anthony
|
||||
family-names: Ferté
|
||||
affiliation: Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
|
||||
- given-names: Julien
|
||||
family-names: Paquier
|
||||
affiliation: Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
|
||||
- given-names: Barthélémy
|
||||
family-names: Pradines
|
||||
affiliation: Institut des Sciences du Calcul et des Données, Sorbonne Université, F-75005 Paris, France
|
||||
- given-names: Roland
|
||||
family-names: Assaraf
|
||||
affiliation: Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
|
||||
- given-names: Peter
|
||||
family-names: Reinhardt
|
||||
affiliation: Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
|
||||
- given-names: Julien
|
||||
family-names: Toulouse
|
||||
affiliation: Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
|
||||
- given-names: Pierrette
|
||||
family-names: Barbaresco
|
||||
affiliation: CALMIP, Université de Toulouse, CNRS, INPT, INSA, UPS, UMS 3667, Toulouse, France
|
||||
- given-names: Nicolas
|
||||
family-names: Renon
|
||||
affiliation: CALMIP, Université de Toulouse, CNRS, INPT, INSA, UPS, UMS 3667, Toulouse, France
|
||||
- given-names: Grégoire
|
||||
family-names: David
|
||||
affiliation: Aix-Marseille Univ, CNRS, ICR, Marseille, France
|
||||
- given-names: Jean-Paul
|
||||
family-names: Malrieu
|
||||
affiliation: Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
|
||||
- given-names: Mickaël
|
||||
family-names: Véril
|
||||
affiliation: Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
|
||||
- given-names: Michel
|
||||
family-names: Caffarel
|
||||
affiliation: Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
|
||||
- given-names: Pierre-François
|
||||
family-names: Loos
|
||||
affiliation: Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
|
||||
- given-names: Emmanuel
|
||||
family-names: Giner
|
||||
affiliation: Laboratoire de Chimie Theorique / CNRS
|
||||
affiliation: Laboratoire de Chimie Théorique, Sorbonne Université, CNRS, Paris, France
|
||||
- given-names: Anthony
|
||||
family-names: Scemama
|
||||
affiliation: Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
|
||||
abstract: "Quantum chemistry is a discipline which relies heavily on very
|
||||
expensive numerical computations. The scaling of correlated wave function
|
||||
methods lies, in their standard implementation, between O(N^5) and O(exp(N)),
|
||||
where N is proportional to the system size. Therefore, performing accurate
|
||||
calculations on chemically meaningful systems requires (i) approximations that
|
||||
can lower the computational scaling and (ii) efficient implementations that
|
||||
take advantage of modern massively parallel architectures. Quantum Package is
|
||||
an open-source programming environment for quantum chemistry specially designed
|
||||
for wave function methods. Its main goal is the development of
|
||||
determinant-driven selected configuration interaction (sCI) methods and
|
||||
multireference second-order perturbation theory (PT2). The determinant-driven
|
||||
framework allows the programmer to include any arbitrary set of determinants in
|
||||
the reference space, hence providing greater methodological freedom. The sCI
|
||||
method implemented in Quantum Package is based on the CIPSI (Configuration
|
||||
Interaction using a Perturbative Selection made Iteratively) algorithm which
|
||||
complements the variational sCI energy with a PT2 correction. Additional
|
||||
external plugins have been recently added to perform calculations with
|
||||
multireference coupled cluster theory and range-separated density-functional
|
||||
theory. All the programs are developed with the IRPF90 code generator, which
|
||||
simplifies collaborative work and the development of new features. Quantum
|
||||
Package strives to allow easy implementation and experimentation of new
|
||||
methods, while making parallel computation as simple and efficient as possible
|
||||
on modern supercomputer architectures. Currently, the code enables, routinely,
|
||||
to realize runs on roughly 2 000 CPU cores, with tens of millions of
|
||||
determinants in the reference space. Moreover, we have been able to push up to
|
||||
12 288 cores in order to test its parallel efficiency. In the present
|
||||
manuscript, we also introduce some key new developments: (i) a renormalized
|
||||
second-order perturbative correction for efficient extrapolation to the full CI
|
||||
limit and (ii) a stochastic version of the CIPSI selection performed
|
||||
simultaneously to the PT2 calculation at no extra cost."
|
||||
version: '2.0'
|
||||
date-released: 2019-02-11
|
||||
url: https://quantumpackage.github.io/qp2/
|
||||
date-released: 2019-05-13
|
||||
repository-code: https://github.com/QuantumPackage/qp2
|
||||
keywords: [ "computational chemistry", "configuration interaction", "cipsi", "perturbation theory" ]
|
||||
license: AGPL-3.0-or-later
|
||||
|
53
INSTALL.rst
53
INSTALL.rst
@ -45,6 +45,8 @@ Requirements
|
||||
- |ZeroMQ| : networking library
|
||||
- `GMP <https://gmplib.org/>`_ : Gnu Multiple Precision Arithmetic Library
|
||||
- |OCaml| compiler with |OPAM| package manager
|
||||
- `Bubblewrap <https://github.com/projectatomic/bubblewrap>`_ : Sandboxing tool required by Opam
|
||||
- `libcap https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git`_ : POSIX capabilities required by Bubblewrap
|
||||
- |Ninja| : a parallel build system
|
||||
|
||||
|
||||
@ -86,6 +88,8 @@ The following packages are supported by the :command:`configure` installer:
|
||||
* zeromq
|
||||
* f77zmq
|
||||
* gmp
|
||||
* libcap
|
||||
* bwrap
|
||||
* ocaml ( :math:`\approx` 10 minutes)
|
||||
* ezfio
|
||||
* docopt
|
||||
@ -243,6 +247,55 @@ With Debian or Ubuntu, you can use
|
||||
sudo apt install libgmp-dev
|
||||
|
||||
|
||||
libcap
|
||||
------
|
||||
|
||||
Libcap is a library for getting and setting POSIX.1e draft 15 capabilities.
|
||||
|
||||
* Download the latest version of libcap here:
|
||||
`<https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/snapshot/libcap-2.25.tar.gz>`_
|
||||
and move it in the :file:`${QP_ROOT}/external` directory
|
||||
|
||||
* Extract the archive, go into the :file:`libcap-*/libcap` directory and run
|
||||
the following command
|
||||
|
||||
.. code:: bash
|
||||
|
||||
prefix=$QP_ROOT make install
|
||||
|
||||
With Debian or Ubuntu, you can use
|
||||
|
||||
.. code:: bash
|
||||
|
||||
sudo apt install libcap-dev
|
||||
|
||||
|
||||
Bubblewrap
|
||||
----------
|
||||
|
||||
Bubblewrap is an unprivileged sandboxing tool.
|
||||
|
||||
* Download Bubblewrap here:
|
||||
`<https://github.com/projectatomic/bubblewrap/releases/download/v0.3.3/bubblewrap-0.3.3.tar.xz>`_
|
||||
and move it in the :file:`${QP_ROOT}/external` directory
|
||||
|
||||
* Extract the archive, go into the :file:`bubblewrap-*` directory and run
|
||||
the following commands
|
||||
|
||||
.. code:: bash
|
||||
|
||||
./configure --prefix=$QP_ROOT && make -j 8
|
||||
make install-exec-am
|
||||
|
||||
|
||||
With Debian or Ubuntu, you can use
|
||||
|
||||
.. code:: bash
|
||||
|
||||
sudo apt install bubblewrap
|
||||
|
||||
|
||||
|
||||
OCaml
|
||||
-----
|
||||
|
||||
|
@ -1,12 +1,13 @@
|
||||
# Quantum Package 2.0
|
||||
|
||||
|
||||
*Quantum package 2.0: an open-source determinant-driven suite of programs*\
|
||||
[*Quantum package 2.0: an open-source determinant-driven suite of programs*](https://pubs.acs.org/doi/10.1021/acs.jctc.9b00176)\
|
||||
Y. Garniron, K. Gasperich, T. Applencourt, A. Benali, A. Ferté, J. Paquier, B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse, P. Barbaresco, N. Renon, G. David, J. P. Malrieu, M. Véril, M. Caffarel, P. F. Loos, E. Giner and A. Scemama\
|
||||
J. Chem. Theory Comput. (2019)\
|
||||
https://arxiv.org/abs/1902.08154
|
||||
|
||||
|
||||
![QP](https://raw.githubusercontent.com/QuantumPackage/qp2/master/data/qp2.png)
|
||||
<img src="https://raw.githubusercontent.com/QuantumPackage/qp2/master/data/qp2.png" width="250">
|
||||
|
||||
# Getting started
|
||||
|
||||
|
@ -32,7 +32,7 @@ OPENMP : 1 ; Append OpenMP flags
|
||||
#
|
||||
[OPT]
|
||||
FC : -traceback
|
||||
FCFLAGS : -xAVX -O2 -ip -ftz -g
|
||||
FCFLAGS : -march=corei7-avx -O2 -ip -ftz -g
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
|
@ -31,14 +31,14 @@ OPENMP : 1 ; Append OpenMP flags
|
||||
# -ftz : Flushes denormal results to zero
|
||||
#
|
||||
[OPT]
|
||||
FCFLAGS : -xAVX -O2 -ip -ftz -g -traceback
|
||||
FCFLAGS : -march=corei7-avx -O2 -ip -ftz -g -traceback
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
|
||||
FCFLAGS : -march=corei7 -O2 -ip -ftz
|
||||
|
||||
|
||||
# Debugging flags
|
||||
|
44
configure
vendored
44
configure
vendored
@ -175,7 +175,7 @@ if [[ "${PACKAGES}.x" != ".x" ]] ; then
|
||||
fi
|
||||
|
||||
if [[ ${PACKAGES} = all ]] ; then
|
||||
PACKAGES="zlib ninja irpf90 zeromq f77zmq gmp ocaml ezfio docopt resultsFile bats"
|
||||
PACKAGES="zlib ninja irpf90 zeromq f77zmq gmp libcap bwrap ocaml ezfio docopt resultsFile bats"
|
||||
fi
|
||||
|
||||
|
||||
@ -206,6 +206,32 @@ EOF
|
||||
make install
|
||||
EOF
|
||||
|
||||
elif [[ ${PACKAGE} = libcap ]] ; then
|
||||
|
||||
download \
|
||||
"https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/snapshot/libcap-2.25.tar.gz" \
|
||||
"${QP_ROOT}"/external/libcap.tar.gz
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar --gunzip --extract --file libcap.tar.gz
|
||||
rm libcap.tar.gz
|
||||
cd libcap-*/libcap
|
||||
prefix=$QP_ROOT make install
|
||||
EOF
|
||||
|
||||
elif [[ ${PACKAGE} = bwrap ]] ; then
|
||||
|
||||
download \
|
||||
"https://github.com/projectatomic/bubblewrap/releases/download/v0.3.3/bubblewrap-0.3.3.tar.xz" \
|
||||
"${QP_ROOT}"/external/bwrap.tar.xz
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar --xz --extract --file bwrap.tar.xz
|
||||
rm bwrap.tar.xz
|
||||
cd bubblewrap*
|
||||
./configure --prefix=$QP_ROOT && make -j 8
|
||||
make install-exec-am
|
||||
EOF
|
||||
|
||||
elif [[ ${PACKAGE} = irpf90 ]] ; then
|
||||
|
||||
@ -276,7 +302,7 @@ EOF
|
||||
rm ${QP_ROOT}/external/opam_installer.sh
|
||||
source ${OPAMROOT}/opam-init/init.sh > /dev/null 2> /dev/null || true
|
||||
|
||||
${QP_ROOT}/bin/opam init --disable-sandboxing --verbose --yes
|
||||
${QP_ROOT}/bin/opam init --verbose --yes
|
||||
|
||||
eval $(${QP_ROOT}/bin/opam env)
|
||||
opam install -y ${OCAML_PACKAGES} || exit 1
|
||||
@ -290,7 +316,7 @@ EOF
|
||||
| sh \${QP_ROOT}/external/opam_installer.sh
|
||||
rm \${QP_ROOT}/external/opam_installer.sh
|
||||
source \${OPAMROOT}/opam-init/init.sh > /dev/null 2> /dev/null || true
|
||||
\${QP_ROOT}/bin/opam init --disable-sandboxing --verbose --yes
|
||||
\${QP_ROOT}/bin/opam init --verbose --yes
|
||||
eval \$(\${QP_ROOT}/bin/opam env)
|
||||
opam install -y \${OCAML_PACKAGES} || exit 1
|
||||
EOF
|
||||
@ -399,6 +425,18 @@ if [[ ${ZLIB} = $(not_found) ]] ; then
|
||||
fail
|
||||
fi
|
||||
|
||||
BWRAP=$(find_exe bwrap)
|
||||
if [[ ${BWRAP} = $(not_found) ]] ; then
|
||||
error "Bubblewrap (bwrap) is not installed."
|
||||
fail
|
||||
fi
|
||||
|
||||
LIBCAP=$(find_lib -lcap)
|
||||
if [[ ${LIBCAP} = $(not_found) ]] ; then
|
||||
error "Libcap (libcap) is not installed."
|
||||
fail
|
||||
fi
|
||||
|
||||
OPAM=$(find_exe opam)
|
||||
if [[ ${OPAM} = $(not_found) ]] ; then
|
||||
error "OPAM (ocaml) package manager is not installed."
|
||||
|
@ -81,9 +81,6 @@ end = struct
|
||||
;;
|
||||
|
||||
let write_n_det n =
|
||||
let n_det_old =
|
||||
Ezfio.get_determinants_n_det ()
|
||||
in
|
||||
Det_number.to_int n
|
||||
|> Ezfio.set_determinants_n_det
|
||||
;;
|
||||
|
@ -16,6 +16,8 @@ double precision function ao_two_e_integral_erf(i,j,k,l)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
double precision :: ao_two_e_integral_schwartz_accel_erf
|
||||
|
||||
provide mu_erf
|
||||
|
||||
if (ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
ao_two_e_integral_erf = ao_two_e_integral_schwartz_accel_erf(i,j,k,l)
|
||||
return
|
||||
|
@ -279,6 +279,100 @@ subroutine get_ao_two_e_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_z
|
||||
end
|
||||
|
||||
|
||||
subroutine get_ao_two_e_integrals_non_zero_jl(j,l,thresh,sze_max,sze,out_val,out_val_index,non_zero_int)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets multiple AO bi-electronic integral from the AO map .
|
||||
! All non-zero i are retrieved for j,k,l fixed.
|
||||
END_DOC
|
||||
double precision, intent(in) :: thresh
|
||||
integer, intent(in) :: j,l, sze,sze_max
|
||||
real(integral_kind), intent(out) :: out_val(sze_max)
|
||||
integer, intent(out) :: out_val_index(2,sze_max),non_zero_int
|
||||
|
||||
integer :: i,k
|
||||
integer(key_kind) :: hash
|
||||
double precision :: tmp
|
||||
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
non_zero_int = 0
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
non_zero_int = 0
|
||||
do k = 1, sze
|
||||
do i = 1, sze
|
||||
integer, external :: ao_l4
|
||||
double precision, external :: ao_two_e_integral
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
|
||||
cycle
|
||||
endif
|
||||
call two_e_integrals_index(i,j,k,l,hash)
|
||||
call map_get(ao_integrals_map, hash,tmp)
|
||||
if (dabs(tmp) < thresh ) cycle
|
||||
non_zero_int = non_zero_int+1
|
||||
out_val_index(1,non_zero_int) = i
|
||||
out_val_index(2,non_zero_int) = k
|
||||
out_val(non_zero_int) = tmp
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine get_ao_two_e_integrals_non_zero_jl_from_list(j,l,thresh,list,n_list,sze_max,out_val,out_val_index,non_zero_int)
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gets multiple AO two-electron integrals from the AO map .
|
||||
! All non-zero i are retrieved for j,k,l fixed.
|
||||
END_DOC
|
||||
double precision, intent(in) :: thresh
|
||||
integer, intent(in) :: sze_max
|
||||
integer, intent(in) :: j,l, n_list,list(2,sze_max)
|
||||
real(integral_kind), intent(out) :: out_val(sze_max)
|
||||
integer, intent(out) :: out_val_index(2,sze_max),non_zero_int
|
||||
|
||||
integer :: i,k
|
||||
integer(key_kind) :: hash
|
||||
double precision :: tmp
|
||||
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
non_zero_int = 0
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
non_zero_int = 0
|
||||
integer :: kk
|
||||
do kk = 1, n_list
|
||||
k = list(1,kk)
|
||||
i = list(2,kk)
|
||||
integer, external :: ao_l4
|
||||
double precision, external :: ao_two_e_integral
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
|
||||
cycle
|
||||
endif
|
||||
call two_e_integrals_index(i,j,k,l,hash)
|
||||
call map_get(ao_integrals_map, hash,tmp)
|
||||
if (dabs(tmp) < thresh ) cycle
|
||||
non_zero_int = non_zero_int+1
|
||||
out_val_index(1,non_zero_int) = i
|
||||
out_val_index(2,non_zero_int) = k
|
||||
out_val(non_zero_int) = tmp
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
function get_ao_map_size()
|
||||
implicit none
|
||||
integer (map_size_kind) :: get_ao_map_size
|
||||
|
@ -8,3 +8,9 @@ default: 2
|
||||
type: integer
|
||||
doc: Total number of grid points
|
||||
interface: ezfio
|
||||
|
||||
[thresh_grid]
|
||||
type: double precision
|
||||
doc: threshold on the weight of a given grid point
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-20
|
||||
|
9
src/becke_numerical_grid/atomic_number.irp.f
Normal file
9
src/becke_numerical_grid/atomic_number.irp.f
Normal file
@ -0,0 +1,9 @@
|
||||
BEGIN_PROVIDER [ integer, grid_atomic_number, (nucl_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Atomic number used to adjust the grid
|
||||
END_DOC
|
||||
grid_atomic_number(:) = max(1,int(nucl_charge(:)))
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -146,7 +146,7 @@ BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_
|
||||
x = grid_points_radial(j)
|
||||
|
||||
! value of the radial coordinate for the integration
|
||||
r = knowles_function(alpha_knowles(int(nucl_charge(i))),m_knowles,x)
|
||||
r = knowles_function(alpha_knowles(grid_atomic_number(i)),m_knowles,x)
|
||||
|
||||
! explicit values of the grid points centered around each atom
|
||||
do k = 1, n_points_integration_angular
|
||||
@ -232,8 +232,8 @@ BEGIN_PROVIDER [double precision, final_weight_at_r, (n_points_integration_angul
|
||||
do i = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom
|
||||
x = grid_points_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]
|
||||
do k = 1, n_points_integration_angular ! for each angular point attached to the "jth" atom
|
||||
contrib_integration = derivative_knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)&
|
||||
*knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)**2
|
||||
contrib_integration = derivative_knowles_function(alpha_knowles(grid_atomic_number(j)),m_knowles,x)&
|
||||
*knowles_function(alpha_knowles(grid_atomic_number(j)),m_knowles,x)**2
|
||||
final_weight_at_r(k,i,j) = weights_angular_points(k) * weight_at_r(k,i,j) * contrib_integration * dr_radial_integral
|
||||
if(isnan(final_weight_at_r(k,i,j)))then
|
||||
print*,'isnan(final_weight_at_r(k,i,j))'
|
||||
|
53
src/becke_numerical_grid/grid_becke_per_atom.irp.f
Normal file
53
src/becke_numerical_grid/grid_becke_per_atom.irp.f
Normal file
@ -0,0 +1,53 @@
|
||||
|
||||
|
||||
BEGIN_PROVIDER [integer, n_pts_per_atom, (nucl_num)]
|
||||
&BEGIN_PROVIDER [integer, n_pts_max_per_atom]
|
||||
BEGIN_DOC
|
||||
! Number of points which are non zero
|
||||
END_DOC
|
||||
integer :: i,j,k,l
|
||||
n_pts_per_atom = 0
|
||||
do j = 1, nucl_num
|
||||
do i = 1, n_points_radial_grid -1
|
||||
do k = 1, n_points_integration_angular
|
||||
if(dabs(final_weight_at_r(k,i,j)) < thresh_grid)then
|
||||
cycle
|
||||
endif
|
||||
n_pts_per_atom(j) += 1
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
n_pts_max_per_atom = maxval(n_pts_per_atom)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_grid_points_per_atom, (3,n_pts_max_per_atom,nucl_num)]
|
||||
&BEGIN_PROVIDER [double precision, final_weight_at_r_vector_per_atom, (n_pts_max_per_atom,nucl_num) ]
|
||||
&BEGIN_PROVIDER [integer, index_final_points_per_atom, (3,n_pts_max_per_atom,nucl_num) ]
|
||||
&BEGIN_PROVIDER [integer, index_final_points_per_atom_reverse, (n_points_integration_angular,n_points_radial_grid,nucl_num) ]
|
||||
implicit none
|
||||
integer :: i,j,k,l,i_count(nucl_num)
|
||||
double precision :: r(3)
|
||||
i_count = 0
|
||||
do j = 1, nucl_num
|
||||
do i = 1, n_points_radial_grid -1
|
||||
do k = 1, n_points_integration_angular
|
||||
if(dabs(final_weight_at_r(k,i,j)) < thresh_grid)then
|
||||
cycle
|
||||
endif
|
||||
i_count(j) += 1
|
||||
final_grid_points_per_atom(1,i_count(j),j) = grid_points_per_atom(1,k,i,j)
|
||||
final_grid_points_per_atom(2,i_count(j),j) = grid_points_per_atom(2,k,i,j)
|
||||
final_grid_points_per_atom(3,i_count(j),j) = grid_points_per_atom(3,k,i,j)
|
||||
final_weight_at_r_vector_per_atom(i_count(j),j) = final_weight_at_r(k,i,j)
|
||||
index_final_points_per_atom(1,i_count(j),j) = k
|
||||
index_final_points_per_atom(2,i_count(j),j) = i
|
||||
index_final_points_per_atom(3,i_count(j),j) = j
|
||||
index_final_points_per_atom_reverse(k,i,j) = i_count(j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
|
||||
|
||||
END_PROVIDER
|
@ -1,5 +1,6 @@
|
||||
|
||||
BEGIN_PROVIDER [integer, n_points_final_grid]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of points which are non zero
|
||||
END_DOC
|
||||
@ -8,9 +9,9 @@ BEGIN_PROVIDER [integer, n_points_final_grid]
|
||||
do j = 1, nucl_num
|
||||
do i = 1, n_points_radial_grid -1
|
||||
do k = 1, n_points_integration_angular
|
||||
! if(dabs(final_weight_at_r(k,i,j)) < 1.d-30)then
|
||||
! cycle
|
||||
! endif
|
||||
if(dabs(final_weight_at_r(k,i,j)) < thresh_grid)then
|
||||
cycle
|
||||
endif
|
||||
n_points_final_grid += 1
|
||||
enddo
|
||||
enddo
|
||||
@ -39,9 +40,9 @@ END_PROVIDER
|
||||
do j = 1, nucl_num
|
||||
do i = 1, n_points_radial_grid -1
|
||||
do k = 1, n_points_integration_angular
|
||||
!if(dabs(final_weight_at_r(k,i,j)) < 1.d-30)then
|
||||
! cycle
|
||||
!endif
|
||||
if(dabs(final_weight_at_r(k,i,j)) < thresh_grid)then
|
||||
cycle
|
||||
endif
|
||||
i_count += 1
|
||||
final_grid_points(1,i_count) = grid_points_per_atom(1,k,i,j)
|
||||
final_grid_points(2,i_count) = grid_points_per_atom(2,k,i,j)
|
||||
|
@ -31,10 +31,6 @@ double precision function cell_function_becke(r,atom_number)
|
||||
double precision :: mu_ij,nu_ij
|
||||
double precision :: distance_i,distance_j,step_function_becke
|
||||
integer :: j
|
||||
if(int(nucl_charge(atom_number))==0)then
|
||||
cell_function_becke = 0.d0
|
||||
return
|
||||
endif
|
||||
distance_i = (r(1) - nucl_coord_transp(1,atom_number) ) * (r(1) - nucl_coord_transp(1,atom_number))
|
||||
distance_i += (r(2) - nucl_coord_transp(2,atom_number) ) * (r(2) - nucl_coord_transp(2,atom_number))
|
||||
distance_i += (r(3) - nucl_coord_transp(3,atom_number) ) * (r(3) - nucl_coord_transp(3,atom_number))
|
||||
@ -42,7 +38,6 @@ double precision function cell_function_becke(r,atom_number)
|
||||
cell_function_becke = 1.d0
|
||||
do j = 1, nucl_num
|
||||
if(j==atom_number)cycle
|
||||
if(int(nucl_charge(j))==0)cycle
|
||||
distance_j = (r(1) - nucl_coord_transp(1,j) ) * (r(1) - nucl_coord_transp(1,j))
|
||||
distance_j+= (r(2) - nucl_coord_transp(2,j) ) * (r(2) - nucl_coord_transp(2,j))
|
||||
distance_j+= (r(3) - nucl_coord_transp(3,j) ) * (r(3) - nucl_coord_transp(3,j))
|
||||
|
@ -5,7 +5,7 @@ subroutine run_cipsi
|
||||
! stochastic PT2.
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:)
|
||||
double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:), zeros(:)
|
||||
integer :: n_det_before, to_select
|
||||
|
||||
double precision :: rss
|
||||
@ -13,7 +13,7 @@ subroutine run_cipsi
|
||||
rss = memory_of_double(N_states)*4.d0
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
allocate (pt2(N_states), rpt2(N_states), norm(N_states), variance(N_states))
|
||||
allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states))
|
||||
|
||||
double precision :: hf_energy_ref
|
||||
logical :: has
|
||||
@ -23,10 +23,11 @@ subroutine run_cipsi
|
||||
|
||||
relative_error=PT2_relative_error
|
||||
|
||||
zeros = 0.d0
|
||||
pt2 = -huge(1.e0)
|
||||
rpt2 = -huge(1.e0)
|
||||
norm = 0.d0
|
||||
variance = 0.d0
|
||||
variance = huge(1.e0)
|
||||
|
||||
if (s2_eig) then
|
||||
call make_s2_eigenfunction
|
||||
@ -65,7 +66,8 @@ subroutine run_cipsi
|
||||
|
||||
do while ( &
|
||||
(N_det < N_det_max) .and. &
|
||||
(maxval(abs(pt2(1:N_states))) > pt2_max) .and. &
|
||||
(maxval(abs(rpt2(1:N_states))) > pt2_max) .and. &
|
||||
(maxval(variance(1:N_states)) > variance_max) .and. &
|
||||
(correlation_energy_ratio <= correlation_energy_ratio_max) &
|
||||
)
|
||||
write(*,'(A)') '--------------------------------------------------------------------------------'
|
||||
@ -83,17 +85,17 @@ subroutine run_cipsi
|
||||
SOFT_TOUCH threshold_generators
|
||||
endif
|
||||
|
||||
do k=1,N_states
|
||||
rpt2(k) = pt2(k)/(1.d0 + norm(k))
|
||||
enddo
|
||||
|
||||
correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / &
|
||||
(psi_energy_with_nucl_rep(1) + pt2(1) - hf_energy_ref)
|
||||
(psi_energy_with_nucl_rep(1) + rpt2(1) - hf_energy_ref)
|
||||
correlation_energy_ratio = min(1.d0,correlation_energy_ratio)
|
||||
|
||||
call write_double(6,correlation_energy_ratio, 'Correlation ratio')
|
||||
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
|
||||
|
||||
do k=1,N_states
|
||||
rpt2(:) = pt2(:)/(1.d0 + norm(k))
|
||||
enddo
|
||||
call save_energy(psi_energy_with_nucl_rep, rpt2)
|
||||
|
||||
call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det)
|
||||
@ -103,9 +105,8 @@ subroutine run_cipsi
|
||||
if (qp_stop()) exit
|
||||
|
||||
n_det_before = N_det
|
||||
to_select = N_det
|
||||
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
|
||||
to_select = max(N_states_diag, to_select)
|
||||
! to_select = min(to_select, N_det_max-n_det_before)
|
||||
call ZMQ_selection(to_select, pt2, variance, norm)
|
||||
|
||||
PROVIDE psi_coef
|
||||
@ -114,32 +115,30 @@ subroutine run_cipsi
|
||||
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
rpt2(:) = 0.d0
|
||||
call save_energy(psi_energy_with_nucl_rep, rpt2)
|
||||
call save_energy(psi_energy_with_nucl_rep, zeros)
|
||||
if (qp_stop()) exit
|
||||
print *, (N_det < N_det_max)
|
||||
print *, (maxval(abs(rpt2(1:N_states))) > pt2_max)
|
||||
print *, (maxval(variance(1:N_states)) > variance_max)
|
||||
print *, (correlation_energy_ratio <= correlation_energy_ratio_max)
|
||||
enddo
|
||||
|
||||
if (.not.qp_stop()) then
|
||||
if (N_det < N_det_max) then
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
rpt2(:) = 0.d0
|
||||
call save_energy(psi_energy_with_nucl_rep, rpt2)
|
||||
call save_energy(psi_energy_with_nucl_rep, zeros)
|
||||
endif
|
||||
|
||||
if (do_pt2) then
|
||||
pt2 = 0.d0
|
||||
variance = 0.d0
|
||||
norm = 0.d0
|
||||
pt2(:) = 0.d0
|
||||
variance(:) = 0.d0
|
||||
norm(:) = 0.d0
|
||||
threshold_generators = 1d0
|
||||
SOFT_TOUCH threshold_generators
|
||||
call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, &
|
||||
norm,0) ! Stochastic PT2
|
||||
SOFT_TOUCH threshold_generators
|
||||
do k=1,N_states
|
||||
rpt2(:) = pt2(:)/(1.d0 + norm(k))
|
||||
enddo
|
||||
call save_energy(psi_energy_with_nucl_rep, pt2)
|
||||
endif
|
||||
print *, 'N_det = ', N_det
|
||||
print *, 'N_sop = ', N_occ_pattern
|
||||
@ -148,12 +147,11 @@ subroutine run_cipsi
|
||||
|
||||
|
||||
do k=1,N_states
|
||||
rpt2(:) = pt2(:)/(1.d0 + norm(k))
|
||||
rpt2(k) = pt2(k)/(1.d0 + norm(k))
|
||||
enddo
|
||||
call save_energy(psi_energy_with_nucl_rep, rpt2)
|
||||
|
||||
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
|
||||
call save_energy(psi_energy_with_nucl_rep, pt2)
|
||||
call save_energy(psi_energy_with_nucl_rep, rpt2)
|
||||
call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det)
|
||||
call print_extrapolated_energy()
|
||||
endif
|
||||
|
@ -129,13 +129,13 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
|
||||
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
|
||||
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
||||
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted
|
||||
PROVIDE psi_det_hii N_generators_bitmask
|
||||
PROVIDE psi_det_hii N_generators_bitmask selection_weight pseudo_sym
|
||||
|
||||
if (h0_type == 'SOP') then
|
||||
PROVIDE psi_occ_pattern_hii det_to_occ_pattern
|
||||
endif
|
||||
|
||||
if (N_det < max(1000,N_states)) then
|
||||
if (N_det < max(4,N_states)) then
|
||||
pt2=0.d0
|
||||
variance=0.d0
|
||||
norm=0.d0
|
||||
@ -182,6 +182,9 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) then
|
||||
stop 'Unable to put state_average_weight on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) then
|
||||
stop 'Unable to put selection_weight on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_ivector(zmq_to_qp_run_socket,1,'pt2_stoch_istate',pt2_stoch_istate,1) == -1) then
|
||||
stop 'Unable to put pt2_stoch_istate on ZMQ server'
|
||||
endif
|
||||
@ -333,13 +336,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
|
||||
pt2(k) = 0.d0
|
||||
enddo
|
||||
|
||||
! Adjust PT2 weights for next selection
|
||||
double precision :: pt2_avg
|
||||
pt2_avg = sum(pt2) / dble(N_states)
|
||||
do k=1,N_states
|
||||
pt2_match_weight(k) *= (pt2(k)/pt2_avg)**2
|
||||
enddo
|
||||
SOFT_TOUCH pt2_match_weight
|
||||
call update_pt2_and_variance_weights(pt2, variance, norm, N_states)
|
||||
|
||||
end subroutine
|
||||
|
||||
|
@ -25,8 +25,8 @@ subroutine run_selection_slave(thread,iproc,energy)
|
||||
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
|
||||
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
|
||||
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
||||
PROVIDE psi_bilinear_matrix_transp_order N_int pt2_F
|
||||
PROVIDE psi_selectors_coef_transp psi_det_sorted
|
||||
PROVIDE psi_bilinear_matrix_transp_order N_int pt2_F pseudo_sym
|
||||
PROVIDE psi_selectors_coef_transp psi_det_sorted weight_selection
|
||||
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
@ -230,6 +230,8 @@ subroutine pull_selection_results(zmq_socket_pull, pt2, variance, norm, val, det
|
||||
endif
|
||||
else
|
||||
pt2(:) = 0.d0
|
||||
variance(:) = 0.d0
|
||||
norm(:) = 0.d0
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, ntask, 4, 0)
|
||||
|
@ -6,15 +6,108 @@ BEGIN_PROVIDER [ double precision, pt2_match_weight, (N_states) ]
|
||||
! Weights adjusted along the selection to make the PT2 contributions
|
||||
! of each state coincide.
|
||||
END_DOC
|
||||
pt2_match_weight = 1.d0
|
||||
pt2_match_weight(:) = 1.d0
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, variance_match_weight, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Weights adjusted along the selection to make the variances
|
||||
! of each state coincide.
|
||||
END_DOC
|
||||
variance_match_weight(:) = 1.d0
|
||||
END_PROVIDER
|
||||
|
||||
subroutine update_pt2_and_variance_weights(pt2, variance, norm, N_st)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Updates the rPT2- and Variance- matching weights.
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st
|
||||
double precision, intent(in) :: pt2(N_st)
|
||||
double precision, intent(in) :: variance(N_st)
|
||||
double precision, intent(in) :: norm(N_st)
|
||||
|
||||
double precision :: avg, rpt2(N_st), element, dt, x
|
||||
integer :: k
|
||||
integer, save :: i_iter=0
|
||||
integer, parameter :: i_itermax = 3
|
||||
double precision, allocatable, save :: memo_variance(:,:), memo_pt2(:,:)
|
||||
|
||||
if (i_iter == 0) then
|
||||
allocate(memo_variance(N_st,i_itermax), memo_pt2(N_st,i_itermax))
|
||||
memo_pt2(:,:) = 1.d0
|
||||
memo_variance(:,:) = 1.d0
|
||||
endif
|
||||
|
||||
i_iter = i_iter+1
|
||||
if (i_iter > i_itermax) then
|
||||
i_iter = 1
|
||||
endif
|
||||
|
||||
dt = 4.d0
|
||||
|
||||
do k=1,N_st
|
||||
rpt2(k) = pt2(k)/(1.d0 + norm(k))
|
||||
enddo
|
||||
|
||||
avg = sum(rpt2(1:N_st)) / dble(N_st)
|
||||
do k=1,N_st
|
||||
element = exp(dt*(rpt2(k)/avg -1.d0))
|
||||
element = min(1.5d0 , element)
|
||||
element = max(0.5d0 , element)
|
||||
memo_pt2(k,i_iter) = element
|
||||
pt2_match_weight(k) = product(memo_pt2(k,:))
|
||||
enddo
|
||||
|
||||
avg = sum(variance(1:N_st)) / dble(N_st)
|
||||
do k=1,N_st
|
||||
element = exp(dt*(variance(k)/avg -1.d0))
|
||||
element = min(1.5d0 , element)
|
||||
element = max(0.5d0 , element)
|
||||
memo_variance(k,i_iter) = element
|
||||
variance_match_weight(k) = product(memo_variance(k,:))
|
||||
enddo
|
||||
|
||||
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
SOFT_TOUCH pt2_match_weight variance_match_weight
|
||||
end
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Weights used in the selection criterion
|
||||
END_DOC
|
||||
select case (weight_selection)
|
||||
|
||||
case (0)
|
||||
print *, 'Using input weights in selection'
|
||||
selection_weight(1:N_states) = state_average_weight(1:N_states)
|
||||
|
||||
case (1)
|
||||
print *, 'Using 1/c_max^2 weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states)
|
||||
|
||||
case (2)
|
||||
print *, 'Using pt2-matching weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states)
|
||||
|
||||
case (3)
|
||||
print *, 'Using variance-matching weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
|
||||
|
||||
case (4)
|
||||
print *, 'Using variance- and pt2-matching weights in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)
|
||||
|
||||
case (5)
|
||||
print *, 'Using variance-matching weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
|
||||
|
||||
end select
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
@ -621,11 +714,13 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
variance(istate) = variance(istate) + alpha_h_psi * alpha_h_psi
|
||||
norm(istate) = norm(istate) + coef * coef
|
||||
|
||||
! if (h0_type == "Variance") then
|
||||
! sum_e_pert = sum_e_pert - alpha_h_psi * alpha_h_psi * selection_weight(istate)
|
||||
! else
|
||||
if (weight_selection /= 5) then
|
||||
! Energy selection
|
||||
sum_e_pert = sum_e_pert + e_pert * selection_weight(istate)
|
||||
! endif
|
||||
else
|
||||
! Variance selection
|
||||
sum_e_pert = sum_e_pert - alpha_h_psi * alpha_h_psi * selection_weight(istate)
|
||||
endif
|
||||
end do
|
||||
if(pseudo_sym)then
|
||||
if(dabs(mat(1, p1, p2)).lt.thresh_sym)then
|
||||
|
@ -17,7 +17,7 @@ subroutine provide_everything
|
||||
PROVIDE H_apply_buffer_allocated mo_two_e_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context N_states_diag
|
||||
PROVIDE pt2_e0_denominator mo_num N_int ci_energy mpi_master zmq_state zmq_context
|
||||
PROVIDE psi_det psi_coef threshold_generators state_average_weight
|
||||
PROVIDE N_det_selectors pt2_stoch_istate N_det
|
||||
PROVIDE N_det_selectors pt2_stoch_istate N_det selection_weight pseudo_sym
|
||||
end
|
||||
|
||||
subroutine run_slave_main
|
||||
@ -220,8 +220,12 @@ subroutine run_slave_main
|
||||
call mpi_print('zmq_get_dvector state_average_weight')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_dvector selection_weight')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) cycle
|
||||
pt2_e0_denominator(1:N_states) = energy(1:N_states)
|
||||
SOFT_TOUCH pt2_e0_denominator state_average_weight pt2_stoch_istate threshold_generators
|
||||
SOFT_TOUCH pt2_e0_denominator state_average_weight pt2_stoch_istate threshold_generators selection_weight
|
||||
|
||||
call wall_time(t1)
|
||||
call write_double(6,(t1-t0),'Broadcast time')
|
||||
|
@ -4,7 +4,7 @@ subroutine run_stochastic_cipsi
|
||||
! Selected Full Configuration Interaction with Stochastic selection and PT2.
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:)
|
||||
double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:), zeros(:)
|
||||
integer :: to_select
|
||||
logical, external :: qp_stop
|
||||
|
||||
@ -18,7 +18,7 @@ subroutine run_stochastic_cipsi
|
||||
rss = memory_of_double(N_states)*4.d0
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
allocate (pt2(N_states), rpt2(N_states), norm(N_states), variance(N_states))
|
||||
allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states))
|
||||
|
||||
double precision :: hf_energy_ref
|
||||
logical :: has
|
||||
@ -26,6 +26,7 @@ subroutine run_stochastic_cipsi
|
||||
|
||||
relative_error=PT2_relative_error
|
||||
|
||||
zeros = 0.d0
|
||||
pt2 = -huge(1.e0)
|
||||
rpt2 = -huge(1.e0)
|
||||
norm = 0.d0
|
||||
@ -63,14 +64,14 @@ subroutine run_stochastic_cipsi
|
||||
|
||||
do while ( &
|
||||
(N_det < N_det_max) .and. &
|
||||
(maxval(abs(pt2(1:N_states))) > pt2_max) .and. &
|
||||
(maxval(abs(rpt2(1:N_states))) > pt2_max) .and. &
|
||||
(maxval(abs(variance(1:N_states))) > variance_max) .and. &
|
||||
(correlation_energy_ratio <= correlation_energy_ratio_max) &
|
||||
)
|
||||
write(*,'(A)') '--------------------------------------------------------------------------------'
|
||||
|
||||
|
||||
to_select = N_det*int(sqrt(dble(N_states)))
|
||||
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
|
||||
to_select = max(N_states_diag, to_select)
|
||||
|
||||
pt2 = 0.d0
|
||||
@ -79,17 +80,17 @@ subroutine run_stochastic_cipsi
|
||||
call ZMQ_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, &
|
||||
norm, to_select) ! Stochastic PT2 and selection
|
||||
|
||||
do k=1,N_states
|
||||
rpt2(k) = pt2(k)/(1.d0 + norm(k))
|
||||
enddo
|
||||
|
||||
correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / &
|
||||
(psi_energy_with_nucl_rep(1) + pt2(1) - hf_energy_ref)
|
||||
(psi_energy_with_nucl_rep(1) + rpt2(1) - hf_energy_ref)
|
||||
correlation_energy_ratio = min(1.d0,correlation_energy_ratio)
|
||||
|
||||
call save_energy(psi_energy_with_nucl_rep, rpt2)
|
||||
call write_double(6,correlation_energy_ratio, 'Correlation ratio')
|
||||
call print_summary(psi_energy_with_nucl_rep,pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
|
||||
|
||||
do k=1,N_states
|
||||
rpt2(:) = pt2(:)/(1.d0 + norm(k))
|
||||
enddo
|
||||
call save_energy(psi_energy_with_nucl_rep, rpt2)
|
||||
|
||||
call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det)
|
||||
@ -108,8 +109,7 @@ subroutine run_stochastic_cipsi
|
||||
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
rpt2(:) = 0.d0
|
||||
call save_energy(psi_energy_with_nucl_rep, rpt2)
|
||||
call save_energy(psi_energy_with_nucl_rep, zeros)
|
||||
if (qp_stop()) exit
|
||||
enddo
|
||||
|
||||
@ -117,20 +117,18 @@ subroutine run_stochastic_cipsi
|
||||
if (N_det < N_det_max) then
|
||||
call diagonalize_CI
|
||||
call save_wavefunction
|
||||
rpt2(:) = 0.d0
|
||||
call save_energy(psi_energy_with_nucl_rep, rpt2)
|
||||
call save_energy(psi_energy_with_nucl_rep, zeros)
|
||||
endif
|
||||
|
||||
pt2 = 0.d0
|
||||
variance = 0.d0
|
||||
norm = 0.d0
|
||||
pt2(:) = 0.d0
|
||||
variance(:) = 0.d0
|
||||
norm(:) = 0.d0
|
||||
call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, &
|
||||
norm,0) ! Stochastic PT2
|
||||
|
||||
do k=1,N_states
|
||||
rpt2(:) = pt2(:)/(1.d0 + norm(k))
|
||||
rpt2(k) = pt2(k)/(1.d0 + norm(k))
|
||||
enddo
|
||||
call save_energy(psi_energy_with_nucl_rep, rpt2)
|
||||
|
||||
call save_energy(psi_energy_with_nucl_rep, rpt2)
|
||||
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
|
||||
|
@ -21,7 +21,8 @@ subroutine ZMQ_selection(N_in, pt2, variance, norm)
|
||||
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
|
||||
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
|
||||
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
||||
PROVIDE psi_bilinear_matrix_transp_order
|
||||
PROVIDE psi_bilinear_matrix_transp_order selection_weight pseudo_sym
|
||||
|
||||
|
||||
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'selection')
|
||||
|
||||
@ -45,6 +46,9 @@ subroutine ZMQ_selection(N_in, pt2, variance, norm)
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) then
|
||||
stop 'Unable to put state_average_weight on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) then
|
||||
stop 'Unable to put selection_weight on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'threshold_generators',threshold_generators,1) == -1) then
|
||||
stop 'Unable to put threshold_generators on ZMQ server'
|
||||
endif
|
||||
@ -85,7 +89,11 @@ subroutine ZMQ_selection(N_in, pt2, variance, norm)
|
||||
endif
|
||||
|
||||
integer :: nproc_target
|
||||
if (N_det < 3*nproc) then
|
||||
nproc_target = N_det/4
|
||||
else
|
||||
nproc_target = nproc
|
||||
endif
|
||||
double precision :: mem
|
||||
mem = 8.d0 * N_det * (N_int * 2.d0 * 3.d0 + 3.d0 + 5.d0) / (1024.d0**3)
|
||||
call write_double(6,mem,'Estimated memory/thread (Gb)')
|
||||
@ -131,13 +139,7 @@ subroutine ZMQ_selection(N_in, pt2, variance, norm)
|
||||
norm(k) = norm(k) * f(k)
|
||||
enddo
|
||||
|
||||
! Adjust PT2 weights for next selection
|
||||
double precision :: pt2_avg
|
||||
pt2_avg = sum(pt2) / dble(N_states)
|
||||
do k=1,N_states
|
||||
pt2_match_weight(k) *= (pt2(k)/pt2_avg)**2
|
||||
enddo
|
||||
SOFT_TOUCH pt2_match_weight
|
||||
call update_pt2_and_variance_weights(pt2, variance, norm, N_states)
|
||||
|
||||
end subroutine
|
||||
|
||||
@ -159,9 +161,9 @@ subroutine selection_collector(zmq_socket_pull, b, N, pt2, variance, norm)
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
integer, intent(in) :: N
|
||||
double precision, intent(inout) :: pt2(N_states)
|
||||
double precision, intent(inout) :: variance(N_states)
|
||||
double precision, intent(inout) :: norm(N_states)
|
||||
double precision, intent(out) :: pt2(N_states)
|
||||
double precision, intent(out) :: variance(N_states)
|
||||
double precision, intent(out) :: norm(N_states)
|
||||
double precision :: pt2_mwen(N_states)
|
||||
double precision :: variance_mwen(N_states)
|
||||
double precision :: norm_mwen(N_states)
|
||||
|
54
src/davidson/print_e_components.irp.f
Normal file
54
src/davidson/print_e_components.irp.f
Normal file
@ -0,0 +1,54 @@
|
||||
subroutine print_energy_components()
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Prints the different components of the energy.
|
||||
END_DOC
|
||||
integer, save :: ifirst = 0
|
||||
double precision :: Vee, Ven, Vnn, Vecp, T, f
|
||||
integer :: i,j,k
|
||||
|
||||
Vnn = nuclear_repulsion
|
||||
|
||||
print *, 'Energy components'
|
||||
print *, '================='
|
||||
print *, ''
|
||||
do k=1,N_states
|
||||
|
||||
Ven = 0.d0
|
||||
Vecp = 0.d0
|
||||
T = 0.d0
|
||||
|
||||
do j=1,mo_num
|
||||
do i=1,mo_num
|
||||
f = one_e_dm_mo_alpha(i,j,k) + one_e_dm_mo_beta(i,j,k)
|
||||
Ven = Ven + f * mo_integrals_n_e(i,j)
|
||||
Vecp = Vecp + f * mo_pseudo_integrals(i,j)
|
||||
T = T + f * mo_kinetic_integrals(i,j)
|
||||
enddo
|
||||
enddo
|
||||
Vee = psi_energy(k) - Ven - Vecp - T
|
||||
|
||||
if (ifirst == 0) then
|
||||
ifirst = 1
|
||||
print *, 'Vnn : Nucleus-Nucleus potential energy'
|
||||
print *, 'Ven : Electron-Nucleus potential energy'
|
||||
print *, 'Vee : Electron-Electron potential energy'
|
||||
print *, 'Vecp : Potential energy of the pseudo-potentials'
|
||||
print *, 'T : Electronic kinetic energy'
|
||||
print *, ''
|
||||
endif
|
||||
|
||||
print *, 'State ', k
|
||||
print *, '---------'
|
||||
print *, ''
|
||||
print *, 'Vnn = ', Vnn
|
||||
print *, 'Ven = ', Ven
|
||||
print *, 'Vee = ', Vee
|
||||
print *, 'Vecp = ', Vecp
|
||||
print *, 'T = ', T
|
||||
print *, ''
|
||||
enddo
|
||||
|
||||
print *, ''
|
||||
|
||||
end
|
@ -28,12 +28,18 @@ doc: Force the wave function to be an eigenfunction of |S^2|
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
[used_weight]
|
||||
[weight_one_e_dm]
|
||||
type: integer
|
||||
doc: Weight used in the calculation of the one-electron density matrix. 0: 1./(c_0^2), 1: 1/N_states, 2: input state-average weight, 3: 1/(Norm_L3(Psi))
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1
|
||||
|
||||
[weight_selection]
|
||||
type: integer
|
||||
doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: rPT2 matching, 3: variance matching, 4: variance and rPT2 matching, 5: variance minimization and matching
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 2
|
||||
|
||||
[threshold_generators]
|
||||
type: Threshold
|
||||
doc: Thresholds on generators (fraction of the square of the norm)
|
||||
@ -89,6 +95,11 @@ doc: Weight of the states in state-average calculations.
|
||||
interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
[selection_factor]
|
||||
type: double precision
|
||||
doc: f such that the number of determinants to add is f * N_det * sqrt(N_states)
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.
|
||||
|
||||
[thresh_sym]
|
||||
type: Threshold
|
||||
|
@ -305,9 +305,9 @@ BEGIN_PROVIDER [ double precision, state_average_weight, (N_states) ]
|
||||
logical :: exists
|
||||
|
||||
state_average_weight(:) = 1.d0
|
||||
if (used_weight == 0) then
|
||||
if (weight_one_e_dm == 0) then
|
||||
state_average_weight(:) = c0_weight(:)
|
||||
else if (used_weight == 1) then
|
||||
else if (weight_one_e_dm == 1) then
|
||||
state_average_weight(:) = 1./N_states
|
||||
else
|
||||
call ezfio_has_determinants_state_average_weight(exists)
|
||||
|
@ -43,4 +43,3 @@ BEGIN_PROVIDER [ double precision, S2_matrix_all_dets,(N_det,N_det) ]
|
||||
!$OMP END PARALLEL DO
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
@ -121,3 +121,26 @@
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_in_r_array_per_atom, (ao_num,n_pts_max_per_atom,nucl_num)]
|
||||
&BEGIN_PROVIDER[double precision, aos_in_r_array_per_atom_transp, (n_pts_max_per_atom,ao_num,nucl_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! aos_in_r_array_per_atom(i,j,k) = value of the ith ao on the jth grid point attached on the kth atom
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
do k = 1, nucl_num
|
||||
do i = 1, n_pts_per_atom(k)
|
||||
r(1) = final_grid_points_per_atom(1,i,k)
|
||||
r(2) = final_grid_points_per_atom(2,i,k)
|
||||
r(3) = final_grid_points_per_atom(3,i,k)
|
||||
call give_all_aos_at_r(r,aos_array)
|
||||
do j = 1, ao_num
|
||||
aos_in_r_array_per_atom(j,i,k) = aos_array(j)
|
||||
aos_in_r_array_per_atom_transp(i,j,k) = aos_array(j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -46,7 +46,7 @@ subroutine run
|
||||
call ZMQ_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, &
|
||||
norm,0) ! Stochastic PT2
|
||||
do k=1,N_states
|
||||
rpt2(:) = pt2(:)/(1.d0 + norm(k))
|
||||
rpt2(k) = pt2(k)/(1.d0 + norm(k))
|
||||
enddo
|
||||
|
||||
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
|
||||
|
@ -31,18 +31,19 @@ subroutine print_summary(e_,pt2_,error_,variance_,norm_,n_det_,n_occ_pattern_,n_
|
||||
|
||||
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
|
||||
write(*,fmt)
|
||||
write(fmt,*) '(12X,', N_states_p, '(6X,A7,1X,I6,10X))'
|
||||
write(fmt,*) '(13X,', N_states_p, '(6X,A7,1X,I6,10X))'
|
||||
write(*,fmt) ('State',k, k=1,N_states_p)
|
||||
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
|
||||
write(*,fmt)
|
||||
write(fmt,*) '(A12,', N_states_p, '(1X,F14.8,15X))'
|
||||
write(fmt,*) '(A13,', N_states_p, '(1X,F14.8,15X))'
|
||||
write(*,fmt) '# E ', e_(1:N_states_p)
|
||||
if (N_states_p > 1) then
|
||||
write(*,fmt) '# Excit. (au)', e_(1:N_states_p)-e_(1)
|
||||
write(*,fmt) '# Excit. (eV)', (e_(1:N_states_p)-e_(1))*27.211396641308d0
|
||||
endif
|
||||
write(fmt,*) '(A13,', 2*N_states_p, '(1X,F14.8))'
|
||||
write(*,fmt) '# PT2'//pt2_string, (pt2_(k), error_(k), k=1,N_states_p)
|
||||
write(*,fmt) '# PT2 '//pt2_string, (pt2_(k), error_(k), k=1,N_states_p)
|
||||
write(*,fmt) '# rPT2'//pt2_string, (pt2_(k)*f(k), error_(k)*f(k), k=1,N_states_p)
|
||||
write(*,'(A)') '#'
|
||||
write(*,fmt) '# E+PT2 ', (e_(k)+pt2_(k),error_(k), k=1,N_states_p)
|
||||
write(*,fmt) '# E+rPT2 ', (e_(k)+pt2_(k)*f(k),error_(k)*f(k), k=1,N_states_p)
|
||||
@ -97,5 +98,7 @@ subroutine print_summary(e_,pt2_,error_,variance_,norm_,n_det_,n_occ_pattern_,n_
|
||||
enddo
|
||||
endif
|
||||
|
||||
call print_energy_components()
|
||||
|
||||
end subroutine
|
||||
|
||||
|
@ -66,7 +66,7 @@ BEGIN_PROVIDER [double precision, slater_bragg_radii_per_atom, (nucl_num)]
|
||||
implicit none
|
||||
integer :: i
|
||||
do i = 1, nucl_num
|
||||
slater_bragg_radii_per_atom(i) = slater_bragg_radii(int(nucl_charge(i)))
|
||||
slater_bragg_radii_per_atom(i) = slater_bragg_radii(max(1,int(nucl_charge(i))))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
@ -74,7 +74,7 @@ BEGIN_PROVIDER [double precision, slater_bragg_radii_per_atom_ua, (nucl_num)]
|
||||
implicit none
|
||||
integer :: i
|
||||
do i = 1, nucl_num
|
||||
slater_bragg_radii_per_atom_ua(i) = slater_bragg_radii_ua(int(nucl_charge(i)))
|
||||
slater_bragg_radii_per_atom_ua(i) = slater_bragg_radii_ua(max(1,int(nucl_charge(i))))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user