mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 04:13:55 +01:00
commit
2026a1d11f
@ -109,6 +109,101 @@ end
|
||||
grad_dm_b *= 2.d0
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine density_and_grad_lapl_alpha_beta_and_all_aos_and_grad_aos_at_r(r,dm_a,dm_b, grad_dm_a, grad_dm_b, lapl_dm_a, lapl_dm_b, aos_array, grad_aos_array, lapl_aos_array)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! input:
|
||||
!
|
||||
! * r(1) ==> r(1) = x, r(2) = y, r(3) = z
|
||||
!
|
||||
! output:
|
||||
!
|
||||
! * dm_a = alpha density evaluated at r
|
||||
! * dm_b = beta density evaluated at r
|
||||
! * aos_array(i) = ao(i) evaluated at r
|
||||
! * grad_dm_a(1) = X gradient of the alpha density evaluated in r
|
||||
! * grad_dm_a(1) = X gradient of the beta density evaluated in r
|
||||
! * grad_aos_array(1) = X gradient of the aos(i) evaluated at r
|
||||
!
|
||||
END_DOC
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: dm_a(N_states),dm_b(N_states)
|
||||
double precision, intent(out) :: grad_dm_a(3,N_states),grad_dm_b(3,N_states)
|
||||
double precision, intent(out) :: lapl_dm_a(3,N_states),lapl_dm_b(3,N_states)
|
||||
double precision, intent(out) :: grad_aos_array(3,ao_num)
|
||||
double precision, intent(out) :: lapl_aos_array(3,ao_num)
|
||||
integer :: i,j,istate
|
||||
double precision :: aos_array(ao_num),aos_array_bis(ao_num),u_dot_v
|
||||
double precision :: aos_grad_array(ao_num,3), aos_grad_array_bis(ao_num,3)
|
||||
double precision :: aos_lapl_array(ao_num,3)
|
||||
|
||||
call give_all_aos_and_grad_and_lapl_at_r(r,aos_array,grad_aos_array,lapl_aos_array)
|
||||
do i = 1, ao_num
|
||||
do j = 1, 3
|
||||
aos_grad_array(i,j) = grad_aos_array(j,i)
|
||||
aos_lapl_array(i,j) = lapl_aos_array(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do istate = 1, N_states
|
||||
! alpha density
|
||||
! aos_array_bis = \rho_ao * aos_array
|
||||
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_array,1,0.d0,aos_array_bis,1)
|
||||
dm_a(istate) = u_dot_v(aos_array,aos_array_bis,ao_num)
|
||||
|
||||
! grad_dm(1) = \sum_i aos_grad_array(i,1) * aos_array_bis(i)
|
||||
grad_dm_a(1,istate) = u_dot_v(aos_grad_array(1,1),aos_array_bis,ao_num)
|
||||
grad_dm_a(2,istate) = u_dot_v(aos_grad_array(1,2),aos_array_bis,ao_num)
|
||||
grad_dm_a(3,istate) = u_dot_v(aos_grad_array(1,3),aos_array_bis,ao_num)
|
||||
|
||||
! lapl_dm(1) = \sum_i aos_lapl_array(i,1) * aos_array_bis(i)
|
||||
lapl_dm_a(1,istate) = 2.d0 * u_dot_v(aos_lapl_array(1,1),aos_array_bis,ao_num)
|
||||
lapl_dm_a(2,istate) = 2.d0 * u_dot_v(aos_lapl_array(1,2),aos_array_bis,ao_num)
|
||||
lapl_dm_a(3,istate) = 2.d0 * u_dot_v(aos_lapl_array(1,3),aos_array_bis,ao_num)
|
||||
|
||||
! aos_grad_array_bis(1) = \rho_ao * aos_grad_array(1)
|
||||
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_grad_array(1,1),1,0.d0,aos_grad_array_bis(1,1),1)
|
||||
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_grad_array(1,2),1,0.d0,aos_grad_array_bis(1,2),1)
|
||||
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_grad_array(1,3),1,0.d0,aos_grad_array_bis(1,3),1)
|
||||
! lapl_dm(1) += \sum_i aos_grad_array(i,1) * aos_grad_array_bis(i)
|
||||
lapl_dm_a(1,istate) += 2.d0 * u_dot_v(aos_grad_array(1,1),aos_grad_array_bis,ao_num)
|
||||
lapl_dm_a(2,istate) += 2.d0 * u_dot_v(aos_grad_array(1,2),aos_grad_array_bis,ao_num)
|
||||
lapl_dm_a(3,istate) += 2.d0 * u_dot_v(aos_grad_array(1,3),aos_grad_array_bis,ao_num)
|
||||
|
||||
|
||||
! beta density
|
||||
call dsymv('U',ao_num,1.d0,one_e_dm_beta_ao_for_dft(1,1,istate),size(one_e_dm_beta_ao_for_dft,1),aos_array,1,0.d0,aos_array_bis,1)
|
||||
dm_b(istate) = u_dot_v(aos_array,aos_array_bis,ao_num)
|
||||
|
||||
! grad_dm(1) = \sum_i aos_grad_array(i,1) * aos_array_bis(i)
|
||||
grad_dm_b(1,istate) = u_dot_v(aos_grad_array(1,1),aos_array_bis,ao_num)
|
||||
grad_dm_b(2,istate) = u_dot_v(aos_grad_array(1,2),aos_array_bis,ao_num)
|
||||
grad_dm_b(3,istate) = u_dot_v(aos_grad_array(1,3),aos_array_bis,ao_num)
|
||||
|
||||
! lapl_dm(1) = \sum_i aos_lapl_array(i,1) * aos_array_bis(i)
|
||||
lapl_dm_b(1,istate) = 2.d0 * u_dot_v(aos_lapl_array(1,1),aos_array_bis,ao_num)
|
||||
lapl_dm_b(2,istate) = 2.d0 * u_dot_v(aos_lapl_array(1,2),aos_array_bis,ao_num)
|
||||
lapl_dm_b(3,istate) = 2.d0 * u_dot_v(aos_lapl_array(1,3),aos_array_bis,ao_num)
|
||||
|
||||
! aos_grad_array_bis(1) = \rho_ao * aos_grad_array(1)
|
||||
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_grad_array(1,1),1,0.d0,aos_grad_array_bis(1,1),1)
|
||||
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_grad_array(1,2),1,0.d0,aos_grad_array_bis(1,2),1)
|
||||
call dsymv('U',ao_num,1.d0,one_e_dm_alpha_ao_for_dft(1,1,istate),size(one_e_dm_alpha_ao_for_dft,1),aos_grad_array(1,3),1,0.d0,aos_grad_array_bis(1,3),1)
|
||||
! lapl_dm(1) += \sum_i aos_grad_array(i,1) * aos_grad_array_bis(i)
|
||||
lapl_dm_b(1,istate) += 2.d0 * u_dot_v(aos_grad_array(1,1),aos_grad_array_bis,ao_num)
|
||||
lapl_dm_b(2,istate) += 2.d0 * u_dot_v(aos_grad_array(1,2),aos_grad_array_bis,ao_num)
|
||||
lapl_dm_b(3,istate) += 2.d0 * u_dot_v(aos_grad_array(1,3),aos_grad_array_bis,ao_num)
|
||||
enddo
|
||||
grad_dm_a *= 2.d0
|
||||
grad_dm_b *= 2.d0
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine dm_dft_alpha_beta_no_core_at_r(r,dm_a,dm_b)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -257,12 +352,13 @@ END_PROVIDER
|
||||
&BEGIN_PROVIDER [double precision, one_e_dm_and_grad_beta_in_r, (4,n_points_final_grid,N_states) ]
|
||||
&BEGIN_PROVIDER [double precision, one_e_grad_2_dm_alpha_at_r, (n_points_final_grid,N_states) ]
|
||||
&BEGIN_PROVIDER [double precision, one_e_grad_2_dm_beta_at_r, (n_points_final_grid,N_states) ]
|
||||
&BEGIN_PROVIDER [double precision, one_e_grad_dm_squared_at_r, (3,n_points_final_grid,N_states) ]
|
||||
BEGIN_DOC
|
||||
! one_e_dm_and_grad_alpha_in_r(1,i,i_state) = d\dx n_alpha(r_i,istate)
|
||||
! one_e_dm_and_grad_alpha_in_r(2,i,i_state) = d\dy n_alpha(r_i,istate)
|
||||
! one_e_dm_and_grad_alpha_in_r(3,i,i_state) = d\dz n_alpha(r_i,istate)
|
||||
! one_e_dm_and_grad_alpha_in_r(4,i,i_state) = n_alpha(r_i,istate)
|
||||
! one_e_grad_2_dm_alpha_at_r(i,istate) = d\dx n_alpha(r_i,istate)^2 + d\dy n_alpha(r_i,istate)^2 + d\dz n_alpha(r_i,istate)^2
|
||||
! one_e_grad_2_dm_alpha_at_r(i,istate) = (d\dx n_alpha(r_i,istate))^2 + (d\dy n_alpha(r_i,istate))^2 + (d\dz n_alpha(r_i,istate))^2
|
||||
! where r_i is the ith point of the grid and istate is the state number
|
||||
END_DOC
|
||||
implicit none
|
||||
@ -291,6 +387,9 @@ END_PROVIDER
|
||||
one_e_dm_and_grad_beta_in_r(3,i,istate) = dm_b_grad(3,istate)
|
||||
one_e_dm_and_grad_beta_in_r(4,i,istate) = dm_b(istate)
|
||||
one_e_grad_2_dm_beta_at_r(i,istate) = dm_b_grad(1,istate) * dm_b_grad(1,istate) + dm_b_grad(2,istate) * dm_b_grad(2,istate) + dm_b_grad(3,istate) * dm_b_grad(3,istate)
|
||||
one_e_grad_dm_squared_at_r(1,i,istate) = 2.D0 * (dm_a_grad(1,istate) + dm_b_grad(1,istate) ) * (one_e_dm_and_grad_alpha_in_r(4,i,istate) + one_e_dm_and_grad_beta_in_r(4,i,istate))
|
||||
one_e_grad_dm_squared_at_r(2,i,istate) = 2.D0 * (dm_a_grad(2,istate) + dm_b_grad(2,istate) ) * (one_e_dm_and_grad_alpha_in_r(4,i,istate) + one_e_dm_and_grad_beta_in_r(4,i,istate))
|
||||
one_e_grad_dm_squared_at_r(3,i,istate) = 2.D0 * (dm_a_grad(3,istate) + dm_b_grad(3,istate) ) * (one_e_dm_and_grad_alpha_in_r(4,i,istate) + one_e_dm_and_grad_beta_in_r(4,i,istate))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
121
src/dft_utils_one_e/ec_lyp.irp.f
Normal file
121
src/dft_utils_one_e/ec_lyp.irp.f
Normal file
@ -0,0 +1,121 @@
|
||||
subroutine give_all_stuffs_in_r_for_lyp_88(r,rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2)
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: rho_a(N_states),rho_b(N_states),grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_2(N_states),rho(N_states)
|
||||
double precision :: grad_rho_a(3,N_states),grad_rho_b(3,N_states),grad_rho_a_b(N_states)
|
||||
double precision :: grad_aos_array(3,ao_num),aos_array(ao_num)
|
||||
|
||||
call density_and_grad_alpha_beta_and_all_aos_and_grad_aos_at_r(r,rho_a,rho_b, grad_rho_a, grad_rho_b, aos_array, grad_aos_array)
|
||||
integer :: i,istate
|
||||
rho = rho_a + rho_b
|
||||
grad_rho_a_2 = 0.d0
|
||||
grad_rho_b_2 = 0.d0
|
||||
grad_rho_a_b = 0.d0
|
||||
do istate = 1, N_states
|
||||
do i = 1, 3
|
||||
grad_rho_a_2(istate) += grad_rho_a(i,istate) * grad_rho_a(i,istate)
|
||||
grad_rho_b_2(istate) += grad_rho_b(i,istate) * grad_rho_b(i,istate)
|
||||
grad_rho_a_b(istate) += grad_rho_a(i,istate) * grad_rho_b(i,istate)
|
||||
enddo
|
||||
enddo
|
||||
grad_rho_2 = grad_rho_a_2 + grad_rho_b_2 + 2.d0 * grad_rho_a_b
|
||||
|
||||
end
|
||||
|
||||
|
||||
double precision function ec_lyp_88(rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2)
|
||||
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! LYP functional of the Lee, Yan, Parr, Phys. Rev B 1988, Vol 37, page 785.
|
||||
! The expression used is the one by Miehlich, Savin, Stoll, Preuss, CPL, 1989 which gets rid of the laplacian of the density
|
||||
END_DOC
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
! Input variables
|
||||
|
||||
double precision, intent(in) :: rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2
|
||||
|
||||
! Local variables
|
||||
|
||||
double precision :: a,b,c,d,c_f,omega,delta
|
||||
double precision :: rho_13,rho_inv_13,rho_83,rho_113,rho_inv_113,denom
|
||||
double precision :: thr,huge_num,rho_inv
|
||||
double precision :: cst_2_113,cst_8_3,rho_2,rho_a_2,rho_b_2
|
||||
double precision :: tmp1,tmp2,tmp3,tmp4
|
||||
double precision :: big1,big2,big3
|
||||
|
||||
! Output variables
|
||||
|
||||
|
||||
! Constants of the LYP correlation functional
|
||||
|
||||
a = 0.04918d0
|
||||
b = 0.132d0
|
||||
c = 0.2533d0
|
||||
d = 0.349d0
|
||||
|
||||
thr = 1d-10
|
||||
huge_num = 1.d0/thr
|
||||
|
||||
if(rho.lt.0.d0)then
|
||||
print*,'pb !! rho.lt.0.d0'
|
||||
stop
|
||||
endif
|
||||
rho_13 = rho**(1d0/3d0)
|
||||
rho_113 = rho**(11d0/3d0)
|
||||
|
||||
if(dabs(rho_13) < thr) then
|
||||
rho_inv_13 = huge_num
|
||||
else
|
||||
rho_inv_13 = 1.d0/rho_13
|
||||
endif
|
||||
|
||||
if (dabs(rho_113) < thr) then
|
||||
rho_inv_113 = huge_num
|
||||
else
|
||||
rho_inv_113 = 1d0/rho_113
|
||||
endif
|
||||
|
||||
if (dabs(rho) < thr) then
|
||||
rho_inv = huge_num
|
||||
else
|
||||
rho_inv = 1d0/rho
|
||||
endif
|
||||
|
||||
! Useful quantities to predefine
|
||||
|
||||
denom = 1d0/(1d0 + d*rho_inv_13)
|
||||
omega = rho_inv_113*exp(-c*rho_inv_13)*denom
|
||||
delta = c*rho_inv_13 + d*rho_inv_13*denom
|
||||
c_f = 0.3d0*(3d0*pi*pi)**(2d0/3d0)
|
||||
|
||||
rho_2 = rho *rho
|
||||
rho_a_2 = rho_a*rho_a
|
||||
rho_b_2 = rho_b*rho_b
|
||||
|
||||
cst_2_113 = 2d0**(11d0/3d0)
|
||||
cst_8_3 = 8d0/3d0
|
||||
|
||||
! first term in the equation (2) of Preuss CPL, 1989
|
||||
|
||||
big1 = 4d0*denom*rho_a*rho_b*rho_inv
|
||||
|
||||
tmp1 = cst_2_113*c_f*(rho_a**cst_8_3 + rho_b**cst_8_3)
|
||||
tmp2 = (47d0/18d0 - 7d0/18d0*delta)*grad_rho_2
|
||||
tmp3 = - (5d0/2d0 - 1.d0/18d0*delta)*(grad_rho_a_2 + grad_rho_b_2)
|
||||
tmp4 = - (delta - 11d0)/9d0*(rho_a*rho_inv*grad_rho_a_2 + rho_b*rho_inv*grad_rho_b_2)
|
||||
big2 = rho_a*rho_b*(tmp1 + tmp2 + tmp3 + tmp4)
|
||||
|
||||
tmp1 = -2d0/3d0*rho_2*grad_rho_2
|
||||
tmp2 = grad_rho_b_2*(2d0/3d0*rho_2 - rho_a_2)
|
||||
tmp3 = grad_rho_a_2*(2d0/3d0*rho_2 - rho_b_2)
|
||||
big3 = tmp1 + tmp2 + tmp3
|
||||
|
||||
|
||||
ec_lyp_88 = -a*big1 -a*b*omega*big2 -a*b*omega*big3
|
||||
|
||||
end
|
||||
|
@ -35,3 +35,40 @@
|
||||
short_range_Hartree = short_range_Hartree * 0.5d0
|
||||
print*, 'short_range_Hartree',short_range_Hartree
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, regular_range_Hartree_operator, (mo_num,mo_num,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, regular_range_Hartree, (N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! regular_range_Hartree_operator(i,j) = $\int dr i(r)j(r) \int r' \rho(r') W_{ee}^{sr}$
|
||||
!
|
||||
! regular_range_Hartree = $1/2 \sum_{i,j} \rho_{ij} \mathtt{regular_range_Hartree_operator}(i,j)$
|
||||
!
|
||||
! = $1/2 \int dr \int r' \rho(r) \rho(r') W_{ee}^{sr}$
|
||||
END_DOC
|
||||
integer :: i,j,k,l,m,n,istate
|
||||
double precision :: get_two_e_integral
|
||||
double precision :: integral, contrib
|
||||
double precision :: integrals_array(mo_num,mo_num)
|
||||
regular_range_Hartree_operator = 0.d0
|
||||
regular_range_Hartree = 0.d0
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
if(dabs(one_e_dm_average_mo_for_dft(j,i)).le.1.d-12)cycle
|
||||
call get_mo_two_e_integrals_i1j1(i,j,mo_num,integrals_array,mo_integrals_map)
|
||||
do istate = 1, N_states
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
integral = integrals_array(l,k)
|
||||
contrib = one_e_dm_mo_for_dft(i,j,istate) * integral
|
||||
regular_range_Hartree_operator(l,k,istate) += contrib
|
||||
regular_range_Hartree(istate) += contrib * one_e_dm_mo_for_dft(k,l,istate)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
regular_range_Hartree = regular_range_Hartree * 0.5d0
|
||||
print*, 'regular_range_Hartree',regular_range_Hartree
|
||||
END_PROVIDER
|
||||
|
Loading…
Reference in New Issue
Block a user