10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-05 19:08:47 +01:00
This commit is contained in:
eginer 2019-02-11 21:03:44 +01:00
commit 1e35816a61
22 changed files with 1134 additions and 473 deletions

2
TODO
View File

@ -58,3 +58,5 @@ Doc: plugins et qp_plugins
Ajouter les symetries dans devel Ajouter les symetries dans devel
Compiler ezfio avec openmp Compiler ezfio avec openmp
# Parallelize i_H_psi

View File

@ -17,3 +17,17 @@ BEGIN_PROVIDER [ character*(32), DFT_TYPE]
DFT_TYPE = "GGA" DFT_TYPE = "GGA"
endif endif
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ logical, same_xc_func ]
BEGIN_DOC
! true if the exchange and correlation functionals are the same
END_DOC
implicit none
if(trim(correlation_functional).eq.trim(exchange_functional))then
same_xc_func = .True.
else
same_xc_func = .False.
endif
END_PROVIDER

View File

@ -133,3 +133,79 @@ END_PROVIDER
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [double precision, Trace_v_xc_new, (N_states)]
implicit none
integer :: i,j,istate
double precision :: dm
BEGIN_DOC
! Trace_v_xc = \sum_{i,j} (rho_{ij}_\alpha v^{xc}_{ij}^\alpha + rho_{ij}_\beta v^{xc}_{ij}^\beta)
END_DOC
do istate = 1, N_states
Trace_v_xc_new(istate) = 0.d0
do i = 1, mo_num
do j = 1, mo_num
Trace_v_xc_new(istate) += (potential_xc_alpha_mo(j,i,istate) ) * one_e_dm_mo_alpha_for_dft(j,i,istate)
Trace_v_xc_new(istate) += (potential_xc_beta_mo(j,i,istate) ) * one_e_dm_mo_beta_for_dft(j,i,istate)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_xc_alpha_mo,(mo_num,mo_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_xc_beta_mo,(mo_num,mo_num,N_states)]
implicit none
integer :: istate
do istate = 1, N_states
call ao_to_mo( &
potential_xc_alpha_ao(1,1,istate), &
size(potential_xc_alpha_ao,1), &
potential_xc_alpha_mo(1,1,istate), &
size(potential_xc_alpha_mo,1) &
)
call ao_to_mo( &
potential_xc_beta_ao(1,1,istate), &
size(potential_xc_beta_ao,1), &
potential_xc_beta_mo(1,1,istate), &
size(potential_xc_beta_mo,1) &
)
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_xc_alpha_ao,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_xc_beta_ao,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! general providers for the alpha/beta exchange/correlation potentials on the AO basis
END_DOC
if(trim(exchange_functional)=="short_range_LDA")then
potential_xc_alpha_ao = potential_sr_xc_alpha_ao_LDA
potential_xc_beta_ao = potential_sr_xc_beta_ao_LDA
else if(trim(exchange_functional)=="LDA")then
potential_xc_alpha_ao = potential_xc_alpha_ao_LDA
potential_xc_beta_ao = potential_xc_beta_ao_LDA
else if(exchange_functional.EQ."None")then
potential_xc_alpha_ao = 0.d0
potential_xc_beta_ao = 0.d0
else if(trim(exchange_functional)=="short_range_PBE")then
potential_xc_alpha_ao = potential_sr_xc_alpha_ao_PBE
potential_xc_beta_ao = potential_sr_xc_beta_ao_PBE
else if(trim(exchange_functional)=="PBE")then
potential_xc_alpha_ao = potential_xc_alpha_ao_PBE
potential_xc_beta_ao = potential_xc_beta_ao_PBE
else if(exchange_functional.EQ."None")then
potential_xc_alpha_ao = 0.d0
potential_xc_beta_ao = 0.d0
else
print*, 'Exchange functional required does not exist ...'
print*,'exchange_functional',exchange_functional
stop
endif
END_PROVIDER

View File

@ -21,14 +21,10 @@
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER[double precision, aos_grad_in_r_array, (ao_num,n_points_final_grid,3)] BEGIN_PROVIDER[double precision, aos_grad_in_r_array, (ao_num,n_points_final_grid,3)]
&BEGIN_PROVIDER[double precision, aos_grad_in_r_array_transp, (n_points_final_grid,ao_num,3)]
&BEGIN_PROVIDER[double precision, aos_grad_in_r_array_transp_xyz, (3,n_points_final_grid,ao_num)]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! aos_grad_in_r_array(i,j,k) = value of the kth component of the gradient of ith ao on the jth grid point ! aos_grad_in_r_array(i,j,k) = value of the kth component of the gradient of ith ao on the jth grid point
! !
! aos_grad_in_r_array_transp(i,j,k) = value of the kth component of the gradient of jth ao on the ith grid point
!
! k = 1 : x, k= 2, y, k 3, z ! k = 1 : x, k= 2, y, k 3, z
END_DOC END_DOC
integer :: i,j,m integer :: i,j,m
@ -42,10 +38,59 @@
do m = 1, 3 do m = 1, 3
do j = 1, ao_num do j = 1, ao_num
aos_grad_in_r_array(j,i,m) = aos_grad_array(m,j) aos_grad_in_r_array(j,i,m) = aos_grad_array(m,j)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER[double precision, aos_grad_in_r_array_transp, (n_points_final_grid,ao_num,3)]
implicit none
BEGIN_DOC
! aos_grad_in_r_array_transp(i,j,k) = value of the kth component of the gradient of jth ao on the ith grid point
!
! k = 1 : x, k= 2, y, k 3, z
END_DOC
integer :: i,j,m
double precision :: aos_array(ao_num), r(3)
double precision :: aos_grad_array(3,ao_num)
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
call give_all_aos_and_grad_at_r(r,aos_array,aos_grad_array)
do m = 1, 3
do j = 1, ao_num
aos_grad_in_r_array_transp(i,j,m) = aos_grad_array(m,j) aos_grad_in_r_array_transp(i,j,m) = aos_grad_array(m,j)
enddo enddo
enddo enddo
enddo enddo
END_PROVIDER
BEGIN_PROVIDER[double precision, aos_grad_in_r_array_transp_xyz, (3,ao_num,n_points_final_grid)]
implicit none
BEGIN_DOC
! aos_grad_in_r_array_transp_xyz(k,i,j) = value of the kth component of the gradient of jth ao on the ith grid point
!
! k = 1 : x, k= 2, y, k 3, z
END_DOC
integer :: i,j,m
double precision :: aos_array(ao_num), r(3)
double precision :: aos_grad_array(3,ao_num)
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
call give_all_aos_and_grad_at_r(r,aos_array,aos_grad_array)
do m = 1, 3
do j = 1, ao_num
aos_grad_in_r_array_transp_xyz(m,j,i) = aos_grad_array(m,j)
enddo
enddo
enddo
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER[double precision, aos_lapl_in_r_array, (ao_num,n_points_final_grid,3)] BEGIN_PROVIDER[double precision, aos_lapl_in_r_array, (ao_num,n_points_final_grid,3)]

View File

@ -1,192 +0,0 @@
BEGIN_PROVIDER[double precision, aos_vc_alpha_LDA_w, (n_points_final_grid,ao_num,N_states)]
&BEGIN_PROVIDER[double precision, aos_vc_beta_LDA_w, (n_points_final_grid,ao_num,N_states)]
&BEGIN_PROVIDER[double precision, aos_vx_alpha_LDA_w, (n_points_final_grid,ao_num,N_states)]
&BEGIN_PROVIDER[double precision, aos_vx_beta_LDA_w, (n_points_final_grid,ao_num,N_states)]
implicit none
BEGIN_DOC
! aos_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j
double precision :: r(3)
double precision :: mu,weight
double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b
double precision, allocatable :: rhoa(:),rhob(:)
double precision :: mu_local
mu_local = 1.d-9
allocate(rhoa(N_states), rhob(N_states))
do istate = 1, N_states
do j =1, ao_num
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
rhob(istate) = one_e_dm_beta_at_r(i,istate)
call ec_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
call ex_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
aos_vc_alpha_LDA_w(i,j,istate) = vc_a * aos_in_r_array_transp(i,j)*weight
aos_vc_beta_LDA_w(i,j,istate) = vc_b * aos_in_r_array_transp(i,j)*weight
aos_vx_alpha_LDA_w(i,j,istate) = vx_a * aos_in_r_array_transp(i,j)*weight
aos_vx_beta_LDA_w(i,j,istate) = vx_b * aos_in_r_array_transp(i,j)*weight
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_x_alpha_ao_LDA,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_x_beta_ao_LDA ,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_c_alpha_ao_LDA,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_c_beta_ao_LDA ,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! short range exchange/correlation alpha/beta potentials with LDA functional on the AO basis
END_DOC
integer :: istate
double precision :: wall_1,wall_2
call wall_time(wall_1)
do istate = 1, N_states
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vc_alpha_LDA_w(1,1,istate),n_points_final_grid,0.d0,potential_c_alpha_ao_LDA(1,1,istate),ao_num)
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vc_beta_LDA_w(1,1,istate) ,n_points_final_grid,0.d0,potential_c_beta_ao_LDA(1,1,istate),ao_num)
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vx_alpha_LDA_w(1,1,istate),n_points_final_grid,0.d0,potential_x_alpha_ao_LDA(1,1,istate),ao_num)
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vx_beta_LDA_w(1,1,istate) ,n_points_final_grid,0.d0,potential_x_beta_ao_LDA(1,1,istate),ao_num)
enddo
call wall_time(wall_2)
print*,'time to provide potential_x/c_alpha/beta_ao_LDA = ',wall_2 - wall_1
END_PROVIDER
BEGIN_PROVIDER[double precision, aos_vc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vx_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vx_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvc_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvc_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvx_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvx_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, grad_aos_dvc_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, grad_aos_dvc_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, grad_aos_dvx_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, grad_aos_dvx_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
implicit none
BEGIN_DOC
! aos_vxc_alpha_PBE_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j,m
double precision :: r(3)
double precision :: mu,weight
double precision, allocatable :: ex(:), ec(:)
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
enddo
! inputs
call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
vx_rho_a(istate) *= weight
vc_rho_a(istate) *= weight
vx_rho_b(istate) *= weight
vc_rho_b(istate) *= weight
do m= 1,3
contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
enddo
do j = 1, ao_num
aos_vc_alpha_PBE_w(j,i,istate) = vc_rho_a(istate) * aos_in_r_array(j,i)
aos_vc_beta_PBE_w (j,i,istate) = vc_rho_b(istate) * aos_in_r_array(j,i)
aos_vx_alpha_PBE_w(j,i,istate) = vx_rho_a(istate) * aos_in_r_array(j,i)
aos_vx_beta_PBE_w (j,i,istate) = vx_rho_b(istate) * aos_in_r_array(j,i)
enddo
do m = 1,3
do j = 1, ao_num
aos_dvc_alpha_PBE_w(j,i,m,istate) = contrib_grad_ca(m,istate) * aos_in_r_array(j,i)
aos_dvc_beta_PBE_w (j,i,m,istate) = contrib_grad_cb(m,istate) * aos_in_r_array(j,i)
aos_dvx_alpha_PBE_w(j,i,m,istate) = contrib_grad_xa(m,istate) * aos_in_r_array(j,i)
aos_dvx_beta_PBE_w (j,i,m,istate) = contrib_grad_xb(m,istate) * aos_in_r_array(j,i)
grad_aos_dvc_alpha_PBE_w (j,i,m,istate) = contrib_grad_ca(m,istate) * aos_grad_in_r_array(m,j,i)
grad_aos_dvc_beta_PBE_w (j,i,m,istate) = contrib_grad_cb(m,istate) * aos_grad_in_r_array(m,j,i)
grad_aos_dvx_alpha_PBE_w (j,i,m,istate) = contrib_grad_xa(m,istate) * aos_grad_in_r_array(m,j,i)
grad_aos_dvx_beta_PBE_w (j,i,m,istate) = contrib_grad_xb(m,istate) * aos_grad_in_r_array(m,j,i)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_x_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_x_beta_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_c_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_c_beta_ao_PBE,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! exchange/correlation alpha/beta potentials with the short range PBE functional on the AO basis
END_DOC
integer :: istate, m
double precision :: wall_1,wall_2
call wall_time(wall_1)
potential_c_alpha_ao_PBE = 0.d0
potential_x_alpha_ao_PBE = 0.d0
potential_c_beta_ao_PBE = 0.d0
potential_x_beta_ao_PBE = 0.d0
do istate = 1, N_states
! correlation alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_vc_alpha_PBE_w(1,1,istate),size(aos_vc_alpha_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_c_alpha_ao_PBE(1,1,istate),size(potential_c_alpha_ao_PBE,1))
! correlation beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_vc_beta_PBE_w(1,1,istate),size(aos_vc_beta_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_c_beta_ao_PBE(1,1,istate),size(potential_c_beta_ao_PBE,1))
! exchange alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_vx_alpha_PBE_w(1,1,istate),size(aos_vx_alpha_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_x_alpha_ao_PBE(1,1,istate),size(potential_x_alpha_ao_PBE,1))
! exchange beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_vx_beta_PBE_w(1,1,istate),size(aos_vx_beta_PBE_w,1), aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_x_beta_ao_PBE(1,1,istate), size(potential_x_beta_ao_PBE,1))
do m= 1,3
! correlation alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_dvc_alpha_PBE_w(1,1,m,istate),size(aos_dvc_alpha_PBE_w,1),aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,potential_c_alpha_ao_PBE(1,1,istate),size(potential_c_alpha_ao_PBE,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,grad_aos_dvc_alpha_PBE_w(1,1,m,istate),size(grad_aos_dvc_alpha_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_c_alpha_ao_PBE(1,1,istate),size(potential_c_alpha_ao_PBE,1))
! correlation beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_dvc_beta_PBE_w(1,1,m,istate),size(aos_dvc_beta_PBE_w,1),aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,potential_c_beta_ao_PBE(1,1,istate),size(potential_c_beta_ao_PBE,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,grad_aos_dvc_beta_PBE_w(1,1,m,istate),size(grad_aos_dvc_beta_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_c_beta_ao_PBE(1,1,istate),size(potential_c_beta_ao_PBE,1))
! exchange alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_dvx_alpha_PBE_w(1,1,m,istate),size(aos_dvx_alpha_PBE_w,1),aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,potential_x_alpha_ao_PBE(1,1,istate),size(potential_x_alpha_ao_PBE,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,grad_aos_dvx_alpha_PBE_w(1,1,m,istate),size(grad_aos_dvx_alpha_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_x_alpha_ao_PBE(1,1,istate),size(potential_x_alpha_ao_PBE,1))
! exchange beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_dvx_beta_PBE_w(1,1,m,istate),size(aos_dvx_beta_PBE_w,1),aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,potential_x_beta_ao_PBE(1,1,istate),size(potential_x_beta_ao_PBE,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,grad_aos_dvx_beta_PBE_w(1,1,m,istate),size(grad_aos_dvx_beta_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_x_beta_ao_PBE(1,1,istate),size(potential_x_beta_ao_PBE,1))
enddo
enddo
call wall_time(wall_2)
END_PROVIDER

View File

@ -0,0 +1,83 @@
BEGIN_PROVIDER[double precision, aos_vc_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vc_beta_LDA_w, (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vx_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vx_beta_LDA_w, (ao_num,n_points_final_grid,N_states)]
implicit none
BEGIN_DOC
! aos_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j
double precision :: r(3)
double precision :: mu,weight
double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b
double precision, allocatable :: rhoa(:),rhob(:)
double precision :: mu_local
mu_local = 1.d-9
allocate(rhoa(N_states), rhob(N_states))
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
rhob(istate) = one_e_dm_beta_at_r(i,istate)
call ec_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
call ex_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
do j =1, ao_num
aos_vc_alpha_LDA_w(j,i,istate) = vc_a * aos_in_r_array(j,i)*weight
aos_vc_beta_LDA_w(j,i,istate) = vc_b * aos_in_r_array(j,i)*weight
aos_vx_alpha_LDA_w(j,i,istate) = vx_a * aos_in_r_array(j,i)*weight
aos_vx_beta_LDA_w(j,i,istate) = vx_b * aos_in_r_array(j,i)*weight
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_x_alpha_ao_LDA,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_x_beta_ao_LDA,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! short range exchange alpha/beta potentials with LDA functional on the |AO| basis
END_DOC
! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states.
integer :: istate
do istate = 1, N_states
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_vx_alpha_LDA_w(1,1,istate),size(aos_vx_alpha_LDA_w,1),0.d0,&
potential_x_alpha_ao_LDA(1,1,istate),size(potential_x_alpha_ao_LDA,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_vx_beta_LDA_w(1,1,istate),size(aos_vx_beta_LDA_w,1),0.d0,&
potential_x_beta_ao_LDA(1,1,istate),size(potential_x_beta_ao_LDA,1))
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_c_alpha_ao_LDA,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_c_beta_ao_LDA,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! short range correlation alpha/beta potentials with LDA functional on the |AO| basis
END_DOC
! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states.
integer :: istate
do istate = 1, N_states
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_vc_alpha_LDA_w(1,1,istate),size(aos_vc_alpha_LDA_w,1),0.d0,&
potential_c_alpha_ao_LDA(1,1,istate),size(potential_c_alpha_ao_LDA,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_vc_beta_LDA_w(1,1,istate),size(aos_vc_beta_LDA_w,1),0.d0,&
potential_c_beta_ao_LDA(1,1,istate),size(potential_c_beta_ao_LDA,1))
enddo
END_PROVIDER

View File

@ -0,0 +1,53 @@
BEGIN_PROVIDER[double precision, aos_vxc_alpha_LDA_w, (n_points_final_grid,ao_num,N_states)]
&BEGIN_PROVIDER[double precision, aos_vxc_beta_LDA_w, (n_points_final_grid,ao_num,N_states)]
implicit none
BEGIN_DOC
! aos_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j
double precision :: r(3)
double precision :: mu,weight
double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b
double precision, allocatable :: rhoa(:),rhob(:)
double precision :: mu_local
mu_local = 1.d-9
allocate(rhoa(N_states), rhob(N_states))
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
rhob(istate) = one_e_dm_beta_at_r(i,istate)
call ec_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
call ex_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
do j =1, ao_num
aos_vxc_alpha_LDA_w(i,j,istate) = (vc_a + vx_a) * aos_in_r_array(j,i)*weight
aos_vxc_beta_LDA_w(i,j,istate) = (vc_b + vx_b) * aos_in_r_array(j,i)*weight
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_LDA,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_xc_beta_ao_LDA ,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! short range exchange/correlation alpha/beta potentials with LDA functional on the AO basis
END_DOC
integer :: istate
double precision :: wall_1,wall_2
call wall_time(wall_1)
print*,'providing the XC potentials LDA '
do istate = 1, N_states
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vxc_alpha_LDA_w(1,1,istate),n_points_final_grid,0.d0,potential_xc_alpha_ao_LDA(1,1,istate),ao_num)
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vxc_beta_LDA_w(1,1,istate) ,n_points_final_grid,0.d0,potential_xc_beta_ao_LDA(1,1,istate),ao_num)
enddo
call wall_time(wall_2)
END_PROVIDER

View File

@ -0,0 +1,191 @@
BEGIN_PROVIDER[double precision, aos_vc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vx_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vx_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvx_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvx_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
implicit none
BEGIN_DOC
! aos_vxc_alpha_PBE_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j,m
double precision :: r(3)
double precision :: mu,weight
double precision, allocatable :: ex(:), ec(:)
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
aos_dvc_alpha_PBE_w = 0.d0
aos_dvc_beta_PBE_w = 0.d0
aos_dvx_alpha_PBE_w = 0.d0
aos_dvx_beta_PBE_w = 0.d0
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
enddo
! inputs
call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
vx_rho_a(istate) *= weight
vc_rho_a(istate) *= weight
vx_rho_b(istate) *= weight
vc_rho_b(istate) *= weight
do m= 1,3
contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
enddo
do j = 1, ao_num
aos_vc_alpha_PBE_w(j,i,istate) = vc_rho_a(istate) * aos_in_r_array(j,i)
aos_vc_beta_PBE_w (j,i,istate) = vc_rho_b(istate) * aos_in_r_array(j,i)
aos_vx_alpha_PBE_w(j,i,istate) = vx_rho_a(istate) * aos_in_r_array(j,i)
aos_vx_beta_PBE_w (j,i,istate) = vx_rho_b(istate) * aos_in_r_array(j,i)
enddo
do j = 1, ao_num
do m = 1,3
aos_dvc_alpha_PBE_w(j,i,istate) += contrib_grad_ca(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dvc_beta_PBE_w (j,i,istate) += contrib_grad_cb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dvx_alpha_PBE_w(j,i,istate) += contrib_grad_xa(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dvx_beta_PBE_w (j,i,istate) += contrib_grad_xb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_scal_x_alpha_ao_PBE, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_scal_c_alpha_ao_PBE, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_scal_x_beta_ao_PBE, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_scal_c_beta_ao_PBE, (ao_num,ao_num,N_states)]
implicit none
integer :: istate
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
END_DOC
pot_scal_c_alpha_ao_PBE = 0.d0
pot_scal_x_alpha_ao_PBE = 0.d0
pot_scal_c_beta_ao_PBE = 0.d0
pot_scal_x_beta_ao_PBE = 0.d0
double precision :: wall_1,wall_2
call wall_time(wall_1)
do istate = 1, N_states
! correlation alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_vc_alpha_PBE_w(1,1,istate),size(aos_vc_alpha_PBE_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_scal_c_alpha_ao_PBE(1,1,istate),size(pot_scal_c_alpha_ao_PBE,1))
! correlation beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_vc_beta_PBE_w(1,1,istate),size(aos_vc_beta_PBE_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_scal_c_beta_ao_PBE(1,1,istate),size(pot_scal_c_beta_ao_PBE,1))
! exchange alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_vx_alpha_PBE_w(1,1,istate),size(aos_vx_alpha_PBE_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_scal_x_alpha_ao_PBE(1,1,istate),size(pot_scal_x_alpha_ao_PBE,1))
! exchange beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_vx_beta_PBE_w(1,1,istate),size(aos_vx_beta_PBE_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_scal_x_beta_ao_PBE(1,1,istate), size(pot_scal_x_beta_ao_PBE,1))
enddo
call wall_time(wall_2)
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_grad_x_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_grad_x_beta_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_grad_c_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_grad_c_beta_ao_PBE,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
END_DOC
integer :: istate
double precision :: wall_1,wall_2
call wall_time(wall_1)
pot_grad_c_alpha_ao_PBE = 0.d0
pot_grad_x_alpha_ao_PBE = 0.d0
pot_grad_c_beta_ao_PBE = 0.d0
pot_grad_x_beta_ao_PBE = 0.d0
do istate = 1, N_states
! correlation alpha
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dvc_alpha_PBE_w(1,1,istate),size(aos_dvc_alpha_PBE_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_grad_c_alpha_ao_PBE(1,1,istate),size(pot_grad_c_alpha_ao_PBE,1))
! correlation beta
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dvc_beta_PBE_w(1,1,istate),size(aos_dvc_beta_PBE_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_grad_c_beta_ao_PBE(1,1,istate),size(pot_grad_c_beta_ao_PBE,1))
! exchange alpha
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dvx_alpha_PBE_w(1,1,istate),size(aos_dvx_alpha_PBE_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_grad_x_alpha_ao_PBE(1,1,istate),size(pot_grad_x_alpha_ao_PBE,1))
! exchange beta
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dvx_beta_PBE_w(1,1,istate),size(aos_dvx_beta_PBE_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_grad_x_beta_ao_PBE(1,1,istate),size(pot_grad_x_beta_ao_PBE,1))
enddo
call wall_time(wall_2)
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_x_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_x_beta_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_c_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_c_beta_ao_PBE,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
END_DOC
integer :: i,j,istate
do istate = 1, n_states
do i = 1, ao_num
do j = 1, ao_num
potential_x_alpha_ao_PBE(j,i,istate) = pot_scal_x_alpha_ao_PBE(j,i,istate) + pot_grad_x_alpha_ao_PBE(j,i,istate) + pot_grad_x_alpha_ao_PBE(i,j,istate)
potential_x_beta_ao_PBE(j,i,istate) = pot_scal_x_beta_ao_PBE(j,i,istate) + pot_grad_x_beta_ao_PBE(j,i,istate) + pot_grad_x_beta_ao_PBE(i,j,istate)
potential_c_alpha_ao_PBE(j,i,istate) = pot_scal_c_alpha_ao_PBE(j,i,istate) + pot_grad_c_alpha_ao_PBE(j,i,istate) + pot_grad_c_alpha_ao_PBE(i,j,istate)
potential_c_beta_ao_PBE(j,i,istate) = pot_scal_c_beta_ao_PBE(j,i,istate) + pot_grad_c_beta_ao_PBE(j,i,istate) + pot_grad_c_beta_ao_PBE(i,j,istate)
enddo
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,147 @@
BEGIN_PROVIDER[double precision, aos_vxc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_vxc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvxc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dvxc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
implicit none
BEGIN_DOC
! aos_vxc_alpha_PBE_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j,m
double precision :: r(3)
double precision :: mu,weight
double precision, allocatable :: ex(:), ec(:)
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
aos_dvxc_alpha_PBE_w = 0.d0
aos_dvxc_beta_PBE_w = 0.d0
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
enddo
! inputs
call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
vx_rho_a(istate) *= weight
vc_rho_a(istate) *= weight
vx_rho_b(istate) *= weight
vc_rho_b(istate) *= weight
do m= 1,3
contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
enddo
do j = 1, ao_num
aos_vxc_alpha_PBE_w(j,i,istate) = ( vc_rho_a(istate) + vx_rho_a(istate) ) * aos_in_r_array(j,i)
aos_vxc_beta_PBE_w (j,i,istate) = ( vc_rho_b(istate) + vx_rho_b(istate) ) * aos_in_r_array(j,i)
enddo
do j = 1, ao_num
do m = 1,3
aos_dvxc_alpha_PBE_w(j,i,istate) += ( contrib_grad_ca(m,istate) + contrib_grad_xa(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dvxc_beta_PBE_w (j,i,istate) += ( contrib_grad_cb(m,istate) + contrib_grad_xb(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_scal_xc_alpha_ao_PBE, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_scal_xc_beta_ao_PBE, (ao_num,ao_num,N_states)]
implicit none
integer :: istate
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
END_DOC
pot_scal_xc_alpha_ao_PBE = 0.d0
pot_scal_xc_beta_ao_PBE = 0.d0
double precision :: wall_1,wall_2
call wall_time(wall_1)
do istate = 1, N_states
! exchange - correlation alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_vxc_alpha_PBE_w(1,1,istate),size(aos_vxc_alpha_PBE_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_scal_xc_alpha_ao_PBE(1,1,istate),size(pot_scal_xc_alpha_ao_PBE,1))
! exchange - correlation beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_vxc_beta_PBE_w(1,1,istate),size(aos_vxc_beta_PBE_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_scal_xc_beta_ao_PBE(1,1,istate),size(pot_scal_xc_beta_ao_PBE,1))
enddo
call wall_time(wall_2)
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_grad_xc_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_grad_xc_beta_ao_PBE,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
END_DOC
integer :: istate
double precision :: wall_1,wall_2
call wall_time(wall_1)
pot_grad_xc_alpha_ao_PBE = 0.d0
pot_grad_xc_beta_ao_PBE = 0.d0
do istate = 1, N_states
! correlation alpha
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dvxc_alpha_PBE_w(1,1,istate),size(aos_dvxc_alpha_PBE_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_grad_xc_alpha_ao_PBE(1,1,istate),size(pot_grad_xc_alpha_ao_PBE,1))
! correlation beta
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dvxc_beta_PBE_w(1,1,istate),size(aos_dvxc_beta_PBE_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_grad_xc_beta_ao_PBE(1,1,istate),size(pot_grad_xc_beta_ao_PBE,1))
enddo
call wall_time(wall_2)
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_xc_beta_ao_PBE,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
END_DOC
integer :: i,j,istate
do istate = 1, n_states
do i = 1, ao_num
do j = 1, ao_num
potential_xc_alpha_ao_PBE(j,i,istate) = pot_scal_xc_alpha_ao_PBE(j,i,istate) + pot_grad_xc_alpha_ao_PBE(j,i,istate) + pot_grad_xc_alpha_ao_PBE(i,j,istate)
potential_xc_beta_ao_PBE(j,i,istate) = pot_scal_xc_beta_ao_PBE(j,i,istate) + pot_grad_xc_beta_ao_PBE(j,i,istate) + pot_grad_xc_beta_ao_PBE(i,j,istate)
enddo
enddo
enddo
END_PROVIDER

View File

@ -1,16 +0,0 @@
BEGIN_PROVIDER [double precision, shifting_constant, (N_states)]
implicit none
BEGIN_DOC
! shifting_constant = (E_{Hxc} - <\Psi | V_{Hxc} | \Psi>) / N_elec
! constant to add to the potential in order to obtain the variational energy as
! the eigenvalue of the effective long-range Hamiltonian
! (see original paper of Levy PRL 113, 113002 (2014), equation (17) )
END_DOC
integer :: istate
do istate = 1, N_states
shifting_constant(istate) = energy_x(istate) + energy_c(istate) + short_range_Hartree(istate) - Trace_v_Hxc(istate)
enddo
shifting_constant = shifting_constant / dble(elec_num)
END_PROVIDER

View File

@ -1,235 +0,0 @@
BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_LDA_w, (n_points_final_grid,ao_num,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_LDA_w, (n_points_final_grid,ao_num,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_LDA_w, (n_points_final_grid,ao_num,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_beta_LDA_w, (n_points_final_grid,ao_num,N_states)]
implicit none
BEGIN_DOC
! aos_sr_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (sr_v^x_alpha(r_j) + sr_v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j
double precision :: r(3)
double precision :: mu,weight
double precision :: e_c,sr_vc_a,sr_vc_b,e_x,sr_vx_a,sr_vx_b
double precision, allocatable :: rhoa(:),rhob(:)
allocate(rhoa(N_states), rhob(N_states))
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight=final_weight_at_r_vector(i)
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
rhob(istate) = one_e_dm_beta_at_r(i,istate)
call ec_LDA_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b)
call ex_LDA_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b)
do j =1, ao_num
aos_sr_vc_alpha_LDA_w(i,j,istate) = sr_vc_a * aos_in_r_array(j,i)*weight
aos_sr_vc_beta_LDA_w(i,j,istate) = sr_vc_b * aos_in_r_array(j,i)*weight
aos_sr_vx_alpha_LDA_w(i,j,istate) = sr_vx_a * aos_in_r_array(j,i)*weight
aos_sr_vx_beta_LDA_w(i,j,istate) = sr_vx_b * aos_in_r_array(j,i)*weight
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_sr_x_alpha_ao_LDA,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_x_beta_ao_LDA,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! short range exchange alpha/beta potentials with LDA functional on the |AO| basis
END_DOC
! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states.
call dgemm('N','N',ao_num,ao_num*N_states,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vx_alpha_LDA_w,size(aos_sr_vx_alpha_LDA_w,1),0.d0,&
potential_sr_x_alpha_ao_LDA,size(potential_sr_x_alpha_ao_LDA,1))
call dgemm('N','N',ao_num,ao_num*N_states,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vx_beta_LDA_w,size(aos_sr_vx_beta_LDA_w,1),0.d0,&
potential_sr_x_beta_ao_LDA,size(potential_sr_x_beta_ao_LDA,1))
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_sr_c_alpha_ao_LDA,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_c_beta_ao_LDA,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! short range correlation alpha/beta potentials with LDA functional on the |AO| basis
END_DOC
! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states.
call dgemm('N','N',ao_num,ao_num*N_states,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vc_alpha_LDA_w,size(aos_sr_vc_alpha_LDA_w,1),0.d0,&
potential_sr_c_alpha_ao_LDA,size(potential_sr_c_alpha_ao_LDA,1))
call dgemm('N','N',ao_num,ao_num*N_states,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vc_beta_LDA_w,size(aos_sr_vc_beta_LDA_w,1),0.d0,&
potential_sr_c_beta_ao_LDA,size(potential_sr_c_beta_ao_LDA,1))
END_PROVIDER
BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] !(n_points_final_grid,ao_num,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]!(n_points_final_grid,ao_num,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] !(n_points_final_grid,ao_num,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]!(n_points_final_grid,ao_num,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vc_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vc_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vx_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vx_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, grad_aos_dsr_vc_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, grad_aos_dsr_vc_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, grad_aos_dsr_vx_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
&BEGIN_PROVIDER[double precision, grad_aos_dsr_vx_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)]
implicit none
BEGIN_DOC
! aos_vxc_alpha_PBE_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j,m
double precision :: r(3)
double precision :: mu,weight
double precision, allocatable :: ex(:), ec(:)
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
double precision, allocatable :: sr_vc_rho_a(:), sr_vc_rho_b(:), sr_vx_rho_a(:), sr_vx_rho_b(:)
double precision, allocatable :: sr_vx_grad_rho_a_2(:), sr_vx_grad_rho_b_2(:), sr_vx_grad_rho_a_b(:), sr_vc_grad_rho_a_2(:), sr_vc_grad_rho_b_2(:), sr_vc_grad_rho_a_b(:)
allocate(sr_vc_rho_a(N_states), sr_vc_rho_b(N_states), sr_vx_rho_a(N_states), sr_vx_rho_b(N_states))
allocate(sr_vx_grad_rho_a_2(N_states), sr_vx_grad_rho_b_2(N_states), sr_vx_grad_rho_a_b(N_states), sr_vc_grad_rho_a_2(N_states), sr_vc_grad_rho_b_2(N_states), sr_vc_grad_rho_a_b(N_states))
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
enddo
! inputs
call GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,sr_vx_rho_a,sr_vx_rho_b,sr_vx_grad_rho_a_2,sr_vx_grad_rho_b_2,sr_vx_grad_rho_a_b, & ! outputs correlation
ec,sr_vc_rho_a,sr_vc_rho_b,sr_vc_grad_rho_a_2,sr_vc_grad_rho_b_2,sr_vc_grad_rho_a_b )
sr_vx_rho_a(istate) *= weight
sr_vc_rho_a(istate) *= weight
sr_vx_rho_b(istate) *= weight
sr_vc_rho_b(istate) *= weight
do m= 1,3
contrib_grad_ca(m,istate) = weight * (2.d0 * sr_vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + sr_vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_xa(m,istate) = weight * (2.d0 * sr_vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + sr_vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_cb(m,istate) = weight * (2.d0 * sr_vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + sr_vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
contrib_grad_xb(m,istate) = weight * (2.d0 * sr_vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + sr_vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
enddo
do j = 1, ao_num
aos_sr_vc_alpha_PBE_w(j,i,istate) = sr_vc_rho_a(istate) * aos_in_r_array(j,i)
aos_sr_vc_beta_PBE_w (j,i,istate) = sr_vc_rho_b(istate) * aos_in_r_array(j,i)
aos_sr_vx_alpha_PBE_w(j,i,istate) = sr_vx_rho_a(istate) * aos_in_r_array(j,i)
aos_sr_vx_beta_PBE_w (j,i,istate) = sr_vx_rho_b(istate) * aos_in_r_array(j,i)
do m = 1,3
aos_dsr_vc_alpha_PBE_w(j,i,m,istate) = contrib_grad_ca(m,istate) * aos_in_r_array(j,i)
aos_dsr_vc_beta_PBE_w (j,i,m,istate) = contrib_grad_cb(m,istate) * aos_in_r_array(j,i)
aos_dsr_vx_alpha_PBE_w(j,i,m,istate) = contrib_grad_xa(m,istate) * aos_in_r_array(j,i)
aos_dsr_vx_beta_PBE_w (j,i,m,istate) = contrib_grad_xb(m,istate) * aos_in_r_array(j,i)
grad_aos_dsr_vc_alpha_PBE_w (j,i,m,istate) = contrib_grad_ca(m,istate) * aos_grad_in_r_array(j,i,m)
grad_aos_dsr_vc_beta_PBE_w (j,i,m,istate) = contrib_grad_cb(m,istate) * aos_grad_in_r_array(j,i,m)
grad_aos_dsr_vx_alpha_PBE_w (j,i,m,istate) = contrib_grad_xa(m,istate) * aos_grad_in_r_array(j,i,m)
grad_aos_dsr_vx_beta_PBE_w (j,i,m,istate) = contrib_grad_xb(m,istate) * aos_grad_in_r_array(j,i,m)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_sr_x_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_x_beta_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_c_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_c_beta_ao_PBE,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! exchange/correlation alpha/beta potentials with the short range PBE functional on the AO basis
END_DOC
integer :: istate, m
double precision :: wall_1,wall_2
potential_sr_c_alpha_ao_PBE = 0.d0
potential_sr_x_alpha_ao_PBE = 0.d0
potential_sr_c_beta_ao_PBE = 0.d0
potential_sr_x_beta_ao_PBE = 0.d0
do istate = 1, N_states
! correlation alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vc_alpha_PBE_w(1,1,istate),size(aos_sr_vc_alpha_PBE_w,1),&
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
potential_sr_c_alpha_ao_PBE(1,1,istate),size(potential_sr_c_alpha_ao_PBE,1))
! correlation beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vc_beta_PBE_w(1,1,istate),size(aos_sr_vc_beta_PBE_w,1),&
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
potential_sr_c_beta_ao_PBE(1,1,istate),size(potential_sr_c_beta_ao_PBE,1))
! exchange alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vx_alpha_PBE_w(1,1,istate),size(aos_sr_vx_alpha_PBE_w,1),&
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
potential_sr_x_alpha_ao_PBE(1,1,istate),size(potential_sr_x_alpha_ao_PBE,1))
! exchange beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vx_beta_PBE_w(1,1,istate),size(aos_sr_vx_beta_PBE_w,1),&
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
potential_sr_x_beta_ao_PBE(1,1,istate), size(potential_sr_x_beta_ao_PBE,1))
do m= 1,3
! correlation alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vc_alpha_PBE_w(1,1,m,istate),size(aos_dsr_vc_alpha_PBE_w,1),&
aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,&
potential_sr_c_alpha_ao_PBE(1,1,istate),size(potential_sr_c_alpha_ao_PBE,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
grad_aos_dsr_vc_alpha_PBE_w(1,1,m,istate),size(grad_aos_dsr_vc_alpha_PBE_w,1),&
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
potential_sr_c_alpha_ao_PBE(1,1,istate),size(potential_sr_c_alpha_ao_PBE,1))
! correlation beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vc_beta_PBE_w(1,1,m,istate),size(aos_dsr_vc_beta_PBE_w,1),&
aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,&
potential_sr_c_beta_ao_PBE(1,1,istate),size(potential_sr_c_beta_ao_PBE,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
grad_aos_dsr_vc_beta_PBE_w(1,1,m,istate),size(grad_aos_dsr_vc_beta_PBE_w,1),&
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
potential_sr_c_beta_ao_PBE(1,1,istate),size(potential_sr_c_beta_ao_PBE,1))
! exchange alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vx_alpha_PBE_w(1,1,m,istate),size(aos_dsr_vx_alpha_PBE_w,1),&
aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,&
potential_sr_x_alpha_ao_PBE(1,1,istate),size(potential_sr_x_alpha_ao_PBE,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
grad_aos_dsr_vx_alpha_PBE_w(1,1,m,istate),size(grad_aos_dsr_vx_alpha_PBE_w,1),&
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
potential_sr_x_alpha_ao_PBE(1,1,istate),size(potential_sr_x_alpha_ao_PBE,1))
! exchange beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vx_beta_PBE_w(1,1,m,istate),size(aos_dsr_vx_beta_PBE_w,1),&
aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,&
potential_sr_x_beta_ao_PBE(1,1,istate),size(potential_sr_x_beta_ao_PBE,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
grad_aos_dsr_vx_beta_PBE_w(1,1,m,istate),size(grad_aos_dsr_vx_beta_PBE_w,1),&
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
potential_sr_x_beta_ao_PBE(1,1,istate),size(potential_sr_x_beta_ao_PBE,1))
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,79 @@
BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_LDA_w, (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_beta_LDA_w, (ao_num,n_points_final_grid,N_states)]
implicit none
BEGIN_DOC
! aos_sr_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (sr_v^x_alpha(r_j) + sr_v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j
double precision :: r(3)
double precision :: mu,weight
double precision :: e_c,sr_vc_a,sr_vc_b,e_x,sr_vx_a,sr_vx_b
double precision, allocatable :: rhoa(:),rhob(:)
allocate(rhoa(N_states), rhob(N_states))
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
rhob(istate) = one_e_dm_beta_at_r(i,istate)
call ec_LDA_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b)
call ex_LDA_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b)
do j =1, ao_num
aos_sr_vc_alpha_LDA_w(j,i,istate) = sr_vc_a * aos_in_r_array(j,i)*weight
aos_sr_vc_beta_LDA_w(j,i,istate) = sr_vc_b * aos_in_r_array(j,i)*weight
aos_sr_vx_alpha_LDA_w(j,i,istate) = sr_vx_a * aos_in_r_array(j,i)*weight
aos_sr_vx_beta_LDA_w(j,i,istate) = sr_vx_b * aos_in_r_array(j,i)*weight
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_sr_x_alpha_ao_LDA,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_x_beta_ao_LDA,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! short range exchange alpha/beta potentials with LDA functional on the |AO| basis
END_DOC
! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states.
integer :: istate
do istate = 1, N_states
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vx_alpha_LDA_w,size(aos_sr_vx_alpha_LDA_w,1),0.d0,&
potential_sr_x_alpha_ao_LDA,size(potential_sr_x_alpha_ao_LDA,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vx_beta_LDA_w(1,1,istate),size(aos_sr_vx_beta_LDA_w,1),0.d0,&
potential_sr_x_beta_ao_LDA(1,1,istate),size(potential_sr_x_beta_ao_LDA,1))
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_sr_c_alpha_ao_LDA,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_c_beta_ao_LDA,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! short range correlation alpha/beta potentials with LDA functional on the |AO| basis
END_DOC
! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states.
integer :: istate
do istate = 1, N_states
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vc_alpha_LDA_w(1,1,istate),size(aos_sr_vc_alpha_LDA_w,1),0.d0,&
potential_sr_c_alpha_ao_LDA(1,1,istate),size(potential_sr_c_alpha_ao_LDA,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vc_beta_LDA_w(1,1,istate),size(aos_sr_vc_beta_LDA_w,1),0.d0,&
potential_sr_c_beta_ao_LDA(1,1,istate),size(potential_sr_c_beta_ao_LDA,1))
enddo
END_PROVIDER

View File

@ -0,0 +1,58 @@
BEGIN_PROVIDER[double precision, aos_sr_vxc_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vxc_beta_LDA_w, (ao_num,n_points_final_grid,N_states)]
implicit none
BEGIN_DOC
! aos_sr_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j
double precision :: r(3)
double precision :: mu,weight
double precision :: e_c,sr_vc_a,sr_vc_b,e_x,sr_vx_a,sr_vx_b
double precision, allocatable :: rhoa(:),rhob(:)
double precision :: mu_local
mu_local = mu_erf_dft
allocate(rhoa(N_states), rhob(N_states))
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rhoa(istate) = one_e_dm_alpha_at_r(i,istate)
rhob(istate) = one_e_dm_beta_at_r(i,istate)
call ec_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b)
call ex_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b)
do j =1, ao_num
aos_sr_vxc_alpha_LDA_w(j,i,istate) = (sr_vc_a + sr_vx_a) * aos_in_r_array(j,i)*weight
aos_sr_vxc_beta_LDA_w(j,i,istate) = (sr_vc_b + sr_vx_b) * aos_in_r_array(j,i)*weight
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_sr_xc_alpha_ao_LDA,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_xc_beta_ao_LDA ,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! short range exchange/correlation alpha/beta potentials with LDA functional on the AO basis
END_DOC
integer :: istate
do istate = 1, N_states
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vxc_alpha_LDA_w(1,1,istate),size(aos_sr_vxc_alpha_LDA_w,1),0.d0,&
potential_sr_xc_alpha_ao_LDA(1,1,istate),size(potential_sr_xc_alpha_ao_LDA,1))
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_in_r_array,size(aos_in_r_array,1), &
aos_sr_vxc_beta_LDA_w(1,1,istate),size(aos_sr_vxc_beta_LDA_w,1),0.d0,&
potential_sr_xc_beta_ao_LDA(1,1,istate),size(potential_sr_xc_beta_ao_LDA,1))
enddo
END_PROVIDER

View File

@ -0,0 +1,191 @@
BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vx_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vx_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vx_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
implicit none
BEGIN_DOC
! aos_sr_vxc_alpha_PBE_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j,m
double precision :: r(3)
double precision :: mu,weight
double precision, allocatable :: ex(:), ec(:)
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
aos_dsr_vc_alpha_PBE_w= 0.d0
aos_dsr_vc_beta_PBE_w = 0.d0
aos_dsr_vx_alpha_PBE_w= 0.d0
aos_dsr_vx_beta_PBE_w = 0.d0
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
enddo
! inputs
call GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
vx_rho_a(istate) *= weight
vc_rho_a(istate) *= weight
vx_rho_b(istate) *= weight
vc_rho_b(istate) *= weight
do m= 1,3
contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
enddo
do j = 1, ao_num
aos_sr_vc_alpha_PBE_w(j,i,istate) = vc_rho_a(istate) * aos_in_r_array(j,i)
aos_sr_vc_beta_PBE_w (j,i,istate) = vc_rho_b(istate) * aos_in_r_array(j,i)
aos_sr_vx_alpha_PBE_w(j,i,istate) = vx_rho_a(istate) * aos_in_r_array(j,i)
aos_sr_vx_beta_PBE_w (j,i,istate) = vx_rho_b(istate) * aos_in_r_array(j,i)
enddo
do j = 1, ao_num
do m = 1,3
aos_dsr_vc_alpha_PBE_w(j,i,istate) += contrib_grad_ca(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vc_beta_PBE_w (j,i,istate) += contrib_grad_cb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vx_alpha_PBE_w(j,i,istate) += contrib_grad_xa(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vx_beta_PBE_w (j,i,istate) += contrib_grad_xb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_sr_scal_x_alpha_ao_PBE, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_scal_c_alpha_ao_PBE, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_scal_x_beta_ao_PBE, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_scal_c_beta_ao_PBE, (ao_num,ao_num,N_states)]
implicit none
integer :: istate
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
END_DOC
pot_sr_scal_c_alpha_ao_PBE = 0.d0
pot_sr_scal_x_alpha_ao_PBE = 0.d0
pot_sr_scal_c_beta_ao_PBE = 0.d0
pot_sr_scal_x_beta_ao_PBE = 0.d0
double precision :: wall_1,wall_2
call wall_time(wall_1)
do istate = 1, N_states
! correlation alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vc_alpha_PBE_w(1,1,istate),size(aos_sr_vc_alpha_PBE_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_sr_scal_c_alpha_ao_PBE(1,1,istate),size(pot_sr_scal_c_alpha_ao_PBE,1))
! correlation beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vc_beta_PBE_w(1,1,istate),size(aos_sr_vc_beta_PBE_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_sr_scal_c_beta_ao_PBE(1,1,istate),size(pot_sr_scal_c_beta_ao_PBE,1))
! exchange alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vx_alpha_PBE_w(1,1,istate),size(aos_sr_vx_alpha_PBE_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_sr_scal_x_alpha_ao_PBE(1,1,istate),size(pot_sr_scal_x_alpha_ao_PBE,1))
! exchange beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vx_beta_PBE_w(1,1,istate),size(aos_sr_vx_beta_PBE_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_sr_scal_x_beta_ao_PBE(1,1,istate), size(pot_sr_scal_x_beta_ao_PBE,1))
enddo
call wall_time(wall_2)
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_sr_grad_x_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_grad_x_beta_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_grad_c_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_grad_c_beta_ao_PBE,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
END_DOC
integer :: istate
double precision :: wall_1,wall_2
call wall_time(wall_1)
pot_sr_grad_c_alpha_ao_PBE = 0.d0
pot_sr_grad_x_alpha_ao_PBE = 0.d0
pot_sr_grad_c_beta_ao_PBE = 0.d0
pot_sr_grad_x_beta_ao_PBE = 0.d0
do istate = 1, N_states
! correlation alpha
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vc_alpha_PBE_w(1,1,istate),size(aos_dsr_vc_alpha_PBE_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_sr_grad_c_alpha_ao_PBE(1,1,istate),size(pot_sr_grad_c_alpha_ao_PBE,1))
! correlation beta
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vc_beta_PBE_w(1,1,istate),size(aos_dsr_vc_beta_PBE_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_sr_grad_c_beta_ao_PBE(1,1,istate),size(pot_sr_grad_c_beta_ao_PBE,1))
! exchange alpha
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vx_alpha_PBE_w(1,1,istate),size(aos_dsr_vx_alpha_PBE_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_sr_grad_x_alpha_ao_PBE(1,1,istate),size(pot_sr_grad_x_alpha_ao_PBE,1))
! exchange beta
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vx_beta_PBE_w(1,1,istate),size(aos_dsr_vx_beta_PBE_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_sr_grad_x_beta_ao_PBE(1,1,istate),size(pot_sr_grad_x_beta_ao_PBE,1))
enddo
call wall_time(wall_2)
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_sr_x_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_x_beta_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_c_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_c_beta_ao_PBE,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
END_DOC
integer :: i,j,istate
do istate = 1, n_states
do i = 1, ao_num
do j = 1, ao_num
potential_sr_x_alpha_ao_PBE(j,i,istate) = pot_sr_scal_x_alpha_ao_PBE(j,i,istate) + pot_sr_grad_x_alpha_ao_PBE(j,i,istate) + pot_sr_grad_x_alpha_ao_PBE(i,j,istate)
potential_sr_x_beta_ao_PBE(j,i,istate) = pot_sr_scal_x_beta_ao_PBE(j,i,istate) + pot_sr_grad_x_beta_ao_PBE(j,i,istate) + pot_sr_grad_x_beta_ao_PBE(i,j,istate)
potential_sr_c_alpha_ao_PBE(j,i,istate) = pot_sr_scal_c_alpha_ao_PBE(j,i,istate) + pot_sr_grad_c_alpha_ao_PBE(j,i,istate) + pot_sr_grad_c_alpha_ao_PBE(i,j,istate)
potential_sr_c_beta_ao_PBE(j,i,istate) = pot_sr_scal_c_beta_ao_PBE(j,i,istate) + pot_sr_grad_c_beta_ao_PBE(j,i,istate) + pot_sr_grad_c_beta_ao_PBE(i,j,istate)
enddo
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,149 @@
BEGIN_PROVIDER[double precision, aos_sr_vxc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_sr_vxc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vxc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)]
&BEGIN_PROVIDER[double precision, aos_dsr_vxc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]
implicit none
BEGIN_DOC
! aos_sr_vxc_alpha_PBE_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
END_DOC
integer :: istate,i,j,m
double precision :: r(3)
double precision :: mu,weight
double precision, allocatable :: ex(:), ec(:)
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
aos_dsr_vxc_alpha_PBE_w = 0.d0
aos_dsr_vxc_beta_PBE_w = 0.d0
do istate = 1, N_states
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
weight = final_weight_at_r_vector(i)
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
grad_rho_a_2 = 0.d0
grad_rho_b_2 = 0.d0
grad_rho_a_b = 0.d0
do m = 1, 3
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
enddo
! inputs
call GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
vx_rho_a(istate) *= weight
vc_rho_a(istate) *= weight
vx_rho_b(istate) *= weight
vc_rho_b(istate) *= weight
do m= 1,3
contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
enddo
do j = 1, ao_num
aos_sr_vxc_alpha_PBE_w(j,i,istate) = ( vc_rho_a(istate) + vx_rho_a(istate) ) * aos_in_r_array(j,i)
aos_sr_vxc_beta_PBE_w (j,i,istate) = ( vc_rho_b(istate) + vx_rho_b(istate) ) * aos_in_r_array(j,i)
enddo
do j = 1, ao_num
do m = 1,3
aos_dsr_vxc_alpha_PBE_w(j,i,istate) += ( contrib_grad_ca(m,istate) + contrib_grad_xa(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
aos_dsr_vxc_beta_PBE_w (j,i,istate) += ( contrib_grad_cb(m,istate) + contrib_grad_xb(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_sr_scal_xc_alpha_ao_PBE, (ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_scal_xc_beta_ao_PBE, (ao_num,ao_num,N_states)]
implicit none
integer :: istate
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
END_DOC
pot_sr_scal_xc_alpha_ao_PBE = 0.d0
pot_sr_scal_xc_beta_ao_PBE = 0.d0
double precision :: wall_1,wall_2
call wall_time(wall_1)
do istate = 1, N_states
! exchange - correlation alpha
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vxc_alpha_PBE_w(1,1,istate),size(aos_sr_vxc_alpha_PBE_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_sr_scal_xc_alpha_ao_PBE(1,1,istate),size(pot_sr_scal_xc_alpha_ao_PBE,1))
! exchange - correlation beta
call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_sr_vxc_beta_PBE_w(1,1,istate),size(aos_sr_vxc_beta_PBE_w,1), &
aos_in_r_array,size(aos_in_r_array,1),1.d0, &
pot_sr_scal_xc_beta_ao_PBE(1,1,istate),size(pot_sr_scal_xc_beta_ao_PBE,1))
enddo
call wall_time(wall_2)
END_PROVIDER
BEGIN_PROVIDER [double precision, pot_sr_grad_xc_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, pot_sr_grad_xc_beta_ao_PBE,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals
END_DOC
integer :: istate
double precision :: wall_1,wall_2
call wall_time(wall_1)
pot_sr_grad_xc_alpha_ao_PBE = 0.d0
pot_sr_grad_xc_beta_ao_PBE = 0.d0
do istate = 1, N_states
! exchange - correlation alpha
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vxc_alpha_PBE_w(1,1,istate),size(aos_dsr_vxc_alpha_PBE_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_sr_grad_xc_alpha_ao_PBE(1,1,istate),size(pot_sr_grad_xc_alpha_ao_PBE,1))
! exchange - correlation beta
call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, &
aos_dsr_vxc_beta_PBE_w(1,1,istate),size(aos_dsr_vxc_beta_PBE_w,1), &
aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, &
pot_sr_grad_xc_beta_ao_PBE(1,1,istate),size(pot_sr_grad_xc_beta_ao_PBE,1))
enddo
call wall_time(wall_2)
END_PROVIDER
BEGIN_PROVIDER [double precision, potential_sr_xc_alpha_ao_PBE,(ao_num,ao_num,N_states)]
&BEGIN_PROVIDER [double precision, potential_sr_xc_beta_ao_PBE,(ao_num,ao_num,N_states)]
implicit none
BEGIN_DOC
! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
END_DOC
integer :: i,j,istate
do istate = 1, n_states
do i = 1, ao_num
do j = 1, ao_num
potential_sr_xc_alpha_ao_PBE(j,i,istate) = pot_sr_scal_xc_alpha_ao_PBE(j,i,istate) + pot_sr_grad_xc_alpha_ao_PBE(j,i,istate) + pot_sr_grad_xc_alpha_ao_PBE(i,j,istate)
potential_sr_xc_beta_ao_PBE(j,i,istate) = pot_sr_scal_xc_beta_ao_PBE(j,i,istate) + pot_sr_grad_xc_beta_ao_PBE(j,i,istate) + pot_sr_grad_xc_beta_ao_PBE(i,j,istate)
enddo
enddo
enddo
END_PROVIDER

View File

@ -68,7 +68,7 @@ subroutine GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho
double precision :: mu_local double precision :: mu_local
mu_local = 1.d-9 mu_local = 1.d-9
do istate = 1, N_states do istate = 1, N_states
if(exchange_functional.EQ."short_range_PBE")then if(exchange_functional.EQ."PBE")then
call ex_pbe_sr(mu_local,rho_a(istate),rho_b(istate),grad_rho_a_2(istate),grad_rho_b_2(istate),grad_rho_a_b(istate),ex(istate),vx_rho_a(istate),vx_rho_b(istate),vx_grad_rho_a_2(istate),vx_grad_rho_b_2(istate),vx_grad_rho_a_b(istate)) call ex_pbe_sr(mu_local,rho_a(istate),rho_b(istate),grad_rho_a_2(istate),grad_rho_b_2(istate),grad_rho_a_b(istate),ex(istate),vx_rho_a(istate),vx_rho_b(istate),vx_grad_rho_a_2(istate),vx_grad_rho_b_2(istate),vx_grad_rho_a_b(istate))
else if(exchange_functional.EQ."None")then else if(exchange_functional.EQ."None")then
ex = 0.d0 ex = 0.d0
@ -84,7 +84,7 @@ subroutine GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho
endif endif
double precision :: rhoc,rhoo,sigmacc,sigmaco,sigmaoo,vrhoc,vrhoo,vsigmacc,vsigmaco,vsigmaoo double precision :: rhoc,rhoo,sigmacc,sigmaco,sigmaoo,vrhoc,vrhoo,vsigmacc,vsigmaco,vsigmaoo
if(correlation_functional.EQ."short_range_PBE")then if(correlation_functional.EQ."PBE")then
! convertion from (alpha,beta) formalism to (closed, open) formalism ! convertion from (alpha,beta) formalism to (closed, open) formalism
call rho_ab_to_rho_oc(rho_a(istate),rho_b(istate),rhoo,rhoc) call rho_ab_to_rho_oc(rho_a(istate),rho_b(istate),rhoo,rhoc)
call grad_rho_ab_to_grad_rho_oc(grad_rho_a_2(istate),grad_rho_b_2(istate),grad_rho_a_b(istate),sigmaoo,sigmacc,sigmaco) call grad_rho_ab_to_grad_rho_oc(grad_rho_a_2(istate),grad_rho_b_2(istate),grad_rho_a_b(istate),sigmaoo,sigmacc,sigmaco)

View File

@ -1 +1,2 @@
mpi mpi
zmq

View File

@ -109,10 +109,7 @@
integer(key_kind), allocatable :: keys(:) integer(key_kind), allocatable :: keys(:)
double precision, allocatable :: values(:) double precision, allocatable :: values(:)
!$OMP PARALLEL DEFAULT(NONE) if (ao_num > 100) &
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, & !$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)& !$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,& !$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
@ -125,7 +122,7 @@
ao_two_e_integral_alpha_tmp = 0.d0 ao_two_e_integral_alpha_tmp = 0.d0
ao_two_e_integral_beta_tmp = 0.d0 ao_two_e_integral_beta_tmp = 0.d0
!$OMP DO SCHEDULE(dynamic,64) !$OMP DO SCHEDULE(static,1)
!DIR$ NOVECTOR !DIR$ NOVECTOR
do i8=0_8,ao_integrals_map%map_size do i8=0_8,ao_integrals_map%map_size
n_elements = n_elements_max n_elements = n_elements_max
@ -153,8 +150,6 @@
!$OMP END DO NOWAIT !$OMP END DO NOWAIT
!$OMP CRITICAL !$OMP CRITICAL
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
!$OMP END CRITICAL
!$OMP CRITICAL
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL !$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp) deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)

View File

@ -36,7 +36,7 @@ subroutine check_coherence_functional
ifound_c = index(correlation_functional,"short_range") ifound_c = index(correlation_functional,"short_range")
endif endif
print*,ifound_x,ifound_c print*,ifound_x,ifound_c
if(ifound_x .eq.0 .or. ifound_c .eq. 0)then if(ifound_x .ne.0 .or. ifound_c .ne. 0)then
print*,'YOU ARE USING THE RANGE SEPARATED KS PROGRAM BUT YOUR INPUT KEYWORD FOR ' print*,'YOU ARE USING THE RANGE SEPARATED KS PROGRAM BUT YOUR INPUT KEYWORD FOR '
print*,'exchange_functional is ',exchange_functional print*,'exchange_functional is ',exchange_functional
print*,'correlation_functional is ',correlation_functional print*,'correlation_functional is ',correlation_functional

View File

@ -4,12 +4,21 @@
integer :: i,j,k,l integer :: i,j,k,l
ao_potential_alpha_xc = 0.d0 ao_potential_alpha_xc = 0.d0
ao_potential_beta_xc = 0.d0 ao_potential_beta_xc = 0.d0
do i = 1, ao_num if(same_xc_func)then
do j = 1, ao_num do i = 1, ao_num
ao_potential_alpha_xc(i,j) = potential_c_alpha_ao(i,j,1) + potential_x_alpha_ao(i,j,1) do j = 1, ao_num
ao_potential_beta_xc(i,j) = potential_c_beta_ao(i,j,1) + potential_x_beta_ao(i,j,1) ao_potential_alpha_xc(i,j) = potential_xc_alpha_ao(i,j,1)
ao_potential_beta_xc(i,j) = potential_xc_beta_ao(i,j,1)
enddo
enddo enddo
enddo else
do i = 1, ao_num
do j = 1, ao_num
ao_potential_alpha_xc(i,j) = potential_c_alpha_ao(i,j,1) + potential_x_alpha_ao(i,j,1)
ao_potential_beta_xc(i,j) = potential_c_beta_ao(i,j,1) + potential_x_beta_ao(i,j,1)
enddo
enddo
endif
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [double precision, e_exchange_dft] BEGIN_PROVIDER [double precision, e_exchange_dft]

View File

@ -3,7 +3,7 @@
use map_module use map_module
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Alpha Fock matrix in AO basis set ! Alpha Fock matrix in ao basis set
END_DOC END_DOC
integer :: i,j,k,l,k1,r,s integer :: i,j,k,l,k1,r,s
@ -35,7 +35,7 @@
ao_two_e_integral_beta_tmp = 0.d0 ao_two_e_integral_beta_tmp = 0.d0
q = ao_num*ao_num*ao_num*ao_num q = ao_num*ao_num*ao_num*ao_num
!$OMP DO SCHEDULE(static,64) !$OMP DO SCHEDULE(dynamic)
do p=1_8,q do p=1_8,q
call two_e_integrals_index_reverse(kk,ii,ll,jj,p) call two_e_integrals_index_reverse(kk,ii,ll,jj,p)
if ( (kk(1)>ao_num).or. & if ( (kk(1)>ao_num).or. &
@ -91,6 +91,8 @@
!$OMP END DO NOWAIT !$OMP END DO NOWAIT
!$OMP CRITICAL !$OMP CRITICAL
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
!$OMP END CRITICAL
!$OMP CRITICAL
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL !$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp) deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
@ -203,19 +205,18 @@
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_ao_alpha, (ao_num, ao_num) ] BEGIN_PROVIDER [ double precision, Fock_matrix_ao_alpha, (ao_num, ao_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_ao_beta, (ao_num, ao_num) ] &BEGIN_PROVIDER [ double precision, Fock_matrix_ao_beta, (ao_num, ao_num) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Alpha Fock matrix in AO basis set ! Alpha Fock matrix in ao basis set
END_DOC END_DOC
integer :: i,j integer :: i,j
do j=1,ao_num do j=1,ao_num
do i=1,ao_num do i=1,ao_num
Fock_matrix_ao_alpha(i,j) = Fock_matrix_alpha_no_xc_ao(i,j) + ao_potential_alpha_xc(i,j) Fock_matrix_ao_alpha(i,j) = Fock_matrix_alpha_no_xc_ao(i,j) + ao_potential_alpha_xc(i,j)
Fock_matrix_ao_beta (i,j) = Fock_matrix_beta_no_xc_ao(i,j) + ao_potential_beta_xc(i,j) Fock_matrix_ao_beta(i,j) = Fock_matrix_beta_no_xc_ao(i,j) + ao_potential_beta_xc(i,j)
enddo enddo
enddo enddo
@ -226,7 +227,7 @@ END_PROVIDER
&BEGIN_PROVIDER [ double precision, Fock_matrix_beta_no_xc_ao, (ao_num, ao_num) ] &BEGIN_PROVIDER [ double precision, Fock_matrix_beta_no_xc_ao, (ao_num, ao_num) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Mono electronic an Coulomb matrix in AO basis set ! Mono electronic an Coulomb matrix in ao basis set
END_DOC END_DOC
integer :: i,j integer :: i,j

View File

@ -4,12 +4,22 @@
integer :: i,j,k,l integer :: i,j,k,l
ao_potential_alpha_xc = 0.d0 ao_potential_alpha_xc = 0.d0
ao_potential_beta_xc = 0.d0 ao_potential_beta_xc = 0.d0
do i = 1, ao_num if(same_xc_func)then
do j = 1, ao_num do i = 1, ao_num
ao_potential_alpha_xc(i,j) = potential_c_alpha_ao(i,j,1) + potential_x_alpha_ao(i,j,1) do j = 1, ao_num
ao_potential_beta_xc(i,j) = potential_c_beta_ao(i,j,1) + potential_x_beta_ao(i,j,1) ao_potential_alpha_xc(j,i) = potential_xc_alpha_ao(j,i,1)
ao_potential_beta_xc(j,i) = potential_xc_beta_ao(j,i,1)
enddo
enddo enddo
enddo else
do i = 1, ao_num
do j = 1, ao_num
ao_potential_alpha_xc(j,i) = potential_c_alpha_ao(j,i,1) + potential_x_alpha_ao(j,i,1)
ao_potential_beta_xc(j,i) = potential_c_beta_ao(j,i,1) + potential_x_beta_ao(j,i,1)
enddo
enddo
endif
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [double precision, e_exchange_dft] BEGIN_PROVIDER [double precision, e_exchange_dft]