diff --git a/TODO b/TODO index 11be081c..dbe90ecf 100644 --- a/TODO +++ b/TODO @@ -58,3 +58,5 @@ Doc: plugins et qp_plugins Ajouter les symetries dans devel Compiler ezfio avec openmp + +# Parallelize i_H_psi diff --git a/src/dft_keywords/keywords.irp.f b/src/dft_keywords/keywords.irp.f index c5beab20..ac819ecb 100644 --- a/src/dft_keywords/keywords.irp.f +++ b/src/dft_keywords/keywords.irp.f @@ -17,3 +17,17 @@ BEGIN_PROVIDER [ character*(32), DFT_TYPE] DFT_TYPE = "GGA" endif END_PROVIDER + +BEGIN_PROVIDER [ logical, same_xc_func ] + BEGIN_DOC +! true if the exchange and correlation functionals are the same + END_DOC + implicit none + if(trim(correlation_functional).eq.trim(exchange_functional))then + same_xc_func = .True. + else + same_xc_func = .False. + endif + + +END_PROVIDER diff --git a/src/dft_one_e/pot_general.irp.f b/src/dft_one_e/pot_general.irp.f index 3437269e..9456b54e 100644 --- a/src/dft_one_e/pot_general.irp.f +++ b/src/dft_one_e/pot_general.irp.f @@ -133,3 +133,79 @@ END_PROVIDER END_PROVIDER + BEGIN_PROVIDER [double precision, Trace_v_xc_new, (N_states)] + implicit none + integer :: i,j,istate + double precision :: dm + BEGIN_DOC +! Trace_v_xc = \sum_{i,j} (rho_{ij}_\alpha v^{xc}_{ij}^\alpha + rho_{ij}_\beta v^{xc}_{ij}^\beta) + END_DOC + do istate = 1, N_states + Trace_v_xc_new(istate) = 0.d0 + do i = 1, mo_num + do j = 1, mo_num + Trace_v_xc_new(istate) += (potential_xc_alpha_mo(j,i,istate) ) * one_e_dm_mo_alpha_for_dft(j,i,istate) + Trace_v_xc_new(istate) += (potential_xc_beta_mo(j,i,istate) ) * one_e_dm_mo_beta_for_dft(j,i,istate) + enddo + enddo + enddo + +END_PROVIDER + + BEGIN_PROVIDER [double precision, potential_xc_alpha_mo,(mo_num,mo_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_xc_beta_mo,(mo_num,mo_num,N_states)] + implicit none + integer :: istate + + do istate = 1, N_states + call ao_to_mo( & + potential_xc_alpha_ao(1,1,istate), & + size(potential_xc_alpha_ao,1), & + potential_xc_alpha_mo(1,1,istate), & + size(potential_xc_alpha_mo,1) & + ) + + call ao_to_mo( & + potential_xc_beta_ao(1,1,istate), & + size(potential_xc_beta_ao,1), & + potential_xc_beta_mo(1,1,istate), & + size(potential_xc_beta_mo,1) & + ) + enddo + +END_PROVIDER + + + BEGIN_PROVIDER [double precision, potential_xc_alpha_ao,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_xc_beta_ao,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC +! general providers for the alpha/beta exchange/correlation potentials on the AO basis + END_DOC + + if(trim(exchange_functional)=="short_range_LDA")then + potential_xc_alpha_ao = potential_sr_xc_alpha_ao_LDA + potential_xc_beta_ao = potential_sr_xc_beta_ao_LDA + else if(trim(exchange_functional)=="LDA")then + potential_xc_alpha_ao = potential_xc_alpha_ao_LDA + potential_xc_beta_ao = potential_xc_beta_ao_LDA + else if(exchange_functional.EQ."None")then + potential_xc_alpha_ao = 0.d0 + potential_xc_beta_ao = 0.d0 + else if(trim(exchange_functional)=="short_range_PBE")then + potential_xc_alpha_ao = potential_sr_xc_alpha_ao_PBE + potential_xc_beta_ao = potential_sr_xc_beta_ao_PBE + else if(trim(exchange_functional)=="PBE")then + potential_xc_alpha_ao = potential_xc_alpha_ao_PBE + potential_xc_beta_ao = potential_xc_beta_ao_PBE + else if(exchange_functional.EQ."None")then + potential_xc_alpha_ao = 0.d0 + potential_xc_beta_ao = 0.d0 + else + print*, 'Exchange functional required does not exist ...' + print*,'exchange_functional',exchange_functional + stop + endif + +END_PROVIDER + diff --git a/src/dft_utils_in_r/ao_in_r.irp.f b/src/dft_utils_in_r/ao_in_r.irp.f index 8d335382..17892832 100644 --- a/src/dft_utils_in_r/ao_in_r.irp.f +++ b/src/dft_utils_in_r/ao_in_r.irp.f @@ -21,14 +21,10 @@ END_PROVIDER BEGIN_PROVIDER[double precision, aos_grad_in_r_array, (ao_num,n_points_final_grid,3)] -&BEGIN_PROVIDER[double precision, aos_grad_in_r_array_transp, (n_points_final_grid,ao_num,3)] -&BEGIN_PROVIDER[double precision, aos_grad_in_r_array_transp_xyz, (3,n_points_final_grid,ao_num)] implicit none BEGIN_DOC ! aos_grad_in_r_array(i,j,k) = value of the kth component of the gradient of ith ao on the jth grid point ! - ! aos_grad_in_r_array_transp(i,j,k) = value of the kth component of the gradient of jth ao on the ith grid point - ! ! k = 1 : x, k= 2, y, k 3, z END_DOC integer :: i,j,m @@ -42,10 +38,59 @@ do m = 1, 3 do j = 1, ao_num aos_grad_in_r_array(j,i,m) = aos_grad_array(m,j) + enddo + enddo + enddo + + + END_PROVIDER + + + BEGIN_PROVIDER[double precision, aos_grad_in_r_array_transp, (n_points_final_grid,ao_num,3)] + implicit none + BEGIN_DOC + ! aos_grad_in_r_array_transp(i,j,k) = value of the kth component of the gradient of jth ao on the ith grid point + ! + ! k = 1 : x, k= 2, y, k 3, z + END_DOC + integer :: i,j,m + double precision :: aos_array(ao_num), r(3) + double precision :: aos_grad_array(3,ao_num) + do i = 1, n_points_final_grid + r(1) = final_grid_points(1,i) + r(2) = final_grid_points(2,i) + r(3) = final_grid_points(3,i) + call give_all_aos_and_grad_at_r(r,aos_array,aos_grad_array) + do m = 1, 3 + do j = 1, ao_num aos_grad_in_r_array_transp(i,j,m) = aos_grad_array(m,j) enddo enddo enddo + + END_PROVIDER + + BEGIN_PROVIDER[double precision, aos_grad_in_r_array_transp_xyz, (3,ao_num,n_points_final_grid)] + implicit none + BEGIN_DOC + ! aos_grad_in_r_array_transp_xyz(k,i,j) = value of the kth component of the gradient of jth ao on the ith grid point + ! + ! k = 1 : x, k= 2, y, k 3, z + END_DOC + integer :: i,j,m + double precision :: aos_array(ao_num), r(3) + double precision :: aos_grad_array(3,ao_num) + do i = 1, n_points_final_grid + r(1) = final_grid_points(1,i) + r(2) = final_grid_points(2,i) + r(3) = final_grid_points(3,i) + call give_all_aos_and_grad_at_r(r,aos_array,aos_grad_array) + do m = 1, 3 + do j = 1, ao_num + aos_grad_in_r_array_transp_xyz(m,j,i) = aos_grad_array(m,j) + enddo + enddo + enddo END_PROVIDER BEGIN_PROVIDER[double precision, aos_lapl_in_r_array, (ao_num,n_points_final_grid,3)] diff --git a/src/dft_utils_one_e/pot_ao.irp.f b/src/dft_utils_one_e/pot_ao.irp.f deleted file mode 100644 index 1cc7c51f..00000000 --- a/src/dft_utils_one_e/pot_ao.irp.f +++ /dev/null @@ -1,192 +0,0 @@ - BEGIN_PROVIDER[double precision, aos_vc_alpha_LDA_w, (n_points_final_grid,ao_num,N_states)] -&BEGIN_PROVIDER[double precision, aos_vc_beta_LDA_w, (n_points_final_grid,ao_num,N_states)] -&BEGIN_PROVIDER[double precision, aos_vx_alpha_LDA_w, (n_points_final_grid,ao_num,N_states)] -&BEGIN_PROVIDER[double precision, aos_vx_beta_LDA_w, (n_points_final_grid,ao_num,N_states)] - implicit none - BEGIN_DOC -! aos_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) - END_DOC - integer :: istate,i,j - double precision :: r(3) - double precision :: mu,weight - double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b - double precision, allocatable :: rhoa(:),rhob(:) - double precision :: mu_local - mu_local = 1.d-9 - allocate(rhoa(N_states), rhob(N_states)) - do istate = 1, N_states - do j =1, ao_num - do i = 1, n_points_final_grid - r(1) = final_grid_points(1,i) - r(2) = final_grid_points(2,i) - r(3) = final_grid_points(3,i) - weight = final_weight_at_r_vector(i) - rhoa(istate) = one_e_dm_alpha_at_r(i,istate) - rhob(istate) = one_e_dm_beta_at_r(i,istate) - call ec_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b) - call ex_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b) - aos_vc_alpha_LDA_w(i,j,istate) = vc_a * aos_in_r_array_transp(i,j)*weight - aos_vc_beta_LDA_w(i,j,istate) = vc_b * aos_in_r_array_transp(i,j)*weight - aos_vx_alpha_LDA_w(i,j,istate) = vx_a * aos_in_r_array_transp(i,j)*weight - aos_vx_beta_LDA_w(i,j,istate) = vx_b * aos_in_r_array_transp(i,j)*weight - enddo - enddo - enddo - - END_PROVIDER - - - BEGIN_PROVIDER [double precision, potential_x_alpha_ao_LDA,(ao_num,ao_num,N_states)] -&BEGIN_PROVIDER [double precision, potential_x_beta_ao_LDA ,(ao_num,ao_num,N_states)] -&BEGIN_PROVIDER [double precision, potential_c_alpha_ao_LDA,(ao_num,ao_num,N_states)] -&BEGIN_PROVIDER [double precision, potential_c_beta_ao_LDA ,(ao_num,ao_num,N_states)] - implicit none - BEGIN_DOC -! short range exchange/correlation alpha/beta potentials with LDA functional on the AO basis - END_DOC - integer :: istate - double precision :: wall_1,wall_2 - call wall_time(wall_1) - do istate = 1, N_states - call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vc_alpha_LDA_w(1,1,istate),n_points_final_grid,0.d0,potential_c_alpha_ao_LDA(1,1,istate),ao_num) - call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vc_beta_LDA_w(1,1,istate) ,n_points_final_grid,0.d0,potential_c_beta_ao_LDA(1,1,istate),ao_num) - call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vx_alpha_LDA_w(1,1,istate),n_points_final_grid,0.d0,potential_x_alpha_ao_LDA(1,1,istate),ao_num) - call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vx_beta_LDA_w(1,1,istate) ,n_points_final_grid,0.d0,potential_x_beta_ao_LDA(1,1,istate),ao_num) - enddo - call wall_time(wall_2) - print*,'time to provide potential_x/c_alpha/beta_ao_LDA = ',wall_2 - wall_1 - - END_PROVIDER - - BEGIN_PROVIDER[double precision, aos_vc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] -&BEGIN_PROVIDER[double precision, aos_vc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] -&BEGIN_PROVIDER[double precision, aos_vx_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] -&BEGIN_PROVIDER[double precision, aos_vx_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] -&BEGIN_PROVIDER[double precision, aos_dvc_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)] -&BEGIN_PROVIDER[double precision, aos_dvc_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)] -&BEGIN_PROVIDER[double precision, aos_dvx_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)] -&BEGIN_PROVIDER[double precision, aos_dvx_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)] -&BEGIN_PROVIDER[double precision, grad_aos_dvc_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)] -&BEGIN_PROVIDER[double precision, grad_aos_dvc_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)] -&BEGIN_PROVIDER[double precision, grad_aos_dvx_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)] -&BEGIN_PROVIDER[double precision, grad_aos_dvx_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)] - implicit none - BEGIN_DOC -! aos_vxc_alpha_PBE_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) - END_DOC - integer :: istate,i,j,m - double precision :: r(3) - double precision :: mu,weight - double precision, allocatable :: ex(:), ec(:) - double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:) - double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:) - double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:) - double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:) - allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states)) - allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states)) - - - allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states)) - allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states)) - allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states)) - do istate = 1, N_states - do i = 1, n_points_final_grid - r(1) = final_grid_points(1,i) - r(2) = final_grid_points(2,i) - r(3) = final_grid_points(3,i) - weight = final_weight_at_r_vector(i) - rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) - rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) - grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate) - grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate) - grad_rho_a_2 = 0.d0 - grad_rho_b_2 = 0.d0 - grad_rho_a_b = 0.d0 - do m = 1, 3 - grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate) - grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate) - grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate) - enddo - - ! inputs - call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange - ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation - ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b ) - vx_rho_a(istate) *= weight - vc_rho_a(istate) *= weight - vx_rho_b(istate) *= weight - vc_rho_b(istate) *= weight - do m= 1,3 - contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate)) - contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate)) - contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate)) - contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate)) - enddo - do j = 1, ao_num - aos_vc_alpha_PBE_w(j,i,istate) = vc_rho_a(istate) * aos_in_r_array(j,i) - aos_vc_beta_PBE_w (j,i,istate) = vc_rho_b(istate) * aos_in_r_array(j,i) - aos_vx_alpha_PBE_w(j,i,istate) = vx_rho_a(istate) * aos_in_r_array(j,i) - aos_vx_beta_PBE_w (j,i,istate) = vx_rho_b(istate) * aos_in_r_array(j,i) - enddo - do m = 1,3 - do j = 1, ao_num - aos_dvc_alpha_PBE_w(j,i,m,istate) = contrib_grad_ca(m,istate) * aos_in_r_array(j,i) - aos_dvc_beta_PBE_w (j,i,m,istate) = contrib_grad_cb(m,istate) * aos_in_r_array(j,i) - aos_dvx_alpha_PBE_w(j,i,m,istate) = contrib_grad_xa(m,istate) * aos_in_r_array(j,i) - aos_dvx_beta_PBE_w (j,i,m,istate) = contrib_grad_xb(m,istate) * aos_in_r_array(j,i) - - grad_aos_dvc_alpha_PBE_w (j,i,m,istate) = contrib_grad_ca(m,istate) * aos_grad_in_r_array(m,j,i) - grad_aos_dvc_beta_PBE_w (j,i,m,istate) = contrib_grad_cb(m,istate) * aos_grad_in_r_array(m,j,i) - grad_aos_dvx_alpha_PBE_w (j,i,m,istate) = contrib_grad_xa(m,istate) * aos_grad_in_r_array(m,j,i) - grad_aos_dvx_beta_PBE_w (j,i,m,istate) = contrib_grad_xb(m,istate) * aos_grad_in_r_array(m,j,i) - enddo - enddo - enddo - enddo - - END_PROVIDER - - - BEGIN_PROVIDER [double precision, potential_x_alpha_ao_PBE,(ao_num,ao_num,N_states)] -&BEGIN_PROVIDER [double precision, potential_x_beta_ao_PBE,(ao_num,ao_num,N_states)] -&BEGIN_PROVIDER [double precision, potential_c_alpha_ao_PBE,(ao_num,ao_num,N_states)] -&BEGIN_PROVIDER [double precision, potential_c_beta_ao_PBE,(ao_num,ao_num,N_states)] - implicit none - BEGIN_DOC - ! exchange/correlation alpha/beta potentials with the short range PBE functional on the AO basis - END_DOC - integer :: istate, m - double precision :: wall_1,wall_2 - call wall_time(wall_1) - potential_c_alpha_ao_PBE = 0.d0 - potential_x_alpha_ao_PBE = 0.d0 - potential_c_beta_ao_PBE = 0.d0 - potential_x_beta_ao_PBE = 0.d0 - do istate = 1, N_states - ! correlation alpha - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_vc_alpha_PBE_w(1,1,istate),size(aos_vc_alpha_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_c_alpha_ao_PBE(1,1,istate),size(potential_c_alpha_ao_PBE,1)) - ! correlation beta - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_vc_beta_PBE_w(1,1,istate),size(aos_vc_beta_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_c_beta_ao_PBE(1,1,istate),size(potential_c_beta_ao_PBE,1)) - ! exchange alpha - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_vx_alpha_PBE_w(1,1,istate),size(aos_vx_alpha_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_x_alpha_ao_PBE(1,1,istate),size(potential_x_alpha_ao_PBE,1)) - ! exchange beta - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_vx_beta_PBE_w(1,1,istate),size(aos_vx_beta_PBE_w,1), aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_x_beta_ao_PBE(1,1,istate), size(potential_x_beta_ao_PBE,1)) - do m= 1,3 - ! correlation alpha - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_dvc_alpha_PBE_w(1,1,m,istate),size(aos_dvc_alpha_PBE_w,1),aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,potential_c_alpha_ao_PBE(1,1,istate),size(potential_c_alpha_ao_PBE,1)) - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,grad_aos_dvc_alpha_PBE_w(1,1,m,istate),size(grad_aos_dvc_alpha_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_c_alpha_ao_PBE(1,1,istate),size(potential_c_alpha_ao_PBE,1)) - ! correlation beta - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_dvc_beta_PBE_w(1,1,m,istate),size(aos_dvc_beta_PBE_w,1),aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,potential_c_beta_ao_PBE(1,1,istate),size(potential_c_beta_ao_PBE,1)) - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,grad_aos_dvc_beta_PBE_w(1,1,m,istate),size(grad_aos_dvc_beta_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_c_beta_ao_PBE(1,1,istate),size(potential_c_beta_ao_PBE,1)) - ! exchange alpha - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_dvx_alpha_PBE_w(1,1,m,istate),size(aos_dvx_alpha_PBE_w,1),aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,potential_x_alpha_ao_PBE(1,1,istate),size(potential_x_alpha_ao_PBE,1)) - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,grad_aos_dvx_alpha_PBE_w(1,1,m,istate),size(grad_aos_dvx_alpha_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_x_alpha_ao_PBE(1,1,istate),size(potential_x_alpha_ao_PBE,1)) - ! exchange beta - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,aos_dvx_beta_PBE_w(1,1,m,istate),size(aos_dvx_beta_PBE_w,1),aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,potential_x_beta_ao_PBE(1,1,istate),size(potential_x_beta_ao_PBE,1)) - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0,grad_aos_dvx_beta_PBE_w(1,1,m,istate),size(grad_aos_dvx_beta_PBE_w,1),aos_in_r_array,size(aos_in_r_array,1),1.d0,potential_x_beta_ao_PBE(1,1,istate),size(potential_x_beta_ao_PBE,1)) - enddo - enddo - - call wall_time(wall_2) - -END_PROVIDER diff --git a/src/dft_utils_one_e/pot_ao_lda.irp.f b/src/dft_utils_one_e/pot_ao_lda.irp.f new file mode 100644 index 00000000..d6fe747c --- /dev/null +++ b/src/dft_utils_one_e/pot_ao_lda.irp.f @@ -0,0 +1,83 @@ + + BEGIN_PROVIDER[double precision, aos_vc_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_vc_beta_LDA_w, (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_vx_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_vx_beta_LDA_w, (ao_num,n_points_final_grid,N_states)] + implicit none + BEGIN_DOC +! aos_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) + END_DOC + integer :: istate,i,j + double precision :: r(3) + double precision :: mu,weight + double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b + double precision, allocatable :: rhoa(:),rhob(:) + double precision :: mu_local + mu_local = 1.d-9 + allocate(rhoa(N_states), rhob(N_states)) + do istate = 1, N_states + do i = 1, n_points_final_grid + r(1) = final_grid_points(1,i) + r(2) = final_grid_points(2,i) + r(3) = final_grid_points(3,i) + weight = final_weight_at_r_vector(i) + rhoa(istate) = one_e_dm_alpha_at_r(i,istate) + rhob(istate) = one_e_dm_beta_at_r(i,istate) + call ec_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b) + call ex_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b) + do j =1, ao_num + aos_vc_alpha_LDA_w(j,i,istate) = vc_a * aos_in_r_array(j,i)*weight + aos_vc_beta_LDA_w(j,i,istate) = vc_b * aos_in_r_array(j,i)*weight + aos_vx_alpha_LDA_w(j,i,istate) = vx_a * aos_in_r_array(j,i)*weight + aos_vx_beta_LDA_w(j,i,istate) = vx_b * aos_in_r_array(j,i)*weight + enddo + enddo + enddo + + END_PROVIDER + + + + + BEGIN_PROVIDER [double precision, potential_x_alpha_ao_LDA,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_x_beta_ao_LDA,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC + ! short range exchange alpha/beta potentials with LDA functional on the |AO| basis + END_DOC + ! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states. + integer :: istate + do istate = 1, N_states + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_in_r_array,size(aos_in_r_array,1), & + aos_vx_alpha_LDA_w(1,1,istate),size(aos_vx_alpha_LDA_w,1),0.d0,& + potential_x_alpha_ao_LDA(1,1,istate),size(potential_x_alpha_ao_LDA,1)) + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_in_r_array,size(aos_in_r_array,1), & + aos_vx_beta_LDA_w(1,1,istate),size(aos_vx_beta_LDA_w,1),0.d0,& + potential_x_beta_ao_LDA(1,1,istate),size(potential_x_beta_ao_LDA,1)) + enddo + +END_PROVIDER + + BEGIN_PROVIDER [double precision, potential_c_alpha_ao_LDA,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_c_beta_ao_LDA,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC +! short range correlation alpha/beta potentials with LDA functional on the |AO| basis + END_DOC + ! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states. + integer :: istate + do istate = 1, N_states + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_in_r_array,size(aos_in_r_array,1), & + aos_vc_alpha_LDA_w(1,1,istate),size(aos_vc_alpha_LDA_w,1),0.d0,& + potential_c_alpha_ao_LDA(1,1,istate),size(potential_c_alpha_ao_LDA,1)) + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_in_r_array,size(aos_in_r_array,1), & + aos_vc_beta_LDA_w(1,1,istate),size(aos_vc_beta_LDA_w,1),0.d0,& + potential_c_beta_ao_LDA(1,1,istate),size(potential_c_beta_ao_LDA,1)) + enddo + +END_PROVIDER + diff --git a/src/dft_utils_one_e/pot_ao_lda_smashed.irp.f b/src/dft_utils_one_e/pot_ao_lda_smashed.irp.f new file mode 100644 index 00000000..c71f34bf --- /dev/null +++ b/src/dft_utils_one_e/pot_ao_lda_smashed.irp.f @@ -0,0 +1,53 @@ + + BEGIN_PROVIDER[double precision, aos_vxc_alpha_LDA_w, (n_points_final_grid,ao_num,N_states)] +&BEGIN_PROVIDER[double precision, aos_vxc_beta_LDA_w, (n_points_final_grid,ao_num,N_states)] + implicit none + BEGIN_DOC +! aos_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) + END_DOC + integer :: istate,i,j + double precision :: r(3) + double precision :: mu,weight + double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b + double precision, allocatable :: rhoa(:),rhob(:) + double precision :: mu_local + mu_local = 1.d-9 + allocate(rhoa(N_states), rhob(N_states)) + do istate = 1, N_states + do i = 1, n_points_final_grid + r(1) = final_grid_points(1,i) + r(2) = final_grid_points(2,i) + r(3) = final_grid_points(3,i) + weight = final_weight_at_r_vector(i) + rhoa(istate) = one_e_dm_alpha_at_r(i,istate) + rhob(istate) = one_e_dm_beta_at_r(i,istate) + call ec_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b) + call ex_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b) + do j =1, ao_num + aos_vxc_alpha_LDA_w(i,j,istate) = (vc_a + vx_a) * aos_in_r_array(j,i)*weight + aos_vxc_beta_LDA_w(i,j,istate) = (vc_b + vx_b) * aos_in_r_array(j,i)*weight + enddo + enddo + enddo + + END_PROVIDER + + + BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_LDA,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_xc_beta_ao_LDA ,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC +! short range exchange/correlation alpha/beta potentials with LDA functional on the AO basis + END_DOC + integer :: istate + double precision :: wall_1,wall_2 + call wall_time(wall_1) + print*,'providing the XC potentials LDA ' + do istate = 1, N_states + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vxc_alpha_LDA_w(1,1,istate),n_points_final_grid,0.d0,potential_xc_alpha_ao_LDA(1,1,istate),ao_num) + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vxc_beta_LDA_w(1,1,istate) ,n_points_final_grid,0.d0,potential_xc_beta_ao_LDA(1,1,istate),ao_num) + enddo + call wall_time(wall_2) + + END_PROVIDER + diff --git a/src/dft_utils_one_e/pot_ao_pbe.irp.f b/src/dft_utils_one_e/pot_ao_pbe.irp.f new file mode 100644 index 00000000..ccbb1713 --- /dev/null +++ b/src/dft_utils_one_e/pot_ao_pbe.irp.f @@ -0,0 +1,191 @@ + BEGIN_PROVIDER[double precision, aos_vc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_vc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_vx_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_vx_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_dvc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_dvc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_dvx_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_dvx_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] + implicit none + BEGIN_DOC +! aos_vxc_alpha_PBE_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) + END_DOC + integer :: istate,i,j,m + double precision :: r(3) + double precision :: mu,weight + double precision, allocatable :: ex(:), ec(:) + double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:) + double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:) + double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:) + double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:) + allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states)) + allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states)) + allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states)) + allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states)) + allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states)) + + aos_dvc_alpha_PBE_w = 0.d0 + aos_dvc_beta_PBE_w = 0.d0 + aos_dvx_alpha_PBE_w = 0.d0 + aos_dvx_beta_PBE_w = 0.d0 + + do istate = 1, N_states + do i = 1, n_points_final_grid + r(1) = final_grid_points(1,i) + r(2) = final_grid_points(2,i) + r(3) = final_grid_points(3,i) + weight = final_weight_at_r_vector(i) + rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) + rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) + grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate) + grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate) + grad_rho_a_2 = 0.d0 + grad_rho_b_2 = 0.d0 + grad_rho_a_b = 0.d0 + do m = 1, 3 + grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate) + grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate) + grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate) + enddo + + ! inputs + call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange + ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation + ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b ) + vx_rho_a(istate) *= weight + vc_rho_a(istate) *= weight + vx_rho_b(istate) *= weight + vc_rho_b(istate) *= weight + do m= 1,3 + contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate)) + contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate)) + contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate)) + contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate)) + enddo + do j = 1, ao_num + aos_vc_alpha_PBE_w(j,i,istate) = vc_rho_a(istate) * aos_in_r_array(j,i) + aos_vc_beta_PBE_w (j,i,istate) = vc_rho_b(istate) * aos_in_r_array(j,i) + aos_vx_alpha_PBE_w(j,i,istate) = vx_rho_a(istate) * aos_in_r_array(j,i) + aos_vx_beta_PBE_w (j,i,istate) = vx_rho_b(istate) * aos_in_r_array(j,i) + enddo + do j = 1, ao_num + do m = 1,3 + aos_dvc_alpha_PBE_w(j,i,istate) += contrib_grad_ca(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i) + aos_dvc_beta_PBE_w (j,i,istate) += contrib_grad_cb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i) + aos_dvx_alpha_PBE_w(j,i,istate) += contrib_grad_xa(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i) + aos_dvx_beta_PBE_w (j,i,istate) += contrib_grad_xb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i) + enddo + enddo + enddo + enddo + + END_PROVIDER + + + BEGIN_PROVIDER [double precision, pot_scal_x_alpha_ao_PBE, (ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_scal_c_alpha_ao_PBE, (ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_scal_x_beta_ao_PBE, (ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_scal_c_beta_ao_PBE, (ao_num,ao_num,N_states)] + implicit none + integer :: istate + BEGIN_DOC + ! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential + END_DOC + pot_scal_c_alpha_ao_PBE = 0.d0 + pot_scal_x_alpha_ao_PBE = 0.d0 + pot_scal_c_beta_ao_PBE = 0.d0 + pot_scal_x_beta_ao_PBE = 0.d0 + double precision :: wall_1,wall_2 + call wall_time(wall_1) + do istate = 1, N_states + ! correlation alpha + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_vc_alpha_PBE_w(1,1,istate),size(aos_vc_alpha_PBE_w,1), & + aos_in_r_array,size(aos_in_r_array,1),1.d0, & + pot_scal_c_alpha_ao_PBE(1,1,istate),size(pot_scal_c_alpha_ao_PBE,1)) + ! correlation beta + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_vc_beta_PBE_w(1,1,istate),size(aos_vc_beta_PBE_w,1), & + aos_in_r_array,size(aos_in_r_array,1),1.d0, & + pot_scal_c_beta_ao_PBE(1,1,istate),size(pot_scal_c_beta_ao_PBE,1)) + ! exchange alpha + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_vx_alpha_PBE_w(1,1,istate),size(aos_vx_alpha_PBE_w,1), & + aos_in_r_array,size(aos_in_r_array,1),1.d0, & + pot_scal_x_alpha_ao_PBE(1,1,istate),size(pot_scal_x_alpha_ao_PBE,1)) + ! exchange beta + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_vx_beta_PBE_w(1,1,istate),size(aos_vx_beta_PBE_w,1), & + aos_in_r_array,size(aos_in_r_array,1),1.d0, & + pot_scal_x_beta_ao_PBE(1,1,istate), size(pot_scal_x_beta_ao_PBE,1)) + + enddo + call wall_time(wall_2) + +END_PROVIDER + + + BEGIN_PROVIDER [double precision, pot_grad_x_alpha_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_grad_x_beta_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_grad_c_alpha_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_grad_c_beta_ao_PBE,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC + ! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals + END_DOC + integer :: istate + double precision :: wall_1,wall_2 + call wall_time(wall_1) + pot_grad_c_alpha_ao_PBE = 0.d0 + pot_grad_x_alpha_ao_PBE = 0.d0 + pot_grad_c_beta_ao_PBE = 0.d0 + pot_grad_x_beta_ao_PBE = 0.d0 + do istate = 1, N_states + ! correlation alpha + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_dvc_alpha_PBE_w(1,1,istate),size(aos_dvc_alpha_PBE_w,1), & + aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, & + pot_grad_c_alpha_ao_PBE(1,1,istate),size(pot_grad_c_alpha_ao_PBE,1)) + ! correlation beta + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_dvc_beta_PBE_w(1,1,istate),size(aos_dvc_beta_PBE_w,1), & + aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, & + pot_grad_c_beta_ao_PBE(1,1,istate),size(pot_grad_c_beta_ao_PBE,1)) + ! exchange alpha + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_dvx_alpha_PBE_w(1,1,istate),size(aos_dvx_alpha_PBE_w,1), & + aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, & + pot_grad_x_alpha_ao_PBE(1,1,istate),size(pot_grad_x_alpha_ao_PBE,1)) + ! exchange beta + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_dvx_beta_PBE_w(1,1,istate),size(aos_dvx_beta_PBE_w,1), & + aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, & + pot_grad_x_beta_ao_PBE(1,1,istate),size(pot_grad_x_beta_ao_PBE,1)) + enddo + + call wall_time(wall_2) + +END_PROVIDER + + BEGIN_PROVIDER [double precision, potential_x_alpha_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_x_beta_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_c_alpha_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_c_beta_ao_PBE,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC + ! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional + END_DOC + integer :: i,j,istate + do istate = 1, n_states + do i = 1, ao_num + do j = 1, ao_num + potential_x_alpha_ao_PBE(j,i,istate) = pot_scal_x_alpha_ao_PBE(j,i,istate) + pot_grad_x_alpha_ao_PBE(j,i,istate) + pot_grad_x_alpha_ao_PBE(i,j,istate) + potential_x_beta_ao_PBE(j,i,istate) = pot_scal_x_beta_ao_PBE(j,i,istate) + pot_grad_x_beta_ao_PBE(j,i,istate) + pot_grad_x_beta_ao_PBE(i,j,istate) + + potential_c_alpha_ao_PBE(j,i,istate) = pot_scal_c_alpha_ao_PBE(j,i,istate) + pot_grad_c_alpha_ao_PBE(j,i,istate) + pot_grad_c_alpha_ao_PBE(i,j,istate) + potential_c_beta_ao_PBE(j,i,istate) = pot_scal_c_beta_ao_PBE(j,i,istate) + pot_grad_c_beta_ao_PBE(j,i,istate) + pot_grad_c_beta_ao_PBE(i,j,istate) + enddo + enddo + enddo + +END_PROVIDER diff --git a/src/dft_utils_one_e/pot_ao_pbe_smashed.irp.f b/src/dft_utils_one_e/pot_ao_pbe_smashed.irp.f new file mode 100644 index 00000000..4b492ab9 --- /dev/null +++ b/src/dft_utils_one_e/pot_ao_pbe_smashed.irp.f @@ -0,0 +1,147 @@ + BEGIN_PROVIDER[double precision, aos_vxc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_vxc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_dvxc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_dvxc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] + implicit none + BEGIN_DOC +! aos_vxc_alpha_PBE_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) + END_DOC + integer :: istate,i,j,m + double precision :: r(3) + double precision :: mu,weight + double precision, allocatable :: ex(:), ec(:) + double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:) + double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:) + double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:) + double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:) + allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states)) + allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states)) + allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states)) + allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states)) + allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states)) + + aos_dvxc_alpha_PBE_w = 0.d0 + aos_dvxc_beta_PBE_w = 0.d0 + + do istate = 1, N_states + do i = 1, n_points_final_grid + r(1) = final_grid_points(1,i) + r(2) = final_grid_points(2,i) + r(3) = final_grid_points(3,i) + weight = final_weight_at_r_vector(i) + rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) + rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) + grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate) + grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate) + grad_rho_a_2 = 0.d0 + grad_rho_b_2 = 0.d0 + grad_rho_a_b = 0.d0 + do m = 1, 3 + grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate) + grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate) + grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate) + enddo + + ! inputs + call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange + ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation + ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b ) + vx_rho_a(istate) *= weight + vc_rho_a(istate) *= weight + vx_rho_b(istate) *= weight + vc_rho_b(istate) *= weight + do m= 1,3 + contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate)) + contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate)) + contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate)) + contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate)) + enddo + do j = 1, ao_num + aos_vxc_alpha_PBE_w(j,i,istate) = ( vc_rho_a(istate) + vx_rho_a(istate) ) * aos_in_r_array(j,i) + aos_vxc_beta_PBE_w (j,i,istate) = ( vc_rho_b(istate) + vx_rho_b(istate) ) * aos_in_r_array(j,i) + enddo + do j = 1, ao_num + do m = 1,3 + aos_dvxc_alpha_PBE_w(j,i,istate) += ( contrib_grad_ca(m,istate) + contrib_grad_xa(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i) + aos_dvxc_beta_PBE_w (j,i,istate) += ( contrib_grad_cb(m,istate) + contrib_grad_xb(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i) + enddo + enddo + enddo + enddo + + END_PROVIDER + + + BEGIN_PROVIDER [double precision, pot_scal_xc_alpha_ao_PBE, (ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_scal_xc_beta_ao_PBE, (ao_num,ao_num,N_states)] + implicit none + integer :: istate + BEGIN_DOC + ! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential + END_DOC + pot_scal_xc_alpha_ao_PBE = 0.d0 + pot_scal_xc_beta_ao_PBE = 0.d0 + double precision :: wall_1,wall_2 + call wall_time(wall_1) + do istate = 1, N_states + ! exchange - correlation alpha + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_vxc_alpha_PBE_w(1,1,istate),size(aos_vxc_alpha_PBE_w,1), & + aos_in_r_array,size(aos_in_r_array,1),1.d0, & + pot_scal_xc_alpha_ao_PBE(1,1,istate),size(pot_scal_xc_alpha_ao_PBE,1)) + ! exchange - correlation beta + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_vxc_beta_PBE_w(1,1,istate),size(aos_vxc_beta_PBE_w,1), & + aos_in_r_array,size(aos_in_r_array,1),1.d0, & + pot_scal_xc_beta_ao_PBE(1,1,istate),size(pot_scal_xc_beta_ao_PBE,1)) + enddo + call wall_time(wall_2) + +END_PROVIDER + + + BEGIN_PROVIDER [double precision, pot_grad_xc_alpha_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_grad_xc_beta_ao_PBE,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC + ! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals + END_DOC + integer :: istate + double precision :: wall_1,wall_2 + call wall_time(wall_1) + pot_grad_xc_alpha_ao_PBE = 0.d0 + pot_grad_xc_beta_ao_PBE = 0.d0 + do istate = 1, N_states + ! correlation alpha + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_dvxc_alpha_PBE_w(1,1,istate),size(aos_dvxc_alpha_PBE_w,1), & + aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, & + pot_grad_xc_alpha_ao_PBE(1,1,istate),size(pot_grad_xc_alpha_ao_PBE,1)) + ! correlation beta + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_dvxc_beta_PBE_w(1,1,istate),size(aos_dvxc_beta_PBE_w,1), & + aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, & + pot_grad_xc_beta_ao_PBE(1,1,istate),size(pot_grad_xc_beta_ao_PBE,1)) + enddo + + call wall_time(wall_2) + +END_PROVIDER + + BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_xc_beta_ao_PBE,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC + ! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional + END_DOC + integer :: i,j,istate + do istate = 1, n_states + do i = 1, ao_num + do j = 1, ao_num + potential_xc_alpha_ao_PBE(j,i,istate) = pot_scal_xc_alpha_ao_PBE(j,i,istate) + pot_grad_xc_alpha_ao_PBE(j,i,istate) + pot_grad_xc_alpha_ao_PBE(i,j,istate) + potential_xc_beta_ao_PBE(j,i,istate) = pot_scal_xc_beta_ao_PBE(j,i,istate) + pot_grad_xc_beta_ao_PBE(j,i,istate) + pot_grad_xc_beta_ao_PBE(i,j,istate) + enddo + enddo + enddo + +END_PROVIDER diff --git a/src/dft_utils_one_e/shifted_potential.irp.f b/src/dft_utils_one_e/shifted_potential.irp.f deleted file mode 100644 index 8cc1cf39..00000000 --- a/src/dft_utils_one_e/shifted_potential.irp.f +++ /dev/null @@ -1,16 +0,0 @@ -BEGIN_PROVIDER [double precision, shifting_constant, (N_states)] - implicit none - BEGIN_DOC - ! shifting_constant = (E_{Hxc} - <\Psi | V_{Hxc} | \Psi>) / N_elec - ! constant to add to the potential in order to obtain the variational energy as - ! the eigenvalue of the effective long-range Hamiltonian - ! (see original paper of Levy PRL 113, 113002 (2014), equation (17) ) - END_DOC - integer :: istate - do istate = 1, N_states - shifting_constant(istate) = energy_x(istate) + energy_c(istate) + short_range_Hartree(istate) - Trace_v_Hxc(istate) - enddo - shifting_constant = shifting_constant / dble(elec_num) - - -END_PROVIDER diff --git a/src/dft_utils_one_e/sr_pot_ao.irp.f b/src/dft_utils_one_e/sr_pot_ao.irp.f deleted file mode 100644 index 19f02a3c..00000000 --- a/src/dft_utils_one_e/sr_pot_ao.irp.f +++ /dev/null @@ -1,235 +0,0 @@ - BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_LDA_w, (n_points_final_grid,ao_num,N_states)] -&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_LDA_w, (n_points_final_grid,ao_num,N_states)] -&BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_LDA_w, (n_points_final_grid,ao_num,N_states)] -&BEGIN_PROVIDER[double precision, aos_sr_vx_beta_LDA_w, (n_points_final_grid,ao_num,N_states)] - implicit none - BEGIN_DOC -! aos_sr_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (sr_v^x_alpha(r_j) + sr_v^c_alpha(r_j)) * W(r_j) - END_DOC - integer :: istate,i,j - double precision :: r(3) - double precision :: mu,weight - double precision :: e_c,sr_vc_a,sr_vc_b,e_x,sr_vx_a,sr_vx_b - double precision, allocatable :: rhoa(:),rhob(:) - allocate(rhoa(N_states), rhob(N_states)) - do istate = 1, N_states - do i = 1, n_points_final_grid - r(1) = final_grid_points(1,i) - r(2) = final_grid_points(2,i) - r(3) = final_grid_points(3,i) - weight=final_weight_at_r_vector(i) - rhoa(istate) = one_e_dm_alpha_at_r(i,istate) - rhob(istate) = one_e_dm_beta_at_r(i,istate) - call ec_LDA_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b) - call ex_LDA_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b) - do j =1, ao_num - aos_sr_vc_alpha_LDA_w(i,j,istate) = sr_vc_a * aos_in_r_array(j,i)*weight - aos_sr_vc_beta_LDA_w(i,j,istate) = sr_vc_b * aos_in_r_array(j,i)*weight - aos_sr_vx_alpha_LDA_w(i,j,istate) = sr_vx_a * aos_in_r_array(j,i)*weight - aos_sr_vx_beta_LDA_w(i,j,istate) = sr_vx_b * aos_in_r_array(j,i)*weight - enddo - enddo - enddo - - END_PROVIDER - - - BEGIN_PROVIDER [double precision, potential_sr_x_alpha_ao_LDA,(ao_num,ao_num,N_states)] -&BEGIN_PROVIDER [double precision, potential_sr_x_beta_ao_LDA,(ao_num,ao_num,N_states)] - implicit none - BEGIN_DOC - ! short range exchange alpha/beta potentials with LDA functional on the |AO| basis - END_DOC - ! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states. - call dgemm('N','N',ao_num,ao_num*N_states,n_points_final_grid,1.d0, & - aos_in_r_array,size(aos_in_r_array,1), & - aos_sr_vx_alpha_LDA_w,size(aos_sr_vx_alpha_LDA_w,1),0.d0,& - potential_sr_x_alpha_ao_LDA,size(potential_sr_x_alpha_ao_LDA,1)) - call dgemm('N','N',ao_num,ao_num*N_states,n_points_final_grid,1.d0, & - aos_in_r_array,size(aos_in_r_array,1), & - aos_sr_vx_beta_LDA_w,size(aos_sr_vx_beta_LDA_w,1),0.d0,& - potential_sr_x_beta_ao_LDA,size(potential_sr_x_beta_ao_LDA,1)) - -END_PROVIDER - - BEGIN_PROVIDER [double precision, potential_sr_c_alpha_ao_LDA,(ao_num,ao_num,N_states)] -&BEGIN_PROVIDER [double precision, potential_sr_c_beta_ao_LDA,(ao_num,ao_num,N_states)] - implicit none - BEGIN_DOC -! short range correlation alpha/beta potentials with LDA functional on the |AO| basis - END_DOC - ! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states. - call dgemm('N','N',ao_num,ao_num*N_states,n_points_final_grid,1.d0, & - aos_in_r_array,size(aos_in_r_array,1), & - aos_sr_vc_alpha_LDA_w,size(aos_sr_vc_alpha_LDA_w,1),0.d0,& - potential_sr_c_alpha_ao_LDA,size(potential_sr_c_alpha_ao_LDA,1)) - call dgemm('N','N',ao_num,ao_num*N_states,n_points_final_grid,1.d0, & - aos_in_r_array,size(aos_in_r_array,1), & - aos_sr_vc_beta_LDA_w,size(aos_sr_vc_beta_LDA_w,1),0.d0,& - potential_sr_c_beta_ao_LDA,size(potential_sr_c_beta_ao_LDA,1)) - -END_PROVIDER - - BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] !(n_points_final_grid,ao_num,N_states)] - &BEGIN_PROVIDER[double precision, aos_sr_vc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]!(n_points_final_grid,ao_num,N_states)] - &BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] !(n_points_final_grid,ao_num,N_states)] - &BEGIN_PROVIDER[double precision, aos_sr_vx_beta_PBE_w , (ao_num,n_points_final_grid,N_states)]!(n_points_final_grid,ao_num,N_states)] - &BEGIN_PROVIDER[double precision, aos_dsr_vc_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)] - &BEGIN_PROVIDER[double precision, aos_dsr_vc_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)] - &BEGIN_PROVIDER[double precision, aos_dsr_vx_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)] - &BEGIN_PROVIDER[double precision, aos_dsr_vx_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)] - &BEGIN_PROVIDER[double precision, grad_aos_dsr_vc_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)] - &BEGIN_PROVIDER[double precision, grad_aos_dsr_vc_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)] - &BEGIN_PROVIDER[double precision, grad_aos_dsr_vx_alpha_PBE_w , (ao_num,n_points_final_grid,3,N_states)] - &BEGIN_PROVIDER[double precision, grad_aos_dsr_vx_beta_PBE_w , (ao_num,n_points_final_grid,3,N_states)] - implicit none - BEGIN_DOC - ! aos_vxc_alpha_PBE_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) - END_DOC - integer :: istate,i,j,m - double precision :: r(3) - double precision :: mu,weight - double precision, allocatable :: ex(:), ec(:) - double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:) - double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:) - double precision, allocatable :: sr_vc_rho_a(:), sr_vc_rho_b(:), sr_vx_rho_a(:), sr_vx_rho_b(:) - double precision, allocatable :: sr_vx_grad_rho_a_2(:), sr_vx_grad_rho_b_2(:), sr_vx_grad_rho_a_b(:), sr_vc_grad_rho_a_2(:), sr_vc_grad_rho_b_2(:), sr_vc_grad_rho_a_b(:) - allocate(sr_vc_rho_a(N_states), sr_vc_rho_b(N_states), sr_vx_rho_a(N_states), sr_vx_rho_b(N_states)) - allocate(sr_vx_grad_rho_a_2(N_states), sr_vx_grad_rho_b_2(N_states), sr_vx_grad_rho_a_b(N_states), sr_vc_grad_rho_a_2(N_states), sr_vc_grad_rho_b_2(N_states), sr_vc_grad_rho_a_b(N_states)) - - - allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states)) - allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states)) - allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states)) - do istate = 1, N_states - do i = 1, n_points_final_grid - r(1) = final_grid_points(1,i) - r(2) = final_grid_points(2,i) - r(3) = final_grid_points(3,i) - weight = final_weight_at_r_vector(i) - rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) - rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) - grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate) - grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate) - grad_rho_a_2 = 0.d0 - grad_rho_b_2 = 0.d0 - grad_rho_a_b = 0.d0 - do m = 1, 3 - grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate) - grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate) - grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate) - enddo - - ! inputs - call GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange - ex,sr_vx_rho_a,sr_vx_rho_b,sr_vx_grad_rho_a_2,sr_vx_grad_rho_b_2,sr_vx_grad_rho_a_b, & ! outputs correlation - ec,sr_vc_rho_a,sr_vc_rho_b,sr_vc_grad_rho_a_2,sr_vc_grad_rho_b_2,sr_vc_grad_rho_a_b ) - sr_vx_rho_a(istate) *= weight - sr_vc_rho_a(istate) *= weight - sr_vx_rho_b(istate) *= weight - sr_vc_rho_b(istate) *= weight - do m= 1,3 - contrib_grad_ca(m,istate) = weight * (2.d0 * sr_vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + sr_vc_grad_rho_a_b(istate) * grad_rho_b(m,istate)) - contrib_grad_xa(m,istate) = weight * (2.d0 * sr_vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + sr_vx_grad_rho_a_b(istate) * grad_rho_b(m,istate)) - contrib_grad_cb(m,istate) = weight * (2.d0 * sr_vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + sr_vc_grad_rho_a_b(istate) * grad_rho_a(m,istate)) - contrib_grad_xb(m,istate) = weight * (2.d0 * sr_vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + sr_vx_grad_rho_a_b(istate) * grad_rho_a(m,istate)) - enddo - do j = 1, ao_num - aos_sr_vc_alpha_PBE_w(j,i,istate) = sr_vc_rho_a(istate) * aos_in_r_array(j,i) - aos_sr_vc_beta_PBE_w (j,i,istate) = sr_vc_rho_b(istate) * aos_in_r_array(j,i) - aos_sr_vx_alpha_PBE_w(j,i,istate) = sr_vx_rho_a(istate) * aos_in_r_array(j,i) - aos_sr_vx_beta_PBE_w (j,i,istate) = sr_vx_rho_b(istate) * aos_in_r_array(j,i) - do m = 1,3 - aos_dsr_vc_alpha_PBE_w(j,i,m,istate) = contrib_grad_ca(m,istate) * aos_in_r_array(j,i) - aos_dsr_vc_beta_PBE_w (j,i,m,istate) = contrib_grad_cb(m,istate) * aos_in_r_array(j,i) - aos_dsr_vx_alpha_PBE_w(j,i,m,istate) = contrib_grad_xa(m,istate) * aos_in_r_array(j,i) - aos_dsr_vx_beta_PBE_w (j,i,m,istate) = contrib_grad_xb(m,istate) * aos_in_r_array(j,i) - - grad_aos_dsr_vc_alpha_PBE_w (j,i,m,istate) = contrib_grad_ca(m,istate) * aos_grad_in_r_array(j,i,m) - grad_aos_dsr_vc_beta_PBE_w (j,i,m,istate) = contrib_grad_cb(m,istate) * aos_grad_in_r_array(j,i,m) - grad_aos_dsr_vx_alpha_PBE_w (j,i,m,istate) = contrib_grad_xa(m,istate) * aos_grad_in_r_array(j,i,m) - grad_aos_dsr_vx_beta_PBE_w (j,i,m,istate) = contrib_grad_xb(m,istate) * aos_grad_in_r_array(j,i,m) - enddo - enddo - enddo - enddo - -END_PROVIDER - - - BEGIN_PROVIDER [double precision, potential_sr_x_alpha_ao_PBE,(ao_num,ao_num,N_states)] -&BEGIN_PROVIDER [double precision, potential_sr_x_beta_ao_PBE,(ao_num,ao_num,N_states)] -&BEGIN_PROVIDER [double precision, potential_sr_c_alpha_ao_PBE,(ao_num,ao_num,N_states)] -&BEGIN_PROVIDER [double precision, potential_sr_c_beta_ao_PBE,(ao_num,ao_num,N_states)] - implicit none - BEGIN_DOC - ! exchange/correlation alpha/beta potentials with the short range PBE functional on the AO basis - END_DOC - integer :: istate, m - double precision :: wall_1,wall_2 - potential_sr_c_alpha_ao_PBE = 0.d0 - potential_sr_x_alpha_ao_PBE = 0.d0 - potential_sr_c_beta_ao_PBE = 0.d0 - potential_sr_x_beta_ao_PBE = 0.d0 - do istate = 1, N_states - ! correlation alpha - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & - aos_sr_vc_alpha_PBE_w(1,1,istate),size(aos_sr_vc_alpha_PBE_w,1),& - aos_in_r_array,size(aos_in_r_array,1),1.d0, & - potential_sr_c_alpha_ao_PBE(1,1,istate),size(potential_sr_c_alpha_ao_PBE,1)) - ! correlation beta - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & - aos_sr_vc_beta_PBE_w(1,1,istate),size(aos_sr_vc_beta_PBE_w,1),& - aos_in_r_array,size(aos_in_r_array,1),1.d0, & - potential_sr_c_beta_ao_PBE(1,1,istate),size(potential_sr_c_beta_ao_PBE,1)) - ! exchange alpha - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & - aos_sr_vx_alpha_PBE_w(1,1,istate),size(aos_sr_vx_alpha_PBE_w,1),& - aos_in_r_array,size(aos_in_r_array,1),1.d0, & - potential_sr_x_alpha_ao_PBE(1,1,istate),size(potential_sr_x_alpha_ao_PBE,1)) - ! exchange beta - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & - aos_sr_vx_beta_PBE_w(1,1,istate),size(aos_sr_vx_beta_PBE_w,1),& - aos_in_r_array,size(aos_in_r_array,1),1.d0, & - potential_sr_x_beta_ao_PBE(1,1,istate), size(potential_sr_x_beta_ao_PBE,1)) - do m= 1,3 - ! correlation alpha - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & - aos_dsr_vc_alpha_PBE_w(1,1,m,istate),size(aos_dsr_vc_alpha_PBE_w,1),& - aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,& - potential_sr_c_alpha_ao_PBE(1,1,istate),size(potential_sr_c_alpha_ao_PBE,1)) - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & - grad_aos_dsr_vc_alpha_PBE_w(1,1,m,istate),size(grad_aos_dsr_vc_alpha_PBE_w,1),& - aos_in_r_array,size(aos_in_r_array,1),1.d0, & - potential_sr_c_alpha_ao_PBE(1,1,istate),size(potential_sr_c_alpha_ao_PBE,1)) - ! correlation beta - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & - aos_dsr_vc_beta_PBE_w(1,1,m,istate),size(aos_dsr_vc_beta_PBE_w,1),& - aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,& - potential_sr_c_beta_ao_PBE(1,1,istate),size(potential_sr_c_beta_ao_PBE,1)) - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & - grad_aos_dsr_vc_beta_PBE_w(1,1,m,istate),size(grad_aos_dsr_vc_beta_PBE_w,1),& - aos_in_r_array,size(aos_in_r_array,1),1.d0, & - potential_sr_c_beta_ao_PBE(1,1,istate),size(potential_sr_c_beta_ao_PBE,1)) - ! exchange alpha - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & - aos_dsr_vx_alpha_PBE_w(1,1,m,istate),size(aos_dsr_vx_alpha_PBE_w,1),& - aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,& - potential_sr_x_alpha_ao_PBE(1,1,istate),size(potential_sr_x_alpha_ao_PBE,1)) - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & - grad_aos_dsr_vx_alpha_PBE_w(1,1,m,istate),size(grad_aos_dsr_vx_alpha_PBE_w,1),& - aos_in_r_array,size(aos_in_r_array,1),1.d0, & - potential_sr_x_alpha_ao_PBE(1,1,istate),size(potential_sr_x_alpha_ao_PBE,1)) - ! exchange beta - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & - aos_dsr_vx_beta_PBE_w(1,1,m,istate),size(aos_dsr_vx_beta_PBE_w,1),& - aos_grad_in_r_array(1,1,m),size(aos_grad_in_r_array,1),1.d0,& - potential_sr_x_beta_ao_PBE(1,1,istate),size(potential_sr_x_beta_ao_PBE,1)) - call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & - grad_aos_dsr_vx_beta_PBE_w(1,1,m,istate),size(grad_aos_dsr_vx_beta_PBE_w,1),& - aos_in_r_array,size(aos_in_r_array,1),1.d0, & - potential_sr_x_beta_ao_PBE(1,1,istate),size(potential_sr_x_beta_ao_PBE,1)) - enddo - enddo - -END_PROVIDER diff --git a/src/dft_utils_one_e/sr_pot_ao_lda.irp.f b/src/dft_utils_one_e/sr_pot_ao_lda.irp.f new file mode 100644 index 00000000..1dbc90e7 --- /dev/null +++ b/src/dft_utils_one_e/sr_pot_ao_lda.irp.f @@ -0,0 +1,79 @@ + BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_LDA_w, (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_sr_vx_beta_LDA_w, (ao_num,n_points_final_grid,N_states)] + implicit none + BEGIN_DOC +! aos_sr_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (sr_v^x_alpha(r_j) + sr_v^c_alpha(r_j)) * W(r_j) + END_DOC + integer :: istate,i,j + double precision :: r(3) + double precision :: mu,weight + double precision :: e_c,sr_vc_a,sr_vc_b,e_x,sr_vx_a,sr_vx_b + double precision, allocatable :: rhoa(:),rhob(:) + allocate(rhoa(N_states), rhob(N_states)) + do istate = 1, N_states + do i = 1, n_points_final_grid + r(1) = final_grid_points(1,i) + r(2) = final_grid_points(2,i) + r(3) = final_grid_points(3,i) + weight = final_weight_at_r_vector(i) + rhoa(istate) = one_e_dm_alpha_at_r(i,istate) + rhob(istate) = one_e_dm_beta_at_r(i,istate) + call ec_LDA_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b) + call ex_LDA_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b) + do j =1, ao_num + aos_sr_vc_alpha_LDA_w(j,i,istate) = sr_vc_a * aos_in_r_array(j,i)*weight + aos_sr_vc_beta_LDA_w(j,i,istate) = sr_vc_b * aos_in_r_array(j,i)*weight + aos_sr_vx_alpha_LDA_w(j,i,istate) = sr_vx_a * aos_in_r_array(j,i)*weight + aos_sr_vx_beta_LDA_w(j,i,istate) = sr_vx_b * aos_in_r_array(j,i)*weight + enddo + enddo + enddo + + END_PROVIDER + + BEGIN_PROVIDER [double precision, potential_sr_x_alpha_ao_LDA,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_sr_x_beta_ao_LDA,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC + ! short range exchange alpha/beta potentials with LDA functional on the |AO| basis + END_DOC + ! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states. + + integer :: istate + do istate = 1, N_states + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_in_r_array,size(aos_in_r_array,1), & + aos_sr_vx_alpha_LDA_w,size(aos_sr_vx_alpha_LDA_w,1),0.d0,& + potential_sr_x_alpha_ao_LDA,size(potential_sr_x_alpha_ao_LDA,1)) + + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_in_r_array,size(aos_in_r_array,1), & + aos_sr_vx_beta_LDA_w(1,1,istate),size(aos_sr_vx_beta_LDA_w,1),0.d0,& + potential_sr_x_beta_ao_LDA(1,1,istate),size(potential_sr_x_beta_ao_LDA,1)) + enddo + +END_PROVIDER + + BEGIN_PROVIDER [double precision, potential_sr_c_alpha_ao_LDA,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_sr_c_beta_ao_LDA,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC +! short range correlation alpha/beta potentials with LDA functional on the |AO| basis + END_DOC + ! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states. + integer :: istate + do istate = 1, N_states + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_in_r_array,size(aos_in_r_array,1), & + aos_sr_vc_alpha_LDA_w(1,1,istate),size(aos_sr_vc_alpha_LDA_w,1),0.d0,& + potential_sr_c_alpha_ao_LDA(1,1,istate),size(potential_sr_c_alpha_ao_LDA,1)) + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_in_r_array,size(aos_in_r_array,1), & + aos_sr_vc_beta_LDA_w(1,1,istate),size(aos_sr_vc_beta_LDA_w,1),0.d0,& + potential_sr_c_beta_ao_LDA(1,1,istate),size(potential_sr_c_beta_ao_LDA,1)) + enddo + +END_PROVIDER + diff --git a/src/dft_utils_one_e/sr_pot_ao_lda_smashed.irp.f b/src/dft_utils_one_e/sr_pot_ao_lda_smashed.irp.f new file mode 100644 index 00000000..1c74d66b --- /dev/null +++ b/src/dft_utils_one_e/sr_pot_ao_lda_smashed.irp.f @@ -0,0 +1,58 @@ + + BEGIN_PROVIDER[double precision, aos_sr_vxc_alpha_LDA_w, (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_sr_vxc_beta_LDA_w, (ao_num,n_points_final_grid,N_states)] + implicit none + BEGIN_DOC +! aos_sr_vxc_alpha_LDA_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) + END_DOC + integer :: istate,i,j + double precision :: r(3) + double precision :: mu,weight + double precision :: e_c,sr_vc_a,sr_vc_b,e_x,sr_vx_a,sr_vx_b + double precision, allocatable :: rhoa(:),rhob(:) + double precision :: mu_local + mu_local = mu_erf_dft + allocate(rhoa(N_states), rhob(N_states)) + do istate = 1, N_states + do i = 1, n_points_final_grid + r(1) = final_grid_points(1,i) + r(2) = final_grid_points(2,i) + r(3) = final_grid_points(3,i) + weight = final_weight_at_r_vector(i) + rhoa(istate) = one_e_dm_alpha_at_r(i,istate) + rhob(istate) = one_e_dm_beta_at_r(i,istate) + call ec_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b) + call ex_LDA_sr(mu_local,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b) + do j =1, ao_num + aos_sr_vxc_alpha_LDA_w(j,i,istate) = (sr_vc_a + sr_vx_a) * aos_in_r_array(j,i)*weight + aos_sr_vxc_beta_LDA_w(j,i,istate) = (sr_vc_b + sr_vx_b) * aos_in_r_array(j,i)*weight + enddo + enddo + enddo + + END_PROVIDER + + + BEGIN_PROVIDER [double precision, potential_sr_xc_alpha_ao_LDA,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_sr_xc_beta_ao_LDA ,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC +! short range exchange/correlation alpha/beta potentials with LDA functional on the AO basis + END_DOC + + integer :: istate + do istate = 1, N_states + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_in_r_array,size(aos_in_r_array,1), & + aos_sr_vxc_alpha_LDA_w(1,1,istate),size(aos_sr_vxc_alpha_LDA_w,1),0.d0,& + potential_sr_xc_alpha_ao_LDA(1,1,istate),size(potential_sr_xc_alpha_ao_LDA,1)) + + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_in_r_array,size(aos_in_r_array,1), & + aos_sr_vxc_beta_LDA_w(1,1,istate),size(aos_sr_vxc_beta_LDA_w,1),0.d0,& + potential_sr_xc_beta_ao_LDA(1,1,istate),size(potential_sr_xc_beta_ao_LDA,1)) + enddo + + + END_PROVIDER + diff --git a/src/dft_utils_one_e/sr_pot_ao_pbe.irp.f b/src/dft_utils_one_e/sr_pot_ao_pbe.irp.f new file mode 100644 index 00000000..78e5c466 --- /dev/null +++ b/src/dft_utils_one_e/sr_pot_ao_pbe.irp.f @@ -0,0 +1,191 @@ + BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_sr_vx_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_dsr_vc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_dsr_vc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_dsr_vx_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_dsr_vx_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] + implicit none + BEGIN_DOC +! aos_sr_vxc_alpha_PBE_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) + END_DOC + integer :: istate,i,j,m + double precision :: r(3) + double precision :: mu,weight + double precision, allocatable :: ex(:), ec(:) + double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:) + double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:) + double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:) + double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:) + allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states)) + allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states)) + + + allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states)) + allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states)) + allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states)) + aos_dsr_vc_alpha_PBE_w= 0.d0 + aos_dsr_vc_beta_PBE_w = 0.d0 + aos_dsr_vx_alpha_PBE_w= 0.d0 + aos_dsr_vx_beta_PBE_w = 0.d0 + do istate = 1, N_states + do i = 1, n_points_final_grid + r(1) = final_grid_points(1,i) + r(2) = final_grid_points(2,i) + r(3) = final_grid_points(3,i) + weight = final_weight_at_r_vector(i) + rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) + rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) + grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate) + grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate) + grad_rho_a_2 = 0.d0 + grad_rho_b_2 = 0.d0 + grad_rho_a_b = 0.d0 + do m = 1, 3 + grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate) + grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate) + grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate) + enddo + + ! inputs + call GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange + ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation + ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b ) + vx_rho_a(istate) *= weight + vc_rho_a(istate) *= weight + vx_rho_b(istate) *= weight + vc_rho_b(istate) *= weight + do m= 1,3 + contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate)) + contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate)) + contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate)) + contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate)) + enddo + do j = 1, ao_num + aos_sr_vc_alpha_PBE_w(j,i,istate) = vc_rho_a(istate) * aos_in_r_array(j,i) + aos_sr_vc_beta_PBE_w (j,i,istate) = vc_rho_b(istate) * aos_in_r_array(j,i) + aos_sr_vx_alpha_PBE_w(j,i,istate) = vx_rho_a(istate) * aos_in_r_array(j,i) + aos_sr_vx_beta_PBE_w (j,i,istate) = vx_rho_b(istate) * aos_in_r_array(j,i) + enddo + do j = 1, ao_num + do m = 1,3 + aos_dsr_vc_alpha_PBE_w(j,i,istate) += contrib_grad_ca(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i) + aos_dsr_vc_beta_PBE_w (j,i,istate) += contrib_grad_cb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i) + aos_dsr_vx_alpha_PBE_w(j,i,istate) += contrib_grad_xa(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i) + aos_dsr_vx_beta_PBE_w (j,i,istate) += contrib_grad_xb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i) + enddo + enddo + enddo + enddo + + END_PROVIDER + + + BEGIN_PROVIDER [double precision, pot_sr_scal_x_alpha_ao_PBE, (ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_sr_scal_c_alpha_ao_PBE, (ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_sr_scal_x_beta_ao_PBE, (ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_sr_scal_c_beta_ao_PBE, (ao_num,ao_num,N_states)] + implicit none + integer :: istate + BEGIN_DOC + ! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential + END_DOC + pot_sr_scal_c_alpha_ao_PBE = 0.d0 + pot_sr_scal_x_alpha_ao_PBE = 0.d0 + pot_sr_scal_c_beta_ao_PBE = 0.d0 + pot_sr_scal_x_beta_ao_PBE = 0.d0 + double precision :: wall_1,wall_2 + call wall_time(wall_1) + do istate = 1, N_states + ! correlation alpha + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_sr_vc_alpha_PBE_w(1,1,istate),size(aos_sr_vc_alpha_PBE_w,1), & + aos_in_r_array,size(aos_in_r_array,1),1.d0, & + pot_sr_scal_c_alpha_ao_PBE(1,1,istate),size(pot_sr_scal_c_alpha_ao_PBE,1)) + ! correlation beta + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_sr_vc_beta_PBE_w(1,1,istate),size(aos_sr_vc_beta_PBE_w,1), & + aos_in_r_array,size(aos_in_r_array,1),1.d0, & + pot_sr_scal_c_beta_ao_PBE(1,1,istate),size(pot_sr_scal_c_beta_ao_PBE,1)) + ! exchange alpha + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_sr_vx_alpha_PBE_w(1,1,istate),size(aos_sr_vx_alpha_PBE_w,1), & + aos_in_r_array,size(aos_in_r_array,1),1.d0, & + pot_sr_scal_x_alpha_ao_PBE(1,1,istate),size(pot_sr_scal_x_alpha_ao_PBE,1)) + ! exchange beta + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_sr_vx_beta_PBE_w(1,1,istate),size(aos_sr_vx_beta_PBE_w,1), & + aos_in_r_array,size(aos_in_r_array,1),1.d0, & + pot_sr_scal_x_beta_ao_PBE(1,1,istate), size(pot_sr_scal_x_beta_ao_PBE,1)) + + enddo + call wall_time(wall_2) + +END_PROVIDER + + + BEGIN_PROVIDER [double precision, pot_sr_grad_x_alpha_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_sr_grad_x_beta_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_sr_grad_c_alpha_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_sr_grad_c_beta_ao_PBE,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC + ! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals + END_DOC + integer :: istate + double precision :: wall_1,wall_2 + call wall_time(wall_1) + pot_sr_grad_c_alpha_ao_PBE = 0.d0 + pot_sr_grad_x_alpha_ao_PBE = 0.d0 + pot_sr_grad_c_beta_ao_PBE = 0.d0 + pot_sr_grad_x_beta_ao_PBE = 0.d0 + do istate = 1, N_states + ! correlation alpha + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_dsr_vc_alpha_PBE_w(1,1,istate),size(aos_dsr_vc_alpha_PBE_w,1), & + aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, & + pot_sr_grad_c_alpha_ao_PBE(1,1,istate),size(pot_sr_grad_c_alpha_ao_PBE,1)) + ! correlation beta + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_dsr_vc_beta_PBE_w(1,1,istate),size(aos_dsr_vc_beta_PBE_w,1), & + aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, & + pot_sr_grad_c_beta_ao_PBE(1,1,istate),size(pot_sr_grad_c_beta_ao_PBE,1)) + ! exchange alpha + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_dsr_vx_alpha_PBE_w(1,1,istate),size(aos_dsr_vx_alpha_PBE_w,1), & + aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, & + pot_sr_grad_x_alpha_ao_PBE(1,1,istate),size(pot_sr_grad_x_alpha_ao_PBE,1)) + ! exchange beta + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_dsr_vx_beta_PBE_w(1,1,istate),size(aos_dsr_vx_beta_PBE_w,1), & + aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, & + pot_sr_grad_x_beta_ao_PBE(1,1,istate),size(pot_sr_grad_x_beta_ao_PBE,1)) + enddo + + call wall_time(wall_2) + +END_PROVIDER + + BEGIN_PROVIDER [double precision, potential_sr_x_alpha_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_sr_x_beta_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_sr_c_alpha_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_sr_c_beta_ao_PBE,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC + ! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional + END_DOC + integer :: i,j,istate + do istate = 1, n_states + do i = 1, ao_num + do j = 1, ao_num + potential_sr_x_alpha_ao_PBE(j,i,istate) = pot_sr_scal_x_alpha_ao_PBE(j,i,istate) + pot_sr_grad_x_alpha_ao_PBE(j,i,istate) + pot_sr_grad_x_alpha_ao_PBE(i,j,istate) + potential_sr_x_beta_ao_PBE(j,i,istate) = pot_sr_scal_x_beta_ao_PBE(j,i,istate) + pot_sr_grad_x_beta_ao_PBE(j,i,istate) + pot_sr_grad_x_beta_ao_PBE(i,j,istate) + + potential_sr_c_alpha_ao_PBE(j,i,istate) = pot_sr_scal_c_alpha_ao_PBE(j,i,istate) + pot_sr_grad_c_alpha_ao_PBE(j,i,istate) + pot_sr_grad_c_alpha_ao_PBE(i,j,istate) + potential_sr_c_beta_ao_PBE(j,i,istate) = pot_sr_scal_c_beta_ao_PBE(j,i,istate) + pot_sr_grad_c_beta_ao_PBE(j,i,istate) + pot_sr_grad_c_beta_ao_PBE(i,j,istate) + enddo + enddo + enddo + +END_PROVIDER diff --git a/src/dft_utils_one_e/sr_pot_ao_pbe_smashed.irp.f b/src/dft_utils_one_e/sr_pot_ao_pbe_smashed.irp.f new file mode 100644 index 00000000..d49321e0 --- /dev/null +++ b/src/dft_utils_one_e/sr_pot_ao_pbe_smashed.irp.f @@ -0,0 +1,149 @@ + BEGIN_PROVIDER[double precision, aos_sr_vxc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_sr_vxc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_dsr_vxc_alpha_PBE_w , (ao_num,n_points_final_grid,N_states)] +&BEGIN_PROVIDER[double precision, aos_dsr_vxc_beta_PBE_w , (ao_num,n_points_final_grid,N_states)] + implicit none + BEGIN_DOC +! aos_sr_vxc_alpha_PBE_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) + END_DOC + integer :: istate,i,j,m + double precision :: r(3) + double precision :: mu,weight + double precision, allocatable :: ex(:), ec(:) + double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:) + double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:) + double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:) + double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:) + allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states)) + allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states)) + + + allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states)) + allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states)) + allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states)) + + aos_dsr_vxc_alpha_PBE_w = 0.d0 + aos_dsr_vxc_beta_PBE_w = 0.d0 + + do istate = 1, N_states + do i = 1, n_points_final_grid + r(1) = final_grid_points(1,i) + r(2) = final_grid_points(2,i) + r(3) = final_grid_points(3,i) + weight = final_weight_at_r_vector(i) + rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) + rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) + grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate) + grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate) + grad_rho_a_2 = 0.d0 + grad_rho_b_2 = 0.d0 + grad_rho_a_b = 0.d0 + do m = 1, 3 + grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate) + grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate) + grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate) + enddo + + ! inputs + call GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange + ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation + ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b ) + vx_rho_a(istate) *= weight + vc_rho_a(istate) *= weight + vx_rho_b(istate) *= weight + vc_rho_b(istate) *= weight + do m= 1,3 + contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate)) + contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate)) + contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate)) + contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate)) + enddo + do j = 1, ao_num + aos_sr_vxc_alpha_PBE_w(j,i,istate) = ( vc_rho_a(istate) + vx_rho_a(istate) ) * aos_in_r_array(j,i) + aos_sr_vxc_beta_PBE_w (j,i,istate) = ( vc_rho_b(istate) + vx_rho_b(istate) ) * aos_in_r_array(j,i) + enddo + do j = 1, ao_num + do m = 1,3 + aos_dsr_vxc_alpha_PBE_w(j,i,istate) += ( contrib_grad_ca(m,istate) + contrib_grad_xa(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i) + aos_dsr_vxc_beta_PBE_w (j,i,istate) += ( contrib_grad_cb(m,istate) + contrib_grad_xb(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i) + enddo + enddo + enddo + enddo + + END_PROVIDER + + + BEGIN_PROVIDER [double precision, pot_sr_scal_xc_alpha_ao_PBE, (ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_sr_scal_xc_beta_ao_PBE, (ao_num,ao_num,N_states)] + implicit none + integer :: istate + BEGIN_DOC + ! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential + END_DOC + pot_sr_scal_xc_alpha_ao_PBE = 0.d0 + pot_sr_scal_xc_beta_ao_PBE = 0.d0 + double precision :: wall_1,wall_2 + call wall_time(wall_1) + do istate = 1, N_states + ! exchange - correlation alpha + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_sr_vxc_alpha_PBE_w(1,1,istate),size(aos_sr_vxc_alpha_PBE_w,1), & + aos_in_r_array,size(aos_in_r_array,1),1.d0, & + pot_sr_scal_xc_alpha_ao_PBE(1,1,istate),size(pot_sr_scal_xc_alpha_ao_PBE,1)) + ! exchange - correlation beta + call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_sr_vxc_beta_PBE_w(1,1,istate),size(aos_sr_vxc_beta_PBE_w,1), & + aos_in_r_array,size(aos_in_r_array,1),1.d0, & + pot_sr_scal_xc_beta_ao_PBE(1,1,istate),size(pot_sr_scal_xc_beta_ao_PBE,1)) + enddo + call wall_time(wall_2) + +END_PROVIDER + + + BEGIN_PROVIDER [double precision, pot_sr_grad_xc_alpha_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, pot_sr_grad_xc_beta_ao_PBE,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC + ! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the gradienst of the density and orbitals + END_DOC + integer :: istate + double precision :: wall_1,wall_2 + call wall_time(wall_1) + pot_sr_grad_xc_alpha_ao_PBE = 0.d0 + pot_sr_grad_xc_beta_ao_PBE = 0.d0 + do istate = 1, N_states + ! exchange - correlation alpha + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_dsr_vxc_alpha_PBE_w(1,1,istate),size(aos_dsr_vxc_alpha_PBE_w,1), & + aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, & + pot_sr_grad_xc_alpha_ao_PBE(1,1,istate),size(pot_sr_grad_xc_alpha_ao_PBE,1)) + ! exchange - correlation beta + call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0, & + aos_dsr_vxc_beta_PBE_w(1,1,istate),size(aos_dsr_vxc_beta_PBE_w,1), & + aos_in_r_array_transp,size(aos_in_r_array_transp,1),1.d0, & + pot_sr_grad_xc_beta_ao_PBE(1,1,istate),size(pot_sr_grad_xc_beta_ao_PBE,1)) + enddo + + call wall_time(wall_2) + +END_PROVIDER + + BEGIN_PROVIDER [double precision, potential_sr_xc_alpha_ao_PBE,(ao_num,ao_num,N_states)] +&BEGIN_PROVIDER [double precision, potential_sr_xc_beta_ao_PBE,(ao_num,ao_num,N_states)] + implicit none + BEGIN_DOC + ! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional + END_DOC + integer :: i,j,istate + do istate = 1, n_states + do i = 1, ao_num + do j = 1, ao_num + potential_sr_xc_alpha_ao_PBE(j,i,istate) = pot_sr_scal_xc_alpha_ao_PBE(j,i,istate) + pot_sr_grad_xc_alpha_ao_PBE(j,i,istate) + pot_sr_grad_xc_alpha_ao_PBE(i,j,istate) + potential_sr_xc_beta_ao_PBE(j,i,istate) = pot_sr_scal_xc_beta_ao_PBE(j,i,istate) + pot_sr_grad_xc_beta_ao_PBE(j,i,istate) + pot_sr_grad_xc_beta_ao_PBE(i,j,istate) + enddo + enddo + enddo + +END_PROVIDER diff --git a/src/dft_utils_one_e/utils.irp.f b/src/dft_utils_one_e/utils.irp.f index f6d87011..1ebd52ef 100644 --- a/src/dft_utils_one_e/utils.irp.f +++ b/src/dft_utils_one_e/utils.irp.f @@ -68,7 +68,7 @@ subroutine GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho double precision :: mu_local mu_local = 1.d-9 do istate = 1, N_states - if(exchange_functional.EQ."short_range_PBE")then + if(exchange_functional.EQ."PBE")then call ex_pbe_sr(mu_local,rho_a(istate),rho_b(istate),grad_rho_a_2(istate),grad_rho_b_2(istate),grad_rho_a_b(istate),ex(istate),vx_rho_a(istate),vx_rho_b(istate),vx_grad_rho_a_2(istate),vx_grad_rho_b_2(istate),vx_grad_rho_a_b(istate)) else if(exchange_functional.EQ."None")then ex = 0.d0 @@ -84,7 +84,7 @@ subroutine GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho endif double precision :: rhoc,rhoo,sigmacc,sigmaco,sigmaoo,vrhoc,vrhoo,vsigmacc,vsigmaco,vsigmaoo - if(correlation_functional.EQ."short_range_PBE")then + if(correlation_functional.EQ."PBE")then ! convertion from (alpha,beta) formalism to (closed, open) formalism call rho_ab_to_rho_oc(rho_a(istate),rho_b(istate),rhoo,rhoc) call grad_rho_ab_to_grad_rho_oc(grad_rho_a_2(istate),grad_rho_b_2(istate),grad_rho_a_b(istate),sigmaoo,sigmacc,sigmaco) diff --git a/src/ezfio_files/NEED b/src/ezfio_files/NEED index 1a6f5980..d06d604c 100644 --- a/src/ezfio_files/NEED +++ b/src/ezfio_files/NEED @@ -1 +1,2 @@ mpi +zmq diff --git a/src/kohn_sham/fock_matrix_ks.irp.f b/src/kohn_sham/fock_matrix_ks.irp.f index 449fcef3..a11906db 100644 --- a/src/kohn_sham/fock_matrix_ks.irp.f +++ b/src/kohn_sham/fock_matrix_ks.irp.f @@ -109,10 +109,7 @@ integer(key_kind), allocatable :: keys(:) double precision, allocatable :: values(:) - - - - !$OMP PARALLEL DEFAULT(NONE) & + !$OMP PARALLEL DEFAULT(NONE) if (ao_num > 100) & !$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, & !$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)& !$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,& @@ -125,7 +122,7 @@ ao_two_e_integral_alpha_tmp = 0.d0 ao_two_e_integral_beta_tmp = 0.d0 - !$OMP DO SCHEDULE(dynamic,64) + !$OMP DO SCHEDULE(static,1) !DIR$ NOVECTOR do i8=0_8,ao_integrals_map%map_size n_elements = n_elements_max @@ -153,8 +150,6 @@ !$OMP END DO NOWAIT !$OMP CRITICAL ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp - !$OMP END CRITICAL - !$OMP CRITICAL ao_two_e_integral_beta += ao_two_e_integral_beta_tmp !$OMP END CRITICAL deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp) diff --git a/src/kohn_sham/ks_scf.irp.f b/src/kohn_sham/ks_scf.irp.f index 891a1285..aa6efd52 100644 --- a/src/kohn_sham/ks_scf.irp.f +++ b/src/kohn_sham/ks_scf.irp.f @@ -36,7 +36,7 @@ subroutine check_coherence_functional ifound_c = index(correlation_functional,"short_range") endif print*,ifound_x,ifound_c - if(ifound_x .eq.0 .or. ifound_c .eq. 0)then + if(ifound_x .ne.0 .or. ifound_c .ne. 0)then print*,'YOU ARE USING THE RANGE SEPARATED KS PROGRAM BUT YOUR INPUT KEYWORD FOR ' print*,'exchange_functional is ',exchange_functional print*,'correlation_functional is ',correlation_functional diff --git a/src/kohn_sham/pot_functionals.irp.f b/src/kohn_sham/pot_functionals.irp.f index f89ffa18..c471da3b 100644 --- a/src/kohn_sham/pot_functionals.irp.f +++ b/src/kohn_sham/pot_functionals.irp.f @@ -4,12 +4,21 @@ integer :: i,j,k,l ao_potential_alpha_xc = 0.d0 ao_potential_beta_xc = 0.d0 - do i = 1, ao_num - do j = 1, ao_num - ao_potential_alpha_xc(i,j) = potential_c_alpha_ao(i,j,1) + potential_x_alpha_ao(i,j,1) - ao_potential_beta_xc(i,j) = potential_c_beta_ao(i,j,1) + potential_x_beta_ao(i,j,1) + if(same_xc_func)then + do i = 1, ao_num + do j = 1, ao_num + ao_potential_alpha_xc(i,j) = potential_xc_alpha_ao(i,j,1) + ao_potential_beta_xc(i,j) = potential_xc_beta_ao(i,j,1) + enddo enddo - enddo + else + do i = 1, ao_num + do j = 1, ao_num + ao_potential_alpha_xc(i,j) = potential_c_alpha_ao(i,j,1) + potential_x_alpha_ao(i,j,1) + ao_potential_beta_xc(i,j) = potential_c_beta_ao(i,j,1) + potential_x_beta_ao(i,j,1) + enddo + enddo + endif END_PROVIDER BEGIN_PROVIDER [double precision, e_exchange_dft] diff --git a/src/kohn_sham_rs/fock_matrix_rs_ks.irp.f b/src/kohn_sham_rs/fock_matrix_rs_ks.irp.f index 6bc0a715..2cfeb109 100644 --- a/src/kohn_sham_rs/fock_matrix_rs_ks.irp.f +++ b/src/kohn_sham_rs/fock_matrix_rs_ks.irp.f @@ -3,7 +3,7 @@ use map_module implicit none BEGIN_DOC - ! Alpha Fock matrix in AO basis set + ! Alpha Fock matrix in ao basis set END_DOC integer :: i,j,k,l,k1,r,s @@ -35,7 +35,7 @@ ao_two_e_integral_beta_tmp = 0.d0 q = ao_num*ao_num*ao_num*ao_num - !$OMP DO SCHEDULE(static,64) + !$OMP DO SCHEDULE(dynamic) do p=1_8,q call two_e_integrals_index_reverse(kk,ii,ll,jj,p) if ( (kk(1)>ao_num).or. & @@ -91,6 +91,8 @@ !$OMP END DO NOWAIT !$OMP CRITICAL ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp + !$OMP END CRITICAL + !$OMP CRITICAL ao_two_e_integral_beta += ao_two_e_integral_beta_tmp !$OMP END CRITICAL deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp) @@ -203,19 +205,18 @@ END_PROVIDER - BEGIN_PROVIDER [ double precision, Fock_matrix_ao_alpha, (ao_num, ao_num) ] &BEGIN_PROVIDER [ double precision, Fock_matrix_ao_beta, (ao_num, ao_num) ] implicit none BEGIN_DOC - ! Alpha Fock matrix in AO basis set + ! Alpha Fock matrix in ao basis set END_DOC integer :: i,j do j=1,ao_num do i=1,ao_num Fock_matrix_ao_alpha(i,j) = Fock_matrix_alpha_no_xc_ao(i,j) + ao_potential_alpha_xc(i,j) - Fock_matrix_ao_beta (i,j) = Fock_matrix_beta_no_xc_ao(i,j) + ao_potential_beta_xc(i,j) + Fock_matrix_ao_beta(i,j) = Fock_matrix_beta_no_xc_ao(i,j) + ao_potential_beta_xc(i,j) enddo enddo @@ -226,7 +227,7 @@ END_PROVIDER &BEGIN_PROVIDER [ double precision, Fock_matrix_beta_no_xc_ao, (ao_num, ao_num) ] implicit none BEGIN_DOC - ! Mono electronic an Coulomb matrix in AO basis set + ! Mono electronic an Coulomb matrix in ao basis set END_DOC integer :: i,j diff --git a/src/kohn_sham_rs/pot_functionals.irp.f b/src/kohn_sham_rs/pot_functionals.irp.f index f89ffa18..fd559d41 100644 --- a/src/kohn_sham_rs/pot_functionals.irp.f +++ b/src/kohn_sham_rs/pot_functionals.irp.f @@ -4,12 +4,22 @@ integer :: i,j,k,l ao_potential_alpha_xc = 0.d0 ao_potential_beta_xc = 0.d0 - do i = 1, ao_num - do j = 1, ao_num - ao_potential_alpha_xc(i,j) = potential_c_alpha_ao(i,j,1) + potential_x_alpha_ao(i,j,1) - ao_potential_beta_xc(i,j) = potential_c_beta_ao(i,j,1) + potential_x_beta_ao(i,j,1) + if(same_xc_func)then + do i = 1, ao_num + do j = 1, ao_num + ao_potential_alpha_xc(j,i) = potential_xc_alpha_ao(j,i,1) + ao_potential_beta_xc(j,i) = potential_xc_beta_ao(j,i,1) + enddo enddo - enddo + else + do i = 1, ao_num + do j = 1, ao_num + ao_potential_alpha_xc(j,i) = potential_c_alpha_ao(j,i,1) + potential_x_alpha_ao(j,i,1) + ao_potential_beta_xc(j,i) = potential_c_beta_ao(j,i,1) + potential_x_beta_ao(j,i,1) + enddo + enddo + endif + END_PROVIDER BEGIN_PROVIDER [double precision, e_exchange_dft]