10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-22 20:34:58 +01:00

Merge pull request #288 from QuantumPackage/dev-stable

Dev stable
This commit is contained in:
Emmanuel Giner 2023-06-02 17:57:04 +02:00 committed by GitHub
commit 12f413a389
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 929 additions and 526 deletions

View File

@ -67,3 +67,15 @@ doc: Use normalized primitive functions
interface: ezfio, provider
default: true
[ao_expoim_cosgtos]
type: double precision
doc: imag part for Exponents for each primitive of each cosGTOs |AO|
size: (ao_basis.ao_num,ao_basis.ao_prim_num_max)
interface: ezfio, provider
[use_cosgtos]
type: logical
doc: If true, use cosgtos for AO integrals
interface: ezfio
default: False

View File

@ -0,0 +1,33 @@
BEGIN_PROVIDER [ logical, use_cosgtos ]
implicit none
BEGIN_DOC
! If true, use cosgtos for AO integrals
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_ao_basis_use_cosgtos(has)
if (has) then
! write(6,'(A)') '.. >>>>> [ IO READ: use_cosgtos ] <<<<< ..'
call ezfio_get_ao_basis_use_cosgtos(use_cosgtos)
else
use_cosgtos = .False.
endif
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( use_cosgtos, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read use_cosgtos with MPI'
endif
IRP_ENDIF
! call write_time(6)
END_PROVIDER

View File

@ -1,3 +1,2 @@
ao_basis
pseudo
cosgtos_ao_int

View File

@ -455,10 +455,12 @@ recursive subroutine I_x1_pol_mult_one_e(a,c,R1x,R1xp,R2x,d,nd,n_pt_in)
do ix=0,nx
X(ix) *= dble(c)
enddo
call multiply_poly(X,nx,R2x,2,d,nd)
! call multiply_poly(X,nx,R2x,2,d,nd)
call multiply_poly_c2(X,nx,R2x,d,nd)
ny=0
call I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,Y,ny,n_pt_in)
call multiply_poly(Y,ny,R1x,2,d,nd)
! call multiply_poly(Y,ny,R1x,2,d,nd)
call multiply_poly_c2(Y,ny,R1x,d,nd)
else
do ix=0,n_pt_in
X(ix) = 0.d0
@ -469,7 +471,8 @@ recursive subroutine I_x1_pol_mult_one_e(a,c,R1x,R1xp,R2x,d,nd,n_pt_in)
do ix=0,nx
X(ix) *= dble(a-1)
enddo
call multiply_poly(X,nx,R2x,2,d,nd)
! call multiply_poly(X,nx,R2x,2,d,nd)
call multiply_poly_c2(X,nx,R2x,d,nd)
nx = nd
do ix=0,n_pt_in
@ -479,10 +482,12 @@ recursive subroutine I_x1_pol_mult_one_e(a,c,R1x,R1xp,R2x,d,nd,n_pt_in)
do ix=0,nx
X(ix) *= dble(c)
enddo
call multiply_poly(X,nx,R2x,2,d,nd)
! call multiply_poly(X,nx,R2x,2,d,nd)
call multiply_poly_c2(X,nx,R2x,d,nd)
ny=0
call I_x1_pol_mult_one_e(a-1,c,R1x,R1xp,R2x,Y,ny,n_pt_in)
call multiply_poly(Y,ny,R1x,2,d,nd)
! call multiply_poly(Y,ny,R1x,2,d,nd)
call multiply_poly_c2(Y,ny,R1x,d,nd)
endif
end
@ -519,7 +524,8 @@ recursive subroutine I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,d,nd,dim)
do ix=0,nx
X(ix) *= dble(c-1)
enddo
call multiply_poly(X,nx,R2x,2,d,nd)
! call multiply_poly(X,nx,R2x,2,d,nd)
call multiply_poly_c2(X,nx,R2x,d,nd)
ny = 0
do ix=0,dim
Y(ix) = 0.d0
@ -527,7 +533,8 @@ recursive subroutine I_x2_pol_mult_one_e(c,R1x,R1xp,R2x,d,nd,dim)
call I_x1_pol_mult_one_e(0,c-1,R1x,R1xp,R2x,Y,ny,dim)
if(ny.ge.0)then
call multiply_poly(Y,ny,R1xp,2,d,nd)
! call multiply_poly(Y,ny,R1xp,2,d,nd)
call multiply_poly_c2(Y,ny,R1xp,d,nd)
endif
endif
end

View File

@ -975,18 +975,7 @@ recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt
! !DIR$ FORCEINLINE
! call multiply_poly(X,nx,B_10,2,d,nd)
if (nx >= 0) then
integer :: ib
do ib=0,nx
d(ib ) = d(ib ) + B_10(0) * X(ib)
d(ib+1) = d(ib+1) + B_10(1) * X(ib)
d(ib+2) = d(ib+2) + B_10(2) * X(ib)
enddo
do nd = nx+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
call multiply_poly_c2(X,nx,B_10,d,nd)
nx = nd
!DIR$ LOOP COUNT(8)
@ -1009,17 +998,7 @@ recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt
endif
! !DIR$ FORCEINLINE
! call multiply_poly(X,nx,B_00,2,d,nd)
if (nx >= 0) then
do ib=0,nx
d(ib ) = d(ib ) + B_00(0) * X(ib)
d(ib+1) = d(ib+1) + B_00(1) * X(ib)
d(ib+2) = d(ib+2) + B_00(2) * X(ib)
enddo
do nd = nx+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
call multiply_poly_c2(X,nx,B_00,d,nd)
endif
ny=0
@ -1038,17 +1017,7 @@ recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt
! !DIR$ FORCEINLINE
! call multiply_poly(Y,ny,C_00,2,d,nd)
if (ny >= 0) then
do ib=0,ny
d(ib ) = d(ib ) + C_00(0) * Y(ib)
d(ib+1) = d(ib+1) + C_00(1) * Y(ib)
d(ib+2) = d(ib+2) + C_00(2) * Y(ib)
enddo
do nd = ny+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
call multiply_poly_c2(Y,ny,C_00,d,nd)
end
recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
@ -1088,18 +1057,7 @@ recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
! !DIR$ FORCEINLINE
! call multiply_poly(X,nx,B_00,2,d,nd)
if (nx >= 0) then
integer :: ib
do ib=0,nx
d(ib ) = d(ib ) + B_00(0) * X(ib)
d(ib+1) = d(ib+1) + B_00(1) * X(ib)
d(ib+2) = d(ib+2) + B_00(2) * X(ib)
enddo
do nd = nx+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
call multiply_poly_c2(X,nx,B_00,d,nd)
ny=0
@ -1111,17 +1069,7 @@ recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
! !DIR$ FORCEINLINE
! call multiply_poly(Y,ny,C_00,2,d,nd)
if (ny >= 0) then
do ib=0,ny
d(ib ) = d(ib ) + C_00(0) * Y(ib)
d(ib+1) = d(ib+1) + C_00(1) * Y(ib)
d(ib+2) = d(ib+2) + C_00(2) * Y(ib)
enddo
do nd = ny+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
call multiply_poly_c2(Y,ny,C_00,d,nd)
end
@ -1150,18 +1098,7 @@ recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
! !DIR$ FORCEINLINE
! call multiply_poly(X,nx,B_10,2,d,nd)
if (nx >= 0) then
integer :: ib
do ib=0,nx
d(ib ) = d(ib ) + B_10(0) * X(ib)
d(ib+1) = d(ib+1) + B_10(1) * X(ib)
d(ib+2) = d(ib+2) + B_10(2) * X(ib)
enddo
do nd = nx+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
call multiply_poly_c2(X,nx,B_10,d,nd)
nx = nd
!DIR$ LOOP COUNT(8)
@ -1181,17 +1118,7 @@ recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
! !DIR$ FORCEINLINE
! call multiply_poly(X,nx,B_00,2,d,nd)
if (nx >= 0) then
do ib=0,nx
d(ib ) = d(ib ) + B_00(0) * X(ib)
d(ib+1) = d(ib+1) + B_00(1) * X(ib)
d(ib+2) = d(ib+2) + B_00(2) * X(ib)
enddo
do nd = nx+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
call multiply_poly_c2(X,nx,B_00,d,nd)
ny=0
!DIR$ LOOP COUNT(8)
@ -1203,17 +1130,7 @@ recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in)
! !DIR$ FORCEINLINE
! call multiply_poly(Y,ny,C_00,2,d,nd)
if (ny >= 0) then
do ib=0,ny
d(ib ) = d(ib ) + C_00(0) * Y(ib)
d(ib+1) = d(ib+1) + C_00(1) * Y(ib)
d(ib+2) = d(ib+2) + C_00(2) * Y(ib)
enddo
do nd = ny+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
call multiply_poly_c2(Y,ny,C_00,d,nd)
end
recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
@ -1262,18 +1179,7 @@ recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
! !DIR$ FORCEINLINE
! call multiply_poly(Y,ny,D_00,2,d,nd)
if (ny >= 0) then
integer :: ib
do ib=0,ny
d(ib ) = d(ib ) + D_00(0) * Y(ib)
d(ib+1) = d(ib+1) + D_00(1) * Y(ib)
d(ib+2) = d(ib+2) + D_00(2) * Y(ib)
enddo
do nd = ny+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
call multiply_poly_c2(Y,ny,D_00,d,nd)
return
@ -1293,17 +1199,7 @@ recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
! !DIR$ FORCEINLINE
! call multiply_poly(X,nx,B_01,2,d,nd)
if (nx >= 0) then
do ib=0,nx
d(ib ) = d(ib ) + B_01(0) * X(ib)
d(ib+1) = d(ib+1) + B_01(1) * X(ib)
d(ib+2) = d(ib+2) + B_01(2) * X(ib)
enddo
do nd = nx+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
call multiply_poly_c2(X,nx,B_01,d,nd)
ny = 0
!DIR$ LOOP COUNT(6)
@ -1314,17 +1210,7 @@ recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim)
! !DIR$ FORCEINLINE
! call multiply_poly(Y,ny,D_00,2,d,nd)
if (ny >= 0) then
do ib=0,ny
d(ib ) = d(ib ) + D_00(0) * Y(ib)
d(ib+1) = d(ib+1) + D_00(1) * Y(ib)
d(ib+2) = d(ib+2) + D_00(2) * Y(ib)
enddo
do nd = ny+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
endif
call multiply_poly_c2(Y,ny,D_00,d,nd)
end select
end

View File

@ -7,7 +7,13 @@ program bi_ort_ints
my_n_pt_r_grid = 10
my_n_pt_a_grid = 14
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call test_3e
! call test_3e
call test_5idx
! call test_5idx2
end
subroutine test_5idx2
PROVIDE three_e_5_idx_cycle_2_bi_ort
end
subroutine test_3e
@ -16,11 +22,12 @@ subroutine test_3e
double precision :: accu, contrib,new,ref
i = 1
k = 1
n = 0
accu = 0.d0
do i = 1, mo_num
do k = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
do n = 1, mo_num
call give_integrals_3_body_bi_ort(n, l, k, m, j, i, new)
@ -31,6 +38,7 @@ subroutine test_3e
print*,'pb !!'
print*,i,k,j,l,m,n
print*,ref,new,contrib
stop
endif
enddo
enddo
@ -42,3 +50,93 @@ subroutine test_3e
end
subroutine test_5idx
implicit none
integer :: i,k,j,l,m,n,ipoint
double precision :: accu, contrib,new,ref
i = 1
k = 1
n = 0
accu = 0.d0
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
new = three_e_5_idx_direct_bi_ort(m,l,j,k,i)
ref = three_e_5_idx_direct_bi_ort_old(m,l,j,k,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. 1.d-10)then
print*,'direct'
print*,i,k,j,l,m
print*,ref,new,contrib
stop
endif
new = three_e_5_idx_exch12_bi_ort(m,l,j,k,i)
ref = three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. 1.d-10)then
print*,'exch12'
print*,i,k,j,l,m
print*,ref,new,contrib
stop
endif
!
new = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i)
ref = three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. 1.d-10)then
print*,'cycle1'
print*,i,k,j,l,m
print*,ref,new,contrib
stop
endif
new = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i)
ref = three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. 1.d-10)then
print*,'cycle2'
print*,i,k,j,l,m
print*,ref,new,contrib
stop
endif
new = three_e_5_idx_exch23_bi_ort(m,l,j,k,i)
ref = three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. 1.d-10)then
print*,'exch23'
print*,i,k,j,l,m
print*,ref,new,contrib
stop
endif
new = three_e_5_idx_exch13_bi_ort(m,l,j,k,i)
ref = three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. 1.d-10)then
print*,'exch13'
print*,i,k,j,l,m
print*,ref,new,contrib
stop
endif
enddo
enddo
enddo
enddo
enddo
print*,'accu = ',accu/dble(mo_num)**5
end

View File

@ -1,7 +1,11 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
@ -14,283 +18,213 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num,
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_direct_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_direct_bi_ort ...'
call wall_time(wall0)
double precision :: wall1, wall0
integer :: ipoint
double precision, allocatable :: grad_mli(:,:,:), orb_mat(:,:,:)
double precision, allocatable :: lk_grad_mi(:,:,:,:), rk_grad_im(:,:,:,:)
double precision, allocatable :: lm_grad_ik(:,:,:,:), rm_grad_ik(:,:,:,:)
double precision, allocatable :: tmp_mat(:,:,:,:)
allocate(tmp_mat(mo_num,mo_num,mo_num,mo_num))
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
print *, ' Providing the three_e_5_idx_bi_ort ...'
call wall_time(wall0)
do m = 1, mo_num
allocate(grad_mli(n_points_final_grid,mo_num,mo_num))
allocate(orb_mat(n_points_final_grid,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
!$OMP PRIVATE (i,l,ipoint) &
!$OMP SHARED (m,mo_num,n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP grad_mli, orb_mat)
!$OMP DO COLLAPSE(2)
do i=1,mo_num
do l=1,mo_num
do ipoint=1, n_points_final_grid
grad_mli(ipoint,l,i) = final_weight_at_r_vector(ipoint) * ( &
int2_grad1_u12_bimo_t(ipoint,1,m,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) + &
int2_grad1_u12_bimo_t(ipoint,2,m,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) + &
int2_grad1_u12_bimo_t(ipoint,3,m,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i) )
orb_mat(ipoint,l,i) = mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, n_points_final_grid, 1.d0, &
orb_mat, n_points_final_grid, &
grad_mli, n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral)
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = - tmp_mat(l,j,k,i) - tmp_mat(k,i,l,j)
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = - tmp_mat(l,i,k,j) - tmp_mat(k,j,l,i)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END PARALLEL DO
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_direct_bi_ort', wall1 - wall0
deallocate(orb_mat,grad_mli)
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_1_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
allocate(lm_grad_ik(n_points_final_grid,3,mo_num,mo_num))
allocate(rm_grad_ik(n_points_final_grid,3,mo_num,mo_num))
allocate(rk_grad_im(n_points_final_grid,3,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
!$OMP PRIVATE (i,l,ipoint) &
!$OMP SHARED (m,mo_num,n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP rm_grad_ik, lm_grad_ik, rk_grad_im, lk_grad_mi)
!$OMP DO COLLAPSE(2)
do i=1,mo_num
do l=1,mo_num
do ipoint=1, n_points_final_grid
lm_grad_ik(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) * final_weight_at_r_vector(ipoint)
lm_grad_ik(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) * final_weight_at_r_vector(ipoint)
lm_grad_ik(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i) * final_weight_at_r_vector(ipoint)
rm_grad_ik(ipoint,1,l,i) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i)
rm_grad_ik(ipoint,2,l,i) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i)
rm_grad_ik(ipoint,3,l,i) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i)
rk_grad_im(ipoint,1,l,i) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,i,m)
rk_grad_im(ipoint,2,l,i) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,i,m)
rk_grad_im(ipoint,3,l,i) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,i,m)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, &
lm_grad_ik, 3*n_points_final_grid, &
rm_grad_ik, 3*n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = three_e_5_idx_direct_bi_ort(m,l,j,k,i) - tmp_mat(l,j,k,i)
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = three_e_5_idx_exch12_bi_ort(m,l,j,k,i) - tmp_mat(l,i,k,j)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END PARALLEL DO
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort', wall1 - wall0
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, &
lm_grad_ik, 3*n_points_final_grid, &
rk_grad_im, 3*n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_2_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
do l = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch23_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch23_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = - tmp_mat(l,i,j,k)
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = - tmp_mat(k,j,i,l)
three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = - tmp_mat(k,i,j,l)
three_e_5_idx_exch13_bi_ort (m,l,j,k,i) = - tmp_mat(l,j,i,k)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END PARALLEL DO
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch23_bi_ort', wall1 - wall0
deallocate(lm_grad_ik)
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch13_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch13_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
allocate(lk_grad_mi(n_points_final_grid,3,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
!$OMP PRIVATE (i,l,ipoint) &
!$OMP SHARED (m,mo_num,n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP lk_grad_mi)
!$OMP DO COLLAPSE(2)
do i=1,mo_num
do l=1,mo_num
do ipoint=1, n_points_final_grid
lk_grad_mi(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,m,i) * final_weight_at_r_vector(ipoint)
lk_grad_mi(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,m,i) * final_weight_at_r_vector(ipoint)
lk_grad_mi(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,m,i) * final_weight_at_r_vector(ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, &
lk_grad_mi, 3*n_points_final_grid, &
rm_grad_ik, 3*n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) - tmp_mat(k,j,l,i)
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) - tmp_mat(l,i,k,j)
three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = three_e_5_idx_exch23_bi_ort (m,l,j,k,i) - tmp_mat(l,j,k,i)
three_e_5_idx_exch13_bi_ort (m,l,j,k,i) = three_e_5_idx_exch13_bi_ort (m,l,j,k,i) - tmp_mat(k,i,l,j)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END PARALLEL DO
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch13_bi_ort', wall1 - wall0
call dgemm('T','N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0, &
lk_grad_mi, 3*n_points_final_grid, &
rk_grad_im, 3*n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch12_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch12_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
!$OMP PARALLEL DO PRIVATE(i,j,k,l)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) - tmp_mat(l,j,i,k)
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) - tmp_mat(k,i,j,l)
three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = three_e_5_idx_exch23_bi_ort (m,l,j,k,i) - tmp_mat(k,j,i,l)
three_e_5_idx_exch13_bi_ort (m,l,j,k,i) = three_e_5_idx_exch13_bi_ort (m,l,j,k,i) - tmp_mat(l,i,j,k)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP END PARALLEL DO
deallocate(lk_grad_mi)
deallocate(rm_grad_ik)
deallocate(rk_grad_im)
enddo
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch12_bi_ort', wall1 - wall0
print *, ' wall time for three_e_5_idx_bi_ort', wall1 - wall0
END_PROVIDER
! ---
END_PROVIDER

View File

@ -0,0 +1,295 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_direct_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_direct_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral)
three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_direct_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_1_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_2_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
do l = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch23_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch23_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch23_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch13_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch13_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch13_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
three_e_5_idx_exch12_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch12_bi_ort_old ...'
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch12_bi_ort_old', wall1 - wall0
END_PROVIDER

View File

@ -4,7 +4,7 @@
BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
! matrix element of the -L three-body operator
! matrix element of the -L three-body operator
!
! notice the -1 sign: in this way three_body_ints_bi_ort can be directly used to compute Slater rules :)
END_DOC
@ -12,7 +12,7 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n
implicit none
integer :: i, j, k, l, m, n
double precision :: integral, wall1, wall0
character*(128) :: name_file
character*(128) :: name_file
three_body_ints_bi_ort = 0.d0
print *, ' Providing the three_body_ints_bi_ort ...'
@ -27,12 +27,12 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n
! call read_array_6_index_tensor(mo_num,three_body_ints_bi_ort,name_file)
! else
!provide x_W_ki_bi_ortho_erf_rk
!provide x_W_ki_bi_ortho_erf_rk
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,l,m,n,integral) &
!$OMP PRIVATE (i,j,k,l,m,n,integral) &
!$OMP SHARED (mo_num,three_body_ints_bi_ort)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
@ -43,7 +43,7 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n
do n = 1, mo_num
call give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral)
three_body_ints_bi_ort(n,l,k,m,j,i) = -1.d0 * integral
three_body_ints_bi_ort(n,l,k,m,j,i) = -1.d0 * integral
enddo
enddo
enddo
@ -63,7 +63,7 @@ BEGIN_PROVIDER [ double precision, three_body_ints_bi_ort, (mo_num, mo_num, mo_n
! call ezfio_set_three_body_ints_bi_ort_io_three_body_ints_bi_ort("Read")
! endif
END_PROVIDER
END_PROVIDER
! ---
@ -71,7 +71,7 @@ subroutine give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral)
BEGIN_DOC
!
! < n l k | -L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS
! < n l k | -L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS
!
END_DOC
@ -79,28 +79,31 @@ subroutine give_integrals_3_body_bi_ort(n, l, k, m, j, i, integral)
integer, intent(in) :: n, l, k, m, j, i
double precision, intent(out) :: integral
integer :: ipoint
double precision :: weight
double precision :: weight, tmp
PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_bimo_t
integral = 0.d0
! (n, l, k, m, j, i)
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
tmp = mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
* ( int2_grad1_u12_bimo_t(ipoint,1,n,m) * int2_grad1_u12_bimo_t(ipoint,1,l,j) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,m) * int2_grad1_u12_bimo_t(ipoint,2,l,j) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,m) * int2_grad1_u12_bimo_t(ipoint,3,l,j) )
integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
tmp = tmp + mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
* ( int2_grad1_u12_bimo_t(ipoint,1,n,m) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,m) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,m) * int2_grad1_u12_bimo_t(ipoint,3,k,i) )
integral += weight * mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,m) &
tmp = tmp + mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,m) &
* ( int2_grad1_u12_bimo_t(ipoint,1,l,j) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,l,j) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,l,j) * int2_grad1_u12_bimo_t(ipoint,3,k,i) )
integral = integral + tmp * final_weight_at_r_vector(ipoint)
enddo
end subroutine give_integrals_3_body_bi_ort
@ -111,7 +114,7 @@ subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral)
BEGIN_DOC
!
! < n l k | -L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS
! < n l k | -L | m j i > with a BI-ORTHONORMAL MOLECULAR ORBITALS
!
END_DOC
@ -123,13 +126,13 @@ subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral)
integral = 0.d0
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
weight = final_weight_at_r_vector(ipoint)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
! integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
! * ( x_W_ki_bi_ortho_erf_rk(ipoint,1,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,1,l,j) &
! + x_W_ki_bi_ortho_erf_rk(ipoint,2,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,2,l,j) &
! + x_W_ki_bi_ortho_erf_rk(ipoint,3,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,3,l,j) )
! integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
! integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
! * ( x_W_ki_bi_ortho_erf_rk(ipoint,1,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,1,k,i) &
! + x_W_ki_bi_ortho_erf_rk(ipoint,2,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,2,k,i) &
! + x_W_ki_bi_ortho_erf_rk(ipoint,3,n,m) * x_W_ki_bi_ortho_erf_rk(ipoint,3,k,i) )
@ -138,11 +141,11 @@ subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral)
! + x_W_ki_bi_ortho_erf_rk(ipoint,2,l,j) * x_W_ki_bi_ortho_erf_rk(ipoint,2,k,i) &
! + x_W_ki_bi_ortho_erf_rk(ipoint,3,l,j) * x_W_ki_bi_ortho_erf_rk(ipoint,3,k,i) )
! integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
! integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
! * ( int2_grad1_u12_bimo(1,n,m,ipoint) * int2_grad1_u12_bimo(1,l,j,ipoint) &
! + int2_grad1_u12_bimo(2,n,m,ipoint) * int2_grad1_u12_bimo(2,l,j,ipoint) &
! + int2_grad1_u12_bimo(3,n,m,ipoint) * int2_grad1_u12_bimo(3,l,j,ipoint) )
! integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
! integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
! * ( int2_grad1_u12_bimo(1,n,m,ipoint) * int2_grad1_u12_bimo(1,k,i,ipoint) &
! + int2_grad1_u12_bimo(2,n,m,ipoint) * int2_grad1_u12_bimo(2,k,i,ipoint) &
! + int2_grad1_u12_bimo(3,n,m,ipoint) * int2_grad1_u12_bimo(3,k,i,ipoint) )
@ -151,13 +154,13 @@ subroutine give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, integral)
! + int2_grad1_u12_bimo(2,l,j,ipoint) * int2_grad1_u12_bimo(2,k,i,ipoint) &
! + int2_grad1_u12_bimo(3,l,j,ipoint) * int2_grad1_u12_bimo(3,k,i,ipoint) )
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
integral += weight * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i) &
* ( int2_grad1_u12_bimo_transp(n,m,1,ipoint) * int2_grad1_u12_bimo_transp(l,j,1,ipoint) &
+ int2_grad1_u12_bimo_transp(n,m,2,ipoint) * int2_grad1_u12_bimo_transp(l,j,2,ipoint) &
+ int2_grad1_u12_bimo_transp(n,m,3,ipoint) * int2_grad1_u12_bimo_transp(l,j,3,ipoint) )
integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
integral += weight * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,j) &
* ( int2_grad1_u12_bimo_transp(n,m,1,ipoint) * int2_grad1_u12_bimo_transp(k,i,1,ipoint) &
+ int2_grad1_u12_bimo_transp(n,m,2,ipoint) * int2_grad1_u12_bimo_transp(k,i,2,ipoint) &
+ int2_grad1_u12_bimo_transp(n,m,3,ipoint) * int2_grad1_u12_bimo_transp(k,i,3,ipoint) )
@ -176,7 +179,7 @@ subroutine give_integrals_3_body_bi_ort_ao(n, l, k, m, j, i, integral)
BEGIN_DOC
!
! < n l k | -L | m j i > with a BI-ORTHONORMAL ATOMIC ORBITALS
! < n l k | -L | m j i > with a BI-ORTHONORMAL ATOMIC ORBITALS
!
END_DOC
@ -188,13 +191,13 @@ subroutine give_integrals_3_body_bi_ort_ao(n, l, k, m, j, i, integral)
integral = 0.d0
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
weight = final_weight_at_r_vector(ipoint)
integral += weight * aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,i) &
integral += weight * aos_in_r_array_transp(ipoint,k) * aos_in_r_array_transp(ipoint,i) &
* ( int2_grad1_u12_ao_t(ipoint,1,n,m) * int2_grad1_u12_ao_t(ipoint,1,l,j) &
+ int2_grad1_u12_ao_t(ipoint,2,n,m) * int2_grad1_u12_ao_t(ipoint,2,l,j) &
+ int2_grad1_u12_ao_t(ipoint,3,n,m) * int2_grad1_u12_ao_t(ipoint,3,l,j) )
integral += weight * aos_in_r_array_transp(ipoint,l) * aos_in_r_array_transp(ipoint,j) &
integral += weight * aos_in_r_array_transp(ipoint,l) * aos_in_r_array_transp(ipoint,j) &
* ( int2_grad1_u12_ao_t(ipoint,1,n,m) * int2_grad1_u12_ao_t(ipoint,1,k,i) &
+ int2_grad1_u12_ao_t(ipoint,2,n,m) * int2_grad1_u12_ao_t(ipoint,2,k,i) &
+ int2_grad1_u12_ao_t(ipoint,3,n,m) * int2_grad1_u12_ao_t(ipoint,3,k,i) )

View File

@ -198,7 +198,7 @@ subroutine ccsd_par_t_space_stoch(nO,nV,t1,t2,f_o,f_v,v_vvvo,v_vvoo,v_vooo,energ
allocate (bounds(2,nbuckets))
do isample=1,nbuckets
eta = 1.d0/dble(nbuckets) * dble(isample)
ieta = binary_search(waccu,eta,Nabc,ileft,iright)
ieta = binary_search(waccu,eta,Nabc)
bounds(1,isample) = ileft
bounds(2,isample) = ieta
ileft = ieta+1

View File

@ -76,6 +76,8 @@ subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
double precision, allocatable :: fock_diag_tmp(:,:)
if (csubset == 0) return
allocate(fock_diag_tmp(2,mo_num+1))
call build_fock_tmp(fock_diag_tmp,psi_det_generators(1,1,i_generator),N_int)
@ -177,6 +179,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
monoAdo = .true.
monoBdo = .true.
if (csubset == 0) return
do k=1,N_int
hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1))

View File

@ -1,19 +0,0 @@
[ao_expoim_cosgtos]
type: double precision
doc: imag part for Exponents for each primitive of each cosGTOs |AO|
size: (ao_basis.ao_num,ao_basis.ao_prim_num_max)
interface: ezfio, provider
[use_cosgtos]
type: logical
doc: If true, use cosgtos for AO integrals
interface: ezfio,provider,ocaml
default: False
[ao_integrals_threshold]
type: Threshold
doc: If | (pq|rs) | < `ao_integrals_threshold` then (pq|rs) is zero
interface: ezfio,provider,ocaml
default: 1.e-15
ezfio_name: threshold_ao

View File

@ -1,2 +0,0 @@
ezfio_files
ao_basis

View File

@ -1,4 +0,0 @@
==============
cosgtos_ao_int
==============

View File

@ -1,7 +0,0 @@
program cosgtos_ao_int
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
end

View File

@ -6,6 +6,7 @@ BEGIN_PROVIDER [ double precision, cholesky_mo, (mo_num, mo_num, cholesky_ao_num
integer :: k
call set_multiple_levels_omp(.False.)
print *, 'AO->MO Transformation of Cholesky vectors'
!$OMP PARALLEL DO PRIVATE(k)
do k=1,cholesky_ao_num

View File

@ -56,7 +56,7 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
! * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
! * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
!
! WARNING ::: IF fact_k is too smal then:
! WARNING ::: IF fact_k is too smal then:
! returns a "s" function centered in zero
! with an inifinite exponent and a zero polynom coef
END_DOC
@ -86,7 +86,7 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
!DIR$ FORCEINLINE
call gaussian_product(alpha,A_center,beta,B_center,fact_k,p,P_center)
if (fact_k < thresh) then
! IF fact_k is too smal then:
! IF fact_k is too smal then:
! returns a "s" function centered in zero
! with an inifinite exponent and a zero polynom coef
P_center = 0.d0
@ -468,114 +468,6 @@ end subroutine
subroutine multiply_poly_0c(b,c,nc,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nc
integer, intent(out) :: nd
double precision, intent(in) :: b(0:0), c(0:nc)
double precision, intent(inout) :: d(0:0+nc)
integer :: ic
do ic = 0,nc
d(ic) = d(ic) + c(ic) * b(0)
enddo
do nd = nc,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_1c(b,c,nc,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nc
integer, intent(out) :: nd
double precision, intent(in) :: b(0:1), c(0:nc)
double precision, intent(inout) :: d(0:1+nc)
integer :: ic, id
if(nc < 0) return
do ic = 0,nc
d( ic) = d( ic) + c(ic) * b(0)
d(1+ic) = d(1+ic) + c(ic) * b(1)
enddo
do nd = nc+1,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_2c(b,c,nc,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nc
integer, intent(out) :: nd
double precision, intent(in) :: b(0:2), c(0:nc)
double precision, intent(inout) :: d(0:2+nc)
integer :: ic, id, k
if (nc <0) return
do ic = 0,nc
d( ic) = d( ic) + c(ic) * b(0)
d(1+ic) = d(1+ic) + c(ic) * b(1)
d(2+ic) = d(2+ic) + c(ic) * b(2)
enddo
do nd = nc+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_3c(b,c,nc,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nc
integer, intent(out) :: nd
double precision, intent(in) :: b(0:3), c(0:nc)
double precision, intent(inout) :: d(0:3+nc)
integer :: ic, id
if (nc <0) return
do ic = 1,nc
d( ic) = d(1+ic) + c(ic) * b(0)
d(1+ic) = d(1+ic) + c(ic) * b(1)
d(2+ic) = d(1+ic) + c(ic) * b(2)
d(3+ic) = d(1+ic) + c(ic) * b(3)
enddo
do nd = nc+3,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly(b,nb,c,nc,d,nd)
implicit none
BEGIN_DOC
@ -592,6 +484,30 @@ subroutine multiply_poly(b,nb,c,nc,d,nd)
integer :: ib, ic, id, k
if(ior(nc,nb) < 0) return !False if nc>=0 and nb>=0
select case (nb)
case (0)
call multiply_poly_b0(b,c,nc,d,nd)
return
case (1)
call multiply_poly_b1(b,c,nc,d,nd)
return
case (2)
call multiply_poly_b2(b,c,nc,d,nd)
return
end select
select case (nc)
case (0)
call multiply_poly_c0(b,nb,c,d,nd)
return
case (1)
call multiply_poly_c1(b,nb,c,d,nd)
return
case (2)
call multiply_poly_c2(b,nb,c,d,nd)
return
end select
do ib=0,nb
do ic = 0,nc
d(ib+ic) = d(ib+ic) + c(ic) * b(ib)
@ -604,6 +520,254 @@ subroutine multiply_poly(b,nb,c,nc,d,nd)
end
subroutine multiply_poly_b0(b,c,nc,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nc
integer, intent(out) :: nd
double precision, intent(in) :: b(0:0), c(0:nc)
double precision, intent(inout) :: d(0:nc)
integer :: ndtmp
integer :: ic, id, k
if(nc < 0) return !False if nc>=0
do ic = 0,nc
d(ic) = d(ic) + c(ic) * b(0)
enddo
do nd = nc,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_b1(b,c,nc,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nc
integer, intent(out) :: nd
double precision, intent(in) :: b(0:1), c(0:nc)
double precision, intent(inout) :: d(0:1+nc)
integer :: ndtmp
integer :: ib, ic, id, k
if(nc < 0) return !False if nc>=0
select case (nc)
case (0)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1)
case (1)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(1) * b(1)
case default
d(0) = d(0) + c(0) * b(0)
do ic = 1,nc
d(ic) = d(ic) + c(ic) * b(0) + c(ic-1) * b(1)
enddo
d(nc+1) = d(nc+1) + c(nc) * b(1)
end select
do nd = 1+nc,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_b2(b,c,nc,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nc
integer, intent(out) :: nd
double precision, intent(in) :: b(0:2), c(0:nc)
double precision, intent(inout) :: d(0:2+nc)
integer :: ndtmp
integer :: ib, ic, id, k
if(nc < 0) return !False if nc>=0
select case (nc)
case (0)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1)
d(2) = d(2) + c(0) * b(2)
case (1)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(0) * b(2) + c(1) * b(1)
d(3) = d(3) + c(1) * b(2)
case (2)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(0) * b(2) + c(1) * b(1) + c(2) * b(0)
d(3) = d(3) + c(2) * b(1) + c(1) * b(2)
d(4) = d(4) + c(2) * b(2)
case default
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
do ic = 2,nc
d(ic) = d(ic) + c(ic) * b(0) + c(ic-1) * b(1) + c(ic-2) * b(2)
enddo
d(nc+1) = d(nc+1) + c(nc) * b(1) + c(nc-1) * b(2)
d(nc+2) = d(nc+2) + c(nc) * b(2)
end select
do nd = 2+nc,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_c0(b,nb,c,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nb
integer, intent(out) :: nd
double precision, intent(in) :: b(0:nb), c(0:0)
double precision, intent(inout) :: d(0:nb)
integer :: ndtmp
integer :: ib, ic, id, k
if(nb < 0) return !False if nb>=0
do ib=0,nb
d(ib) = d(ib) + c(0) * b(ib)
enddo
do nd = nb,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_c1(b,nb,c,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nb
integer, intent(out) :: nd
double precision, intent(in) :: b(0:nb), c(0:1)
double precision, intent(inout) :: d(0:nb+1)
integer :: ndtmp
integer :: ib, ic, id, k
if(nb < 0) return !False if nb>=0
select case (nb)
case (0)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(1) * b(0)
case (1)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(1) * b(1)
case default
d(0) = d(0) + c(0) * b(0)
do ib=1,nb
d(ib) = d(ib) + c(0) * b(ib) + c(1) * b(ib-1)
enddo
d(nb+1) = d(nb+1) + c(1) * b(nb)
end select
do nd = nb+1,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_c2(b,nb,c,d,nd)
implicit none
BEGIN_DOC
! Multiply two polynomials
! D(t) += B(t)*C(t)
END_DOC
integer, intent(in) :: nb
integer, intent(out) :: nd
double precision, intent(in) :: b(0:nb), c(0:2)
double precision, intent(inout) :: d(0:nb+2)
integer :: ndtmp
integer :: ib, ic, id, k
if(nb < 0) return !False if nb>=0
select case (nb)
case (0)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(1) * b(0)
d(2) = d(2) + c(2) * b(0)
case (1)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(1) * b(1) + c(2) * b(0)
d(3) = d(3) + c(2) * b(1)
case (2)
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
d(2) = d(2) + c(0) * b(2) + c(1) * b(1) + c(2) * b(0)
d(3) = d(3) + c(1) * b(2) + c(2) * b(1)
d(4) = d(4) + c(2) * b(2)
case default
d(0) = d(0) + c(0) * b(0)
d(1) = d(1) + c(0) * b(1) + c(1) * b(0)
do ib=2,nb
d(ib) = d(ib) + c(0) * b(ib) + c(1) * b(ib-1) + c(2) * b(ib-2)
enddo
d(nb+1) = d(nb+1) + c(1) * b(nb) + c(2) * b(nb-1)
d(nb+2) = d(nb+2) + c(2) * b(nb)
end select
do nd = nb+2,0,-1
if (d(nd) /= 0.d0) exit
enddo
end
subroutine multiply_poly_v(b,nb,c,nc,d,nd,n_points)
implicit none
BEGIN_DOC
@ -778,11 +942,11 @@ end subroutine recentered_poly2_v
subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, n_points)
BEGIN_DOC
!
!
! Recenter two polynomials. Special case for b=(0,0,0)
!
!
! (x - A)^a (x - B)^0 = (x - P + P - A)^a (x - Q + Q - B)^0
! = (x - P + P - A)^a
! = (x - P + P - A)^a
!
END_DOC