diff --git a/src/cipsi/selection.irp.f b/src/cipsi/selection.irp.f index e8afd311..67c6d4fa 100644 --- a/src/cipsi/selection.irp.f +++ b/src/cipsi/selection.irp.f @@ -276,11 +276,11 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :) logical, allocatable :: banned(:,:,:), bannedOrb(:,:) double precision, allocatable :: coef_fullminilist_rev(:,:) - double precision, allocatable :: coef_fullminilist_rev_complex(:,:) + complex*16, allocatable :: coef_fullminilist_rev_complex(:,:) double precision, allocatable :: mat(:,:,:) - double precision, allocatable :: mat_complex(:,:,:) + complex*16, allocatable :: mat_complex(:,:,:) logical :: monoAdo, monoBdo integer :: maskInd @@ -288,7 +288,12 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns - PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp + PROVIDE psi_bilinear_matrix_transp_order + if (is_complex) then + PROVIDE psi_selectors_coef_transp_complex + else + PROVIDE psi_selectors_coef_transp + endif monoAdo = .true. monoBdo = .true. @@ -425,9 +430,18 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d ! !$OMP CRITICAL ! print *, 'Step1: ', i_generator, preinteresting(0) ! !$OMP END CRITICAL - + +!------------------------------------------------------------| +! | +! Real | +! | +!------------------------------------------------------------| allocate(banned(mo_num, mo_num,2), bannedOrb(mo_num, 2)) + if (is_complex) then + allocate (mat_complex(N_states, mo_num, mo_num)) + else allocate (mat(N_states, mo_num, mo_num)) + endif maskInd = -1 integer :: nb_count, maskInd_save @@ -636,7 +650,17 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d ! !$OMP CRITICAL ! print *, 'Step3: ', i_generator, h1, interesting(0) ! !$OMP END CRITICAL - + if (is_complex) then + call splash_pq_complex(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat_complex, interesting) + + if(.not.pert_2rdm)then + call fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat_complex, buf) + else + print*,irp_here,' not implemented for complex' + stop -1 + !call fill_buffer_double_rdm_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat_complex, buf,fullminilist, coef_fullminilist_rev_complex, fullinteresting(0)) + endif + else call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting) if(.not.pert_2rdm)then @@ -644,6 +668,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d else call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0)) endif + endif!complex end if enddo if(s1 /= s2) monoBdo = .false. @@ -655,7 +680,12 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d enddo enddo deallocate(preinteresting, prefullinteresting, interesting, fullinteresting) - deallocate(banned, bannedOrb,mat) + deallocate(banned, bannedOrb) + if (is_complex) then + deallocate(mat_complex) + else + deallocate(mat) + endif end subroutine @@ -1911,3 +1941,796 @@ subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, end +!==============================================================================! +! ! +! Complex ! +! ! +!==============================================================================! + +subroutine fill_buffer_double_complex(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf) + !todo: check indices for complex? + use bitmasks + use selection_types + implicit none + + integer, intent(in) :: i_generator, sp, h1, h2 + complex*16, intent(in) :: mat(N_states, mo_num, mo_num) + logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num) + double precision, intent(in) :: fock_diag_tmp(mo_num) + double precision, intent(in) :: E0(N_states) + double precision, intent(inout) :: pt2(N_states) + double precision, intent(inout) :: variance(N_states) + double precision, intent(inout) :: norm(N_states) + type(selection_buffer), intent(inout) :: buf + logical :: ok + integer :: s1, s2, p1, p2, ib, j, istate + integer(bit_kind) :: mask(N_int, 2), det(N_int, 2) + double precision :: e_pert, delta_E, val, Hii, w, tmp + complex*16 :: alpha_h_psi, coef, val_c + double precision, external :: diag_H_mat_elem_fock + double precision :: E_shift + +! logical, external :: detEq +! double precision, allocatable :: values(:) +! integer, allocatable :: keys(:,:) +! integer :: nkeys + + + if(sp == 3) then + s1 = 1 + s2 = 2 + else + s1 = sp + s2 = sp + end if + call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int) + E_shift = 0.d0 + + if (h0_type == 'SOP') then + j = det_to_occ_pattern(i_generator) + E_shift = psi_det_Hii(i_generator) - psi_occ_pattern_Hii(j) + endif + + do p1=1,mo_num + if(bannedOrb(p1, s1)) cycle + ib = 1 + if(sp /= 3) ib = p1+1 + + do p2=ib,mo_num + +! ----- +! /!\ Generating only single excited determinants doesn't work because a +! determinant generated by a single excitation may be doubly excited wrt +! to a determinant of the future. In that case, the determinant will be +! detected as already generated when generating in the future with a +! double excitation. +! +! if (.not.do_singles) then +! if ((h1 == p1) .or. (h2 == p2)) then +! cycle +! endif +! endif +! +! if (.not.do_doubles) then +! if ((h1 /= p1).and.(h2 /= p2)) then +! cycle +! endif +! endif +! ----- + + if(bannedOrb(p2, s2)) cycle + if(banned(p1,p2)) cycle + + val = maxval(cdabs(mat(1:N_states, p1, p2))) + if( val == 0d0) cycle + call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int) + + if (do_only_cas) then + integer, external :: number_of_holes, number_of_particles + if (number_of_particles(det)>0) then + cycle + endif + if (number_of_holes(det)>0) then + cycle + endif + endif + + if (do_ddci) then + logical, external :: is_a_two_holes_two_particles + if (is_a_two_holes_two_particles(det)) then + cycle + endif + endif + + if (do_only_1h1p) then + logical, external :: is_a_1h1p + if (.not.is_a_1h1p(det)) cycle + endif + + Hii = diag_h_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int) + + w = 0d0 + +! integer(bit_kind) :: occ(N_int,2), n +! call occ_pattern_of_det(det,occ,N_int) +! call occ_pattern_to_dets_size(occ,n,elec_alpha_num,N_int) + + + do istate=1,N_states + delta_E = E0(istate) - Hii + E_shift + alpha_h_psi = mat(istate, p1, p2) + val_c = alpha_h_psi + alpha_h_psi + tmp = dsqrt(delta_E * delta_E + cdabs(val_c * val_c)) + if (delta_E < 0.d0) then + tmp = -tmp + endif + e_pert = 0.5d0 * (tmp - delta_E) + if (dabs(alpha_h_psi) > 1.d-4) then + coef = e_pert / alpha_h_psi + else + coef = alpha_h_psi / delta_E + endif + pt2(istate) = pt2(istate) + e_pert + variance(istate) = variance(istate) + cdabs(alpha_h_psi * alpha_h_psi) + norm(istate) = norm(istate) + cdabs(coef * coef) + +!!!DEBUG +! integer :: k +! double precision :: alpha_h_psi_2,hij +! alpha_h_psi_2 = 0.d0 +! do k = 1,N_det_selectors +! call i_H_j(det,psi_selectors(1,1,k),N_int,hij) +! alpha_h_psi_2 = alpha_h_psi_2 + psi_selectors_coef(k,istate) * hij +! enddo +! if(dabs(alpha_h_psi_2 - alpha_h_psi).gt.1.d-12)then +! call debug_det(psi_det_generators(1,1,i_generator),N_int) +! call debug_det(det,N_int) +! print*,'alpha_h_psi,alpha_h_psi_2 = ',alpha_h_psi,alpha_h_psi_2 +! stop +! endif +!!!DEBUG + + select case (weight_selection) + + case(5) + ! Variance selection + w = w - cdabs(alpha_h_psi * alpha_h_psi) * selection_weight(istate) + + case(6) + w = w - cdabs(coef * coef) * selection_weight(istate) + + case default + ! Energy selection + w = w + e_pert * selection_weight(istate) + + end select + end do + + + if(pseudo_sym)then + if(cdabs(mat(1, p1, p2)).lt.thresh_sym)then + w = 0.d0 + endif + endif + +! w = dble(n) * w + + if(w <= buf%mini) then + call add_to_selection_buffer(buf, det, w) + end if + end do + end do +end + +subroutine splash_pq_complex(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting) + !todo: check indices for complex? + use bitmasks + implicit none + BEGIN_DOC +! Computes the contributions A(r,s) by +! comparing the external determinant to all the internal determinants det(i). +! an applying two particles (r,s) to the mask. + END_DOC + + integer, intent(in) :: sp, i_gen, N_sel + integer, intent(in) :: interesting(0:N_sel) + integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N_sel) + logical, intent(inout) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num, 2) + complex*16, intent(inout) :: mat(N_states, mo_num, mo_num) + + integer :: i, ii, j, k, l, h(0:2,2), p(0:4,2), nt + integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2) + integer(bit_kind) :: phasemask(N_int,2) + + PROVIDE psi_selectors_coef_transp_complex psi_det_sorted + mat = 0d0 + + do i=1,N_int + negMask(i,1) = not(mask(i,1)) + negMask(i,2) = not(mask(i,2)) + end do + + do i=1, N_sel + if (interesting(i) < 0) then + stop 'prefetch interesting(i) and det(i)' + endif + + mobMask(1,1) = iand(negMask(1,1), det(1,1,i)) + mobMask(1,2) = iand(negMask(1,2), det(1,2,i)) + nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) + + if(nt > 4) cycle + + do j=2,N_int + mobMask(j,1) = iand(negMask(j,1), det(j,1,i)) + mobMask(j,2) = iand(negMask(j,2), det(j,2,i)) + nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) + end do + + if(nt > 4) cycle + + if (interesting(i) == i_gen) then + if(sp == 3) then + do k=1,mo_num + do j=1,mo_num + banned(j,k,2) = banned(k,j,1) + enddo + enddo + else + do k=1,mo_num + do l=k+1,mo_num + banned(l,k,1) = banned(k,l,1) + end do + end do + end if + end if + + if (interesting(i) >= i_gen) then + call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int) + call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int) + + perMask(1,1) = iand(mask(1,1), not(det(1,1,i))) + perMask(1,2) = iand(mask(1,2), not(det(1,2,i))) + do j=2,N_int + perMask(j,1) = iand(mask(j,1), not(det(j,1,i))) + perMask(j,2) = iand(mask(j,2), not(det(j,2,i))) + end do + + call bitstring_to_list_in_selection(perMask(1,1), h(1,1), h(0,1), N_int) + call bitstring_to_list_in_selection(perMask(1,2), h(1,2), h(0,2), N_int) + + call get_mask_phase(psi_det_sorted(1,1,interesting(i)), phasemask,N_int) + if(nt == 4) then +! call get_d2_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i))) + call get_d2_complex(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i))) + else if(nt == 3) then +! call get_d1_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i))) + call get_d1_complex(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i))) + else +! call get_d0_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i))) + call get_d0_complex(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i))) + end if + else if(nt == 4) then + call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int) + call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int) + call past_d2(banned, p, sp) + else if(nt == 3) then + call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int) + call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int) + call past_d1(bannedOrb, p) + end if + end do + +end + + +subroutine get_d2_complex(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs) + !todo: check all indices for complex; check coef conjg for complex + use bitmasks + implicit none + + integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2) + integer(bit_kind), intent(in) :: phasemask(N_int,2) + logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2) + complex*16, intent(in) :: coefs(N_states) + complex*16, intent(inout) :: mat(N_states, mo_num, mo_num) + integer, intent(in) :: h(0:2,2), p(0:4,2), sp + + double precision, external :: get_phase_bi + complex*16, external :: mo_two_e_integral_complex + + integer :: i, j, k, tip, ma, mi, puti, putj + integer :: h1, h2, p1, p2, i1, i2 + double precision :: phase + complex*16 :: hij + + integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/)) + integer, parameter :: turn2(2) = (/2, 1/) + integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/)) + + integer :: bant + bant = 1 + + tip = p(0,1) * p(0,2) + + ma = sp + if(p(0,1) > p(0,2)) ma = 1 + if(p(0,1) < p(0,2)) ma = 2 + mi = mod(ma, 2) + 1 + + if(sp == 3) then + if(ma == 2) bant = 2 + + if(tip == 3) then + puti = p(1, mi) + if(bannedOrb(puti, mi)) return + h1 = h(1, ma) + h2 = h(2, ma) + + do i = 1, 3 + putj = p(i, ma) + if(banned(putj,puti,bant)) cycle + i1 = turn3(1,i) + i2 = turn3(2,i) + p1 = p(i1, ma) + p2 = p(i2, ma) + + hij = mo_two_e_integral_complex(p1, p2, h1, h2) - mo_two_e_integral_complex(p2, p1, h1, h2) + if (hij == (0.d0,0.d0)) cycle + + hij = hij * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int) + + if(ma == 1) then + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k, putj, puti) = mat(k, putj, puti) + coefs(k) * hij + enddo + else + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij + enddo + end if + end do + else + h1 = h(1,1) + h2 = h(1,2) + do j = 1,2 + putj = p(j, 2) + if(bannedOrb(putj, 2)) cycle + p2 = p(turn2(j), 2) + do i = 1,2 + puti = p(i, 1) + + if(banned(puti,putj,bant) .or. bannedOrb(puti,1)) cycle + p1 = p(turn2(i), 1) + + hij = mo_two_e_integral_complex(p1, p2, h1, h2) + if (hij /= (0.d0,0.d0)) then + hij = hij * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int) + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij + enddo + endif + end do + end do + end if + + else + if(tip == 0) then + h1 = h(1, ma) + h2 = h(2, ma) + do i=1,3 + puti = p(i, ma) + if(bannedOrb(puti,ma)) cycle + do j=i+1,4 + putj = p(j, ma) + if(bannedOrb(putj,ma)) cycle + if(banned(puti,putj,1)) cycle + + i1 = turn2d(1, i, j) + i2 = turn2d(2, i, j) + p1 = p(i1, ma) + p2 = p(i2, ma) + hij = mo_two_e_integral_complex(p1, p2, h1, h2) - mo_two_e_integral_complex(p2,p1, h1, h2) + if (hij == (0.d0,0.d0)) cycle + + hij = hij * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int) + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k, puti, putj) = mat(k, puti, putj) +coefs(k) * hij + enddo + end do + end do + else if(tip == 3) then + h1 = h(1, mi) + h2 = h(1, ma) + p1 = p(1, mi) + do i=1,3 + puti = p(turn3(1,i), ma) + if(bannedOrb(puti,ma)) cycle + putj = p(turn3(2,i), ma) + if(bannedOrb(putj,ma)) cycle + if(banned(puti,putj,1)) cycle + p2 = p(i, ma) + + hij = mo_two_e_integral_complex(p1, p2, h1, h2) + if (hij == (0.d0,0.d0)) cycle + + hij = hij * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2, N_int) + if (puti < putj) then + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij + enddo + else + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k, putj, puti) = mat(k, putj, puti) + coefs(k) * hij + enddo + endif + end do + else ! tip == 4 + puti = p(1, sp) + putj = p(2, sp) + if(.not. banned(puti,putj,1)) then + p1 = p(1, mi) + p2 = p(2, mi) + h1 = h(1, mi) + h2 = h(2, mi) + hij = (mo_two_e_integral_complex(p1, p2, h1, h2) - mo_two_e_integral_complex(p2,p1, h1, h2)) + if (hij /= (0.d0,0.d0)) then + hij = hij * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int) + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij + enddo + end if + end if + end if + end if +end + + +subroutine get_d1_complex(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs) + !todo: check all indices for complex; check coef conjg for complex + use bitmasks + implicit none + + integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2) + integer(bit_kind), intent(in) :: phasemask(N_int,2) + logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2) + integer(bit_kind) :: det(N_int, 2) + complex*16, intent(in) :: coefs(N_states) + complex*16, intent(inout) :: mat(N_states, mo_num, mo_num) + integer, intent(in) :: h(0:2,2), p(0:4,2), sp + double precision, external :: get_phase_bi + complex*16, external :: mo_two_e_integral_complex + logical :: ok + + logical, allocatable :: lbanned(:,:) + integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j + integer :: hfix, pfix, h1, h2, p1, p2, ib, k, l + + integer, parameter :: turn2(2) = (/2,1/) + integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/)) + + integer :: bant + complex*16, allocatable :: hij_cache(:,:) + complex*16 :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num) + PROVIDE mo_integrals_map N_int + + allocate (lbanned(mo_num, 2)) + allocate (hij_cache(mo_num,2)) + lbanned = bannedOrb + + do i=1, p(0,1) + lbanned(p(i,1), 1) = .true. + end do + do i=1, p(0,2) + lbanned(p(i,2), 2) = .true. + end do + + ma = 1 + if(p(0,2) >= 2) ma = 2 + mi = turn2(ma) + + bant = 1 + + if(sp == 3) then + !move MA + if(ma == 2) bant = 2 + puti = p(1,mi) + hfix = h(1,ma) + p1 = p(1,ma) + p2 = p(2,ma) + if(.not. bannedOrb(puti, mi)) then + call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map) + call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map) + tmp_row = (0.d0,0.d0) + do putj=1, hfix-1 + if(lbanned(putj, ma)) cycle + if(banned(putj, puti,bant)) cycle + hij = hij_cache(putj,1) - hij_cache(putj,2) + if (hij /= (0.d0,0.d0)) then + hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int) + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k) + enddo + endif + end do + do putj=hfix+1, mo_num + if(lbanned(putj, ma)) cycle + if(banned(putj, puti,bant)) cycle + hij = hij_cache(putj,2) - hij_cache(putj,1) + if (hij /= (0.d0,0.d0)) then + hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int) + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + tmp_row(k,putj) = tmp_row(k,putj) + hij * coefs(k) + enddo + endif + end do + + if(ma == 1) then + mat(1:N_states,1:mo_num,puti) = mat(1:N_states,1:mo_num,puti) + tmp_row(1:N_states,1:mo_num) + else + do l=1,mo_num + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k,puti,l) = mat(k,puti,l) + tmp_row(k,l) + enddo + enddo + end if + end if + + !MOVE MI + pfix = p(1,mi) + tmp_row = (0.d0,0.d0) + tmp_row2 = (0.d0,0.d0) + call get_mo_two_e_integrals_complex(hfix,pfix,p1,mo_num,hij_cache(1,1),mo_integrals_map) + call get_mo_two_e_integrals_complex(hfix,pfix,p2,mo_num,hij_cache(1,2),mo_integrals_map) + putj = p1 + do puti=1,mo_num !HOT + if(lbanned(puti,mi)) cycle + !p1 fixed + putj = p1 + if(.not. banned(putj,puti,bant)) then + hij = hij_cache(puti,2) + if (hij /= (0.d0,0.d0)) then + hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int) + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k) + enddo + endif + end if +! enddo +! + putj = p2 +! do puti=1,mo_num !HOT + if(.not. banned(putj,puti,bant)) then + hij = hij_cache(puti,1) + if (hij /= (0.d0,0.d0)) then + hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int) + do k=1,N_states + tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k) + enddo + endif + end if + end do + + if(mi == 1) then + mat(:,:,p1) = mat(:,:,p1) + tmp_row(:,:) + mat(:,:,p2) = mat(:,:,p2) + tmp_row2(:,:) + else + do l=1,mo_num + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k,p1,l) = mat(k,p1,l) + tmp_row(k,l) + mat(k,p2,l) = mat(k,p2,l) + tmp_row2(k,l) + enddo + enddo + end if + + else ! sp /= 3 + + if(p(0,ma) == 3) then + do i=1,3 + hfix = h(1,ma) + puti = p(i, ma) + p1 = p(turn3(1,i), ma) + p2 = p(turn3(2,i), ma) + call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map) + call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map) + tmp_row = (0.d0,0.d0) + do putj=1,hfix-1 + if(banned(putj,puti,1)) cycle + if(lbanned(putj,ma)) cycle + hij = hij_cache(putj,1) - hij_cache(putj,2) + if (hij /= (0.d0,0.d0)) then + hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int) + tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:) + endif + end do + do putj=hfix+1,mo_num + if(banned(putj,puti,1)) cycle + if(lbanned(putj,ma)) cycle + hij = hij_cache(putj,2) - hij_cache(putj,1) + if (hij /= (0.d0,0.d0)) then + hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int) + tmp_row(:,putj) = tmp_row(:,putj) + hij * coefs(:) + endif + end do + + mat(:, :puti-1, puti) = mat(:, :puti-1, puti) + tmp_row(:,:puti-1) + do l=puti,mo_num + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k, puti, l) = mat(k, puti,l) + tmp_row(k,l) + enddo + enddo + end do + else + hfix = h(1,mi) + pfix = p(1,mi) + p1 = p(1,ma) + p2 = p(2,ma) + tmp_row = (0.d0,0.d0) + tmp_row2 = (0.d0,0.d0) + call get_mo_two_e_integrals_complex(hfix,p1,pfix,mo_num,hij_cache(1,1),mo_integrals_map) + call get_mo_two_e_integrals_complex(hfix,p2,pfix,mo_num,hij_cache(1,2),mo_integrals_map) + putj = p2 + do puti=1,mo_num + if(lbanned(puti,ma)) cycle + putj = p2 + if(.not. banned(puti,putj,1)) then + hij = hij_cache(puti,1) + if (hij /= (0.d0,0.d0)) then + hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int) + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + tmp_row(k,puti) = tmp_row(k,puti) + hij * coefs(k) + enddo + endif + end if + + putj = p1 + if(.not. banned(puti,putj,1)) then + hij = hij_cache(puti,2) + if (hij /= (0.d0,0.d0)) then + hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int) + do k=1,N_states + tmp_row2(k,puti) = tmp_row2(k,puti) + hij * coefs(k) + enddo + endif + end if + end do + mat(:,:p2-1,p2) = mat(:,:p2-1,p2) + tmp_row(:,:p2-1) + do l=p2,mo_num + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k,p2,l) = mat(k,p2,l) + tmp_row(k,l) + enddo + enddo + mat(:,:p1-1,p1) = mat(:,:p1-1,p1) + tmp_row2(:,:p1-1) + do l=p1,mo_num + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k,p1,l) = mat(k,p1,l) + tmp_row2(k,l) + enddo + enddo + end if + end if + deallocate(lbanned,hij_cache) + + !! MONO + if(sp == 3) then + s1 = 1 + s2 = 2 + else + s1 = sp + s2 = sp + end if + + do i1=1,p(0,s1) + ib = 1 + if(s1 == s2) ib = i1+1 + do i2=ib,p(0,s2) + p1 = p(i1,s1) + p2 = p(i2,s2) + if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle + call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int) + call i_h_j_complex(gen, det, N_int, hij) + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij + enddo + end do + end do +end + + + + +subroutine get_d0_complex(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs) + !todo: check all indices for complex; check coef conjg for complex + use bitmasks + implicit none + + integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2) + integer(bit_kind), intent(in) :: phasemask(N_int,2) + logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2) + integer(bit_kind) :: det(N_int, 2) + complex*16, intent(in) :: coefs(N_states) + complex*16, intent(inout) :: mat(N_states, mo_num, mo_num) + integer, intent(in) :: h(0:2,2), p(0:4,2), sp + + integer :: i, j, k, s, h1, h2, p1, p2, puti, putj + double precision :: phase + complex*16 :: hij + double precision, external :: get_phase_bi + double precision, external :: mo_two_e_integral_complex + logical :: ok + + integer, parameter :: bant=1 + complex*16, allocatable :: hij_cache1(:), hij_cache2(:) + allocate (hij_cache1(mo_num),hij_cache2(mo_num)) + + + if(sp == 3) then ! AB + h1 = p(1,1) + h2 = p(1,2) + do p1=1, mo_num + if(bannedOrb(p1, 1)) cycle + call get_mo_two_e_integrals_complex(p1,h2,h1,mo_num,hij_cache1,mo_integrals_map) + do p2=1, mo_num + if(bannedOrb(p2,2)) cycle + if(banned(p1, p2, bant)) cycle ! rentable? + if(p1 == h1 .or. p2 == h2) then + call apply_particles(mask, 1,p1,2,p2, det, ok, N_int) + call i_h_j_complex(gen, det, N_int, hij) + else + phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int) + hij = hij_cache1(p2) * phase + end if + if (hij == 0.d0) cycle + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij ! HOTSPOT + enddo + end do + end do + + else ! AA BB + p1 = p(1,sp) + p2 = p(2,sp) + do puti=1, mo_num + if(bannedOrb(puti, sp)) cycle + call get_mo_two_e_integrals_complex(puti,p2,p1,mo_num,hij_cache1,mo_integrals_map) + call get_mo_two_e_integrals_complex(puti,p1,p2,mo_num,hij_cache2,mo_integrals_map) + do putj=puti+1, mo_num + if(bannedOrb(putj, sp)) cycle + if(banned(puti, putj, bant)) cycle ! rentable? + if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then + call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int) + call i_h_j_complex(gen, det, N_int, hij) + if (hij == 0.d0) cycle + else + hij = (mo_two_e_integral_complex(p1, p2, puti, putj) - mo_two_e_integral_complex(p2, p1, puti, putj)) + if (hij == 0.d0) cycle + hij = hij * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int) + end if + !DIR$ LOOP COUNT AVG(4) + do k=1,N_states + mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij + enddo + end do + end do + end if + + deallocate(hij_cache1,hij_cache2) +end + diff --git a/src/cipsi/slave_cipsi.irp.f b/src/cipsi/slave_cipsi.irp.f index 91edd66d..2d12359a 100644 --- a/src/cipsi/slave_cipsi.irp.f +++ b/src/cipsi/slave_cipsi.irp.f @@ -267,6 +267,7 @@ subroutine run_slave_main nproc_target = nthreads_pt2 ii = min(N_det, (elec_alpha_num*(mo_num-elec_alpha_num))**2) + !todo: change memory estimate for complex do mem = rss + & ! nproc_target * 8.d0 * & ! bytes diff --git a/src/cipsi/stochastic_cipsi.irp.f b/src/cipsi/stochastic_cipsi.irp.f index 5a5da8b6..7a07577a 100644 --- a/src/cipsi/stochastic_cipsi.irp.f +++ b/src/cipsi/stochastic_cipsi.irp.f @@ -92,13 +92,13 @@ subroutine run_stochastic_cipsi pt2 = 0.d0 variance = 0.d0 norm = 0.d0 - if (is_complex) then - call zmq_pt2_complex(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, & - norm, to_select) ! Stochastic PT2 and selection - else +! if (is_complex) then +! call zmq_pt2_complex(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, & +! norm, to_select) ! Stochastic PT2 and selection +! else call zmq_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, & norm, to_select) ! Stochastic PT2 and selection - endif +! endif do k=1,N_states rpt2(k) = pt2(k)/(1.d0 + norm(k)) @@ -155,13 +155,13 @@ subroutine run_stochastic_cipsi pt2(:) = 0.d0 variance(:) = 0.d0 norm(:) = 0.d0 - if (is_complex) then - call zmq_pt2_complex(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, & - norm,0) ! Stochastic PT2 - else + ! if (is_complex) then + ! call zmq_pt2_complex(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, & + ! norm,0) ! Stochastic PT2 + ! else call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, & norm,0) ! Stochastic PT2 - endif + ! endif do k=1,N_states rpt2(k) = pt2(k)/(1.d0 + norm(k)) diff --git a/src/utils_complex/qp2-pbc-diff.txt b/src/utils_complex/qp2-pbc-diff.txt index 95febce1..6d0c5a0a 100644 --- a/src/utils_complex/qp2-pbc-diff.txt +++ b/src/utils_complex/qp2-pbc-diff.txt @@ -7,6 +7,9 @@ current: splash_pq (separate real/complex) get_d{0,1,2} (separate real/complex) fill_buffer_double (separate real/complex) + started splash_pq, get_d{0,1,2}, fill_buffer_double for complex + need to check hole particle index ordering (also in select_singles_and_doubles) + need to check for coef dconjg fci run_{,stochastic_}cipsi