mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-03 20:53:54 +01:00
Merge branch 'dev-stable' of github.com:QuantumPackage/qp2 into dev-stable
This commit is contained in:
commit
0e576f519e
36
src/cipsi_tc_bi_ortho/EZFIO.cfg
Normal file
36
src/cipsi_tc_bi_ortho/EZFIO.cfg
Normal file
@ -0,0 +1,36 @@
|
||||
[save_wf_after_selection]
|
||||
type: logical
|
||||
doc: If true, saves the wave function after the selection, before the diagonalization
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[seniority_max]
|
||||
type: integer
|
||||
doc: Maximum number of allowed open shells. Using -1 selects all determinants
|
||||
interface: ezfio,ocaml,provider
|
||||
default: -1
|
||||
|
||||
[excitation_ref]
|
||||
type: integer
|
||||
doc: 1: Hartree-Fock determinant, 2:All determinants of the dominant configuration
|
||||
interface: ezfio,ocaml,provider
|
||||
default: 1
|
||||
|
||||
[excitation_max]
|
||||
type: integer
|
||||
doc: Maximum number of excitation with respect to the Hartree-Fock determinant. Using -1 selects all determinants
|
||||
interface: ezfio,ocaml,provider
|
||||
default: -1
|
||||
|
||||
[excitation_alpha_max]
|
||||
type: integer
|
||||
doc: Maximum number of excitation for alpha determinants with respect to the Hartree-Fock determinant. Using -1 selects all determinants
|
||||
interface: ezfio,ocaml,provider
|
||||
default: -1
|
||||
|
||||
[excitation_beta_max]
|
||||
type: integer
|
||||
doc: Maximum number of excitation for beta determinants with respect to the Hartree-Fock determinant. Using -1 selects all determinants
|
||||
interface: ezfio,ocaml,provider
|
||||
default: -1
|
||||
|
6
src/cipsi_tc_bi_ortho/NEED
Normal file
6
src/cipsi_tc_bi_ortho/NEED
Normal file
@ -0,0 +1,6 @@
|
||||
mpi
|
||||
perturbation
|
||||
zmq
|
||||
iterations_tc
|
||||
csf
|
||||
tc_bi_ortho
|
136
src/cipsi_tc_bi_ortho/cipsi.irp.f
Normal file
136
src/cipsi_tc_bi_ortho/cipsi.irp.f
Normal file
@ -0,0 +1,136 @@
|
||||
subroutine run_cipsi
|
||||
|
||||
BEGIN_DOC
|
||||
! Selected Full Configuration Interaction with deterministic selection and
|
||||
! stochastic PT2.
|
||||
END_DOC
|
||||
|
||||
use selection_types
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i,j,k,ndet
|
||||
type(pt2_type) :: pt2_data, pt2_data_err
|
||||
double precision, allocatable :: zeros(:)
|
||||
integer :: to_select
|
||||
logical, external :: qp_stop
|
||||
|
||||
double precision :: threshold_generators_save
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double
|
||||
double precision :: correlation_energy_ratio,E_denom,E_tc,norm
|
||||
|
||||
PROVIDE H_apply_buffer_allocated distributed_davidson
|
||||
|
||||
print*,'Diagonal elements of the Fock matrix '
|
||||
do i = 1, mo_num
|
||||
write(*,*)i,Fock_matrix_tc_mo_tot(i,i)
|
||||
enddo
|
||||
|
||||
N_iter = 1
|
||||
threshold_generators = 1.d0
|
||||
SOFT_TOUCH threshold_generators
|
||||
|
||||
rss = memory_of_double(N_states)*4.d0
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
allocate (zeros(N_states))
|
||||
call pt2_alloc(pt2_data, N_states)
|
||||
call pt2_alloc(pt2_data_err, N_states)
|
||||
|
||||
double precision :: hf_energy_ref
|
||||
logical :: has, print_pt2
|
||||
double precision :: relative_error
|
||||
|
||||
relative_error=PT2_relative_error
|
||||
|
||||
zeros = 0.d0
|
||||
pt2_data % pt2 = -huge(1.e0)
|
||||
pt2_data % rpt2 = -huge(1.e0)
|
||||
pt2_data % overlap(:,:) = 0.d0
|
||||
pt2_data % variance = huge(1.e0)
|
||||
|
||||
if (s2_eig) then
|
||||
call make_s2_eigenfunction
|
||||
endif
|
||||
print_pt2 = .False.
|
||||
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
|
||||
call ezfio_has_hartree_fock_energy(has)
|
||||
if (has) then
|
||||
call ezfio_get_hartree_fock_energy(hf_energy_ref)
|
||||
else
|
||||
hf_energy_ref = ref_bitmask_energy
|
||||
endif
|
||||
|
||||
if (N_det > N_det_max) then
|
||||
psi_det(1:N_int,1:2,1:N_det) = psi_det_sorted_tc_gen(1:N_int,1:2,1:N_det)
|
||||
psi_coef(1:N_det,1:N_states) = psi_coef_sorted_tc_gen(1:N_det,1:N_states)
|
||||
N_det = N_det_max
|
||||
soft_touch N_det psi_det psi_coef
|
||||
if (s2_eig) then
|
||||
call make_s2_eigenfunction
|
||||
endif
|
||||
print_pt2 = .False.
|
||||
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
! call routine_save_right
|
||||
endif
|
||||
|
||||
correlation_energy_ratio = 0.d0
|
||||
|
||||
print_pt2 = .True.
|
||||
do while ( &
|
||||
(N_det < N_det_max) .and. &
|
||||
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) &
|
||||
)
|
||||
write(*,'(A)') '--------------------------------------------------------------------------------'
|
||||
|
||||
|
||||
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
|
||||
to_select = max(N_states_diag, to_select)
|
||||
|
||||
E_denom = E_tc ! TC Energy of the current wave function
|
||||
if (do_pt2) then
|
||||
call pt2_dealloc(pt2_data)
|
||||
call pt2_dealloc(pt2_data_err)
|
||||
call pt2_alloc(pt2_data, N_states)
|
||||
call pt2_alloc(pt2_data_err, N_states)
|
||||
threshold_generators_save = threshold_generators
|
||||
threshold_generators = 1.d0
|
||||
SOFT_TOUCH threshold_generators
|
||||
call ZMQ_pt2(E_denom, pt2_data, pt2_data_err, relative_error,to_select) ! Stochastic PT2 and selection
|
||||
threshold_generators = threshold_generators_save
|
||||
SOFT_TOUCH threshold_generators
|
||||
else
|
||||
call pt2_dealloc(pt2_data)
|
||||
call pt2_alloc(pt2_data, N_states)
|
||||
call ZMQ_selection(to_select, pt2_data)
|
||||
endif
|
||||
|
||||
N_iter += 1
|
||||
|
||||
if (qp_stop()) exit
|
||||
|
||||
! Add selected determinants
|
||||
call copy_H_apply_buffer_to_wf()
|
||||
|
||||
if (save_wf_after_selection) then
|
||||
call save_wavefunction
|
||||
endif
|
||||
|
||||
PROVIDE psi_coef
|
||||
PROVIDE psi_det
|
||||
PROVIDE psi_det_sorted_tc
|
||||
|
||||
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
if (qp_stop()) exit
|
||||
enddo
|
||||
|
||||
call pt2_dealloc(pt2_data)
|
||||
call pt2_dealloc(pt2_data_err)
|
||||
call pt2_alloc(pt2_data, N_states)
|
||||
call pt2_alloc(pt2_data_err, N_states)
|
||||
call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,0) ! Stochastic PT2 and selection
|
||||
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
|
||||
end
|
51
src/cipsi_tc_bi_ortho/energy.irp.f
Normal file
51
src/cipsi_tc_bi_ortho/energy.irp.f
Normal file
@ -0,0 +1,51 @@
|
||||
BEGIN_PROVIDER [ logical, initialize_pt2_E0_denominator ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! If true, initialize pt2_E0_denominator
|
||||
END_DOC
|
||||
initialize_pt2_E0_denominator = .True.
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, pt2_E0_denominator, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! E0 in the denominator of the PT2
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
|
||||
pt2_E0_denominator = eigval_right_tc_bi_orth
|
||||
|
||||
! if (initialize_pt2_E0_denominator) then
|
||||
! if (h0_type == "EN") then
|
||||
! pt2_E0_denominator(1:N_states) = psi_energy(1:N_states)
|
||||
! else if (h0_type == "HF") then
|
||||
! do i=1,N_states
|
||||
! j = maxloc(abs(psi_coef(:,i)),1)
|
||||
! pt2_E0_denominator(i) = psi_det_hii(j)
|
||||
! enddo
|
||||
! else if (h0_type == "Barycentric") then
|
||||
! pt2_E0_denominator(1:N_states) = barycentric_electronic_energy(1:N_states)
|
||||
! else if (h0_type == "CFG") then
|
||||
! pt2_E0_denominator(1:N_states) = psi_energy(1:N_states)
|
||||
! else
|
||||
! print *, h0_type, ' not implemented'
|
||||
! stop
|
||||
! endif
|
||||
! do i=1,N_states
|
||||
! call write_double(6,pt2_E0_denominator(i)+nuclear_repulsion, 'PT2 Energy denominator')
|
||||
! enddo
|
||||
! else
|
||||
! pt2_E0_denominator = -huge(1.d0)
|
||||
! endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, pt2_overlap, (N_states, N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Overlap between the perturbed wave functions
|
||||
END_DOC
|
||||
pt2_overlap(1:N_states,1:N_states) = 0.d0
|
||||
END_PROVIDER
|
||||
|
14
src/cipsi_tc_bi_ortho/environment.irp.f
Normal file
14
src/cipsi_tc_bi_ortho/environment.irp.f
Normal file
@ -0,0 +1,14 @@
|
||||
BEGIN_PROVIDER [ integer, nthreads_pt2 ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of threads for Davidson
|
||||
END_DOC
|
||||
nthreads_pt2 = nproc
|
||||
character*(32) :: env
|
||||
call getenv('QP_NTHREADS_PT2',env)
|
||||
if (trim(env) /= '') then
|
||||
read(env,*) nthreads_pt2
|
||||
call write_int(6,nthreads_pt2,'Target number of threads for PT2')
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
95
src/cipsi_tc_bi_ortho/fock_diag.irp.f
Normal file
95
src/cipsi_tc_bi_ortho/fock_diag.irp.f
Normal file
@ -0,0 +1,95 @@
|
||||
subroutine build_fock_tmp_tc(fock_diag_tmp,det_ref,Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Build the diagonal of the Fock matrix corresponding to a generator
|
||||
! determinant. $F_{00}$ is $\langle i|H|i \rangle = E_0$.
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: det_ref(Nint,2)
|
||||
double precision, intent(out) :: fock_diag_tmp(2,mo_num+1)
|
||||
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: ne(2), i, j, ii, jj
|
||||
double precision :: E0
|
||||
|
||||
! Compute Fock matrix diagonal elements
|
||||
call bitstring_to_list_ab(det_ref,occ,Ne,Nint)
|
||||
|
||||
fock_diag_tmp = 0.d0
|
||||
E0 = 0.d0
|
||||
|
||||
if (Ne(1) /= elec_alpha_num) then
|
||||
print *, 'Error in build_fock_tmp_tc (alpha)', Ne(1), Ne(2)
|
||||
call debug_det(det_ref,N_int)
|
||||
stop -1
|
||||
endif
|
||||
if (Ne(2) /= elec_beta_num) then
|
||||
print *, 'Error in build_fock_tmp_tc (beta)', Ne(1), Ne(2)
|
||||
call debug_det(det_ref,N_int)
|
||||
stop -1
|
||||
endif
|
||||
|
||||
! Occupied MOs
|
||||
do ii=1,elec_alpha_num
|
||||
i = occ(ii,1)
|
||||
fock_diag_tmp(1,i) = fock_diag_tmp(1,i) + mo_one_e_integrals(i,i)
|
||||
E0 = E0 + mo_one_e_integrals(i,i)
|
||||
do jj=1,elec_alpha_num
|
||||
j = occ(jj,1)
|
||||
if (i==j) cycle
|
||||
fock_diag_tmp(1,i) = fock_diag_tmp(1,i) + mo_two_e_integrals_jj_anti(i,j)
|
||||
E0 = E0 + 0.5d0*mo_two_e_integrals_jj_anti(i,j)
|
||||
enddo
|
||||
do jj=1,elec_beta_num
|
||||
j = occ(jj,2)
|
||||
fock_diag_tmp(1,i) = fock_diag_tmp(1,i) + mo_two_e_integrals_jj(i,j)
|
||||
E0 = E0 + mo_two_e_integrals_jj(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do ii=1,elec_beta_num
|
||||
i = occ(ii,2)
|
||||
fock_diag_tmp(2,i) = fock_diag_tmp(2,i) + mo_one_e_integrals(i,i)
|
||||
E0 = E0 + mo_one_e_integrals(i,i)
|
||||
do jj=1,elec_beta_num
|
||||
j = occ(jj,2)
|
||||
if (i==j) cycle
|
||||
fock_diag_tmp(2,i) = fock_diag_tmp(2,i) + mo_two_e_integrals_jj_anti(i,j)
|
||||
E0 = E0 + 0.5d0*mo_two_e_integrals_jj_anti(i,j)
|
||||
enddo
|
||||
do jj=1,elec_alpha_num
|
||||
j = occ(jj,1)
|
||||
fock_diag_tmp(2,i) = fock_diag_tmp(2,i) + mo_two_e_integrals_jj(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Virtual MOs
|
||||
do i=1,mo_num
|
||||
if (fock_diag_tmp(1,i) /= 0.d0) cycle
|
||||
fock_diag_tmp(1,i) = fock_diag_tmp(1,i) + mo_one_e_integrals(i,i)
|
||||
do jj=1,elec_alpha_num
|
||||
j = occ(jj,1)
|
||||
fock_diag_tmp(1,i) = fock_diag_tmp(1,i) + mo_two_e_integrals_jj_anti(i,j)
|
||||
enddo
|
||||
do jj=1,elec_beta_num
|
||||
j = occ(jj,2)
|
||||
fock_diag_tmp(1,i) = fock_diag_tmp(1,i) + mo_two_e_integrals_jj(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do i=1,mo_num
|
||||
if (fock_diag_tmp(2,i) /= 0.d0) cycle
|
||||
fock_diag_tmp(2,i) = fock_diag_tmp(2,i) + mo_one_e_integrals(i,i)
|
||||
do jj=1,elec_beta_num
|
||||
j = occ(jj,2)
|
||||
fock_diag_tmp(2,i) = fock_diag_tmp(2,i) + mo_two_e_integrals_jj_anti(i,j)
|
||||
enddo
|
||||
do jj=1,elec_alpha_num
|
||||
j = occ(jj,1)
|
||||
fock_diag_tmp(2,i) = fock_diag_tmp(2,i) + mo_two_e_integrals_jj(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
fock_diag_tmp(1,mo_num+1) = E0
|
||||
fock_diag_tmp(2,mo_num+1) = E0
|
||||
|
||||
end
|
1902
src/cipsi_tc_bi_ortho/get_d.irp.f
Normal file
1902
src/cipsi_tc_bi_ortho/get_d.irp.f
Normal file
File diff suppressed because it is too large
Load Diff
139
src/cipsi_tc_bi_ortho/get_d0_good.irp.f
Normal file
139
src/cipsi_tc_bi_ortho/get_d0_good.irp.f
Normal file
@ -0,0 +1,139 @@
|
||||
subroutine get_d0_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, coefs)
|
||||
!todo: indices/conjg should be okay for complex
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
integer(bit_kind) :: det(N_int, 2)
|
||||
double precision, intent(in) :: coefs(N_states,2)
|
||||
double precision, intent(inout) :: mat_l(N_states, mo_num, mo_num)
|
||||
double precision, intent(inout) :: mat_r(N_states, mo_num, mo_num)
|
||||
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
||||
|
||||
integer :: i, j, k, s, h1, h2, p1, p2, puti, putj, mm
|
||||
double precision :: phase
|
||||
double precision :: hij,hji
|
||||
double precision, external :: get_phase_bi
|
||||
logical :: ok
|
||||
|
||||
integer, parameter :: bant=1
|
||||
double precision, allocatable :: hij_cache1(:), hij_cache2(:)
|
||||
allocate (hij_cache1(mo_num),hij_cache2(mo_num))
|
||||
double precision, allocatable :: hji_cache1(:), hji_cache2(:)
|
||||
allocate (hji_cache1(mo_num),hji_cache2(mo_num))
|
||||
! print*,'in get_d0_new'
|
||||
! call debug_det(gen,N_int)
|
||||
! print*,'coefs',coefs(1,:)
|
||||
|
||||
if(sp == 3) then ! AB
|
||||
h1 = p(1,1)
|
||||
h2 = p(1,2)
|
||||
do p1=1, mo_num
|
||||
if(bannedOrb(p1, 1)) cycle
|
||||
! call get_mo_two_e_integrals_complex(p1,h2,h1,mo_num,hij_cache1,mo_integrals_map)
|
||||
do mm = 1, mo_num
|
||||
hij_cache1(mm) = mo_bi_ortho_tc_two_e(mm,p1,h2,h1)
|
||||
hji_cache1(mm) = mo_bi_ortho_tc_two_e(h2,h1,mm,p1)
|
||||
enddo
|
||||
!!!!!!!!!! <alpha|H|psi>
|
||||
do p2=1, mo_num
|
||||
if(bannedOrb(p2,2)) cycle
|
||||
if(banned(p1, p2, bant)) cycle ! rentable?
|
||||
if(p1 == h1 .or. p2 == h2) then
|
||||
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
|
||||
! call i_h_j_complex(gen, det, N_int, hij) ! need to take conjugate of this
|
||||
! call i_h_j_complex(det, gen, N_int, hij)
|
||||
call htilde_mu_mat_opt_bi_ortho_no_3e(det,gen,N_int, hij)
|
||||
else
|
||||
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
hij = hij_cache1(p2) * phase
|
||||
end if
|
||||
if (hij == (0.d0,0.d0)) cycle
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,1) * hij ! HOTSPOT
|
||||
enddo
|
||||
end do
|
||||
!!!!!!!!!! <phi|H|alpha>
|
||||
do p2=1, mo_num
|
||||
if(bannedOrb(p2,2)) cycle
|
||||
if(banned(p1, p2, bant)) cycle ! rentable?
|
||||
if(p1 == h1 .or. p2 == h2) then
|
||||
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
|
||||
! call i_h_j_complex(gen, det, N_int, hij) ! need to take conjugate of this
|
||||
! call i_h_j_complex(det, gen, N_int, hij)
|
||||
call htilde_mu_mat_opt_bi_ortho_no_3e(gen,det,N_int, hji)
|
||||
else
|
||||
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
hji = hji_cache1(p2) * phase
|
||||
end if
|
||||
if (hji == (0.d0,0.d0)) cycle
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, p1, p2) = mat_l(k, p1, p2) + coefs(k,2) * hji ! HOTSPOT
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
|
||||
else ! AA BB
|
||||
p1 = p(1,sp)
|
||||
p2 = p(2,sp)
|
||||
do puti=1, mo_num
|
||||
if(bannedOrb(puti, sp)) cycle
|
||||
! call get_mo_two_e_integrals_complex(puti,p2,p1,mo_num,hij_cache1,mo_integrals_map,mo_integrals_map_2)
|
||||
! call get_mo_two_e_integrals_complex(puti,p1,p2,mo_num,hij_cache2,mo_integrals_map,mo_integrals_map_2)
|
||||
do mm = 1, mo_num
|
||||
hij_cache1(mm) = mo_bi_ortho_tc_two_e(mm,puti,p2,p1)
|
||||
hij_cache2(mm) = mo_bi_ortho_tc_two_e(mm,puti,p1,p2)
|
||||
hji_cache1(mm) = mo_bi_ortho_tc_two_e(p2,p1,mm,puti)
|
||||
hji_cache2(mm) = mo_bi_ortho_tc_two_e(p1,p2,mm,puti)
|
||||
enddo
|
||||
!!!!!!!!!! <alpha|H|psi>
|
||||
do putj=puti+1, mo_num
|
||||
if(bannedOrb(putj, sp)) cycle
|
||||
if(banned(puti, putj, bant)) cycle ! rentable?
|
||||
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
|
||||
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
|
||||
!call i_h_j_complex(gen, det, N_int, hij) ! need to take conjugate of this
|
||||
! call i_h_j_complex(det, gen, N_int, hij)
|
||||
call htilde_mu_mat_opt_bi_ortho_no_3e(det,gen,N_int, hij)
|
||||
if (hij == 0.d0) cycle
|
||||
else
|
||||
! hij = (mo_two_e_integral_complex(p1, p2, puti, putj) - mo_two_e_integral_complex(p2, p1, puti, putj))
|
||||
! hij = (mo_bi_ortho_tc_two_e(p1, p2, puti, putj) - mo_bi_ortho_tc_two_e(p2, p1, puti, putj))
|
||||
hij = (mo_bi_ortho_tc_two_e(puti, putj, p1, p2) - mo_bi_ortho_tc_two_e(puti, putj, p2, p1))
|
||||
if (hij == 0.d0) cycle
|
||||
hij = (hij) * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
|
||||
end if
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,1) * hij
|
||||
enddo
|
||||
end do
|
||||
|
||||
!!!!!!!!!! <phi|H|alpha>
|
||||
do putj=puti+1, mo_num
|
||||
if(bannedOrb(putj, sp)) cycle
|
||||
if(banned(puti, putj, bant)) cycle ! rentable?
|
||||
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
|
||||
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
|
||||
call htilde_mu_mat_opt_bi_ortho_no_3e(gen,det,N_int, hji)
|
||||
if (hji == 0.d0) cycle
|
||||
else
|
||||
hji = (mo_bi_ortho_tc_two_e( p1, p2, puti, putj) - mo_bi_ortho_tc_two_e( p2, p1, puti, putj))
|
||||
if (hji == 0.d0) cycle
|
||||
hji = (hji) * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
|
||||
end if
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,2) * hji
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
deallocate(hij_cache1,hij_cache2)
|
||||
end
|
||||
|
454
src/cipsi_tc_bi_ortho/get_d1_good.irp.f
Normal file
454
src/cipsi_tc_bi_ortho/get_d1_good.irp.f
Normal file
@ -0,0 +1,454 @@
|
||||
subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, coefs)
|
||||
!todo: indices should be okay for complex?
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
integer(bit_kind) :: det(N_int, 2)
|
||||
double precision, intent(in) :: coefs(N_states,2)
|
||||
double precision, intent(inout) :: mat_l(N_states, mo_num, mo_num)
|
||||
double precision, intent(inout) :: mat_r(N_states, mo_num, mo_num)
|
||||
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
||||
double precision, external :: get_phase_bi
|
||||
double precision, external :: mo_two_e_integral_complex
|
||||
logical :: ok
|
||||
|
||||
logical, allocatable :: lbanned(:,:)
|
||||
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
|
||||
integer :: hfix, pfix, h1, h2, p1, p2, ib, k, l, mm
|
||||
|
||||
integer, parameter :: turn2(2) = (/2,1/)
|
||||
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
|
||||
|
||||
integer :: bant
|
||||
double precision, allocatable :: hij_cache(:,:)
|
||||
double precision :: hij, tmp_rowij(N_states, mo_num), tmp_rowij2(N_states, mo_num)
|
||||
double precision, allocatable :: hji_cache(:,:)
|
||||
double precision :: hji, tmp_rowji(N_states, mo_num), tmp_rowji2(N_states, mo_num)
|
||||
! PROVIDE mo_integrals_map N_int
|
||||
! print*,'in get_d1_new'
|
||||
! call debug_det(gen,N_int)
|
||||
! print*,'coefs',coefs(1,:)
|
||||
|
||||
allocate (lbanned(mo_num, 2))
|
||||
allocate (hij_cache(mo_num,2))
|
||||
allocate (hji_cache(mo_num,2))
|
||||
lbanned = bannedOrb
|
||||
|
||||
do i=1, p(0,1)
|
||||
lbanned(p(i,1), 1) = .true.
|
||||
end do
|
||||
do i=1, p(0,2)
|
||||
lbanned(p(i,2), 2) = .true.
|
||||
end do
|
||||
|
||||
ma = 1
|
||||
if(p(0,2) >= 2) ma = 2
|
||||
mi = turn2(ma)
|
||||
|
||||
bant = 1
|
||||
|
||||
if(sp == 3) then
|
||||
!move MA
|
||||
if(ma == 2) bant = 2
|
||||
puti = p(1,mi)
|
||||
hfix = h(1,ma)
|
||||
p1 = p(1,ma)
|
||||
p2 = p(2,ma)
|
||||
if(.not. bannedOrb(puti, mi)) then
|
||||
! call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
|
||||
! call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
|
||||
do mm = 1, mo_num
|
||||
hij_cache(mm,1) = mo_bi_ortho_tc_two_e(mm,hfix,p1,p2)
|
||||
hij_cache(mm,2) = mo_bi_ortho_tc_two_e(mm,hfix,p2,p1)
|
||||
hji_cache(mm,1) = mo_bi_ortho_tc_two_e(p1,p2,mm,hfix)
|
||||
hji_cache(mm,2) = mo_bi_ortho_tc_two_e(p2,p1,mm,hfix)
|
||||
enddo
|
||||
!! <alpha|H|psi>
|
||||
tmp_rowij = 0.d0
|
||||
do putj=1, hfix-1
|
||||
if(lbanned(putj, ma)) cycle
|
||||
if(banned(putj, puti,bant)) cycle
|
||||
hij = hij_cache(putj,1) - hij_cache(putj,2)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowij(k,putj) = tmp_rowij(k,putj) + hij * coefs(k,1)
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
do putj=hfix+1, mo_num
|
||||
if(lbanned(putj, ma)) cycle
|
||||
if(banned(putj, puti,bant)) cycle
|
||||
hij = hij_cache(putj,2) - hij_cache(putj,1)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowij(k,putj) = tmp_rowij(k,putj) + hij * coefs(k,1)
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
|
||||
if(ma == 1) then
|
||||
mat_r(1:N_states,1:mo_num,puti) = mat_r(1:N_states,1:mo_num,puti) + tmp_rowij(1:N_states,1:mo_num)
|
||||
else
|
||||
do l=1,mo_num
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k,puti,l) = mat_r(k,puti,l) + tmp_rowij(k,l)
|
||||
enddo
|
||||
enddo
|
||||
end if
|
||||
|
||||
!! <phi|H|alpha>
|
||||
tmp_rowji = 0.d0
|
||||
do putj=1, hfix-1
|
||||
if(lbanned(putj, ma)) cycle
|
||||
if(banned(putj, puti,bant)) cycle
|
||||
hji = hji_cache(putj,1) - hji_cache(putj,2)
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowji(k,putj) = tmp_rowji(k,putj) + hji * coefs(k,2)
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
do putj=hfix+1, mo_num
|
||||
if(lbanned(putj, ma)) cycle
|
||||
if(banned(putj, puti,bant)) cycle
|
||||
hji = hji_cache(putj,2) - hji_cache(putj,1)
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowji(k,putj) = tmp_rowji(k,putj) + hji * coefs(k,2)
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
|
||||
if(ma == 1) then
|
||||
mat_l(1:N_states,1:mo_num,puti) = mat_l(1:N_states,1:mo_num,puti) + tmp_rowji(1:N_states,1:mo_num)
|
||||
else
|
||||
do l=1,mo_num
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k,puti,l) = mat_l(k,puti,l) + tmp_rowji(k,l)
|
||||
enddo
|
||||
enddo
|
||||
end if
|
||||
end if
|
||||
|
||||
!MOVE MI
|
||||
pfix = p(1,mi)
|
||||
tmp_rowij = 0.d0
|
||||
tmp_rowij2 = 0.d0
|
||||
tmp_rowji = 0.d0
|
||||
tmp_rowji2 = 0.d0
|
||||
! call get_mo_two_e_integrals_complex(hfix,pfix,p1,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
|
||||
! call get_mo_two_e_integrals_complex(hfix,pfix,p2,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
|
||||
do mm = 1, mo_num
|
||||
hij_cache(mm,1) = mo_bi_ortho_tc_two_e(mm,hfix,pfix,p1)
|
||||
hij_cache(mm,2) = mo_bi_ortho_tc_two_e(mm,hfix,pfix,p2)
|
||||
hji_cache(mm,1) = mo_bi_ortho_tc_two_e(pfix,p1,mm,hfix)
|
||||
hji_cache(mm,2) = mo_bi_ortho_tc_two_e(pfix,p2,mm,hfix)
|
||||
enddo
|
||||
putj = p1
|
||||
!! <alpha|H|psi>
|
||||
do puti=1,mo_num !HOT
|
||||
if(lbanned(puti,mi)) cycle
|
||||
!p1 fixed
|
||||
putj = p1
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hij = hij_cache(puti,2)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowij(k,puti) = tmp_rowij(k,puti) + hij * coefs(k,1)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
!
|
||||
putj = p2
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hij = hij_cache(puti,1)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
|
||||
do k=1,N_states
|
||||
tmp_rowij2(k,puti) = tmp_rowij2(k,puti) + hij * coefs(k,1)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
end do
|
||||
|
||||
if(mi == 1) then
|
||||
mat_r(:,:,p1) = mat_r(:,:,p1) + tmp_rowij(:,:)
|
||||
mat_r(:,:,p2) = mat_r(:,:,p2) + tmp_rowij2(:,:)
|
||||
else
|
||||
do l=1,mo_num
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k,p1,l) = mat_r(k,p1,l) + tmp_rowij(k,l)
|
||||
mat_r(k,p2,l) = mat_r(k,p2,l) + tmp_rowij2(k,l)
|
||||
enddo
|
||||
enddo
|
||||
end if
|
||||
|
||||
putj = p1
|
||||
!! <phi|H|alpha>
|
||||
do puti=1,mo_num !HOT
|
||||
if(lbanned(puti,mi)) cycle
|
||||
!p1 fixed
|
||||
putj = p1
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hji = hji_cache(puti,2)
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowji(k,puti) = tmp_rowji(k,puti) + hji * coefs(k,2)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
!
|
||||
putj = p2
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hji = hji_cache(puti,1)
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
|
||||
do k=1,N_states
|
||||
tmp_rowji2(k,puti) = tmp_rowji2(k,puti) + hji * coefs(k,2)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
end do
|
||||
|
||||
if(mi == 1) then
|
||||
mat_l(:,:,p1) = mat_l(:,:,p1) + tmp_rowji(:,:)
|
||||
mat_l(:,:,p2) = mat_l(:,:,p2) + tmp_rowji2(:,:)
|
||||
else
|
||||
do l=1,mo_num
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k,p1,l) = mat_l(k,p1,l) + tmp_rowji(k,l)
|
||||
mat_l(k,p2,l) = mat_l(k,p2,l) + tmp_rowji2(k,l)
|
||||
enddo
|
||||
enddo
|
||||
end if
|
||||
|
||||
else ! sp /= 3
|
||||
|
||||
if(p(0,ma) == 3) then
|
||||
do i=1,3
|
||||
hfix = h(1,ma)
|
||||
puti = p(i, ma)
|
||||
p1 = p(turn3(1,i), ma)
|
||||
p2 = p(turn3(2,i), ma)
|
||||
! call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
|
||||
! call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
|
||||
do mm = 1, mo_num
|
||||
hij_cache(mm,1) = mo_bi_ortho_tc_two_e(mm,hfix,p1,p2)
|
||||
hij_cache(mm,2) = mo_bi_ortho_tc_two_e(mm,hfix,p2,p1)
|
||||
hji_cache(mm,1) = mo_bi_ortho_tc_two_e(p1,p2,mm,hfix)
|
||||
hji_cache(mm,2) = mo_bi_ortho_tc_two_e(p2,p1,mm,hfix)
|
||||
enddo
|
||||
!! <alpha|H|psi>
|
||||
tmp_rowij = 0.d0
|
||||
do putj=1,hfix-1
|
||||
if(banned(putj,puti,1)) cycle
|
||||
if(lbanned(putj,ma)) cycle
|
||||
hij = hij_cache(putj,1) - hij_cache(putj,2)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
tmp_rowij(:,putj) = tmp_rowij(:,putj) + hij * coefs(:,1)
|
||||
endif
|
||||
end do
|
||||
do putj=hfix+1,mo_num
|
||||
if(banned(putj,puti,1)) cycle
|
||||
if(lbanned(putj,ma)) cycle
|
||||
hij = hij_cache(putj,2) - hij_cache(putj,1)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
tmp_rowij(:,putj) = tmp_rowij(:,putj) + hij * coefs(:,1)
|
||||
endif
|
||||
end do
|
||||
|
||||
mat_r(:, :puti-1, puti) = mat_r(:, :puti-1, puti) + tmp_rowij(:,:puti-1)
|
||||
do l=puti,mo_num
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, l) = mat_r(k, puti,l) + tmp_rowij(k,l)
|
||||
enddo
|
||||
enddo
|
||||
!! <phi|H|alpha>
|
||||
tmp_rowji = 0.d0
|
||||
do putj=1,hfix-1
|
||||
if(banned(putj,puti,1)) cycle
|
||||
if(lbanned(putj,ma)) cycle
|
||||
hji = hji_cache(putj,1) - hji_cache(putj,2)
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
tmp_rowji(:,putj) = tmp_rowji(:,putj) + hji * coefs(:,2)
|
||||
endif
|
||||
end do
|
||||
do putj=hfix+1,mo_num
|
||||
if(banned(putj,puti,1)) cycle
|
||||
if(lbanned(putj,ma)) cycle
|
||||
hji = hji_cache(putj,2) - hji_cache(putj,1)
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
tmp_rowji(:,putj) = tmp_rowji(:,putj) + hji * coefs(:,2)
|
||||
endif
|
||||
end do
|
||||
|
||||
mat_l(:, :puti-1, puti) = mat_l(:, :puti-1, puti) + tmp_rowji(:,:puti-1)
|
||||
do l=puti,mo_num
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, l) = mat_l(k, puti,l) + tmp_rowji(k,l)
|
||||
enddo
|
||||
enddo
|
||||
end do
|
||||
else
|
||||
hfix = h(1,mi)
|
||||
pfix = p(1,mi)
|
||||
p1 = p(1,ma)
|
||||
p2 = p(2,ma)
|
||||
tmp_rowij = 0.d0
|
||||
tmp_rowij2 = 0.d0
|
||||
tmp_rowji = 0.d0
|
||||
tmp_rowji2 = 0.d0
|
||||
! call get_mo_two_e_integrals_complex(hfix,p1,pfix,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
|
||||
! call get_mo_two_e_integrals_complex(hfix,p2,pfix,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
|
||||
do mm = 1, mo_num
|
||||
hij_cache(mm,1) = mo_bi_ortho_tc_two_e(mm,hfix,p1,pfix)
|
||||
hij_cache(mm,2) = mo_bi_ortho_tc_two_e(mm,hfix,p2,pfix)
|
||||
hji_cache(mm,1) = mo_bi_ortho_tc_two_e(p1,pfix,mm,hfix)
|
||||
hji_cache(mm,2) = mo_bi_ortho_tc_two_e(p2,pfix,mm,hfix)
|
||||
enddo
|
||||
putj = p2
|
||||
!! <alpha|H|psi>
|
||||
do puti=1,mo_num
|
||||
if(lbanned(puti,ma)) cycle
|
||||
putj = p2
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
hij = hij_cache(puti,1)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowij(k,puti) = tmp_rowij(k,puti) + hij * coefs(k,1)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
|
||||
putj = p1
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
hij = hij_cache(puti,2)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
|
||||
do k=1,N_states
|
||||
tmp_rowij2(k,puti) = tmp_rowij2(k,puti) + hij * coefs(k,1)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
end do
|
||||
mat_r(:,:p2-1,p2) = mat_r(:,:p2-1,p2) + tmp_rowij(:,:p2-1)
|
||||
do l=p2,mo_num
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k,p2,l) = mat_r(k,p2,l) + tmp_rowij(k,l)
|
||||
enddo
|
||||
enddo
|
||||
mat_r(:,:p1-1,p1) = mat_r(:,:p1-1,p1) + tmp_rowij2(:,:p1-1)
|
||||
do l=p1,mo_num
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k,p1,l) = mat_r(k,p1,l) + tmp_rowij2(k,l)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
!! <phi|H|alpha>
|
||||
putj = p2
|
||||
do puti=1,mo_num
|
||||
if(lbanned(puti,ma)) cycle
|
||||
putj = p2
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
hji = hji_cache(puti,1)
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
tmp_rowji(k,puti) = tmp_rowji(k,puti) + hji * coefs(k,2)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
|
||||
putj = p1
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
hji = hji_cache(puti,2)
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
|
||||
do k=1,N_states
|
||||
tmp_rowji2(k,puti) = tmp_rowji2(k,puti) + hji * coefs(k,2)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
end do
|
||||
mat_l(:,:p2-1,p2) = mat_l(:,:p2-1,p2) + tmp_rowji(:,:p2-1)
|
||||
do l=p2,mo_num
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k,p2,l) = mat_l(k,p2,l) + tmp_rowji(k,l)
|
||||
enddo
|
||||
enddo
|
||||
mat_l(:,:p1-1,p1) = mat_l(:,:p1-1,p1) + tmp_rowji2(:,:p1-1)
|
||||
do l=p1,mo_num
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k,p1,l) = mat_l(k,p1,l) + tmp_rowji2(k,l)
|
||||
enddo
|
||||
enddo
|
||||
end if
|
||||
end if
|
||||
deallocate(lbanned,hij_cache, hji_cache)
|
||||
|
||||
!! MONO
|
||||
if(sp == 3) then
|
||||
s1 = 1
|
||||
s2 = 2
|
||||
else
|
||||
s1 = sp
|
||||
s2 = sp
|
||||
end if
|
||||
|
||||
do i1=1,p(0,s1)
|
||||
ib = 1
|
||||
if(s1 == s2) ib = i1+1
|
||||
do i2=ib,p(0,s2)
|
||||
p1 = p(i1,s1)
|
||||
p2 = p(i2,s2)
|
||||
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
|
||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
||||
! gen is a selector; mask is ionized generator; det is alpha
|
||||
! hij is contribution to <psi|H|alpha>
|
||||
! call i_h_j_complex(gen, det, N_int, hij)
|
||||
call htilde_mu_mat_opt_bi_ortho_no_3e(det, gen, N_int, hij)
|
||||
call htilde_mu_mat_opt_bi_ortho_no_3e(gen, det, N_int, hji)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
|
||||
! mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,1) * dconjg(hij)
|
||||
mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,1) * hij
|
||||
mat_l(k, p1, p2) = mat_l(k, p1, p2) + coefs(k,2) * hji
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
end
|
||||
|
308
src/cipsi_tc_bi_ortho/get_d2_good.irp.f
Normal file
308
src/cipsi_tc_bi_ortho/get_d2_good.irp.f
Normal file
@ -0,0 +1,308 @@
|
||||
|
||||
subroutine get_d2_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, coefs)
|
||||
!todo: indices/conjg should be correct for complex
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
double precision, intent(in) :: coefs(N_states,2)
|
||||
double precision, intent(inout) :: mat_r(N_states, mo_num, mo_num)
|
||||
double precision, intent(inout) :: mat_l(N_states, mo_num, mo_num)
|
||||
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
||||
|
||||
double precision, external :: get_phase_bi
|
||||
|
||||
integer :: i, j, k, tip, ma, mi, puti, putj
|
||||
integer :: h1, h2, p1, p2, i1, i2
|
||||
double precision :: phase
|
||||
double precision :: hij,hji
|
||||
|
||||
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
|
||||
integer, parameter :: turn2(2) = (/2, 1/)
|
||||
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
|
||||
|
||||
integer :: bant
|
||||
bant = 1
|
||||
! print*, 'in get_d2_new'
|
||||
! call debug_det(gen,N_int)
|
||||
! print*,'coefs',coefs(1,:)
|
||||
|
||||
tip = p(0,1) * p(0,2) ! number of alpha particles times number of beta particles
|
||||
|
||||
ma = sp !1:(alpha,alpha); 2:(b,b); 3:(a,b)
|
||||
if(p(0,1) > p(0,2)) ma = 1 ! more alpha particles than beta particles
|
||||
if(p(0,1) < p(0,2)) ma = 2 ! fewer alpha particles than beta particles
|
||||
mi = mod(ma, 2) + 1
|
||||
|
||||
if(sp == 3) then ! if one alpha and one beta xhole
|
||||
!(where xholes refer to the ionizations from the generator, not the holes occupied in the ionized generator)
|
||||
if(ma == 2) bant = 2 ! if more beta particles than alpha particles
|
||||
|
||||
if(tip == 3) then ! if 3 of one particle spin and 1 of the other particle spin
|
||||
puti = p(1, mi)
|
||||
if(bannedOrb(puti, mi)) return
|
||||
h1 = h(1, ma)
|
||||
h2 = h(2, ma)
|
||||
|
||||
!! <alpha|H|psi>
|
||||
do i = 1, 3 ! loop over all 3 combinations of 2 particles with spin ma
|
||||
putj = p(i, ma)
|
||||
if(banned(putj,puti,bant)) cycle
|
||||
i1 = turn3(1,i)
|
||||
i2 = turn3(2,i)
|
||||
p1 = p(i1, ma)
|
||||
p2 = p(i2, ma)
|
||||
|
||||
! |G> = |psi_{gen,i}>
|
||||
! |G'> = a_{x1} a_{x2} |G>
|
||||
! |alpha> = a_{puti}^{\dagger} a_{putj}^{\dagger} |G'>
|
||||
! |alpha> = t_{x1,x2}^{puti,putj} |G>
|
||||
! hij = <psi_{selectors,i}|H|alpha>
|
||||
! |alpha> = t_{p1,p2}^{h1,h2}|psi_{selectors,i}>
|
||||
!todo: <i|H|j> = (<h1,h2|p1,p2> - <h1,h2|p2,p1>) * phase
|
||||
! <psi|H|j> += dconjg(c_i) * <i|H|j>
|
||||
! <j|H|i> = (<p1,p2|h1,h2> - <p2,p1|h1,h2>) * phase
|
||||
! <j|H|psi> += <j|H|i> * c_i
|
||||
! hij = mo_bi_ortho_tc_two_e(p1, p2, h1, h2) - mo_bi_ortho_tc_two_e(p2, p1, h1, h2)
|
||||
|
||||
!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!
|
||||
! take the transpose of what's written above because later use the complex conjugate
|
||||
hij = mo_bi_ortho_tc_two_e(h1, h2, p1, p2) - mo_bi_ortho_tc_two_e( h1, h2, p2, p1)
|
||||
if (hij == 0.d0) cycle
|
||||
|
||||
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
|
||||
! hij = dconjg(hij) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
||||
hij = hij * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
||||
|
||||
if(ma == 1) then ! if particle spins are (alpha,alpha,alpha,beta), then puti is beta and putj is alpha
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, putj, puti) = mat_r(k, putj, puti) + coefs(k,1) * hij
|
||||
enddo
|
||||
else ! if particle spins are (beta,beta,beta,alpha), then puti is alpha and putj is beta
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,1) * hij
|
||||
enddo
|
||||
end if
|
||||
end do
|
||||
!! <phi|H|alpha>
|
||||
do i = 1, 3 ! loop over all 3 combinations of 2 particles with spin ma
|
||||
putj = p(i, ma)
|
||||
if(banned(putj,puti,bant)) cycle
|
||||
i1 = turn3(1,i)
|
||||
i2 = turn3(2,i)
|
||||
p1 = p(i1, ma)
|
||||
p2 = p(i2, ma)
|
||||
hji = mo_bi_ortho_tc_two_e(p1, p2,h1, h2) - mo_bi_ortho_tc_two_e( p2, p1, h1, h2)
|
||||
if (hji == 0.d0) cycle
|
||||
hji = hji * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
||||
|
||||
if(ma == 1) then ! if particle spins are (alpha,alpha,alpha,beta), then puti is beta and putj is alpha
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, putj, puti) = mat_l(k, putj, puti) + coefs(k,2) * hji
|
||||
enddo
|
||||
else ! if particle spins are (beta,beta,beta,alpha), then puti is alpha and putj is beta
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,2) * hji
|
||||
enddo
|
||||
end if
|
||||
end do
|
||||
else ! if 2 alpha and 2 beta particles
|
||||
h1 = h(1,1)
|
||||
h2 = h(1,2)
|
||||
!! <alpha|H|psi>
|
||||
do j = 1,2 ! loop over all 4 combinations of one alpha and one beta particle
|
||||
putj = p(j, 2)
|
||||
if(bannedOrb(putj, 2)) cycle
|
||||
p2 = p(turn2(j), 2)
|
||||
do i = 1,2
|
||||
puti = p(i, 1)
|
||||
if(banned(puti,putj,bant) .or. bannedOrb(puti,1)) cycle
|
||||
p1 = p(turn2(i), 1)
|
||||
! hij = <psi_{selectors,i}|H|alpha>
|
||||
! hij = mo_bi_ortho_tc_two_e(p1, p2, h1, h2)
|
||||
!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!
|
||||
! take the transpose of what's written above because later use the complex conjugate
|
||||
hij = mo_bi_ortho_tc_two_e(h1, h2, p1, p2 )
|
||||
if (hij /= 0.d0) then
|
||||
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
|
||||
! hij = dconjg(hij) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
hij = hij * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,1) * hij
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
!! <phi|H|alpha>
|
||||
do j = 1,2 ! loop over all 4 combinations of one alpha and one beta particle
|
||||
putj = p(j, 2)
|
||||
if(bannedOrb(putj, 2)) cycle
|
||||
p2 = p(turn2(j), 2)
|
||||
do i = 1,2
|
||||
puti = p(i, 1)
|
||||
if(banned(puti,putj,bant) .or. bannedOrb(puti,1)) cycle
|
||||
p1 = p(turn2(i), 1)
|
||||
hji = mo_bi_ortho_tc_two_e( p1, p2, h1, h2)
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,2) * hji
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
else ! if holes are (a,a) or (b,b)
|
||||
if(tip == 0) then ! if particles are (a,a,a,a) or (b,b,b,b)
|
||||
h1 = h(1, ma)
|
||||
h2 = h(2, ma)
|
||||
!! <alpha|H|psi>
|
||||
do i=1,3
|
||||
puti = p(i, ma)
|
||||
if(bannedOrb(puti,ma)) cycle
|
||||
do j=i+1,4
|
||||
putj = p(j, ma)
|
||||
if(bannedOrb(putj,ma)) cycle
|
||||
if(banned(puti,putj,1)) cycle
|
||||
|
||||
i1 = turn2d(1, i, j)
|
||||
i2 = turn2d(2, i, j)
|
||||
p1 = p(i1, ma)
|
||||
p2 = p(i2, ma)
|
||||
! hij = mo_bi_ortho_tc_two_e(p1, p2, h1, h2) - mo_bi_ortho_tc_two_e(p2,p1, h1, h2)
|
||||
!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!
|
||||
! take the transpose of what's written above because later use the complex conjugate
|
||||
hij = mo_bi_ortho_tc_two_e(h1, h2, p1, p2) - mo_bi_ortho_tc_two_e(h1, h2, p2,p1 )
|
||||
if (hij == 0.d0) cycle
|
||||
|
||||
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
|
||||
! hij = dconjg(hij) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
||||
hij = hij * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) +coefs(k,1) * hij
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
!! <phi|H|alpha>
|
||||
do i=1,3
|
||||
puti = p(i, ma)
|
||||
if(bannedOrb(puti,ma)) cycle
|
||||
do j=i+1,4
|
||||
putj = p(j, ma)
|
||||
if(bannedOrb(putj,ma)) cycle
|
||||
if(banned(puti,putj,1)) cycle
|
||||
i1 = turn2d(1, i, j)
|
||||
i2 = turn2d(2, i, j)
|
||||
p1 = p(i1, ma)
|
||||
p2 = p(i2, ma)
|
||||
hji = mo_bi_ortho_tc_two_e(p1, p2, h1, h2) - mo_bi_ortho_tc_two_e(p2,p1,h1, h2 )
|
||||
if (hji == 0.d0) cycle
|
||||
hji = hji * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) +coefs(k,2) * hji
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
else if(tip == 3) then ! if particles are (a,a,a,b) (ma=1,mi=2) or (a,b,b,b) (ma=2,mi=1)
|
||||
h1 = h(1, mi)
|
||||
h2 = h(1, ma)
|
||||
p1 = p(1, mi)
|
||||
!! <alpha|H|psi>
|
||||
do i=1,3
|
||||
puti = p(turn3(1,i), ma)
|
||||
if(bannedOrb(puti,ma)) cycle
|
||||
putj = p(turn3(2,i), ma)
|
||||
if(bannedOrb(putj,ma)) cycle
|
||||
if(banned(puti,putj,1)) cycle
|
||||
p2 = p(i, ma)
|
||||
|
||||
! hij = mo_bi_ortho_tc_two_e(p1, p2, h1, h2)
|
||||
!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!
|
||||
! take the transpose of what's written above because later use the complex conjugate
|
||||
hij = mo_bi_ortho_tc_two_e(h1, h2,p1, p2 )
|
||||
if (hij == 0.d0) cycle
|
||||
|
||||
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
|
||||
! hij = dconjg(hij) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2, N_int)
|
||||
hij = hij * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2, N_int)
|
||||
if (puti < putj) then
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,1) * hij
|
||||
enddo
|
||||
else
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, putj, puti) = mat_r(k, putj, puti) + coefs(k,1) * hij
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
!! <phi|H|alpha>
|
||||
do i=1,3
|
||||
puti = p(turn3(1,i), ma)
|
||||
if(bannedOrb(puti,ma)) cycle
|
||||
putj = p(turn3(2,i), ma)
|
||||
if(bannedOrb(putj,ma)) cycle
|
||||
if(banned(puti,putj,1)) cycle
|
||||
p2 = p(i, ma)
|
||||
hji = mo_bi_ortho_tc_two_e(p1, p2,h1, h2)
|
||||
if (hji == 0.d0) cycle
|
||||
hji = hji * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2, N_int)
|
||||
if (puti < putj) then
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,2) * hji
|
||||
enddo
|
||||
else
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, putj, puti) = mat_l(k, putj, puti) + coefs(k,2) * hji
|
||||
enddo
|
||||
endif
|
||||
end do
|
||||
else ! tip == 4 (a,a,b,b)
|
||||
puti = p(1, sp)
|
||||
putj = p(2, sp)
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
p1 = p(1, mi)
|
||||
p2 = p(2, mi)
|
||||
h1 = h(1, mi)
|
||||
h2 = h(2, mi)
|
||||
!! <alpha|H|psi>
|
||||
! hij = (mo_bi_ortho_tc_two_e(p1, p2, h1, h2) - mo_bi_ortho_tc_two_e(p2,p1, h1, h2))
|
||||
!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!
|
||||
! take the transpose of what's written above because later use the complex conjugate
|
||||
hij = (mo_bi_ortho_tc_two_e(h1, h2,p1, p2) - mo_bi_ortho_tc_two_e(h1, h2, p2,p1))
|
||||
if (hij /= 0.d0) then
|
||||
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
|
||||
! hij = dconjg(hij) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int)
|
||||
hij = hij * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_r(k, puti, putj) = mat_r(k, puti, putj) + coefs(k,1) * hij
|
||||
enddo
|
||||
end if
|
||||
!! <phi|H|alpha>
|
||||
hji = (mo_bi_ortho_tc_two_e(p1, p2,h1, h2) - mo_bi_ortho_tc_two_e( p2,p1, h1, h2))
|
||||
if (hji /= 0.d0) then
|
||||
hji = hji * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2, N_int)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do k=1,N_states
|
||||
mat_l(k, puti, putj) = mat_l(k, puti, putj) + coefs(k,2) * hji
|
||||
enddo
|
||||
end if
|
||||
end if
|
||||
end if
|
||||
end if
|
||||
end
|
0
src/cipsi_tc_bi_ortho/lock_2rdm.irp.f
Normal file
0
src/cipsi_tc_bi_ortho/lock_2rdm.irp.f
Normal file
33
src/cipsi_tc_bi_ortho/pouet
Normal file
33
src/cipsi_tc_bi_ortho/pouet
Normal file
@ -0,0 +1,33 @@
|
||||
|
||||
if(dabs(psi_h_alpha*alpha_h_psi - psi_h_alpha_tmp*alpha_h_psi_tmp).gt.1.d-10)then
|
||||
!!! print*,'---'
|
||||
!!! print*,psi_h_alpha *alpha_h_psi, psi_h_alpha, alpha_h_psi
|
||||
!!! print*,psi_h_alpha_tmp*alpha_h_psi_tmp,psi_h_alpha_tmp,alpha_h_psi_tmp
|
||||
call debug_det(det,N_int)
|
||||
print*,dabs(psi_h_alpha*alpha_h_psi - psi_h_alpha_tmp*alpha_h_psi_tmp),psi_h_alpha *alpha_h_psi,psi_h_alpha_tmp*alpha_h_psi_tmp
|
||||
print*,'-- Good '
|
||||
print*, psi_h_alpha, alpha_h_psi
|
||||
print*,'-- bad '
|
||||
print*,psi_h_alpha_tmp,alpha_h_psi_tmp
|
||||
print*,'-- details good'
|
||||
double precision :: accu_1, accu_2
|
||||
accu_1 = 0.d0
|
||||
accu_2 = 0.d0
|
||||
do iii = 1, N_det
|
||||
call get_excitation_degree( psi_det(1,1,iii), det, degree, N_int)
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,iii), det, N_int, i_h_alpha)
|
||||
call htilde_mu_mat_bi_ortho_tot(det, psi_det(1,1,iii), N_int, alpha_h_i)
|
||||
print*,iii,degree,i_h_alpha,alpha_h_i
|
||||
accu_1 += i_h_alpha
|
||||
accu_2 += alpha_h_i
|
||||
print*,accu_1,accu_2
|
||||
|
||||
enddo
|
||||
!!! if(dabs(psi_h_alpha*alpha_h_psi).gt.1.d-10)then
|
||||
!!! print*,p1,p2
|
||||
!!! print*,det(1,1), det(1,2)
|
||||
!!! call debug_det(det,N_int)
|
||||
!!! print*,psi_h_alpha *alpha_h_psi, psi_h_alpha, alpha_h_psi
|
||||
!!! print*,psi_h_alpha_tmp*alpha_h_psi_tmp,psi_h_alpha_tmp,alpha_h_psi_tmp
|
||||
!!! print*, dabs(psi_h_alpha*alpha_h_psi - psi_h_alpha_tmp*alpha_h_psi_tmp),&
|
||||
!!! psi_h_alpha *alpha_h_psi,psi_h_alpha_tmp*alpha_h_psi_tmp
|
89
src/cipsi_tc_bi_ortho/pt2.irp.f
Normal file
89
src/cipsi_tc_bi_ortho/pt2.irp.f
Normal file
@ -0,0 +1,89 @@
|
||||
subroutine pt2_tc_bi_ortho
|
||||
use selection_types
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Selected Full Configuration Interaction with Stochastic selection and PT2.
|
||||
END_DOC
|
||||
integer :: i,j,k,ndet
|
||||
double precision, allocatable :: zeros(:)
|
||||
integer :: to_select
|
||||
type(pt2_type) :: pt2_data, pt2_data_err
|
||||
logical, external :: qp_stop
|
||||
logical :: print_pt2
|
||||
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double
|
||||
double precision :: correlation_energy_ratio,E_denom,E_tc,norm
|
||||
double precision, allocatable :: ept2(:), pt1(:),extrap_energy(:)
|
||||
PROVIDE H_apply_buffer_allocated distributed_davidson mo_two_e_integrals_in_map
|
||||
|
||||
print*,'Diagonal elements of the Fock matrix '
|
||||
do i = 1, mo_num
|
||||
write(*,*)i,Fock_matrix_tc_mo_tot(i,i)
|
||||
enddo
|
||||
N_iter = 1
|
||||
threshold_generators = 1.d0
|
||||
SOFT_TOUCH threshold_generators
|
||||
|
||||
rss = memory_of_double(N_states)*4.d0
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
allocate (zeros(N_states))
|
||||
call pt2_alloc(pt2_data, N_states)
|
||||
call pt2_alloc(pt2_data_err, N_states)
|
||||
|
||||
double precision :: hf_energy_ref
|
||||
logical :: has
|
||||
double precision :: relative_error
|
||||
|
||||
relative_error=PT2_relative_error
|
||||
|
||||
zeros = 0.d0
|
||||
pt2_data % pt2 = -huge(1.e0)
|
||||
pt2_data % rpt2 = -huge(1.e0)
|
||||
pt2_data % overlap= 0.d0
|
||||
pt2_data % variance = huge(1.e0)
|
||||
|
||||
if (s2_eig) then
|
||||
call make_s2_eigenfunction
|
||||
endif
|
||||
print_pt2 = .False.
|
||||
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
! call routine_save_right
|
||||
|
||||
if (N_det > N_det_max) then
|
||||
psi_det(1:N_int,1:2,1:N_det) = psi_det_sorted_tc_gen(1:N_int,1:2,1:N_det)
|
||||
psi_coef(1:N_det,1:N_states) = psi_coef_sorted_tc_gen(1:N_det,1:N_states)
|
||||
N_det = N_det_max
|
||||
soft_touch N_det psi_det psi_coef
|
||||
if (s2_eig) then
|
||||
call make_s2_eigenfunction
|
||||
endif
|
||||
print_pt2 = .False.
|
||||
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
endif
|
||||
|
||||
allocate(ept2(1000),pt1(1000),extrap_energy(100))
|
||||
|
||||
correlation_energy_ratio = 0.d0
|
||||
|
||||
! thresh_it_dav = 5.d-5
|
||||
! soft_touch thresh_it_dav
|
||||
|
||||
print_pt2 = .True.
|
||||
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
|
||||
to_select = max(N_states_diag, to_select)
|
||||
|
||||
E_denom = E_tc ! TC Energy of the current wave function
|
||||
call pt2_dealloc(pt2_data)
|
||||
call pt2_dealloc(pt2_data_err)
|
||||
call pt2_alloc(pt2_data, N_states)
|
||||
call pt2_alloc(pt2_data_err, N_states)
|
||||
call ZMQ_pt2(E_denom, pt2_data, pt2_data_err, relative_error,to_select) ! Stochastic PT2 and selection
|
||||
|
||||
N_iter += 1
|
||||
|
||||
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
|
||||
end
|
||||
|
869
src/cipsi_tc_bi_ortho/pt2_stoch_routines.irp.f
Normal file
869
src/cipsi_tc_bi_ortho/pt2_stoch_routines.irp.f
Normal file
@ -0,0 +1,869 @@
|
||||
BEGIN_PROVIDER [ integer, pt2_stoch_istate ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! State for stochatsic PT2
|
||||
END_DOC
|
||||
pt2_stoch_istate = 1
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, pt2_F, (N_det_generators) ]
|
||||
&BEGIN_PROVIDER [ integer, pt2_n_tasks_max ]
|
||||
implicit none
|
||||
logical, external :: testTeethBuilding
|
||||
integer :: i,j
|
||||
pt2_n_tasks_max = elec_alpha_num*elec_alpha_num + elec_alpha_num*elec_beta_num - n_core_orb*2
|
||||
pt2_n_tasks_max = min(pt2_n_tasks_max,1+N_det_generators/10000)
|
||||
call write_int(6,pt2_n_tasks_max,'pt2_n_tasks_max')
|
||||
|
||||
pt2_F(:) = max(int(sqrt(float(pt2_n_tasks_max))),1)
|
||||
do i=1,pt2_n_0(1+pt2_N_teeth/4)
|
||||
pt2_F(i) = pt2_n_tasks_max*pt2_min_parallel_tasks
|
||||
enddo
|
||||
do i=1+pt2_n_0(pt2_N_teeth-pt2_N_teeth/4), pt2_n_0(pt2_N_teeth-pt2_N_teeth/10)
|
||||
pt2_F(i) = pt2_min_parallel_tasks
|
||||
enddo
|
||||
do i=1+pt2_n_0(pt2_N_teeth-pt2_N_teeth/10), N_det_generators
|
||||
pt2_F(i) = 1
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, pt2_N_teeth ]
|
||||
&BEGIN_PROVIDER [ integer, pt2_minDetInFirstTeeth ]
|
||||
implicit none
|
||||
logical, external :: testTeethBuilding
|
||||
|
||||
if(N_det_generators < 500) then
|
||||
pt2_minDetInFirstTeeth = 1
|
||||
pt2_N_teeth = 1
|
||||
else
|
||||
pt2_minDetInFirstTeeth = min(5, N_det_generators)
|
||||
do pt2_N_teeth=100,2,-1
|
||||
if(testTeethBuilding(pt2_minDetInFirstTeeth, pt2_N_teeth)) exit
|
||||
end do
|
||||
end if
|
||||
call write_int(6,pt2_N_teeth,'Number of comb teeth')
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
logical function testTeethBuilding(minF, N)
|
||||
implicit none
|
||||
integer, intent(in) :: minF, N
|
||||
integer :: n0, i
|
||||
double precision :: u0, Wt, r
|
||||
|
||||
double precision, allocatable :: tilde_w(:), tilde_cW(:)
|
||||
integer, external :: dress_find_sample
|
||||
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double, memory_of_int
|
||||
|
||||
rss = memory_of_double(2*N_det_generators+1)
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
|
||||
|
||||
double precision :: norm2
|
||||
norm2 = 0.d0
|
||||
do i=N_det_generators,1,-1
|
||||
tilde_w(i) = psi_coef_sorted_tc_gen(i,pt2_stoch_istate) * &
|
||||
psi_coef_sorted_tc_gen(i,pt2_stoch_istate)
|
||||
norm2 = norm2 + tilde_w(i)
|
||||
enddo
|
||||
|
||||
f = 1.d0/norm2
|
||||
tilde_w(:) = tilde_w(:) * f
|
||||
|
||||
tilde_cW(0) = -1.d0
|
||||
do i=1,N_det_generators
|
||||
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
|
||||
enddo
|
||||
tilde_cW(:) = tilde_cW(:) + 1.d0
|
||||
deallocate(tilde_w)
|
||||
|
||||
n0 = 0
|
||||
testTeethBuilding = .false.
|
||||
double precision :: f
|
||||
integer :: minFN
|
||||
minFN = N_det_generators - minF * N
|
||||
f = 1.d0/dble(N)
|
||||
do
|
||||
u0 = tilde_cW(n0)
|
||||
r = tilde_cW(n0 + minF)
|
||||
Wt = (1d0 - u0) * f
|
||||
if (dabs(Wt) <= 1.d-3) then
|
||||
exit
|
||||
endif
|
||||
if(Wt >= r - u0) then
|
||||
testTeethBuilding = .true.
|
||||
exit
|
||||
end if
|
||||
n0 += 1
|
||||
if(n0 > minFN) then
|
||||
exit
|
||||
end if
|
||||
end do
|
||||
deallocate(tilde_cW)
|
||||
|
||||
end function
|
||||
|
||||
|
||||
|
||||
subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
|
||||
implicit none
|
||||
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull
|
||||
integer, intent(in) :: N_in
|
||||
! integer, intent(inout) :: N_in
|
||||
double precision, intent(in) :: relative_error, E(N_states)
|
||||
type(pt2_type), intent(inout) :: pt2_data, pt2_data_err
|
||||
!
|
||||
integer :: i, N
|
||||
|
||||
double precision :: state_average_weight_save(N_states), w(N_states,4)
|
||||
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
|
||||
type(selection_buffer) :: b
|
||||
|
||||
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
|
||||
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_tc_order psi_bilinear_matrix_order
|
||||
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
||||
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp_tc psi_det_sorted_tc
|
||||
PROVIDE psi_det_hii selection_weight pseudo_sym
|
||||
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
|
||||
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
|
||||
PROVIDE psi_selectors_rcoef_bi_orth_transp psi_selectors_lcoef_bi_orth_transp
|
||||
|
||||
if (h0_type == 'CFG') then
|
||||
PROVIDE psi_configuration_hii det_to_configuration
|
||||
endif
|
||||
|
||||
if (N_det <= max(4,N_states) .or. pt2_N_teeth < 2) then
|
||||
print*,'ZMQ_selection'
|
||||
call ZMQ_selection(N_in, pt2_data)
|
||||
else
|
||||
print*,'else ZMQ_selection'
|
||||
|
||||
N = max(N_in,1) * N_states
|
||||
state_average_weight_save(:) = state_average_weight(:)
|
||||
if (int(N,8)*2_8 > huge(1)) then
|
||||
print *, irp_here, ': integer too large'
|
||||
stop -1
|
||||
endif
|
||||
call create_selection_buffer(N, N*2, b)
|
||||
ASSERT (associated(b%det))
|
||||
ASSERT (associated(b%val))
|
||||
|
||||
do pt2_stoch_istate=1,N_states
|
||||
state_average_weight(:) = 0.d0
|
||||
state_average_weight(pt2_stoch_istate) = 1.d0
|
||||
TOUCH state_average_weight pt2_stoch_istate selection_weight
|
||||
|
||||
PROVIDE nproc pt2_F mo_two_e_integrals_in_map mo_one_e_integrals pt2_w
|
||||
PROVIDE pt2_u pt2_J pt2_R
|
||||
call new_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'pt2')
|
||||
|
||||
integer, external :: zmq_put_psi
|
||||
integer, external :: zmq_put_N_det_generators
|
||||
integer, external :: zmq_put_N_det_selectors
|
||||
integer, external :: zmq_put_dvector
|
||||
integer, external :: zmq_put_ivector
|
||||
if (zmq_put_psi(zmq_to_qp_run_socket,1) == -1) then
|
||||
stop 'Unable to put psi on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_N_det_generators(zmq_to_qp_run_socket, 1) == -1) then
|
||||
stop 'Unable to put N_det_generators on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) then
|
||||
stop 'Unable to put N_det_selectors on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'energy',pt2_e0_denominator,size(pt2_e0_denominator)) == -1) then
|
||||
stop 'Unable to put energy on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) then
|
||||
stop 'Unable to put state_average_weight on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) then
|
||||
stop 'Unable to put selection_weight on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_ivector(zmq_to_qp_run_socket,1,'pt2_stoch_istate',pt2_stoch_istate,1) == -1) then
|
||||
stop 'Unable to put pt2_stoch_istate on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'threshold_generators',(/threshold_generators/),1) == -1) then
|
||||
stop 'Unable to put threshold_generators on ZMQ server'
|
||||
endif
|
||||
|
||||
|
||||
integer, external :: add_task_to_taskserver
|
||||
character(300000) :: task
|
||||
|
||||
integer :: j,k,ipos,ifirst
|
||||
ifirst=0
|
||||
|
||||
ipos=0
|
||||
do i=1,N_det_generators
|
||||
if (pt2_F(i) > 1) then
|
||||
ipos += 1
|
||||
endif
|
||||
enddo
|
||||
call write_int(6,sum(pt2_F),'Number of tasks')
|
||||
call write_int(6,ipos,'Number of fragmented tasks')
|
||||
|
||||
ipos=1
|
||||
do i= 1, N_det_generators
|
||||
do j=1,pt2_F(pt2_J(i))
|
||||
write(task(ipos:ipos+30),'(I9,1X,I9,1X,I9,''|'')') j, pt2_J(i), N_in
|
||||
ipos += 30
|
||||
if (ipos > 300000-30) then
|
||||
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
|
||||
stop 'Unable to add task to task server'
|
||||
endif
|
||||
ipos=1
|
||||
if (ifirst == 0) then
|
||||
ifirst=1
|
||||
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
|
||||
print *, irp_here, ': Failed in zmq_set_running'
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
end do
|
||||
enddo
|
||||
if (ipos > 1) then
|
||||
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
|
||||
stop 'Unable to add task to task server'
|
||||
endif
|
||||
endif
|
||||
|
||||
integer, external :: zmq_set_running
|
||||
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
|
||||
print *, irp_here, ': Failed in zmq_set_running'
|
||||
endif
|
||||
|
||||
|
||||
double precision :: mem_collector, mem, rss
|
||||
|
||||
call resident_memory(rss)
|
||||
|
||||
mem_collector = 8.d0 * & ! bytes
|
||||
( 1.d0*pt2_n_tasks_max & ! task_id, index
|
||||
+ 0.635d0*N_det_generators & ! f,d
|
||||
+ pt2_n_tasks_max*pt2_type_size(N_states) & ! pt2_data_task
|
||||
+ N_det_generators*pt2_type_size(N_states) & ! pt2_data_I
|
||||
+ 4.d0*(pt2_N_teeth+1) & ! S, S2, T2, T3
|
||||
+ 1.d0*(N_int*2.d0*N + N) & ! selection buffer
|
||||
+ 1.d0*(N_int*2.d0*N + N) & ! sort selection buffer
|
||||
) / 1024.d0**3
|
||||
|
||||
integer :: nproc_target, ii
|
||||
nproc_target = nthreads_pt2
|
||||
ii = min(N_det, (elec_alpha_num*(mo_num-elec_alpha_num))**2)
|
||||
|
||||
do
|
||||
mem = mem_collector + & !
|
||||
nproc_target * 8.d0 * & ! bytes
|
||||
( 0.5d0*pt2_n_tasks_max & ! task_id
|
||||
+ 64.d0*pt2_n_tasks_max & ! task
|
||||
+ pt2_type_size(N_states)*pt2_n_tasks_max*N_states & ! pt2, variance, overlap
|
||||
+ 1.d0*pt2_n_tasks_max & ! i_generator, subset
|
||||
+ 1.d0*(N_int*2.d0*ii+ ii) & ! selection buffer
|
||||
+ 1.d0*(N_int*2.d0*ii+ ii) & ! sort selection buffer
|
||||
+ 2.0d0*(ii) & ! preinteresting, interesting,
|
||||
! prefullinteresting, fullinteresting
|
||||
+ 2.0d0*(N_int*2*ii) & ! minilist, fullminilist
|
||||
+ 1.0d0*(N_states*mo_num*mo_num) & ! mat
|
||||
) / 1024.d0**3
|
||||
|
||||
if (nproc_target == 0) then
|
||||
call check_mem(mem,irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if (mem+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
nproc_target = nproc_target - 1
|
||||
|
||||
enddo
|
||||
call write_int(6,nproc_target,'Number of threads for PT2')
|
||||
call write_double(6,mem,'Memory (Gb)')
|
||||
|
||||
call omp_set_max_active_levels(1)
|
||||
|
||||
|
||||
print '(A)', '========== ======================= ===================== ===================== ==========='
|
||||
print '(A)', ' Samples Energy Variance Norm^2 Seconds'
|
||||
print '(A)', '========== ======================= ===================== ===================== ==========='
|
||||
|
||||
PROVIDE global_selection_buffer
|
||||
|
||||
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(nproc_target+1) &
|
||||
!$OMP PRIVATE(i)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
|
||||
call pt2_collector(zmq_socket_pull, E(pt2_stoch_istate),relative_error, pt2_data, pt2_data_err, b, N)
|
||||
pt2_data % rpt2(pt2_stoch_istate) = &
|
||||
pt2_data % pt2(pt2_stoch_istate)/(1.d0+pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate))
|
||||
|
||||
!TODO : We should use here the correct formula for the error of X/Y
|
||||
pt2_data_err % rpt2(pt2_stoch_istate) = &
|
||||
pt2_data_err % pt2(pt2_stoch_istate)/(1.d0 + pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate))
|
||||
|
||||
else
|
||||
call pt2_slave_inproc(i)
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'pt2')
|
||||
call omp_set_max_active_levels(8)
|
||||
|
||||
print '(A)', '========== ======================= ===================== ===================== ==========='
|
||||
|
||||
do k=1,N_states
|
||||
pt2_overlap(pt2_stoch_istate,k) = pt2_data % overlap(k,pt2_stoch_istate)
|
||||
enddo
|
||||
SOFT_TOUCH pt2_overlap
|
||||
|
||||
enddo
|
||||
FREE pt2_stoch_istate
|
||||
|
||||
! Symmetrize overlap
|
||||
do j=2,N_states
|
||||
do i=1,j-1
|
||||
pt2_overlap(i,j) = 0.5d0 * (pt2_overlap(i,j) + pt2_overlap(j,i))
|
||||
pt2_overlap(j,i) = pt2_overlap(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, 'Overlap of perturbed states:'
|
||||
do k=1,N_states
|
||||
print *, pt2_overlap(k,:)
|
||||
enddo
|
||||
print *, '-------'
|
||||
|
||||
if (N_in > 0) then
|
||||
b%cur = min(N_in,b%cur)
|
||||
if (s2_eig) then
|
||||
call make_selection_buffer_s2(b)
|
||||
else
|
||||
call remove_duplicates_in_selection_buffer(b)
|
||||
endif
|
||||
call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0)
|
||||
endif
|
||||
call delete_selection_buffer(b)
|
||||
|
||||
state_average_weight(:) = state_average_weight_save(:)
|
||||
TOUCH state_average_weight
|
||||
call update_pt2_and_variance_weights(pt2_data, N_states)
|
||||
endif
|
||||
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine pt2_slave_inproc(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
|
||||
PROVIDE global_selection_buffer
|
||||
call run_pt2_slave(1,i,pt2_e0_denominator)
|
||||
end
|
||||
|
||||
|
||||
subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2_data, pt2_data_err, b, N_)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
|
||||
double precision, intent(in) :: relative_error, E
|
||||
type(pt2_type), intent(inout) :: pt2_data, pt2_data_err
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
integer, intent(in) :: N_
|
||||
|
||||
type(pt2_type), allocatable :: pt2_data_task(:)
|
||||
type(pt2_type), allocatable :: pt2_data_I(:)
|
||||
type(pt2_type), allocatable :: pt2_data_S(:)
|
||||
type(pt2_type), allocatable :: pt2_data_S2(:)
|
||||
type(pt2_type) :: pt2_data_teeth
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
integer, external :: zmq_delete_tasks_async_send
|
||||
integer, external :: zmq_delete_tasks_async_recv
|
||||
integer, external :: zmq_abort
|
||||
integer, external :: pt2_find_sample_lr
|
||||
|
||||
PROVIDE pt2_stoch_istate
|
||||
|
||||
integer :: more, n, i, p, c, t, n_tasks, U
|
||||
integer, allocatable :: task_id(:)
|
||||
integer, allocatable :: index(:)
|
||||
|
||||
double precision :: v, x, x2, x3, avg, avg2, avg3(N_states), eqt, E0, v0, n0(N_states)
|
||||
double precision :: eqta(N_states)
|
||||
double precision :: time, time1, time0
|
||||
|
||||
integer, allocatable :: f(:)
|
||||
logical, allocatable :: d(:)
|
||||
logical :: do_exit, stop_now, sending
|
||||
logical, external :: qp_stop
|
||||
type(selection_buffer) :: b2
|
||||
|
||||
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double, memory_of_int
|
||||
|
||||
sending =.False.
|
||||
|
||||
rss = memory_of_int(pt2_n_tasks_max*2+N_det_generators*2)
|
||||
rss += memory_of_double(N_states*N_det_generators)*3.d0
|
||||
rss += memory_of_double(N_states*pt2_n_tasks_max)*3.d0
|
||||
rss += memory_of_double(pt2_N_teeth+1)*4.d0
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
! If an allocation is added here, the estimate of the memory should also be
|
||||
! updated in ZMQ_pt2
|
||||
allocate(task_id(pt2_n_tasks_max), index(pt2_n_tasks_max), f(N_det_generators))
|
||||
allocate(d(N_det_generators+1))
|
||||
allocate(pt2_data_task(pt2_n_tasks_max))
|
||||
allocate(pt2_data_I(N_det_generators))
|
||||
allocate(pt2_data_S(pt2_N_teeth+1))
|
||||
allocate(pt2_data_S2(pt2_N_teeth+1))
|
||||
|
||||
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
call create_selection_buffer(N_, N_*2, b2)
|
||||
|
||||
|
||||
pt2_data % pt2(pt2_stoch_istate) = -huge(1.)
|
||||
pt2_data_err % pt2(pt2_stoch_istate) = huge(1.)
|
||||
pt2_data % variance(pt2_stoch_istate) = huge(1.)
|
||||
pt2_data_err % variance(pt2_stoch_istate) = huge(1.)
|
||||
pt2_data % overlap(:,pt2_stoch_istate) = 0.d0
|
||||
pt2_data_err % overlap(:,pt2_stoch_istate) = huge(1.)
|
||||
n = 1
|
||||
t = 0
|
||||
U = 0
|
||||
do i=1,pt2_n_tasks_max
|
||||
call pt2_alloc(pt2_data_task(i),N_states)
|
||||
enddo
|
||||
do i=1,pt2_N_teeth+1
|
||||
call pt2_alloc(pt2_data_S(i),N_states)
|
||||
call pt2_alloc(pt2_data_S2(i),N_states)
|
||||
enddo
|
||||
do i=1,N_det_generators
|
||||
call pt2_alloc(pt2_data_I(i),N_states)
|
||||
enddo
|
||||
f(:) = pt2_F(:)
|
||||
d(:) = .false.
|
||||
n_tasks = 0
|
||||
E0 = E
|
||||
v0 = 0.d0
|
||||
n0(:) = 0.d0
|
||||
more = 1
|
||||
call wall_time(time0)
|
||||
time1 = time0
|
||||
|
||||
do_exit = .false.
|
||||
stop_now = .false.
|
||||
do while (n <= N_det_generators)
|
||||
if(f(pt2_J(n)) == 0) then
|
||||
d(pt2_J(n)) = .true.
|
||||
do while(d(U+1))
|
||||
U += 1
|
||||
end do
|
||||
|
||||
! Deterministic part
|
||||
do while(t <= pt2_N_teeth)
|
||||
if(U >= pt2_n_0(t+1)) then
|
||||
t=t+1
|
||||
E0 = 0.d0
|
||||
v0 = 0.d0
|
||||
n0(:) = 0.d0
|
||||
do i=pt2_n_0(t),1,-1
|
||||
E0 += pt2_data_I(i) % pt2(pt2_stoch_istate)
|
||||
v0 += pt2_data_I(i) % variance(pt2_stoch_istate)
|
||||
n0(:) += pt2_data_I(i) % overlap(:,pt2_stoch_istate)
|
||||
end do
|
||||
else
|
||||
exit
|
||||
end if
|
||||
end do
|
||||
|
||||
! Add Stochastic part
|
||||
c = pt2_R(n)
|
||||
if(c > 0) then
|
||||
|
||||
call pt2_alloc(pt2_data_teeth,N_states)
|
||||
do p=pt2_N_teeth, 1, -1
|
||||
v = pt2_u_0 + pt2_W_T * (pt2_u(c) + dble(p-1))
|
||||
i = pt2_find_sample_lr(v, pt2_cW,pt2_n_0(p),pt2_n_0(p+1))
|
||||
v = pt2_W_T / pt2_w(i)
|
||||
call pt2_add ( pt2_data_teeth, v, pt2_data_I(i) )
|
||||
call pt2_add ( pt2_data_S(p), 1.d0, pt2_data_teeth )
|
||||
call pt2_add2( pt2_data_S2(p), 1.d0, pt2_data_teeth )
|
||||
enddo
|
||||
call pt2_dealloc(pt2_data_teeth)
|
||||
|
||||
avg = E0 + pt2_data_S(t) % pt2(pt2_stoch_istate) / dble(c)
|
||||
avg2 = v0 + pt2_data_S(t) % variance(pt2_stoch_istate) / dble(c)
|
||||
avg3(:) = n0(:) + pt2_data_S(t) % overlap(:,pt2_stoch_istate) / dble(c)
|
||||
if ((avg /= 0.d0) .or. (n == N_det_generators) ) then
|
||||
do_exit = .true.
|
||||
endif
|
||||
if (qp_stop()) then
|
||||
stop_now = .True.
|
||||
endif
|
||||
pt2_data % pt2(pt2_stoch_istate) = avg
|
||||
pt2_data % variance(pt2_stoch_istate) = avg2
|
||||
pt2_data % overlap(:,pt2_stoch_istate) = avg3(:)
|
||||
call wall_time(time)
|
||||
! 1/(N-1.5) : see Brugger, The American Statistician (23) 4 p. 32 (1969)
|
||||
if(c > 2) then
|
||||
eqt = dabs((pt2_data_S2(t) % pt2(pt2_stoch_istate) / c) - (pt2_data_S(t) % pt2(pt2_stoch_istate)/c)**2) ! dabs for numerical stability
|
||||
eqt = sqrt(eqt / (dble(c) - 1.5d0))
|
||||
pt2_data_err % pt2(pt2_stoch_istate) = eqt
|
||||
|
||||
eqt = dabs((pt2_data_S2(t) % variance(pt2_stoch_istate) / c) - (pt2_data_S(t) % variance(pt2_stoch_istate)/c)**2) ! dabs for numerical stability
|
||||
eqt = sqrt(eqt / (dble(c) - 1.5d0))
|
||||
pt2_data_err % variance(pt2_stoch_istate) = eqt
|
||||
|
||||
eqta(:) = dabs((pt2_data_S2(t) % overlap(:,pt2_stoch_istate) / c) - (pt2_data_S(t) % overlap(:,pt2_stoch_istate)/c)**2) ! dabs for numerical stability
|
||||
eqta(:) = sqrt(eqta(:) / (dble(c) - 1.5d0))
|
||||
pt2_data_err % overlap(:,pt2_stoch_istate) = eqta(:)
|
||||
|
||||
|
||||
if ((time - time1 > 1.d0) .or. (n==N_det_generators)) then
|
||||
time1 = time
|
||||
print '(I10, X, F12.6, X, G10.3, X, F10.6, X, G10.3, X, F10.6, X, G10.3, X, F10.4)', c, &
|
||||
pt2_data % pt2(pt2_stoch_istate) +E, &
|
||||
pt2_data_err % pt2(pt2_stoch_istate), &
|
||||
pt2_data % variance(pt2_stoch_istate), &
|
||||
pt2_data_err % variance(pt2_stoch_istate), &
|
||||
pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate), &
|
||||
pt2_data_err % overlap(pt2_stoch_istate,pt2_stoch_istate), &
|
||||
time-time0
|
||||
if (stop_now .or. ( &
|
||||
(do_exit .and. (dabs(pt2_data_err % pt2(pt2_stoch_istate)) / &
|
||||
(1.d-20 + dabs(pt2_data % pt2(pt2_stoch_istate)) ) <= relative_error))) ) then
|
||||
if (zmq_abort(zmq_to_qp_run_socket) == -1) then
|
||||
call sleep(10)
|
||||
if (zmq_abort(zmq_to_qp_run_socket) == -1) then
|
||||
print *, irp_here, ': Error in sending abort signal (2)'
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
end if
|
||||
n += 1
|
||||
else if(more == 0) then
|
||||
exit
|
||||
else
|
||||
call pull_pt2_results(zmq_socket_pull, index, pt2_data_task, task_id, n_tasks, b2)
|
||||
if(n_tasks > pt2_n_tasks_max)then
|
||||
print*,'PB !!!'
|
||||
print*,'If you see this, send a bug report with the following content'
|
||||
print*,irp_here
|
||||
print*,'n_tasks,pt2_n_tasks_max = ',n_tasks,pt2_n_tasks_max
|
||||
stop -1
|
||||
endif
|
||||
if (zmq_delete_tasks_async_send(zmq_to_qp_run_socket,task_id,n_tasks,sending) == -1) then
|
||||
stop 'PT2: Unable to delete tasks (send)'
|
||||
endif
|
||||
do i=1,n_tasks
|
||||
if(index(i).gt.size(pt2_data_I,1).or.index(i).lt.1)then
|
||||
print*,'PB !!!'
|
||||
print*,'If you see this, send a bug report with the following content'
|
||||
print*,irp_here
|
||||
print*,'i,index(i),size(pt2_data_I,1) = ',i,index(i),size(pt2_data_I,1)
|
||||
stop -1
|
||||
endif
|
||||
call pt2_add(pt2_data_I(index(i)),1.d0,pt2_data_task(i))
|
||||
f(index(i)) -= 1
|
||||
end do
|
||||
do i=1, b2%cur
|
||||
! We assume the pulled buffer is sorted
|
||||
if (b2%val(i) > b%mini) exit
|
||||
call add_to_selection_buffer(b, b2%det(1,1,i), b2%val(i))
|
||||
end do
|
||||
if (zmq_delete_tasks_async_recv(zmq_to_qp_run_socket,more,sending) == -1) then
|
||||
stop 'PT2: Unable to delete tasks (recv)'
|
||||
endif
|
||||
end if
|
||||
end do
|
||||
do i=1,N_det_generators
|
||||
call pt2_dealloc(pt2_data_I(i))
|
||||
enddo
|
||||
do i=1,pt2_N_teeth+1
|
||||
call pt2_dealloc(pt2_data_S(i))
|
||||
call pt2_dealloc(pt2_data_S2(i))
|
||||
enddo
|
||||
do i=1,pt2_n_tasks_max
|
||||
call pt2_dealloc(pt2_data_task(i))
|
||||
enddo
|
||||
!print *, 'deleting b2'
|
||||
call delete_selection_buffer(b2)
|
||||
!print *, 'sorting b'
|
||||
call sort_selection_buffer(b)
|
||||
!print *, 'done'
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
integer function pt2_find_sample(v, w)
|
||||
implicit none
|
||||
double precision, intent(in) :: v, w(0:N_det_generators)
|
||||
integer, external :: pt2_find_sample_lr
|
||||
|
||||
pt2_find_sample = pt2_find_sample_lr(v, w, 0, N_det_generators)
|
||||
end function
|
||||
|
||||
|
||||
integer function pt2_find_sample_lr(v, w, l_in, r_in)
|
||||
implicit none
|
||||
double precision, intent(in) :: v, w(0:N_det_generators)
|
||||
integer, intent(in) :: l_in,r_in
|
||||
integer :: i,l,r
|
||||
|
||||
l=l_in
|
||||
r=r_in
|
||||
|
||||
do while(r-l > 1)
|
||||
i = shiftr(r+l,1)
|
||||
if(w(i) < v) then
|
||||
l = i
|
||||
else
|
||||
r = i
|
||||
end if
|
||||
end do
|
||||
i = r
|
||||
do r=i+1,N_det_generators
|
||||
if (w(r) /= w(i)) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
pt2_find_sample_lr = r-1
|
||||
end function
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, pt2_n_tasks ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of parallel tasks for the Monte Carlo
|
||||
END_DOC
|
||||
pt2_n_tasks = N_det_generators
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER[ double precision, pt2_u, (N_det_generators)]
|
||||
implicit none
|
||||
integer, allocatable :: seed(:)
|
||||
integer :: m,i
|
||||
call random_seed(size=m)
|
||||
allocate(seed(m))
|
||||
do i=1,m
|
||||
seed(i) = i
|
||||
enddo
|
||||
call random_seed(put=seed)
|
||||
deallocate(seed)
|
||||
|
||||
call RANDOM_NUMBER(pt2_u)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER[ integer, pt2_J, (N_det_generators)]
|
||||
&BEGIN_PROVIDER[ integer, pt2_R, (N_det_generators)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! pt2_J contains the list of generators after ordering them according to the
|
||||
! Monte Carlo sampling.
|
||||
!
|
||||
! pt2_R(i) is the number of combs drawn when determinant i is computed.
|
||||
END_DOC
|
||||
integer :: N_c, N_j
|
||||
integer :: U, t, i
|
||||
double precision :: v
|
||||
integer, external :: pt2_find_sample_lr
|
||||
|
||||
logical, allocatable :: pt2_d(:)
|
||||
integer :: m,l,r,k
|
||||
integer :: ncache
|
||||
integer, allocatable :: ii(:,:)
|
||||
double precision :: dt
|
||||
|
||||
ncache = min(N_det_generators,10000)
|
||||
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double, memory_of_int
|
||||
rss = memory_of_int(ncache)*dble(pt2_N_teeth) + memory_of_int(N_det_generators)
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
allocate(ii(pt2_N_teeth,ncache),pt2_d(N_det_generators))
|
||||
|
||||
pt2_R(:) = 0
|
||||
pt2_d(:) = .false.
|
||||
N_c = 0
|
||||
N_j = pt2_n_0(1)
|
||||
do i=1,N_j
|
||||
pt2_d(i) = .true.
|
||||
pt2_J(i) = i
|
||||
end do
|
||||
|
||||
U = 0
|
||||
do while(N_j < pt2_n_tasks)
|
||||
|
||||
if (N_c+ncache > N_det_generators) then
|
||||
ncache = N_det_generators - N_c
|
||||
endif
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(dt,v,t,k)
|
||||
do k=1, ncache
|
||||
dt = pt2_u_0
|
||||
do t=1, pt2_N_teeth
|
||||
v = dt + pt2_W_T *pt2_u(N_c+k)
|
||||
dt = dt + pt2_W_T
|
||||
ii(t,k) = pt2_find_sample_lr(v, pt2_cW,pt2_n_0(t),pt2_n_0(t+1))
|
||||
end do
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
do k=1,ncache
|
||||
!ADD_COMB
|
||||
N_c = N_c+1
|
||||
do t=1, pt2_N_teeth
|
||||
i = ii(t,k)
|
||||
if(.not. pt2_d(i)) then
|
||||
N_j += 1
|
||||
pt2_J(N_j) = i
|
||||
pt2_d(i) = .true.
|
||||
end if
|
||||
end do
|
||||
|
||||
pt2_R(N_j) = N_c
|
||||
|
||||
!FILL_TOOTH
|
||||
do while(U < N_det_generators)
|
||||
U += 1
|
||||
if(.not. pt2_d(U)) then
|
||||
N_j += 1
|
||||
pt2_J(N_j) = U
|
||||
pt2_d(U) = .true.
|
||||
exit
|
||||
end if
|
||||
end do
|
||||
if (N_j >= pt2_n_tasks) exit
|
||||
end do
|
||||
enddo
|
||||
|
||||
if(N_det_generators > 1) then
|
||||
pt2_R(N_det_generators-1) = 0
|
||||
pt2_R(N_det_generators) = N_c
|
||||
end if
|
||||
|
||||
deallocate(ii,pt2_d)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, pt2_w, (N_det_generators) ]
|
||||
&BEGIN_PROVIDER [ double precision, pt2_cW, (0:N_det_generators) ]
|
||||
&BEGIN_PROVIDER [ double precision, pt2_W_T ]
|
||||
&BEGIN_PROVIDER [ double precision, pt2_u_0 ]
|
||||
&BEGIN_PROVIDER [ integer, pt2_n_0, (pt2_N_teeth+1) ]
|
||||
implicit none
|
||||
integer :: i, t
|
||||
double precision, allocatable :: tilde_w(:), tilde_cW(:)
|
||||
double precision :: r, tooth_width
|
||||
integer, external :: pt2_find_sample
|
||||
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double, memory_of_int
|
||||
rss = memory_of_double(2*N_det_generators+1)
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
if (N_det_generators == 1) then
|
||||
|
||||
pt2_w(1) = 1.d0
|
||||
pt2_cw(1) = 1.d0
|
||||
pt2_u_0 = 1.d0
|
||||
pt2_W_T = 0.d0
|
||||
pt2_n_0(1) = 0
|
||||
pt2_n_0(2) = 1
|
||||
|
||||
else
|
||||
|
||||
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
|
||||
|
||||
tilde_cW(0) = 0d0
|
||||
|
||||
do i=1,N_det_generators
|
||||
tilde_w(i) = psi_coef_sorted_tc_gen(i,pt2_stoch_istate)**2 !+ 1.d-20
|
||||
enddo
|
||||
|
||||
double precision :: norm2
|
||||
norm2 = 0.d0
|
||||
do i=N_det_generators,1,-1
|
||||
norm2 += tilde_w(i)
|
||||
enddo
|
||||
|
||||
tilde_w(:) = tilde_w(:) / norm2
|
||||
|
||||
tilde_cW(0) = -1.d0
|
||||
do i=1,N_det_generators
|
||||
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
|
||||
enddo
|
||||
tilde_cW(:) = tilde_cW(:) + 1.d0
|
||||
|
||||
pt2_n_0(1) = 0
|
||||
do
|
||||
pt2_u_0 = tilde_cW(pt2_n_0(1))
|
||||
r = tilde_cW(pt2_n_0(1) + pt2_minDetInFirstTeeth)
|
||||
pt2_W_T = (1d0 - pt2_u_0) / dble(pt2_N_teeth)
|
||||
if(pt2_W_T >= r - pt2_u_0) then
|
||||
exit
|
||||
end if
|
||||
pt2_n_0(1) += 1
|
||||
if(N_det_generators - pt2_n_0(1) < pt2_minDetInFirstTeeth * pt2_N_teeth) then
|
||||
print *, "teeth building failed"
|
||||
stop -1
|
||||
end if
|
||||
end do
|
||||
|
||||
do t=2, pt2_N_teeth
|
||||
r = pt2_u_0 + pt2_W_T * dble(t-1)
|
||||
pt2_n_0(t) = pt2_find_sample(r, tilde_cW)
|
||||
end do
|
||||
pt2_n_0(pt2_N_teeth+1) = N_det_generators
|
||||
|
||||
pt2_w(:pt2_n_0(1)) = tilde_w(:pt2_n_0(1))
|
||||
do t=1, pt2_N_teeth
|
||||
tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t))
|
||||
if (tooth_width == 0.d0) then
|
||||
tooth_width = sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1)))
|
||||
endif
|
||||
ASSERT(tooth_width > 0.d0)
|
||||
do i=pt2_n_0(t)+1, pt2_n_0(t+1)
|
||||
pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width
|
||||
end do
|
||||
end do
|
||||
|
||||
pt2_cW(0) = 0d0
|
||||
do i=1,N_det_generators
|
||||
pt2_cW(i) = pt2_cW(i-1) + pt2_w(i)
|
||||
end do
|
||||
pt2_n_0(pt2_N_teeth+1) = N_det_generators
|
||||
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
|
128
src/cipsi_tc_bi_ortho/pt2_type.irp.f
Normal file
128
src/cipsi_tc_bi_ortho/pt2_type.irp.f
Normal file
@ -0,0 +1,128 @@
|
||||
subroutine pt2_alloc(pt2_data,N)
|
||||
implicit none
|
||||
use selection_types
|
||||
type(pt2_type), intent(inout) :: pt2_data
|
||||
integer, intent(in) :: N
|
||||
integer :: k
|
||||
|
||||
allocate(pt2_data % pt2(N) &
|
||||
,pt2_data % variance(N) &
|
||||
,pt2_data % rpt2(N) &
|
||||
,pt2_data % overlap(N,N) &
|
||||
)
|
||||
|
||||
pt2_data % pt2(:) = 0.d0
|
||||
pt2_data % variance(:) = 0.d0
|
||||
pt2_data % rpt2(:) = 0.d0
|
||||
pt2_data % overlap(:,:) = 0.d0
|
||||
|
||||
end subroutine
|
||||
|
||||
subroutine pt2_dealloc(pt2_data)
|
||||
implicit none
|
||||
use selection_types
|
||||
type(pt2_type), intent(inout) :: pt2_data
|
||||
deallocate(pt2_data % pt2 &
|
||||
,pt2_data % variance &
|
||||
,pt2_data % rpt2 &
|
||||
,pt2_data % overlap &
|
||||
)
|
||||
end subroutine
|
||||
|
||||
subroutine pt2_add(p1, w, p2)
|
||||
implicit none
|
||||
use selection_types
|
||||
BEGIN_DOC
|
||||
! p1 += w * p2
|
||||
END_DOC
|
||||
type(pt2_type), intent(inout) :: p1
|
||||
double precision, intent(in) :: w
|
||||
type(pt2_type), intent(in) :: p2
|
||||
|
||||
if (w == 1.d0) then
|
||||
|
||||
p1 % pt2(:) = p1 % pt2(:) + p2 % pt2(:)
|
||||
p1 % rpt2(:) = p1 % rpt2(:) + p2 % rpt2(:)
|
||||
p1 % variance(:) = p1 % variance(:) + p2 % variance(:)
|
||||
p1 % overlap(:,:) = p1 % overlap(:,:) + p2 % overlap(:,:)
|
||||
|
||||
else
|
||||
|
||||
p1 % pt2(:) = p1 % pt2(:) + w * p2 % pt2(:)
|
||||
p1 % rpt2(:) = p1 % rpt2(:) + w * p2 % rpt2(:)
|
||||
p1 % variance(:) = p1 % variance(:) + w * p2 % variance(:)
|
||||
p1 % overlap(:,:) = p1 % overlap(:,:) + w * p2 % overlap(:,:)
|
||||
|
||||
endif
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine pt2_add2(p1, w, p2)
|
||||
implicit none
|
||||
use selection_types
|
||||
BEGIN_DOC
|
||||
! p1 += w * p2**2
|
||||
END_DOC
|
||||
type(pt2_type), intent(inout) :: p1
|
||||
double precision, intent(in) :: w
|
||||
type(pt2_type), intent(in) :: p2
|
||||
|
||||
if (w == 1.d0) then
|
||||
|
||||
p1 % pt2(:) = p1 % pt2(:) + p2 % pt2(:) * p2 % pt2(:)
|
||||
p1 % rpt2(:) = p1 % rpt2(:) + p2 % rpt2(:) * p2 % rpt2(:)
|
||||
p1 % variance(:) = p1 % variance(:) + p2 % variance(:) * p2 % variance(:)
|
||||
p1 % overlap(:,:) = p1 % overlap(:,:) + p2 % overlap(:,:) * p2 % overlap(:,:)
|
||||
|
||||
else
|
||||
|
||||
p1 % pt2(:) = p1 % pt2(:) + w * p2 % pt2(:) * p2 % pt2(:)
|
||||
p1 % rpt2(:) = p1 % rpt2(:) + w * p2 % rpt2(:) * p2 % rpt2(:)
|
||||
p1 % variance(:) = p1 % variance(:) + w * p2 % variance(:) * p2 % variance(:)
|
||||
p1 % overlap(:,:) = p1 % overlap(:,:) + w * p2 % overlap(:,:) * p2 % overlap(:,:)
|
||||
|
||||
endif
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine pt2_serialize(pt2_data, n, x)
|
||||
implicit none
|
||||
use selection_types
|
||||
type(pt2_type), intent(in) :: pt2_data
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(out) :: x(*)
|
||||
|
||||
integer :: i,k,n2
|
||||
|
||||
n2 = n*n
|
||||
x(1:n) = pt2_data % pt2(1:n)
|
||||
k=n
|
||||
x(k+1:k+n) = pt2_data % rpt2(1:n)
|
||||
k=k+n
|
||||
x(k+1:k+n) = pt2_data % variance(1:n)
|
||||
k=k+n
|
||||
x(k+1:k+n2) = reshape(pt2_data % overlap(1:n,1:n), (/ n2 /))
|
||||
|
||||
end
|
||||
|
||||
subroutine pt2_deserialize(pt2_data, n, x)
|
||||
implicit none
|
||||
use selection_types
|
||||
type(pt2_type), intent(inout) :: pt2_data
|
||||
integer, intent(in) :: n
|
||||
double precision, intent(in) :: x(*)
|
||||
|
||||
integer :: i,k,n2
|
||||
|
||||
n2 = n*n
|
||||
pt2_data % pt2(1:n) = x(1:n)
|
||||
k=n
|
||||
pt2_data % rpt2(1:n) = x(k+1:k+n)
|
||||
k=k+n
|
||||
pt2_data % variance(1:n) = x(k+1:k+n)
|
||||
k=k+n
|
||||
pt2_data % overlap(1:n,1:n) = reshape(x(k+1:k+n2), (/ n, n /))
|
||||
|
||||
end
|
549
src/cipsi_tc_bi_ortho/run_pt2_slave.irp.f
Normal file
549
src/cipsi_tc_bi_ortho/run_pt2_slave.irp.f
Normal file
@ -0,0 +1,549 @@
|
||||
use omp_lib
|
||||
use selection_types
|
||||
use f77_zmq
|
||||
BEGIN_PROVIDER [ integer(omp_lock_kind), global_selection_buffer_lock ]
|
||||
use omp_lib
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Global buffer for the OpenMP selection
|
||||
END_DOC
|
||||
call omp_init_lock(global_selection_buffer_lock)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ type(selection_buffer), global_selection_buffer ]
|
||||
use omp_lib
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Global buffer for the OpenMP selection
|
||||
END_DOC
|
||||
call omp_set_lock(global_selection_buffer_lock)
|
||||
call delete_selection_buffer(global_selection_buffer)
|
||||
call create_selection_buffer(N_det_generators, 2*N_det_generators, &
|
||||
global_selection_buffer)
|
||||
call omp_unset_lock(global_selection_buffer_lock)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine run_pt2_slave(thread,iproc,energy)
|
||||
use selection_types
|
||||
use f77_zmq
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: energy(N_states_diag)
|
||||
integer, intent(in) :: thread, iproc
|
||||
if (N_det > 100000 ) then
|
||||
call run_pt2_slave_large(thread,iproc,energy)
|
||||
else
|
||||
call run_pt2_slave_small(thread,iproc,energy)
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine run_pt2_slave_small(thread,iproc,energy)
|
||||
use selection_types
|
||||
use f77_zmq
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: energy(N_states_diag)
|
||||
integer, intent(in) :: thread, iproc
|
||||
integer :: rc, i
|
||||
|
||||
integer :: worker_id, ctask, ltask
|
||||
character*(512), allocatable :: task(:)
|
||||
integer, allocatable :: task_id(:)
|
||||
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_push_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_push
|
||||
|
||||
type(selection_buffer) :: b
|
||||
logical :: done, buffer_ready
|
||||
|
||||
type(pt2_type), allocatable :: pt2_data(:)
|
||||
integer :: n_tasks, k, N
|
||||
integer, allocatable :: i_generator(:), subset(:)
|
||||
|
||||
double precision, external :: memory_of_double, memory_of_int
|
||||
integer :: bsize ! Size of selection buffers
|
||||
|
||||
allocate(task_id(pt2_n_tasks_max), task(pt2_n_tasks_max))
|
||||
allocate(pt2_data(pt2_n_tasks_max), i_generator(pt2_n_tasks_max), subset(pt2_n_tasks_max))
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
|
||||
integer, external :: connect_to_taskserver
|
||||
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
return
|
||||
endif
|
||||
|
||||
zmq_socket_push = new_zmq_push_socket(thread)
|
||||
|
||||
b%N = 0
|
||||
buffer_ready = .False.
|
||||
n_tasks = 1
|
||||
|
||||
done = .False.
|
||||
do while (.not.done)
|
||||
|
||||
n_tasks = max(1,n_tasks)
|
||||
n_tasks = min(pt2_n_tasks_max,n_tasks)
|
||||
|
||||
integer, external :: get_tasks_from_taskserver
|
||||
if (get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task, n_tasks) == -1) then
|
||||
exit
|
||||
endif
|
||||
done = task_id(n_tasks) == 0
|
||||
if (done) then
|
||||
n_tasks = n_tasks-1
|
||||
endif
|
||||
if (n_tasks == 0) exit
|
||||
|
||||
do k=1,n_tasks
|
||||
call sscanf_ddd(task(k), subset(k), i_generator(k), N)
|
||||
enddo
|
||||
if (b%N == 0) then
|
||||
! Only first time
|
||||
bsize = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2)
|
||||
call create_selection_buffer(bsize, bsize*2, b)
|
||||
buffer_ready = .True.
|
||||
else
|
||||
ASSERT (b%N == bsize)
|
||||
endif
|
||||
|
||||
double precision :: time0, time1
|
||||
call wall_time(time0)
|
||||
do k=1,n_tasks
|
||||
call pt2_alloc(pt2_data(k),N_states)
|
||||
b%cur = 0
|
||||
call select_connected(i_generator(k),energy,pt2_data(k),b,subset(k),pt2_F(i_generator(k)))
|
||||
enddo
|
||||
call wall_time(time1)
|
||||
|
||||
integer, external :: tasks_done_to_taskserver
|
||||
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
|
||||
done = .true.
|
||||
endif
|
||||
call sort_selection_buffer(b)
|
||||
call push_pt2_results(zmq_socket_push, i_generator, pt2_data, b, task_id, n_tasks)
|
||||
do k=1,n_tasks
|
||||
call pt2_dealloc(pt2_data(k))
|
||||
enddo
|
||||
b%cur=0
|
||||
|
||||
! ! Try to adjust n_tasks around nproc/2 seconds per job
|
||||
n_tasks = min(2*n_tasks,int( dble(n_tasks * nproc/2) / (time1 - time0 + 1.d0)))
|
||||
n_tasks = min(n_tasks, pt2_n_tasks_max)
|
||||
! n_tasks = 1
|
||||
end do
|
||||
|
||||
integer, external :: disconnect_from_taskserver
|
||||
do i=1,300
|
||||
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) /= -2) exit
|
||||
call usleep(500)
|
||||
print *, 'Retry disconnect...'
|
||||
end do
|
||||
|
||||
call end_zmq_push_socket(zmq_socket_push,thread)
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
if (buffer_ready) then
|
||||
call delete_selection_buffer(b)
|
||||
endif
|
||||
deallocate(pt2_data)
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine run_pt2_slave_large(thread,iproc,energy)
|
||||
use selection_types
|
||||
use f77_zmq
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: energy(N_states_diag)
|
||||
integer, intent(in) :: thread, iproc
|
||||
integer :: rc, i
|
||||
|
||||
integer :: worker_id, ctask, ltask
|
||||
character*(512) :: task
|
||||
integer :: task_id(1)
|
||||
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_push_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_push
|
||||
|
||||
type(selection_buffer) :: b
|
||||
logical :: done, buffer_ready
|
||||
|
||||
type(pt2_type) :: pt2_data
|
||||
integer :: n_tasks, k, N
|
||||
integer :: i_generator, subset
|
||||
|
||||
integer :: bsize ! Size of selection buffers
|
||||
logical :: sending
|
||||
double precision :: time_shift
|
||||
|
||||
PROVIDE global_selection_buffer global_selection_buffer_lock
|
||||
|
||||
call random_number(time_shift)
|
||||
time_shift = time_shift*15.d0
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
|
||||
integer, external :: connect_to_taskserver
|
||||
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
return
|
||||
endif
|
||||
|
||||
zmq_socket_push = new_zmq_push_socket(thread)
|
||||
|
||||
b%N = 0
|
||||
buffer_ready = .False.
|
||||
n_tasks = 1
|
||||
|
||||
sending = .False.
|
||||
done = .False.
|
||||
double precision :: time0, time1
|
||||
call wall_time(time0)
|
||||
time0 = time0+time_shift
|
||||
do while (.not.done)
|
||||
|
||||
integer, external :: get_tasks_from_taskserver
|
||||
if (get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task, n_tasks) == -1) then
|
||||
exit
|
||||
endif
|
||||
done = task_id(1) == 0
|
||||
if (done) then
|
||||
n_tasks = n_tasks-1
|
||||
endif
|
||||
if (n_tasks == 0) exit
|
||||
|
||||
call sscanf_ddd(task, subset, i_generator, N)
|
||||
if( pt2_F(i_generator) <= 0 .or. pt2_F(i_generator) > N_det ) then
|
||||
print *, irp_here
|
||||
stop 'bug in selection'
|
||||
endif
|
||||
if (b%N == 0) then
|
||||
! Only first time
|
||||
bsize = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2)
|
||||
call create_selection_buffer(bsize, bsize*2, b)
|
||||
buffer_ready = .True.
|
||||
else
|
||||
ASSERT (b%N == bsize)
|
||||
endif
|
||||
|
||||
call pt2_alloc(pt2_data,N_states)
|
||||
b%cur = 0
|
||||
call select_connected(i_generator,energy,pt2_data,b,subset,pt2_F(i_generator))
|
||||
|
||||
integer, external :: tasks_done_to_taskserver
|
||||
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
|
||||
done = .true.
|
||||
endif
|
||||
call sort_selection_buffer(b)
|
||||
|
||||
call wall_time(time1)
|
||||
! if (time1-time0 > 15.d0) then
|
||||
call omp_set_lock(global_selection_buffer_lock)
|
||||
global_selection_buffer%mini = b%mini
|
||||
call merge_selection_buffers(b,global_selection_buffer)
|
||||
b%cur=0
|
||||
call omp_unset_lock(global_selection_buffer_lock)
|
||||
call wall_time(time0)
|
||||
! endif
|
||||
|
||||
call push_pt2_results_async_recv(zmq_socket_push,b%mini,sending)
|
||||
if ( iproc == 1 .or. i_generator < 100 .or. done) then
|
||||
call omp_set_lock(global_selection_buffer_lock)
|
||||
call push_pt2_results_async_send(zmq_socket_push, (/i_generator/), (/pt2_data/), global_selection_buffer, (/task_id/), 1,sending)
|
||||
global_selection_buffer%cur = 0
|
||||
call omp_unset_lock(global_selection_buffer_lock)
|
||||
else
|
||||
call push_pt2_results_async_send(zmq_socket_push, (/i_generator/), (/pt2_data/), b, (/task_id/), 1,sending)
|
||||
endif
|
||||
|
||||
call pt2_dealloc(pt2_data)
|
||||
end do
|
||||
call push_pt2_results_async_recv(zmq_socket_push,b%mini,sending)
|
||||
|
||||
integer, external :: disconnect_from_taskserver
|
||||
do i=1,300
|
||||
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) /= -2) exit
|
||||
call sleep(1)
|
||||
print *, 'Retry disconnect...'
|
||||
end do
|
||||
|
||||
call end_zmq_push_socket(zmq_socket_push,thread)
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
if (buffer_ready) then
|
||||
call delete_selection_buffer(b)
|
||||
endif
|
||||
FREE global_selection_buffer
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine push_pt2_results(zmq_socket_push, index, pt2_data, b, task_id, n_tasks)
|
||||
use selection_types
|
||||
use f77_zmq
|
||||
implicit none
|
||||
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
|
||||
type(pt2_type), intent(in) :: pt2_data(n_tasks)
|
||||
integer, intent(in) :: n_tasks, index(n_tasks), task_id(n_tasks)
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
|
||||
logical :: sending
|
||||
sending = .False.
|
||||
call push_pt2_results_async_send(zmq_socket_push, index, pt2_data, b, task_id, n_tasks, sending)
|
||||
call push_pt2_results_async_recv(zmq_socket_push, b%mini, sending)
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine push_pt2_results_async_send(zmq_socket_push, index, pt2_data, b, task_id, n_tasks, sending)
|
||||
use selection_types
|
||||
use f77_zmq
|
||||
implicit none
|
||||
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
|
||||
type(pt2_type), intent(in) :: pt2_data(n_tasks)
|
||||
integer, intent(in) :: n_tasks, index(n_tasks), task_id(n_tasks)
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
logical, intent(inout) :: sending
|
||||
integer :: rc, i
|
||||
integer*8 :: rc8
|
||||
double precision, allocatable :: pt2_serialized(:,:)
|
||||
|
||||
if (sending) then
|
||||
print *, irp_here, ': sending is true'
|
||||
stop -1
|
||||
endif
|
||||
sending = .True.
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, n_tasks, 4, ZMQ_SNDMORE)
|
||||
if (rc == -1) then
|
||||
print *, irp_here, ': error sending result'
|
||||
stop 1
|
||||
return
|
||||
else if(rc /= 4) then
|
||||
stop 'push'
|
||||
endif
|
||||
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, index, 4*n_tasks, ZMQ_SNDMORE)
|
||||
if (rc == -1) then
|
||||
print *, irp_here, ': error sending result'
|
||||
stop 2
|
||||
return
|
||||
else if(rc /= 4*n_tasks) then
|
||||
stop 'push'
|
||||
endif
|
||||
|
||||
|
||||
allocate(pt2_serialized (pt2_type_size(N_states),n_tasks) )
|
||||
do i=1,n_tasks
|
||||
call pt2_serialize(pt2_data(i),N_states,pt2_serialized(1,i))
|
||||
enddo
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, pt2_serialized, size(pt2_serialized)*8, ZMQ_SNDMORE)
|
||||
deallocate(pt2_serialized)
|
||||
if (rc == -1) then
|
||||
print *, irp_here, ': error sending result'
|
||||
stop 3
|
||||
return
|
||||
else if(rc /= size(pt2_serialized)*8) then
|
||||
stop 'push'
|
||||
endif
|
||||
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, task_id, n_tasks*4, ZMQ_SNDMORE)
|
||||
if (rc == -1) then
|
||||
print *, irp_here, ': error sending result'
|
||||
stop 6
|
||||
return
|
||||
else if(rc /= 4*n_tasks) then
|
||||
stop 'push'
|
||||
endif
|
||||
|
||||
|
||||
if (b%cur == 0) then
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, 0)
|
||||
if (rc == -1) then
|
||||
print *, irp_here, ': error sending result'
|
||||
stop 7
|
||||
return
|
||||
else if(rc /= 4) then
|
||||
stop 'push'
|
||||
endif
|
||||
|
||||
else
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
|
||||
if (rc == -1) then
|
||||
print *, irp_here, ': error sending result'
|
||||
stop 7
|
||||
return
|
||||
else if(rc /= 4) then
|
||||
stop 'push'
|
||||
endif
|
||||
|
||||
|
||||
rc8 = f77_zmq_send8( zmq_socket_push, b%val, 8_8*int(b%cur,8), ZMQ_SNDMORE)
|
||||
if (rc8 == -1_8) then
|
||||
print *, irp_here, ': error sending result'
|
||||
stop 8
|
||||
return
|
||||
else if(rc8 /= 8_8*int(b%cur,8)) then
|
||||
stop 'push'
|
||||
endif
|
||||
|
||||
|
||||
rc8 = f77_zmq_send8( zmq_socket_push, b%det, int(bit_kind*N_int*2,8)*int(b%cur,8), 0)
|
||||
if (rc8 == -1_8) then
|
||||
print *, irp_here, ': error sending result'
|
||||
stop 9
|
||||
return
|
||||
else if(rc8 /= int(N_int*2*8,8)*int(b%cur,8)) then
|
||||
stop 'push'
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
end subroutine
|
||||
|
||||
subroutine push_pt2_results_async_recv(zmq_socket_push,mini,sending)
|
||||
use selection_types
|
||||
use f77_zmq
|
||||
implicit none
|
||||
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
|
||||
double precision, intent(out) :: mini
|
||||
logical, intent(inout) :: sending
|
||||
integer :: rc
|
||||
|
||||
if (.not.sending) return
|
||||
|
||||
! Activate is zmq_socket_push is a REQ
|
||||
IRP_IF ZMQ_PUSH
|
||||
IRP_ELSE
|
||||
character*(2) :: ok
|
||||
rc = f77_zmq_recv( zmq_socket_push, ok, 2, 0)
|
||||
if (rc == -1) then
|
||||
print *, irp_here, ': error sending result'
|
||||
stop 10
|
||||
return
|
||||
else if ((rc /= 2).and.(ok(1:2) /= 'ok')) then
|
||||
print *, irp_here//': error in receiving ok'
|
||||
stop -1
|
||||
endif
|
||||
rc = f77_zmq_recv( zmq_socket_push, mini, 8, 0)
|
||||
if (rc == -1) then
|
||||
print *, irp_here, ': error sending result'
|
||||
stop 11
|
||||
return
|
||||
else if (rc /= 8) then
|
||||
print *, irp_here//': error in receiving mini'
|
||||
stop 12
|
||||
endif
|
||||
IRP_ENDIF
|
||||
sending = .False.
|
||||
end subroutine
|
||||
|
||||
|
||||
|
||||
subroutine pull_pt2_results(zmq_socket_pull, index, pt2_data, task_id, n_tasks, b)
|
||||
use selection_types
|
||||
use f77_zmq
|
||||
implicit none
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
|
||||
type(pt2_type), intent(inout) :: pt2_data(*)
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
integer, intent(out) :: index(*)
|
||||
integer, intent(out) :: n_tasks, task_id(*)
|
||||
integer :: rc, rn, i
|
||||
integer*8 :: rc8
|
||||
double precision, allocatable :: pt2_serialized(:,:)
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, n_tasks, 4, 0)
|
||||
if (rc == -1) then
|
||||
n_tasks = 1
|
||||
task_id(1) = 0
|
||||
else if(rc /= 4) then
|
||||
stop 'pull'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, index, 4*n_tasks, 0)
|
||||
if (rc == -1) then
|
||||
n_tasks = 1
|
||||
task_id(1) = 0
|
||||
else if(rc /= 4*n_tasks) then
|
||||
stop 'pull'
|
||||
endif
|
||||
|
||||
allocate(pt2_serialized (pt2_type_size(N_states),n_tasks) )
|
||||
rc = f77_zmq_recv( zmq_socket_pull, pt2_serialized, 8*size(pt2_serialized)*n_tasks, 0)
|
||||
if (rc == -1) then
|
||||
n_tasks = 1
|
||||
task_id(1) = 0
|
||||
else if(rc /= 8*size(pt2_serialized)) then
|
||||
stop 'pull'
|
||||
endif
|
||||
|
||||
do i=1,n_tasks
|
||||
call pt2_deserialize(pt2_data(i),N_states,pt2_serialized(1,i))
|
||||
enddo
|
||||
deallocate(pt2_serialized)
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, task_id, n_tasks*4, 0)
|
||||
if (rc == -1) then
|
||||
n_tasks = 1
|
||||
task_id(1) = 0
|
||||
else if(rc /= 4*n_tasks) then
|
||||
stop 'pull'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, b%cur, 4, 0)
|
||||
if (rc == -1) then
|
||||
n_tasks = 1
|
||||
task_id(1) = 0
|
||||
else if(rc /= 4) then
|
||||
stop 'pull'
|
||||
endif
|
||||
|
||||
if (b%cur > 0) then
|
||||
|
||||
rc8 = f77_zmq_recv8( zmq_socket_pull, b%val, 8_8*int(b%cur,8), 0)
|
||||
if (rc8 == -1_8) then
|
||||
n_tasks = 1
|
||||
task_id(1) = 0
|
||||
else if(rc8 /= 8_8*int(b%cur,8)) then
|
||||
stop 'pull'
|
||||
endif
|
||||
|
||||
rc8 = f77_zmq_recv8( zmq_socket_pull, b%det, int(bit_kind*N_int*2,8)*int(b%cur,8), 0)
|
||||
if (rc8 == -1_8) then
|
||||
n_tasks = 1
|
||||
task_id(1) = 0
|
||||
else if(rc8 /= int(N_int*2*8,8)*int(b%cur,8)) then
|
||||
stop 'pull'
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
! Activate is zmq_socket_pull is a REP
|
||||
IRP_IF ZMQ_PUSH
|
||||
IRP_ELSE
|
||||
rc = f77_zmq_send( zmq_socket_pull, 'ok', 2, ZMQ_SNDMORE)
|
||||
if (rc == -1) then
|
||||
n_tasks = 1
|
||||
task_id(1) = 0
|
||||
else if (rc /= 2) then
|
||||
print *, irp_here//': error in sending ok'
|
||||
stop -1
|
||||
endif
|
||||
rc = f77_zmq_send( zmq_socket_pull, b%mini, 8, 0)
|
||||
IRP_ENDIF
|
||||
|
||||
end subroutine
|
||||
|
255
src/cipsi_tc_bi_ortho/run_selection_slave.irp.f
Normal file
255
src/cipsi_tc_bi_ortho/run_selection_slave.irp.f
Normal file
@ -0,0 +1,255 @@
|
||||
subroutine run_selection_slave(thread, iproc, energy)
|
||||
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: energy(N_states)
|
||||
integer, intent(in) :: thread, iproc
|
||||
|
||||
integer :: rc, i
|
||||
integer :: worker_id, task_id(1), ctask, ltask
|
||||
character*(512) :: task
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_socket_push
|
||||
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR), external :: new_zmq_push_socket
|
||||
type(selection_buffer) :: buf, buf2
|
||||
type(pt2_type) :: pt2_data
|
||||
logical :: done, buffer_ready
|
||||
|
||||
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
|
||||
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_tc_order psi_bilinear_matrix_order
|
||||
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
||||
PROVIDE psi_bilinear_matrix_transp_order N_int pt2_F pseudo_sym
|
||||
PROVIDE psi_selectors_coef_transp_tc psi_det_sorted_tc weight_selection
|
||||
|
||||
call pt2_alloc(pt2_data,N_states)
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
|
||||
integer, external :: connect_to_taskserver
|
||||
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
return
|
||||
endif
|
||||
|
||||
zmq_socket_push = new_zmq_push_socket(thread)
|
||||
|
||||
buf%N = 0
|
||||
buffer_ready = .False.
|
||||
ctask = 1
|
||||
|
||||
do
|
||||
integer, external :: get_task_from_taskserver
|
||||
if (get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id(ctask), task) == -1) then
|
||||
exit
|
||||
endif
|
||||
done = task_id(ctask) == 0
|
||||
if (done) then
|
||||
ctask = ctask - 1
|
||||
else
|
||||
integer :: i_generator, N, subset, bsize
|
||||
call sscanf_ddd(task, subset, i_generator, N)
|
||||
if(buf%N == 0) then
|
||||
! Only first time
|
||||
call create_selection_buffer(N, N*2, buf)
|
||||
buffer_ready = .True.
|
||||
else
|
||||
if (N /= buf%N) then
|
||||
print *, 'N=', N
|
||||
print *, 'buf%N=', buf%N
|
||||
print *, 'bug in ', irp_here
|
||||
stop '-1'
|
||||
end if
|
||||
end if
|
||||
call select_connected(i_generator, energy, pt2_data, buf,subset, pt2_F(i_generator))
|
||||
endif
|
||||
|
||||
integer, external :: task_done_to_taskserver
|
||||
|
||||
if(done .or. ctask == size(task_id)) then
|
||||
do i=1, ctask
|
||||
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
|
||||
call usleep(100)
|
||||
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
|
||||
ctask = 0
|
||||
done = .true.
|
||||
exit
|
||||
endif
|
||||
endif
|
||||
end do
|
||||
if(ctask > 0) then
|
||||
call sort_selection_buffer(buf)
|
||||
! call merge_selection_buffers(buf,buf2)
|
||||
call push_selection_results(zmq_socket_push, pt2_data, buf, task_id(1), ctask)
|
||||
call pt2_dealloc(pt2_data)
|
||||
call pt2_alloc(pt2_data,N_states)
|
||||
! buf%mini = buf2%mini
|
||||
buf%cur = 0
|
||||
end if
|
||||
ctask = 0
|
||||
end if
|
||||
|
||||
if(done) exit
|
||||
ctask = ctask + 1
|
||||
end do
|
||||
|
||||
if(ctask > 0) then
|
||||
call sort_selection_buffer(buf)
|
||||
! call merge_selection_buffers(buf,buf2)
|
||||
call push_selection_results(zmq_socket_push, pt2_data, buf, task_id(1), ctask)
|
||||
! buf%mini = buf2%mini
|
||||
buf%cur = 0
|
||||
end if
|
||||
ctask = 0
|
||||
call pt2_dealloc(pt2_data)
|
||||
|
||||
integer, external :: disconnect_from_taskserver
|
||||
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) == -1) then
|
||||
continue
|
||||
endif
|
||||
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
call end_zmq_push_socket(zmq_socket_push,thread)
|
||||
if (buffer_ready) then
|
||||
call delete_selection_buffer(buf)
|
||||
! call delete_selection_buffer(buf2)
|
||||
endif
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine push_selection_results(zmq_socket_push, pt2_data, b, task_id, ntasks)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
implicit none
|
||||
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
|
||||
type(pt2_type), intent(in) :: pt2_data
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
integer, intent(in) :: ntasks, task_id(*)
|
||||
integer :: rc
|
||||
double precision, allocatable :: pt2_serialized(:)
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
|
||||
if(rc /= 4) then
|
||||
print *, 'f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)'
|
||||
endif
|
||||
|
||||
|
||||
allocate(pt2_serialized (pt2_type_size(N_states)) )
|
||||
call pt2_serialize(pt2_data,N_states,pt2_serialized)
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, pt2_serialized, size(pt2_serialized)*8, ZMQ_SNDMORE)
|
||||
if (rc == -1) then
|
||||
print *, irp_here, ': error sending result'
|
||||
stop 3
|
||||
return
|
||||
else if(rc /= size(pt2_serialized)*8) then
|
||||
stop 'push'
|
||||
endif
|
||||
deallocate(pt2_serialized)
|
||||
|
||||
if (b%cur > 0) then
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)
|
||||
if(rc /= 8*b%cur) then
|
||||
print *, 'f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)
|
||||
if(rc /= bit_kind*N_int*2*b%cur) then
|
||||
print *, 'f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)'
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, ntasks, 4, ZMQ_SNDMORE)
|
||||
if(rc /= 4) then
|
||||
print *, 'f77_zmq_send( zmq_socket_push, ntasks, 4, ZMQ_SNDMORE)'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_send( zmq_socket_push, task_id(1), ntasks*4, 0)
|
||||
if(rc /= 4*ntasks) then
|
||||
print *, 'f77_zmq_send( zmq_socket_push, task_id(1), ntasks*4, 0)'
|
||||
endif
|
||||
|
||||
! Activate is zmq_socket_push is a REQ
|
||||
IRP_IF ZMQ_PUSH
|
||||
IRP_ELSE
|
||||
character*(2) :: ok
|
||||
rc = f77_zmq_recv( zmq_socket_push, ok, 2, 0)
|
||||
if ((rc /= 2).and.(ok(1:2) /= 'ok')) then
|
||||
print *, irp_here//': error in receiving ok'
|
||||
stop -1
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine pull_selection_results(zmq_socket_pull, pt2_data, val, det, N, task_id, ntasks)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
implicit none
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
|
||||
type(pt2_type), intent(inout) :: pt2_data
|
||||
double precision, intent(out) :: val(*)
|
||||
integer(bit_kind), intent(out) :: det(N_int, 2, *)
|
||||
integer, intent(out) :: N, ntasks, task_id(*)
|
||||
integer :: rc, rn, i
|
||||
double precision, allocatable :: pt2_serialized(:)
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
|
||||
if(rc /= 4) then
|
||||
print *, 'f77_zmq_recv( zmq_socket_pull, N, 4, 0)'
|
||||
endif
|
||||
|
||||
allocate(pt2_serialized (pt2_type_size(N_states)) )
|
||||
rc = f77_zmq_recv( zmq_socket_pull, pt2_serialized, 8*size(pt2_serialized), 0)
|
||||
if (rc == -1) then
|
||||
ntasks = 1
|
||||
task_id(1) = 0
|
||||
else if(rc /= 8*size(pt2_serialized)) then
|
||||
stop 'pull'
|
||||
endif
|
||||
|
||||
call pt2_deserialize(pt2_data,N_states,pt2_serialized)
|
||||
deallocate(pt2_serialized)
|
||||
|
||||
if (N>0) then
|
||||
rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)
|
||||
if(rc /= 8*N) then
|
||||
print *, 'f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)
|
||||
if(rc /= bit_kind*N_int*2*N) then
|
||||
print *, 'f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)'
|
||||
endif
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, ntasks, 4, 0)
|
||||
if(rc /= 4) then
|
||||
print *, 'f77_zmq_recv( zmq_socket_pull, ntasks, 4, 0)'
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntasks*4, 0)
|
||||
if(rc /= 4*ntasks) then
|
||||
print *, 'f77_zmq_recv( zmq_socket_pull, task_id(1), ntasks*4, 0)'
|
||||
endif
|
||||
|
||||
! Activate is zmq_socket_pull is a REP
|
||||
IRP_IF ZMQ_PUSH
|
||||
IRP_ELSE
|
||||
rc = f77_zmq_send( zmq_socket_pull, 'ok', 2, 0)
|
||||
if (rc /= 2) then
|
||||
print *, irp_here//': error in sending ok'
|
||||
stop -1
|
||||
endif
|
||||
IRP_ENDIF
|
||||
end subroutine
|
||||
|
||||
|
||||
|
1073
src/cipsi_tc_bi_ortho/selection.irp.f
Normal file
1073
src/cipsi_tc_bi_ortho/selection.irp.f
Normal file
File diff suppressed because it is too large
Load Diff
416
src/cipsi_tc_bi_ortho/selection_buffer.irp.f
Normal file
416
src/cipsi_tc_bi_ortho/selection_buffer.irp.f
Normal file
@ -0,0 +1,416 @@
|
||||
|
||||
subroutine create_selection_buffer(N, size_in, res)
|
||||
use selection_types
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Allocates the memory for a selection buffer.
|
||||
! The arrays have dimension size_in and the maximum number of elements is N
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: N, size_in
|
||||
type(selection_buffer), intent(out) :: res
|
||||
|
||||
integer :: siz
|
||||
siz = max(size_in,1)
|
||||
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double
|
||||
rss = memory_of_double(siz)*(N_int*2+1)
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
allocate(res%det(N_int, 2, siz), res%val(siz))
|
||||
|
||||
res%val(:) = 0d0
|
||||
res%det(:,:,:) = 0_8
|
||||
res%N = N
|
||||
res%mini = 0d0
|
||||
res%cur = 0
|
||||
end subroutine
|
||||
|
||||
subroutine delete_selection_buffer(b)
|
||||
use selection_types
|
||||
implicit none
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
if (associated(b%det)) then
|
||||
deallocate(b%det)
|
||||
endif
|
||||
if (associated(b%val)) then
|
||||
deallocate(b%val)
|
||||
endif
|
||||
NULLIFY(b%det)
|
||||
NULLIFY(b%val)
|
||||
b%cur = 0
|
||||
b%mini = 0.d0
|
||||
b%N = 0
|
||||
end
|
||||
|
||||
|
||||
subroutine add_to_selection_buffer(b, det, val)
|
||||
use selection_types
|
||||
implicit none
|
||||
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
integer(bit_kind), intent(in) :: det(N_int, 2)
|
||||
double precision, intent(in) :: val
|
||||
integer :: i
|
||||
|
||||
if(b%N > 0 .and. val <= b%mini) then
|
||||
b%cur += 1
|
||||
b%det(1:N_int,1:2,b%cur) = det(1:N_int,1:2)
|
||||
b%val(b%cur) = val
|
||||
if(b%cur == size(b%val)) then
|
||||
call sort_selection_buffer(b)
|
||||
end if
|
||||
end if
|
||||
end subroutine
|
||||
|
||||
subroutine merge_selection_buffers(b1, b2)
|
||||
use selection_types
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Merges the selection buffers b1 and b2 into b2
|
||||
END_DOC
|
||||
type(selection_buffer), intent(inout) :: b1
|
||||
type(selection_buffer), intent(inout) :: b2
|
||||
integer(bit_kind), pointer :: detmp(:,:,:)
|
||||
double precision, pointer :: val(:)
|
||||
integer :: i, i1, i2, k, nmwen, sze
|
||||
if (b1%cur == 0) return
|
||||
do while (b1%val(b1%cur) > b2%mini)
|
||||
b1%cur = b1%cur-1
|
||||
if (b1%cur == 0) then
|
||||
return
|
||||
endif
|
||||
enddo
|
||||
nmwen = min(b1%N, b1%cur+b2%cur)
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double
|
||||
sze = max(size(b1%val), size(b2%val))
|
||||
rss = memory_of_double(sze) + 2*N_int*memory_of_double(sze)
|
||||
call check_mem(rss,irp_here)
|
||||
allocate(val(sze), detmp(N_int, 2, sze))
|
||||
i1=1
|
||||
i2=1
|
||||
do i=1,nmwen
|
||||
if ( (i1 > b1%cur).and.(i2 > b2%cur) ) then
|
||||
exit
|
||||
else if (i1 > b1%cur) then
|
||||
val(i) = b2%val(i2)
|
||||
detmp(1:N_int,1,i) = b2%det(1:N_int,1,i2)
|
||||
detmp(1:N_int,2,i) = b2%det(1:N_int,2,i2)
|
||||
i2=i2+1
|
||||
else if (i2 > b2%cur) then
|
||||
val(i) = b1%val(i1)
|
||||
detmp(1:N_int,1,i) = b1%det(1:N_int,1,i1)
|
||||
detmp(1:N_int,2,i) = b1%det(1:N_int,2,i1)
|
||||
i1=i1+1
|
||||
else
|
||||
if (b1%val(i1) <= b2%val(i2)) then
|
||||
val(i) = b1%val(i1)
|
||||
detmp(1:N_int,1,i) = b1%det(1:N_int,1,i1)
|
||||
detmp(1:N_int,2,i) = b1%det(1:N_int,2,i1)
|
||||
i1=i1+1
|
||||
else
|
||||
val(i) = b2%val(i2)
|
||||
detmp(1:N_int,1,i) = b2%det(1:N_int,1,i2)
|
||||
detmp(1:N_int,2,i) = b2%det(1:N_int,2,i2)
|
||||
i2=i2+1
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
deallocate(b2%det, b2%val)
|
||||
do i=nmwen+1,b2%N
|
||||
val(i) = 0.d0
|
||||
detmp(1:N_int,1:2,i) = 0_bit_kind
|
||||
enddo
|
||||
b2%det => detmp
|
||||
b2%val => val
|
||||
b2%mini = min(b2%mini,b2%val(b2%N))
|
||||
b2%cur = nmwen
|
||||
end
|
||||
|
||||
|
||||
subroutine sort_selection_buffer(b)
|
||||
use selection_types
|
||||
implicit none
|
||||
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
integer, allocatable :: iorder(:)
|
||||
integer(bit_kind), pointer :: detmp(:,:,:)
|
||||
integer :: i, nmwen
|
||||
logical, external :: detEq
|
||||
if (b%N == 0 .or. b%cur == 0) return
|
||||
nmwen = min(b%N, b%cur)
|
||||
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double, memory_of_int
|
||||
rss = memory_of_int(b%cur) + 2*N_int*memory_of_double(size(b%det,3))
|
||||
call check_mem(rss,irp_here)
|
||||
allocate(iorder(b%cur), detmp(N_int, 2, size(b%det,3)))
|
||||
do i=1,b%cur
|
||||
iorder(i) = i
|
||||
end do
|
||||
call dsort(b%val, iorder, b%cur)
|
||||
do i=1, nmwen
|
||||
detmp(1:N_int,1,i) = b%det(1:N_int,1,iorder(i))
|
||||
detmp(1:N_int,2,i) = b%det(1:N_int,2,iorder(i))
|
||||
end do
|
||||
deallocate(b%det,iorder)
|
||||
b%det => detmp
|
||||
b%mini = min(b%mini,b%val(b%N))
|
||||
b%cur = nmwen
|
||||
end subroutine
|
||||
|
||||
subroutine make_selection_buffer_s2(b)
|
||||
use selection_types
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
|
||||
integer(bit_kind), allocatable :: o(:,:,:)
|
||||
double precision, allocatable :: val(:)
|
||||
|
||||
integer :: n_d
|
||||
integer :: i,k,sze,n_alpha,j,n
|
||||
logical :: dup
|
||||
|
||||
! Sort
|
||||
integer, allocatable :: iorder(:)
|
||||
integer*8, allocatable :: bit_tmp(:)
|
||||
integer*8, external :: configuration_search_key
|
||||
integer(bit_kind), allocatable :: tmp_array(:,:,:)
|
||||
logical, allocatable :: duplicate(:)
|
||||
|
||||
n_d = b%cur
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double
|
||||
rss = (4*N_int+4)*memory_of_double(n_d)
|
||||
call check_mem(rss,irp_here)
|
||||
allocate(o(N_int,2,n_d), iorder(n_d), duplicate(n_d), bit_tmp(n_d), &
|
||||
tmp_array(N_int,2,n_d), val(n_d) )
|
||||
|
||||
do i=1,n_d
|
||||
do k=1,N_int
|
||||
o(k,1,i) = ieor(b%det(k,1,i), b%det(k,2,i))
|
||||
o(k,2,i) = iand(b%det(k,1,i), b%det(k,2,i))
|
||||
enddo
|
||||
iorder(i) = i
|
||||
bit_tmp(i) = configuration_search_key(o(1,1,i),N_int)
|
||||
enddo
|
||||
|
||||
deallocate(b%det)
|
||||
|
||||
call i8sort(bit_tmp,iorder,n_d)
|
||||
|
||||
do i=1,n_d
|
||||
do k=1,N_int
|
||||
tmp_array(k,1,i) = o(k,1,iorder(i))
|
||||
tmp_array(k,2,i) = o(k,2,iorder(i))
|
||||
enddo
|
||||
val(i) = b%val(iorder(i))
|
||||
duplicate(i) = .False.
|
||||
enddo
|
||||
|
||||
! Find duplicates
|
||||
do i=1,n_d-1
|
||||
if (duplicate(i)) then
|
||||
cycle
|
||||
endif
|
||||
j = i+1
|
||||
do while (bit_tmp(j)==bit_tmp(i))
|
||||
if (duplicate(j)) then
|
||||
j+=1
|
||||
if (j>n_d) then
|
||||
exit
|
||||
endif
|
||||
cycle
|
||||
endif
|
||||
dup = .True.
|
||||
do k=1,N_int
|
||||
if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) &
|
||||
.or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then
|
||||
dup = .False.
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (dup) then
|
||||
val(i) = max(val(i), val(j))
|
||||
duplicate(j) = .True.
|
||||
endif
|
||||
j+=1
|
||||
if (j>n_d) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate (b%val)
|
||||
! Copy filtered result
|
||||
integer :: n_p
|
||||
n_p=0
|
||||
do i=1,n_d
|
||||
if (duplicate(i)) then
|
||||
cycle
|
||||
endif
|
||||
n_p = n_p + 1
|
||||
do k=1,N_int
|
||||
o(k,1,n_p) = tmp_array(k,1,i)
|
||||
o(k,2,n_p) = tmp_array(k,2,i)
|
||||
enddo
|
||||
val(n_p) = val(i)
|
||||
enddo
|
||||
|
||||
! Sort by importance
|
||||
do i=1,n_p
|
||||
iorder(i) = i
|
||||
end do
|
||||
call dsort(val,iorder,n_p)
|
||||
do i=1,n_p
|
||||
do k=1,N_int
|
||||
tmp_array(k,1,i) = o(k,1,iorder(i))
|
||||
tmp_array(k,2,i) = o(k,2,iorder(i))
|
||||
enddo
|
||||
enddo
|
||||
do i=1,n_p
|
||||
do k=1,N_int
|
||||
o(k,1,i) = tmp_array(k,1,i)
|
||||
o(k,2,i) = tmp_array(k,2,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Create determinants
|
||||
n_d = 0
|
||||
do i=1,n_p
|
||||
call configuration_to_dets_size(o(1,1,i),sze,elec_alpha_num,N_int)
|
||||
n_d = n_d + sze
|
||||
if (n_d > b%cur) then
|
||||
! if (n_d - b%cur > b%cur - n_d + sze) then
|
||||
! n_d = n_d - sze
|
||||
! endif
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
|
||||
rss = (4*N_int+2)*memory_of_double(n_d)
|
||||
call check_mem(rss,irp_here)
|
||||
allocate(b%det(N_int,2,2*n_d), b%val(2*n_d))
|
||||
k=1
|
||||
do i=1,n_p
|
||||
n=n_d
|
||||
call configuration_to_dets_size(o(1,1,i),n,elec_alpha_num,N_int)
|
||||
call configuration_to_dets(o(1,1,i),b%det(1,1,k),n,elec_alpha_num,N_int)
|
||||
do j=k,k+n-1
|
||||
b%val(j) = val(i)
|
||||
enddo
|
||||
k = k+n
|
||||
if (k > n_d) exit
|
||||
enddo
|
||||
deallocate(o)
|
||||
b%cur = n_d
|
||||
b%N = n_d
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine remove_duplicates_in_selection_buffer(b)
|
||||
use selection_types
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
|
||||
integer(bit_kind), allocatable :: o(:,:,:)
|
||||
double precision, allocatable :: val(:)
|
||||
|
||||
integer :: n_d
|
||||
integer :: i,k,sze,n_alpha,j,n
|
||||
logical :: dup
|
||||
|
||||
! Sort
|
||||
integer, allocatable :: iorder(:)
|
||||
integer*8, allocatable :: bit_tmp(:)
|
||||
integer*8, external :: det_search_key
|
||||
integer(bit_kind), allocatable :: tmp_array(:,:,:)
|
||||
logical, allocatable :: duplicate(:)
|
||||
|
||||
n_d = b%cur
|
||||
logical :: found_duplicates
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double
|
||||
rss = (4*N_int+4)*memory_of_double(n_d)
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
found_duplicates = .False.
|
||||
allocate(iorder(n_d), duplicate(n_d), bit_tmp(n_d), &
|
||||
tmp_array(N_int,2,n_d), val(n_d) )
|
||||
|
||||
do i=1,n_d
|
||||
iorder(i) = i
|
||||
bit_tmp(i) = det_search_key(b%det(1,1,i),N_int)
|
||||
enddo
|
||||
|
||||
call i8sort(bit_tmp,iorder,n_d)
|
||||
|
||||
do i=1,n_d
|
||||
do k=1,N_int
|
||||
tmp_array(k,1,i) = b%det(k,1,iorder(i))
|
||||
tmp_array(k,2,i) = b%det(k,2,iorder(i))
|
||||
enddo
|
||||
val(i) = b%val(iorder(i))
|
||||
duplicate(i) = .False.
|
||||
enddo
|
||||
|
||||
! Find duplicates
|
||||
do i=1,n_d-1
|
||||
if (duplicate(i)) then
|
||||
cycle
|
||||
endif
|
||||
j = i+1
|
||||
do while (bit_tmp(j)==bit_tmp(i))
|
||||
if (duplicate(j)) then
|
||||
j+=1
|
||||
if (j>n_d) then
|
||||
exit
|
||||
endif
|
||||
cycle
|
||||
endif
|
||||
dup = .True.
|
||||
do k=1,N_int
|
||||
if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) &
|
||||
.or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then
|
||||
dup = .False.
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (dup) then
|
||||
duplicate(j) = .True.
|
||||
found_duplicates = .True.
|
||||
endif
|
||||
j+=1
|
||||
if (j>n_d) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if (found_duplicates) then
|
||||
|
||||
! Copy filtered result
|
||||
integer :: n_p
|
||||
n_p=0
|
||||
do i=1,n_d
|
||||
if (duplicate(i)) then
|
||||
cycle
|
||||
endif
|
||||
n_p = n_p + 1
|
||||
do k=1,N_int
|
||||
b%det(k,1,n_p) = tmp_array(k,1,i)
|
||||
b%det(k,2,n_p) = tmp_array(k,2,i)
|
||||
enddo
|
||||
val(n_p) = val(i)
|
||||
enddo
|
||||
b%cur=n_p
|
||||
b%N=n_p
|
||||
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
25
src/cipsi_tc_bi_ortho/selection_types.f90
Normal file
25
src/cipsi_tc_bi_ortho/selection_types.f90
Normal file
@ -0,0 +1,25 @@
|
||||
module selection_types
|
||||
type selection_buffer
|
||||
integer :: N, cur
|
||||
integer(8) , pointer :: det(:,:,:)
|
||||
double precision, pointer :: val(:)
|
||||
double precision :: mini
|
||||
endtype
|
||||
|
||||
type pt2_type
|
||||
double precision, allocatable :: pt2(:)
|
||||
double precision, allocatable :: rpt2(:)
|
||||
double precision, allocatable :: variance(:)
|
||||
double precision, allocatable :: overlap(:,:)
|
||||
endtype
|
||||
|
||||
contains
|
||||
|
||||
integer function pt2_type_size(N)
|
||||
implicit none
|
||||
integer, intent(in) :: N
|
||||
pt2_type_size = (3*n + n*n)
|
||||
end function
|
||||
|
||||
end module
|
||||
|
134
src/cipsi_tc_bi_ortho/selection_weight.irp.f
Normal file
134
src/cipsi_tc_bi_ortho/selection_weight.irp.f
Normal file
@ -0,0 +1,134 @@
|
||||
BEGIN_PROVIDER [ double precision, pt2_match_weight, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Weights adjusted along the selection to make the PT2 contributions
|
||||
! of each state coincide.
|
||||
END_DOC
|
||||
pt2_match_weight(:) = 1.d0
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, variance_match_weight, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Weights adjusted along the selection to make the variances
|
||||
! of each state coincide.
|
||||
END_DOC
|
||||
variance_match_weight(:) = 1.d0
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
subroutine update_pt2_and_variance_weights(pt2_data, N_st)
|
||||
implicit none
|
||||
use selection_types
|
||||
BEGIN_DOC
|
||||
! Updates the PT2- and Variance- matching weights.
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st
|
||||
type(pt2_type), intent(in) :: pt2_data
|
||||
double precision :: pt2(N_st)
|
||||
double precision :: variance(N_st)
|
||||
|
||||
double precision :: avg, element, dt, x
|
||||
integer :: k
|
||||
pt2(:) = pt2_data % pt2(:)
|
||||
variance(:) = pt2_data % variance(:)
|
||||
|
||||
avg = sum(pt2(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
|
||||
|
||||
dt = 8.d0 !* selection_factor
|
||||
do k=1,N_st
|
||||
element = exp(dt*(pt2(k)/avg - 1.d0))
|
||||
element = min(2.0d0 , element)
|
||||
element = max(0.5d0 , element)
|
||||
pt2_match_weight(k) *= element
|
||||
enddo
|
||||
|
||||
|
||||
avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
|
||||
|
||||
do k=1,N_st
|
||||
element = exp(dt*(variance(k)/avg -1.d0))
|
||||
element = min(2.0d0 , element)
|
||||
element = max(0.5d0 , element)
|
||||
variance_match_weight(k) *= element
|
||||
enddo
|
||||
|
||||
if (N_det < 100) then
|
||||
! For tiny wave functions, weights are 1.d0
|
||||
pt2_match_weight(:) = 1.d0
|
||||
variance_match_weight(:) = 1.d0
|
||||
endif
|
||||
|
||||
threshold_davidson_pt2 = min(1.d-6, &
|
||||
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) )
|
||||
|
||||
SOFT_TOUCH pt2_match_weight variance_match_weight threshold_davidson_pt2
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Weights used in the selection criterion
|
||||
END_DOC
|
||||
select case (weight_selection)
|
||||
|
||||
case (0)
|
||||
print *, 'Using input weights in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * state_average_weight(1:N_states)
|
||||
|
||||
case (1)
|
||||
print *, 'Using 1/c_max^2 weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states)
|
||||
|
||||
case (2)
|
||||
print *, 'Using pt2-matching weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states)
|
||||
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
||||
|
||||
case (3)
|
||||
print *, 'Using variance-matching weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
|
||||
case (4)
|
||||
print *, 'Using variance- and pt2-matching weights in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states))
|
||||
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
|
||||
case (5)
|
||||
print *, 'Using variance-matching weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
|
||||
case (6)
|
||||
print *, 'Using CI coefficient-based selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states)
|
||||
|
||||
case (7)
|
||||
print *, 'Input weights multiplied by variance- and pt2-matching'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)) * state_average_weight(1:N_states)
|
||||
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
|
||||
case (8)
|
||||
print *, 'Input weights multiplied by pt2-matching'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states) * state_average_weight(1:N_states)
|
||||
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
||||
|
||||
case (9)
|
||||
print *, 'Input weights multiplied by variance-matching'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states) * state_average_weight(1:N_states)
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
|
||||
end select
|
||||
print *, '# Total weight ', real(selection_weight(:),4)
|
||||
|
||||
END_PROVIDER
|
||||
|
350
src/cipsi_tc_bi_ortho/slave_cipsi.irp.f
Normal file
350
src/cipsi_tc_bi_ortho/slave_cipsi.irp.f
Normal file
@ -0,0 +1,350 @@
|
||||
subroutine run_slave_cipsi
|
||||
|
||||
BEGIN_DOC
|
||||
! Helper program for distributed parallelism
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
call omp_set_max_active_levels(1)
|
||||
distributed_davidson = .False.
|
||||
read_wf = .False.
|
||||
SOFT_TOUCH read_wf distributed_davidson
|
||||
call provide_everything
|
||||
call switch_qp_run_to_master
|
||||
call run_slave_main
|
||||
end
|
||||
|
||||
subroutine provide_everything
|
||||
PROVIDE H_apply_buffer_allocated mo_two_e_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context N_states_diag
|
||||
PROVIDE psi_selectors_rcoef_bi_orth_transp psi_selectors_lcoef_bi_orth_transp
|
||||
|
||||
PROVIDE pt2_e0_denominator mo_num N_int ci_energy mpi_master zmq_state zmq_context
|
||||
PROVIDE psi_det psi_coef threshold_generators state_average_weight
|
||||
PROVIDE N_det_selectors pt2_stoch_istate N_det selection_weight pseudo_sym
|
||||
end
|
||||
|
||||
|
||||
subroutine run_slave_main
|
||||
|
||||
use f77_zmq
|
||||
|
||||
implicit none
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
IRP_ENDIF
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
double precision :: energy(N_states)
|
||||
character*(64) :: states(10)
|
||||
character*(64) :: old_state
|
||||
integer :: rc, i, ierr
|
||||
double precision :: t0, t1
|
||||
|
||||
integer, external :: zmq_get_dvector, zmq_get_N_det_generators
|
||||
integer, external :: zmq_get8_dvector
|
||||
integer, external :: zmq_get_ivector
|
||||
integer, external :: zmq_get_psi, zmq_get_N_det_selectors, zmq_get_psi_bilinear
|
||||
integer, external :: zmq_get_psi_notouch
|
||||
integer, external :: zmq_get_N_states_diag
|
||||
|
||||
zmq_context = f77_zmq_ctx_new ()
|
||||
states(1) = 'selection'
|
||||
states(2) = 'davidson'
|
||||
states(3) = 'pt2'
|
||||
old_state = 'Waiting'
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
|
||||
PROVIDE psi_det psi_coef threshold_generators state_average_weight mpi_master
|
||||
PROVIDE zmq_state N_det_selectors pt2_stoch_istate N_det pt2_e0_denominator
|
||||
PROVIDE N_det_generators N_states N_states_diag pt2_e0_denominator mpi_rank
|
||||
|
||||
IRP_IF MPI
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
do
|
||||
|
||||
if (mpi_master) then
|
||||
call wait_for_states(states,zmq_state,size(states))
|
||||
if (zmq_state(1:64) == old_state(1:64)) then
|
||||
call usleep(200)
|
||||
cycle
|
||||
else
|
||||
old_state(1:64) = zmq_state(1:64)
|
||||
endif
|
||||
print *, trim(zmq_state)
|
||||
endif
|
||||
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
call MPI_BCAST (zmq_state, 128, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
print *, irp_here, 'error in broadcast of zmq_state'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
if(zmq_state(1:7) == 'Stopped') then
|
||||
exit
|
||||
endif
|
||||
|
||||
|
||||
if (zmq_state(1:9) == 'selection') then
|
||||
|
||||
! Selection
|
||||
! ---------
|
||||
|
||||
call wall_time(t0)
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_psi')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_dvector threshold_generators')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'threshold_generators',(/threshold_generators/),1) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_dvector energy')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'energy',energy,N_states) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_N_det_generators')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_N_det_generators (zmq_to_qp_run_socket, 1) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_N_det_selectors')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_dvector state_average_weight')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_dvector selection_weight')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) cycle
|
||||
pt2_e0_denominator(1:N_states) = energy(1:N_states)
|
||||
TOUCH pt2_e0_denominator state_average_weight threshold_generators selection_weight psi_det psi_coef
|
||||
|
||||
if (mpi_master) then
|
||||
print *, 'N_det', N_det
|
||||
print *, 'N_det_generators', N_det_generators
|
||||
print *, 'N_det_selectors', N_det_selectors
|
||||
print *, 'pt2_e0_denominator', pt2_e0_denominator
|
||||
print *, 'pt2_stoch_istate', pt2_stoch_istate
|
||||
print *, 'state_average_weight', state_average_weight
|
||||
print *, 'selection_weight', selection_weight
|
||||
endif
|
||||
call wall_time(t1)
|
||||
call write_double(6,(t1-t0),'Broadcast time')
|
||||
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('Entering OpenMP section')
|
||||
IRP_ENDIF
|
||||
!$OMP PARALLEL PRIVATE(i)
|
||||
i = omp_get_thread_num()
|
||||
call run_selection_slave(0,i,energy)
|
||||
!$OMP END PARALLEL
|
||||
print *, mpi_rank, ': Selection done'
|
||||
IRP_IF MPI
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
print *, irp_here, 'error in barrier'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
call mpi_print('----------')
|
||||
|
||||
else if (zmq_state(1:8) == 'davidson') then
|
||||
|
||||
! Davidson
|
||||
! --------
|
||||
|
||||
call wall_time(t0)
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_N_states_diag')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_N_states_diag(zmq_to_qp_run_socket,1) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_psi')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle
|
||||
|
||||
call wall_time(t1)
|
||||
call write_double(6,(t1-t0),'Broadcast time')
|
||||
|
||||
!---
|
||||
call omp_set_max_active_levels(8)
|
||||
call davidson_slave_tcp(0)
|
||||
call omp_set_max_active_levels(1)
|
||||
print *, mpi_rank, ': Davidson done'
|
||||
!---
|
||||
|
||||
IRP_IF MPI
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
print *, irp_here, 'error in barrier'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
call mpi_print('----------')
|
||||
|
||||
else if (zmq_state(1:3) == 'pt2') then
|
||||
|
||||
! PT2
|
||||
! ---
|
||||
|
||||
IRP_IF MPI
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
print *, irp_here, 'error in barrier'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
call wall_time(t0)
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_psi')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_N_det_generators')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_N_det_generators (zmq_to_qp_run_socket, 1) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_N_det_selectors')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_dvector threshold_generators')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'threshold_generators',(/threshold_generators/),1) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_dvector energy')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'energy',energy,N_states) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_ivector pt2_stoch_istate')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_ivector(zmq_to_qp_run_socket,1,'pt2_stoch_istate',pt2_stoch_istate,1) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_dvector state_average_weight')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) cycle
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('zmq_get_dvector selection_weight')
|
||||
IRP_ENDIF
|
||||
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) cycle
|
||||
pt2_e0_denominator(1:N_states) = energy(1:N_states)
|
||||
SOFT_TOUCH pt2_e0_denominator state_average_weight pt2_stoch_istate threshold_generators selection_weight psi_det psi_coef N_det_generators N_det_selectors
|
||||
|
||||
|
||||
call wall_time(t1)
|
||||
call write_double(6,(t1-t0),'Broadcast time')
|
||||
IRP_IF MPI
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
print *, irp_here, 'error in barrier'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
|
||||
IRP_IF MPI_DEBUG
|
||||
call mpi_print('Entering OpenMP section')
|
||||
IRP_ENDIF
|
||||
if (.true.) then
|
||||
integer :: nproc_target, ii
|
||||
double precision :: mem_collector, mem, rss
|
||||
|
||||
call resident_memory(rss)
|
||||
|
||||
nproc_target = nthreads_pt2
|
||||
ii = min(N_det, (elec_alpha_num*(mo_num-elec_alpha_num))**2)
|
||||
|
||||
do
|
||||
mem = rss + & !
|
||||
nproc_target * 8.d0 * & ! bytes
|
||||
( 0.5d0*pt2_n_tasks_max & ! task_id
|
||||
+ 64.d0*pt2_n_tasks_max & ! task
|
||||
+ 3.d0*pt2_n_tasks_max*N_states & ! pt2, variance, norm
|
||||
+ 1.d0*pt2_n_tasks_max & ! i_generator, subset
|
||||
+ 3.d0*(N_int*2.d0*ii+ ii) & ! selection buffer
|
||||
+ 1.d0*(N_int*2.d0*ii+ ii) & ! sort selection buffer
|
||||
+ 2.0d0*(ii) & ! preinteresting, interesting,
|
||||
! prefullinteresting, fullinteresting
|
||||
+ 2.0d0*(N_int*2*ii) & ! minilist, fullminilist
|
||||
+ 1.0d0*(N_states*mo_num*mo_num) & ! mat
|
||||
) / 1024.d0**3
|
||||
|
||||
if (nproc_target == 0) then
|
||||
call check_mem(mem,irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if (mem+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
nproc_target = nproc_target - 1
|
||||
|
||||
enddo
|
||||
|
||||
if (N_det > 100000) then
|
||||
|
||||
if (mpi_master) then
|
||||
print *, 'N_det', N_det
|
||||
print *, 'N_det_generators', N_det_generators
|
||||
print *, 'N_det_selectors', N_det_selectors
|
||||
print *, 'pt2_e0_denominator', pt2_e0_denominator
|
||||
print *, 'pt2_stoch_istate', pt2_stoch_istate
|
||||
print *, 'state_average_weight', state_average_weight
|
||||
print *, 'selection_weight', selection_weight
|
||||
print *, 'Number of threads', nproc_target
|
||||
endif
|
||||
|
||||
if (h0_type == 'CFG') then
|
||||
PROVIDE det_to_configuration
|
||||
endif
|
||||
|
||||
PROVIDE global_selection_buffer pt2_N_teeth pt2_F N_det_generators
|
||||
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
|
||||
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_tc_order psi_bilinear_matrix_order
|
||||
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
||||
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted_tc
|
||||
PROVIDE psi_selectors_rcoef_bi_orth_transp psi_selectors_lcoef_bi_orth_transp
|
||||
|
||||
PROVIDE psi_det_hii selection_weight pseudo_sym pt2_min_parallel_tasks
|
||||
|
||||
if (mpi_master) then
|
||||
print *, 'Running PT2'
|
||||
endif
|
||||
!$OMP PARALLEL PRIVATE(i) NUM_THREADS(nproc_target+1)
|
||||
i = omp_get_thread_num()
|
||||
call run_pt2_slave(0,i,pt2_e0_denominator)
|
||||
!$OMP END PARALLEL
|
||||
FREE state_average_weight
|
||||
print *, mpi_rank, ': PT2 done'
|
||||
print *, '-------'
|
||||
|
||||
endif
|
||||
endif
|
||||
|
||||
IRP_IF MPI
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
print *, irp_here, 'error in barrier'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
call mpi_print('----------')
|
||||
|
||||
endif
|
||||
|
||||
end do
|
||||
IRP_IF MPI
|
||||
call MPI_finalize(ierr)
|
||||
IRP_ENDIF
|
||||
end
|
||||
|
||||
|
||||
|
149
src/cipsi_tc_bi_ortho/stochastic_cipsi.irp.f
Normal file
149
src/cipsi_tc_bi_ortho/stochastic_cipsi.irp.f
Normal file
@ -0,0 +1,149 @@
|
||||
subroutine run_stochastic_cipsi
|
||||
use selection_types
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Selected Full Configuration Interaction with Stochastic selection and PT2.
|
||||
END_DOC
|
||||
integer :: i,j,k,ndet
|
||||
double precision, allocatable :: zeros(:)
|
||||
integer :: to_select
|
||||
type(pt2_type) :: pt2_data, pt2_data_err
|
||||
logical, external :: qp_stop
|
||||
logical :: print_pt2
|
||||
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double
|
||||
double precision :: correlation_energy_ratio,E_denom,E_tc,norm
|
||||
double precision, allocatable :: ept2(:), pt1(:),extrap_energy(:)
|
||||
PROVIDE H_apply_buffer_allocated distributed_davidson
|
||||
|
||||
print*,'Diagonal elements of the Fock matrix '
|
||||
do i = 1, mo_num
|
||||
write(*,*)i,Fock_matrix_tc_mo_tot(i,i)
|
||||
enddo
|
||||
N_iter = 1
|
||||
threshold_generators = 1.d0
|
||||
SOFT_TOUCH threshold_generators
|
||||
|
||||
rss = memory_of_double(N_states)*4.d0
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
allocate (zeros(N_states))
|
||||
call pt2_alloc(pt2_data, N_states)
|
||||
call pt2_alloc(pt2_data_err, N_states)
|
||||
|
||||
double precision :: hf_energy_ref
|
||||
logical :: has
|
||||
double precision :: relative_error
|
||||
|
||||
relative_error=PT2_relative_error
|
||||
|
||||
zeros = 0.d0
|
||||
pt2_data % pt2 = -huge(1.e0)
|
||||
pt2_data % rpt2 = -huge(1.e0)
|
||||
pt2_data % overlap= 0.d0
|
||||
pt2_data % variance = huge(1.e0)
|
||||
|
||||
!!!! WARNING !!!! SEEMS TO BE PROBLEM WTH make_s2_eigenfunction !!!! THE DETERMINANTS CAN APPEAR TWICE IN THE WFT DURING SELECTION
|
||||
! if (s2_eig) then
|
||||
! call make_s2_eigenfunction
|
||||
! endif
|
||||
print_pt2 = .False.
|
||||
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
! call routine_save_right
|
||||
|
||||
|
||||
! if (N_det > N_det_max) then
|
||||
! psi_det(1:N_int,1:2,1:N_det) = psi_det_sorted_tc_gen(1:N_int,1:2,1:N_det)
|
||||
! psi_coef(1:N_det,1:N_states) = psi_coef_sorted_tc_gen(1:N_det,1:N_states)
|
||||
! N_det = N_det_max
|
||||
! soft_touch N_det psi_det psi_coef
|
||||
! if (s2_eig) then
|
||||
! call make_s2_eigenfunction
|
||||
! endif
|
||||
! print_pt2 = .False.
|
||||
! call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
! call routine_save_right
|
||||
! endif
|
||||
|
||||
allocate(ept2(1000),pt1(1000),extrap_energy(100))
|
||||
|
||||
correlation_energy_ratio = 0.d0
|
||||
|
||||
! thresh_it_dav = 5.d-5
|
||||
! soft_touch thresh_it_dav
|
||||
|
||||
print_pt2 = .True.
|
||||
do while ( &
|
||||
(N_det < N_det_max) .and. &
|
||||
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) &
|
||||
)
|
||||
write(*,'(A)') '--------------------------------------------------------------------------------'
|
||||
|
||||
|
||||
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
|
||||
to_select = max(N_states_diag, to_select)
|
||||
|
||||
E_denom = E_tc ! TC Energy of the current wave function
|
||||
call pt2_dealloc(pt2_data)
|
||||
call pt2_dealloc(pt2_data_err)
|
||||
call pt2_alloc(pt2_data, N_states)
|
||||
call pt2_alloc(pt2_data_err, N_states)
|
||||
call ZMQ_pt2(E_denom, pt2_data, pt2_data_err, relative_error,to_select) ! Stochastic PT2 and selection
|
||||
! stop
|
||||
|
||||
N_iter += 1
|
||||
|
||||
if (qp_stop()) exit
|
||||
|
||||
! Add selected determinants
|
||||
call copy_H_apply_buffer_to_wf_tc()
|
||||
|
||||
PROVIDE psi_l_coef_bi_ortho psi_r_coef_bi_ortho
|
||||
PROVIDE psi_det
|
||||
PROVIDE psi_det_sorted_tc
|
||||
|
||||
ept2(N_iter-1) = E_tc + nuclear_repulsion + (pt2_data % pt2(1))/norm
|
||||
pt1(N_iter-1) = dsqrt(pt2_data % overlap(1,1))
|
||||
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
if (qp_stop()) exit
|
||||
enddo
|
||||
! print*,'data to extrapolate '
|
||||
! do i = 2, N_iter
|
||||
! print*,'iteration ',i
|
||||
! print*,'pt1,Ept2',pt1(i),ept2(i)
|
||||
! call get_extrapolated_energy(i-1,ept2(i),pt1(i),extrap_energy(i))
|
||||
! do j = 2, i
|
||||
! print*,'j,e,energy',j,extrap_energy(j)
|
||||
! enddo
|
||||
! enddo
|
||||
|
||||
! thresh_it_dav = 5.d-6
|
||||
! soft_touch thresh_it_dav
|
||||
|
||||
call pt2_dealloc(pt2_data)
|
||||
call pt2_dealloc(pt2_data_err)
|
||||
call pt2_alloc(pt2_data, N_states)
|
||||
call pt2_alloc(pt2_data_err, N_states)
|
||||
call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,0) ! Stochastic PT2 and selection
|
||||
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
! if (.not.qp_stop()) then
|
||||
! if (N_det < N_det_max) then
|
||||
! thresh_it_dav = 5.d-7
|
||||
! soft_touch thresh_it_dav
|
||||
! call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
! endif
|
||||
!
|
||||
! call pt2_dealloc(pt2_data)
|
||||
! call pt2_dealloc(pt2_data_err)
|
||||
! call pt2_alloc(pt2_data, N_states)
|
||||
! call pt2_alloc(pt2_data_err, N_states)
|
||||
! call ZMQ_pt2(E_denom, pt2_data, pt2_data_err, relative_error, 0) ! Stochastic PT2
|
||||
! call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
! endif
|
||||
! call pt2_dealloc(pt2_data)
|
||||
! call pt2_dealloc(pt2_data_err)
|
||||
! call routine_save_right
|
||||
|
||||
end
|
||||
|
235
src/cipsi_tc_bi_ortho/zmq_selection.irp.f
Normal file
235
src/cipsi_tc_bi_ortho/zmq_selection.irp.f
Normal file
@ -0,0 +1,235 @@
|
||||
subroutine ZMQ_selection(N_in, pt2_data)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
|
||||
implicit none
|
||||
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket , zmq_socket_pull
|
||||
integer, intent(in) :: N_in
|
||||
type(selection_buffer) :: b
|
||||
integer :: i, l, N
|
||||
integer, external :: omp_get_thread_num
|
||||
type(pt2_type), intent(inout) :: pt2_data
|
||||
|
||||
PROVIDE psi_det psi_coef N_det qp_max_mem N_states pt2_F s2_eig N_det_generators
|
||||
|
||||
N = max(N_in,1)
|
||||
N = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2)
|
||||
if (.True.) then
|
||||
PROVIDE pt2_e0_denominator nproc
|
||||
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
|
||||
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_tc_order psi_bilinear_matrix_order
|
||||
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
||||
PROVIDE psi_bilinear_matrix_transp_order selection_weight pseudo_sym
|
||||
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
|
||||
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
|
||||
|
||||
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'selection')
|
||||
|
||||
integer, external :: zmq_put_psi
|
||||
integer, external :: zmq_put_N_det_generators
|
||||
integer, external :: zmq_put_N_det_selectors
|
||||
integer, external :: zmq_put_dvector
|
||||
|
||||
if (zmq_put_psi(zmq_to_qp_run_socket,1) == -1) then
|
||||
stop 'Unable to put psi on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_N_det_generators(zmq_to_qp_run_socket, 1) == -1) then
|
||||
stop 'Unable to put N_det_generators on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) then
|
||||
stop 'Unable to put N_det_selectors on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'energy',pt2_e0_denominator,size(pt2_e0_denominator)) == -1) then
|
||||
stop 'Unable to put energy on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) then
|
||||
stop 'Unable to put state_average_weight on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) then
|
||||
stop 'Unable to put selection_weight on ZMQ server'
|
||||
endif
|
||||
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'threshold_generators',(/threshold_generators/),1) == -1) then
|
||||
stop 'Unable to put threshold_generators on ZMQ server'
|
||||
endif
|
||||
call create_selection_buffer(N, N*2, b)
|
||||
endif
|
||||
|
||||
integer, external :: add_task_to_taskserver
|
||||
character(len=100000) :: task
|
||||
integer :: j,k,ipos
|
||||
ipos=1
|
||||
task = ' '
|
||||
|
||||
|
||||
do i= 1, N_det_generators
|
||||
do j=1,pt2_F(i)
|
||||
write(task(ipos:ipos+30),'(I9,1X,I9,1X,I9,''|'')') j, i, N
|
||||
ipos += 30
|
||||
if (ipos > 100000-30) then
|
||||
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
|
||||
stop 'Unable to add task to task server'
|
||||
endif
|
||||
ipos=1
|
||||
endif
|
||||
end do
|
||||
enddo
|
||||
if (ipos > 1) then
|
||||
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
|
||||
stop 'Unable to add task to task server'
|
||||
endif
|
||||
endif
|
||||
N = max(N_in,1)
|
||||
|
||||
|
||||
ASSERT (associated(b%det))
|
||||
ASSERT (associated(b%val))
|
||||
|
||||
integer, external :: zmq_set_running
|
||||
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
|
||||
print *, irp_here, ': Failed in zmq_set_running'
|
||||
endif
|
||||
|
||||
integer :: nproc_target
|
||||
if (N_det < 3*nproc) then
|
||||
nproc_target = N_det/4
|
||||
else
|
||||
nproc_target = nproc
|
||||
endif
|
||||
double precision :: mem
|
||||
mem = 8.d0 * N_det * (N_int * 2.d0 * 3.d0 + 3.d0 + 5.d0) / (1024.d0**3)
|
||||
call write_double(6,mem,'Estimated memory/thread (Gb)')
|
||||
if (qp_max_mem > 0) then
|
||||
nproc_target = max(1,int(dble(qp_max_mem)/(0.1d0 + mem)))
|
||||
nproc_target = min(nproc_target,nproc)
|
||||
endif
|
||||
|
||||
f(:) = 1.d0
|
||||
if (.not.do_pt2) then
|
||||
double precision :: f(N_states), u_dot_u
|
||||
do k=1,min(N_det,N_states)
|
||||
f(k) = 1.d0 / u_dot_u(psi_selectors_coef(1,k), N_det_selectors)
|
||||
enddo
|
||||
endif
|
||||
|
||||
!$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2_data) PRIVATE(i) NUM_THREADS(nproc_target+1)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
call selection_collector(zmq_socket_pull, b, N, pt2_data)
|
||||
else
|
||||
call selection_slave_inproc(i)
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'selection')
|
||||
if (N_in > 0) then
|
||||
if (s2_eig) then
|
||||
call make_selection_buffer_s2(b)
|
||||
endif
|
||||
call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0)
|
||||
endif
|
||||
call delete_selection_buffer(b)
|
||||
|
||||
do k=1,N_states
|
||||
pt2_data % pt2(k) = pt2_data % pt2(k) * f(k)
|
||||
pt2_data % variance(k) = pt2_data % variance(k) * f(k)
|
||||
do l=1,N_states
|
||||
pt2_data % overlap(k,l) = pt2_data % overlap(k,l) * dsqrt(f(k)*f(l))
|
||||
pt2_data % overlap(l,k) = pt2_data % overlap(l,k) * dsqrt(f(k)*f(l))
|
||||
enddo
|
||||
|
||||
pt2_data % rpt2(k) = &
|
||||
pt2_data % pt2(k)/(1.d0 + pt2_data % overlap(k,k))
|
||||
enddo
|
||||
|
||||
pt2_overlap(:,:) = pt2_data % overlap(:,:)
|
||||
|
||||
print *, 'Overlap of perturbed states:'
|
||||
do l=1,N_states
|
||||
print *, pt2_overlap(l,:)
|
||||
enddo
|
||||
print *, '-------'
|
||||
SOFT_TOUCH pt2_overlap
|
||||
call update_pt2_and_variance_weights(pt2_data, N_states)
|
||||
|
||||
end subroutine
|
||||
|
||||
|
||||
subroutine selection_slave_inproc(i)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
|
||||
call run_selection_slave(1,i,pt2_e0_denominator)
|
||||
end
|
||||
|
||||
subroutine selection_collector(zmq_socket_pull, b, N, pt2_data)
|
||||
use f77_zmq
|
||||
use selection_types
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
|
||||
type(selection_buffer), intent(inout) :: b
|
||||
integer, intent(in) :: N
|
||||
type(pt2_type), intent(inout) :: pt2_data
|
||||
type(pt2_type) :: pt2_data_tmp
|
||||
|
||||
double precision :: pt2_mwen(N_states)
|
||||
double precision :: variance_mwen(N_states)
|
||||
double precision :: norm2_mwen(N_states)
|
||||
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
|
||||
|
||||
integer(ZMQ_PTR), external :: new_zmq_pull_socket
|
||||
|
||||
integer :: msg_size, rc, more
|
||||
integer :: acc, i, j, robin, ntask
|
||||
double precision, pointer :: val(:)
|
||||
integer(bit_kind), pointer :: det(:,:,:)
|
||||
integer, allocatable :: task_id(:)
|
||||
type(selection_buffer) :: b2
|
||||
|
||||
|
||||
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
call create_selection_buffer(N, N*2, b2)
|
||||
integer :: k
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_int
|
||||
rss = memory_of_int(N_det_generators)
|
||||
call check_mem(rss,irp_here)
|
||||
allocate(task_id(N_det_generators))
|
||||
more = 1
|
||||
pt2_data % pt2(:) = 0d0
|
||||
pt2_data % variance(:) = 0.d0
|
||||
pt2_data % overlap(:,:) = 0.d0
|
||||
call pt2_alloc(pt2_data_tmp,N_states)
|
||||
do while (more == 1)
|
||||
call pull_selection_results(zmq_socket_pull, pt2_data_tmp, b2%val(1), b2%det(1,1,1), b2%cur, task_id, ntask)
|
||||
|
||||
call pt2_add(pt2_data, 1.d0, pt2_data_tmp)
|
||||
do i=1, b2%cur
|
||||
call add_to_selection_buffer(b, b2%det(1,1,i), b2%val(i))
|
||||
if (b2%val(i) > b%mini) exit
|
||||
end do
|
||||
|
||||
do i=1, ntask
|
||||
if(task_id(i) == 0) then
|
||||
print *, "Error in collector"
|
||||
endif
|
||||
integer, external :: zmq_delete_task
|
||||
if (zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more) == -1) then
|
||||
stop 'Unable to delete task'
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
call pt2_dealloc(pt2_data_tmp)
|
||||
|
||||
|
||||
call delete_selection_buffer(b2)
|
||||
call sort_selection_buffer(b)
|
||||
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
|
||||
end subroutine
|
||||
|
@ -0,0 +1,500 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine davidson_general_diag_dressed_ext_rout_nonsym_b1space(u_in, H_jj, Dress_jj,energies, sze, N_st, N_st_diag_in, converged, hcalc)
|
||||
|
||||
use mmap_module
|
||||
|
||||
BEGIN_DOC
|
||||
! Generic modified-Davidson diagonalization
|
||||
!
|
||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten on exit by right eigenvectors
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > N_st
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
!
|
||||
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: sze, N_st, N_st_diag_in
|
||||
double precision, intent(in) :: H_jj(sze),Dress_jj(sze)
|
||||
logical, intent(inout) :: converged
|
||||
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
external hcalc
|
||||
|
||||
character*(16384) :: write_buffer
|
||||
integer :: iter, N_st_diag
|
||||
integer :: i, j, k, l, m
|
||||
integer :: iter2, itertot
|
||||
logical :: disk_based
|
||||
integer :: shift, shift2, itermax
|
||||
integer :: nproc_target
|
||||
integer :: order(N_st_diag_in)
|
||||
double precision :: to_print(2,N_st)
|
||||
double precision :: r1, r2, alpha
|
||||
double precision :: cpu, wall
|
||||
double precision :: cmax
|
||||
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
|
||||
double precision, allocatable :: U(:,:)
|
||||
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||
double precision, allocatable :: residual_norm(:)
|
||||
|
||||
double precision :: lambda_tmp
|
||||
integer, allocatable :: i_omax(:)
|
||||
double precision, allocatable :: U_tmp(:), overlap(:)
|
||||
|
||||
double precision, allocatable :: W(:,:)
|
||||
!double precision, pointer :: W(:,:)
|
||||
double precision, external :: u_dot_v, u_dot_u
|
||||
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
N_st_diag = N_st_diag_in
|
||||
! print*,'trial vector'
|
||||
do i = 1, sze
|
||||
if(isnan(u_in(i,1)))then
|
||||
print*,'pb in input vector of davidson_general_ext_rout_nonsym_b1space'
|
||||
print*,i,u_in(i,1)
|
||||
stop
|
||||
else if (dabs(u_in(i,1)).lt.1.d-16)then
|
||||
u_in(i,1) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
||||
if(N_st_diag*3 > sze) then
|
||||
print *, 'error in Davidson :'
|
||||
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
||||
stop -1
|
||||
endif
|
||||
|
||||
itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1
|
||||
|
||||
provide threshold_nonsym_davidson
|
||||
call write_time(6)
|
||||
write(6,'(A)') ''
|
||||
write(6,'(A)') 'Davidson Diagonalization'
|
||||
write(6,'(A)') '------------------------'
|
||||
write(6,'(A)') ''
|
||||
|
||||
|
||||
! Find max number of cores to fit in memory
|
||||
! -----------------------------------------
|
||||
|
||||
nproc_target = nproc
|
||||
double precision :: rss
|
||||
integer :: maxab
|
||||
maxab = sze
|
||||
|
||||
m=1
|
||||
disk_based = .False.
|
||||
call resident_memory(rss)
|
||||
do
|
||||
r1 = 8.d0 * &! bytes
|
||||
( dble(sze)*(N_st_diag*itermax) &! U
|
||||
+ 1.d0*dble(sze*m)*(N_st_diag*itermax) &! W
|
||||
+ 2.d0*(N_st_diag*itermax)**2 &! h,y
|
||||
+ 2.d0*(N_st_diag*itermax) &! s2,lambda
|
||||
+ 1.d0*(N_st_diag) &! residual_norm
|
||||
! In H_S2_u_0_nstates_zmq
|
||||
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
|
||||
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
|
||||
+ 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
|
||||
+ nproc_target * &! In OMP section
|
||||
( 1.d0*(N_int*maxab) &! buffer
|
||||
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||
) / 1024.d0**3
|
||||
|
||||
if(nproc_target == 0) then
|
||||
call check_mem(r1, irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if(r1+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
if(itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
else if (m==1.and.disk_based_davidson) then
|
||||
m = 0
|
||||
disk_based = .True.
|
||||
itermax = 6
|
||||
else
|
||||
nproc_target = nproc_target - 1
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
nthreads_davidson = nproc_target
|
||||
TOUCH nthreads_davidson
|
||||
|
||||
call write_int(6, N_st, 'Number of states')
|
||||
call write_int(6, N_st_diag, 'Number of states in diagonalization')
|
||||
call write_int(6, sze, 'Number of basis functions')
|
||||
call write_int(6, nproc_target, 'Number of threads for diagonalization')
|
||||
call write_double(6, r1, 'Memory(Gb)')
|
||||
if(disk_based) then
|
||||
print *, 'Using swap space to reduce RAM'
|
||||
endif
|
||||
|
||||
!---------------
|
||||
|
||||
write(6,'(A)') ''
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = 'Iter'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' Energy Residual '
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
allocate( W(sze,N_st_diag*itermax) )
|
||||
|
||||
allocate( &
|
||||
! Large
|
||||
U(sze,N_st_diag*itermax), &
|
||||
! Small
|
||||
h(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
y(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
lambda(N_st_diag*itermax), &
|
||||
residual_norm(N_st_diag), &
|
||||
i_omax(N_st) &
|
||||
)
|
||||
|
||||
U = 0.d0
|
||||
h = 0.d0
|
||||
y = 0.d0
|
||||
lambda = 0.d0
|
||||
residual_norm = 0.d0
|
||||
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
converged = .False.
|
||||
|
||||
! Initialize from N_st to N_st_diag with gaussian random numbers
|
||||
! to be sure to have overlap with any eigenvectors
|
||||
do k = N_st+1, N_st_diag
|
||||
u_in(k,k) = 10.d0
|
||||
do i = 1, sze
|
||||
call random_number(r1)
|
||||
call random_number(r2)
|
||||
r1 = dsqrt(-2.d0*dlog(r1))
|
||||
r2 = dtwo_pi*r2
|
||||
u_in(i,k) = r1*dcos(r2)
|
||||
enddo
|
||||
enddo
|
||||
! Normalize all states
|
||||
do k = 1, N_st_diag
|
||||
call normalize(u_in(1,k), sze)
|
||||
enddo
|
||||
|
||||
! Copy from the guess input "u_in" to the working vectors "U"
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
itertot = 0
|
||||
|
||||
do while (.not.converged)
|
||||
|
||||
itertot = itertot + 1
|
||||
if(itertot == 8) then
|
||||
exit
|
||||
endif
|
||||
|
||||
do iter = 1, itermax-1
|
||||
|
||||
shift = N_st_diag * (iter-1)
|
||||
shift2 = N_st_diag * iter
|
||||
|
||||
if( (iter > 1) .or. (itertot == 1) ) then
|
||||
|
||||
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
||||
call ortho_qr(U, size(U, 1), sze, shift2)
|
||||
call ortho_qr(U, size(U, 1), sze, shift2)
|
||||
|
||||
! W = H U
|
||||
call hcalc(W(1,shift+1), U(1,shift+1), N_st_diag, sze)
|
||||
call dress_calc(W(1,shift+1), Dress_jj, U(1,shift+1), N_st_diag, sze)
|
||||
|
||||
else
|
||||
|
||||
! Already computed in update below
|
||||
continue
|
||||
endif
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 &
|
||||
, U, size(U, 1), W, size(W, 1) &
|
||||
, 0.d0, h, size(h, 1) )
|
||||
|
||||
|
||||
! Diagonalize h y = lambda y
|
||||
! ---------------------------
|
||||
call diag_nonsym_right(shift2, h(1,1), size(h, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1))
|
||||
|
||||
|
||||
! Express eigenvectors of h in the determinant basis:
|
||||
! ---------------------------------------------------
|
||||
|
||||
! y(:,k) = rk
|
||||
! U(:,k) = Bk
|
||||
! U(:,shift2+k) = Rk = Bk x rk
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, U, size(U, 1), y, size(y, 1) &
|
||||
, 0.d0, U(1,shift2+1), size(U, 1) )
|
||||
|
||||
do k = 1, N_st_diag
|
||||
call normalize(U(1,shift2+k), sze)
|
||||
enddo
|
||||
|
||||
! ---
|
||||
! select the max overlap
|
||||
|
||||
!
|
||||
! start test ------------------------------------------------------------------------
|
||||
!
|
||||
!double precision, allocatable :: Utest(:,:), Otest(:)
|
||||
!allocate( Utest(sze,shift2), Otest(shift2) )
|
||||
|
||||
!call dgemm( 'N', 'N', sze, shift2, shift2, 1.d0 &
|
||||
! , U, size(U, 1), y, size(y, 1), 0.d0, Utest(1,1), size(Utest, 1) )
|
||||
!do k = 1, shift2
|
||||
! call normalize(Utest(1,k), sze)
|
||||
!enddo
|
||||
!do j = 1, sze
|
||||
! write(455, '(100(1X, F16.10))') (Utest(j,k), k=1,shift2)
|
||||
!enddo
|
||||
|
||||
!do k = 1, shift2
|
||||
! Otest(k) = 0.d0
|
||||
! do i = 1, sze
|
||||
! Otest(k) += Utest(i,k) * u_in(i,1)
|
||||
! enddo
|
||||
! Otest(k) = dabs(Otest(k))
|
||||
! print *, ' Otest =', k, Otest(k), lambda(k)
|
||||
!enddo
|
||||
|
||||
!deallocate(Utest, Otest)
|
||||
!
|
||||
! end test ------------------------------------------------------------------------
|
||||
!
|
||||
|
||||
! TODO
|
||||
! state_following is more efficient
|
||||
do l = 1, N_st
|
||||
|
||||
allocate( overlap(N_st_diag) )
|
||||
|
||||
do k = 1, N_st_diag
|
||||
overlap(k) = 0.d0
|
||||
do i = 1, sze
|
||||
overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,l)
|
||||
enddo
|
||||
overlap(k) = dabs(overlap(k))
|
||||
!print *, ' overlap =', k, overlap(k)
|
||||
enddo
|
||||
|
||||
lambda_tmp = 0.d0
|
||||
do k = 1, N_st_diag
|
||||
if(overlap(k) .gt. lambda_tmp) then
|
||||
i_omax(l) = k
|
||||
lambda_tmp = overlap(k)
|
||||
endif
|
||||
enddo
|
||||
|
||||
deallocate(overlap)
|
||||
|
||||
if(lambda_tmp .lt. 0.7d0) then
|
||||
print *, ' very small overlap ...', l, i_omax(l)
|
||||
print *, ' max overlap = ', lambda_tmp
|
||||
stop
|
||||
endif
|
||||
|
||||
if(i_omax(l) .ne. l) then
|
||||
print *, ' !!! WARNONG !!!'
|
||||
print *, ' index of state', l, i_omax(l)
|
||||
endif
|
||||
enddo
|
||||
|
||||
! y(:,k) = rk
|
||||
! W(:,k) = H x Bk
|
||||
! W(:,shift2+k) = H x Bk x rk
|
||||
! = Wk
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, W, size(W, 1), y, size(y, 1) &
|
||||
, 0.d0, W(1,shift2+1), size(W, 1) )
|
||||
|
||||
! ---
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2)
|
||||
enddo
|
||||
if(k <= N_st) then
|
||||
l = k
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+l), sze)
|
||||
to_print(1,k) = lambda(l)
|
||||
to_print(2,k) = residual_norm(l)
|
||||
endif
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!residual_norm(1) = u_dot_u(U(1,shift2+1), sze)
|
||||
!to_print(1,1) = lambda(1)
|
||||
!to_print(2,1) = residual_norm(1)
|
||||
|
||||
|
||||
if( (itertot > 1) .and. (iter == 1) ) then
|
||||
!don't print
|
||||
continue
|
||||
else
|
||||
write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, F16.10, 1X, F16.10))') iter-1, to_print(1:2,1:N_st)
|
||||
endif
|
||||
|
||||
! Check convergence
|
||||
if(iter > 1) then
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson
|
||||
endif
|
||||
|
||||
do k = 1, N_st
|
||||
if(residual_norm(k) > 1.e8) then
|
||||
print *, 'Davidson failed'
|
||||
stop -1
|
||||
endif
|
||||
enddo
|
||||
if(converged) then
|
||||
exit
|
||||
endif
|
||||
|
||||
logical, external :: qp_stop
|
||||
if(qp_stop()) then
|
||||
converged = .True.
|
||||
exit
|
||||
endif
|
||||
|
||||
enddo ! loop over iter
|
||||
|
||||
|
||||
! Re-contract U and update W
|
||||
! --------------------------------
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, W, size(W, 1), y, size(y, 1) &
|
||||
, 0.d0, u_in, size(u_in, 1) )
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
W(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, U, size(U, 1), y, size(y, 1) &
|
||||
, 0.d0, u_in, size(u_in, 1) )
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call ortho_qr(U, size(U, 1), sze, N_st_diag)
|
||||
call ortho_qr(U, size(U, 1), sze, N_st_diag)
|
||||
do j = 1, N_st_diag
|
||||
k = 1
|
||||
do while( (k < sze) .and. (U(k,j) == 0.d0) )
|
||||
k = k+1
|
||||
enddo
|
||||
if(U(k,j) * u_in(k,j) < 0.d0) then
|
||||
do i = 1, sze
|
||||
W(i,j) = -W(i,j)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
enddo ! loop over while
|
||||
|
||||
! ---
|
||||
|
||||
do k = 1, N_st
|
||||
energies(k) = lambda(k)
|
||||
enddo
|
||||
write_buffer = '====='
|
||||
do i = 1, N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') trim(write_buffer)
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
deallocate(W)
|
||||
deallocate(U, h, y, lambda, residual_norm, i_omax)
|
||||
|
||||
FREE nthreads_davidson
|
||||
|
||||
end subroutine davidson_general_ext_rout_nonsym_b1space
|
||||
|
||||
! ---
|
||||
|
||||
subroutine dress_calc(v,dress,u,N_st,sze)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Routine that computed the action of the diagonal dressing dress
|
||||
!
|
||||
! WARNING :: v is not initialiazed !!!
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
double precision, intent(in) :: u(sze,N_st),dress(sze)
|
||||
double precision, intent(inout) :: v(sze,N_st)
|
||||
integer :: i,istate
|
||||
|
||||
do istate = 1, N_st
|
||||
do i = 1, sze
|
||||
v(i,istate) += dress(i) * u(i,istate)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
473
src/dav_general_mat/dav_ext_rout_nonsym_B1space.irp.f
Normal file
473
src/dav_general_mat/dav_ext_rout_nonsym_B1space.irp.f
Normal file
@ -0,0 +1,473 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N_st, N_st_diag_in, converged, hcalc)
|
||||
|
||||
use mmap_module
|
||||
|
||||
BEGIN_DOC
|
||||
! Generic modified-Davidson diagonalization
|
||||
!
|
||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten on exit by right eigenvectors
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > N_st
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
!
|
||||
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: sze, N_st, N_st_diag_in
|
||||
double precision, intent(in) :: H_jj(sze)
|
||||
logical, intent(inout) :: converged
|
||||
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
external hcalc
|
||||
|
||||
character*(16384) :: write_buffer
|
||||
integer :: iter, N_st_diag
|
||||
integer :: i, j, k, l, m
|
||||
integer :: iter2, itertot
|
||||
logical :: disk_based
|
||||
integer :: shift, shift2, itermax
|
||||
integer :: nproc_target
|
||||
integer :: order(N_st_diag_in)
|
||||
double precision :: to_print(2,N_st)
|
||||
double precision :: r1, r2, alpha
|
||||
double precision :: cpu, wall
|
||||
double precision :: cmax
|
||||
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
|
||||
double precision, allocatable :: U(:,:)
|
||||
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||
double precision, allocatable :: residual_norm(:)
|
||||
|
||||
double precision :: lambda_tmp
|
||||
integer, allocatable :: i_omax(:)
|
||||
double precision, allocatable :: U_tmp(:), overlap(:)
|
||||
|
||||
double precision, allocatable :: W(:,:)
|
||||
!double precision, pointer :: W(:,:)
|
||||
double precision, external :: u_dot_v, u_dot_u
|
||||
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
N_st_diag = N_st_diag_in
|
||||
! print*,'trial vector'
|
||||
do i = 1, sze
|
||||
if(isnan(u_in(i,1)))then
|
||||
print*,'pb in input vector of davidson_general_ext_rout_nonsym_b1space'
|
||||
print*,i,u_in(i,1)
|
||||
stop
|
||||
else if (dabs(u_in(i,1)).lt.1.d-16)then
|
||||
u_in(i,1) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
||||
if(N_st_diag*3 > sze) then
|
||||
print *, 'error in Davidson :'
|
||||
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
||||
stop -1
|
||||
endif
|
||||
|
||||
itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1
|
||||
|
||||
provide threshold_nonsym_davidson
|
||||
call write_time(6)
|
||||
write(6,'(A)') ''
|
||||
write(6,'(A)') 'Davidson Diagonalization'
|
||||
write(6,'(A)') '------------------------'
|
||||
write(6,'(A)') ''
|
||||
|
||||
|
||||
! Find max number of cores to fit in memory
|
||||
! -----------------------------------------
|
||||
|
||||
nproc_target = nproc
|
||||
double precision :: rss
|
||||
integer :: maxab
|
||||
maxab = sze
|
||||
|
||||
m=1
|
||||
disk_based = .False.
|
||||
call resident_memory(rss)
|
||||
do
|
||||
r1 = 8.d0 * &! bytes
|
||||
( dble(sze)*(N_st_diag*itermax) &! U
|
||||
+ 1.d0*dble(sze*m)*(N_st_diag*itermax) &! W
|
||||
+ 2.d0*(N_st_diag*itermax)**2 &! h,y
|
||||
+ 2.d0*(N_st_diag*itermax) &! s2,lambda
|
||||
+ 1.d0*(N_st_diag) &! residual_norm
|
||||
! In H_S2_u_0_nstates_zmq
|
||||
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
|
||||
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
|
||||
+ 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
|
||||
+ nproc_target * &! In OMP section
|
||||
( 1.d0*(N_int*maxab) &! buffer
|
||||
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||
) / 1024.d0**3
|
||||
|
||||
if(nproc_target == 0) then
|
||||
call check_mem(r1, irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if(r1+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
if(itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
! else if (m==1.and.disk_based_davidson) then
|
||||
! m = 0
|
||||
! disk_based = .True.
|
||||
! itermax = 6
|
||||
else
|
||||
nproc_target = nproc_target - 1
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
nthreads_davidson = nproc_target
|
||||
TOUCH nthreads_davidson
|
||||
|
||||
call write_int(6, N_st, 'Number of states')
|
||||
call write_int(6, N_st_diag, 'Number of states in diagonalization')
|
||||
call write_int(6, sze, 'Number of basis functions')
|
||||
call write_int(6, nproc_target, 'Number of threads for diagonalization')
|
||||
call write_double(6, r1, 'Memory(Gb)')
|
||||
if(disk_based) then
|
||||
print *, 'Using swap space to reduce RAM'
|
||||
endif
|
||||
|
||||
!---------------
|
||||
|
||||
write(6,'(A)') ''
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = 'Iter'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' Energy Residual '
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
allocate( W(sze,N_st_diag*itermax) )
|
||||
|
||||
allocate( &
|
||||
! Large
|
||||
U(sze,N_st_diag*itermax), &
|
||||
! Small
|
||||
h(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
y(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
lambda(N_st_diag*itermax), &
|
||||
residual_norm(N_st_diag), &
|
||||
i_omax(N_st) &
|
||||
)
|
||||
|
||||
U = 0.d0
|
||||
h = 0.d0
|
||||
y = 0.d0
|
||||
lambda = 0.d0
|
||||
residual_norm = 0.d0
|
||||
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
converged = .False.
|
||||
|
||||
! Initialize from N_st to N_st_diag with gaussian random numbers
|
||||
! to be sure to have overlap with any eigenvectors
|
||||
do k = N_st+1, N_st_diag
|
||||
u_in(k,k) = 10.d0
|
||||
do i = 1, sze
|
||||
call random_number(r1)
|
||||
call random_number(r2)
|
||||
r1 = dsqrt(-2.d0*dlog(r1))
|
||||
r2 = dtwo_pi*r2
|
||||
u_in(i,k) = r1*dcos(r2)
|
||||
enddo
|
||||
enddo
|
||||
! Normalize all states
|
||||
do k = 1, N_st_diag
|
||||
call normalize(u_in(1,k), sze)
|
||||
enddo
|
||||
|
||||
! Copy from the guess input "u_in" to the working vectors "U"
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
itertot = 0
|
||||
|
||||
do while (.not.converged)
|
||||
|
||||
itertot = itertot + 1
|
||||
if(itertot == 8) then
|
||||
exit
|
||||
endif
|
||||
|
||||
do iter = 1, itermax-1
|
||||
|
||||
shift = N_st_diag * (iter-1)
|
||||
shift2 = N_st_diag * iter
|
||||
|
||||
if( (iter > 1) .or. (itertot == 1) ) then
|
||||
|
||||
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
||||
call ortho_qr(U, size(U, 1), sze, shift2)
|
||||
call ortho_qr(U, size(U, 1), sze, shift2)
|
||||
|
||||
! W = H U
|
||||
call hcalc(W(1,shift+1), U(1,shift+1), N_st_diag, sze)
|
||||
|
||||
else
|
||||
|
||||
! Already computed in update below
|
||||
continue
|
||||
endif
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 &
|
||||
, U, size(U, 1), W, size(W, 1) &
|
||||
, 0.d0, h, size(h, 1) )
|
||||
|
||||
|
||||
! Diagonalize h y = lambda y
|
||||
! ---------------------------
|
||||
call diag_nonsym_right(shift2, h(1,1), size(h, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1))
|
||||
|
||||
|
||||
! Express eigenvectors of h in the determinant basis:
|
||||
! ---------------------------------------------------
|
||||
|
||||
! y(:,k) = rk
|
||||
! U(:,k) = Bk
|
||||
! U(:,shift2+k) = Rk = Bk x rk
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, U, size(U, 1), y, size(y, 1) &
|
||||
, 0.d0, U(1,shift2+1), size(U, 1) )
|
||||
|
||||
do k = 1, N_st_diag
|
||||
call normalize(U(1,shift2+k), sze)
|
||||
enddo
|
||||
|
||||
! ---
|
||||
! select the max overlap
|
||||
|
||||
!
|
||||
! start test ------------------------------------------------------------------------
|
||||
!
|
||||
!double precision, allocatable :: Utest(:,:), Otest(:)
|
||||
!allocate( Utest(sze,shift2), Otest(shift2) )
|
||||
|
||||
!call dgemm( 'N', 'N', sze, shift2, shift2, 1.d0 &
|
||||
! , U, size(U, 1), y, size(y, 1), 0.d0, Utest(1,1), size(Utest, 1) )
|
||||
!do k = 1, shift2
|
||||
! call normalize(Utest(1,k), sze)
|
||||
!enddo
|
||||
!do j = 1, sze
|
||||
! write(455, '(100(1X, F16.10))') (Utest(j,k), k=1,shift2)
|
||||
!enddo
|
||||
|
||||
!do k = 1, shift2
|
||||
! Otest(k) = 0.d0
|
||||
! do i = 1, sze
|
||||
! Otest(k) += Utest(i,k) * u_in(i,1)
|
||||
! enddo
|
||||
! Otest(k) = dabs(Otest(k))
|
||||
! print *, ' Otest =', k, Otest(k), lambda(k)
|
||||
!enddo
|
||||
|
||||
!deallocate(Utest, Otest)
|
||||
!
|
||||
! end test ------------------------------------------------------------------------
|
||||
!
|
||||
|
||||
! TODO
|
||||
! state_following is more efficient
|
||||
do l = 1, N_st
|
||||
|
||||
allocate( overlap(N_st_diag) )
|
||||
|
||||
do k = 1, N_st_diag
|
||||
overlap(k) = 0.d0
|
||||
do i = 1, sze
|
||||
overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,l)
|
||||
enddo
|
||||
overlap(k) = dabs(overlap(k))
|
||||
!print *, ' overlap =', k, overlap(k)
|
||||
enddo
|
||||
|
||||
lambda_tmp = 0.d0
|
||||
do k = 1, N_st_diag
|
||||
if(overlap(k) .gt. lambda_tmp) then
|
||||
i_omax(l) = k
|
||||
lambda_tmp = overlap(k)
|
||||
endif
|
||||
enddo
|
||||
|
||||
deallocate(overlap)
|
||||
|
||||
if(lambda_tmp .lt. 0.7d0) then
|
||||
print *, ' very small overlap ...', l, i_omax(l)
|
||||
print *, ' max overlap = ', lambda_tmp
|
||||
stop
|
||||
endif
|
||||
|
||||
if(i_omax(l) .ne. l) then
|
||||
print *, ' !!! WARNONG !!!'
|
||||
print *, ' index of state', l, i_omax(l)
|
||||
endif
|
||||
enddo
|
||||
|
||||
! y(:,k) = rk
|
||||
! W(:,k) = H x Bk
|
||||
! W(:,shift2+k) = H x Bk x rk
|
||||
! = Wk
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, W, size(W, 1), y, size(y, 1) &
|
||||
, 0.d0, W(1,shift2+1), size(W, 1) )
|
||||
|
||||
! ---
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2)
|
||||
enddo
|
||||
if(k <= N_st) then
|
||||
l = k
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+l), sze)
|
||||
to_print(1,k) = lambda(l)
|
||||
to_print(2,k) = residual_norm(l)
|
||||
endif
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!residual_norm(1) = u_dot_u(U(1,shift2+1), sze)
|
||||
!to_print(1,1) = lambda(1)
|
||||
!to_print(2,1) = residual_norm(1)
|
||||
|
||||
|
||||
if( (itertot > 1) .and. (iter == 1) ) then
|
||||
!don't print
|
||||
continue
|
||||
else
|
||||
write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, F16.10, 1X, F16.10))') iter-1, to_print(1:2,1:N_st)
|
||||
endif
|
||||
|
||||
! Check convergence
|
||||
if(iter > 1) then
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson
|
||||
endif
|
||||
|
||||
do k = 1, N_st
|
||||
if(residual_norm(k) > 1.e8) then
|
||||
print *, 'Davidson failed'
|
||||
stop -1
|
||||
endif
|
||||
enddo
|
||||
if(converged) then
|
||||
exit
|
||||
endif
|
||||
|
||||
logical, external :: qp_stop
|
||||
if(qp_stop()) then
|
||||
converged = .True.
|
||||
exit
|
||||
endif
|
||||
|
||||
enddo ! loop over iter
|
||||
|
||||
|
||||
! Re-contract U and update W
|
||||
! --------------------------------
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, W, size(W, 1), y, size(y, 1) &
|
||||
, 0.d0, u_in, size(u_in, 1) )
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
W(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, U, size(U, 1), y, size(y, 1) &
|
||||
, 0.d0, u_in, size(u_in, 1) )
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call ortho_qr(U, size(U, 1), sze, N_st_diag)
|
||||
call ortho_qr(U, size(U, 1), sze, N_st_diag)
|
||||
do j = 1, N_st_diag
|
||||
k = 1
|
||||
do while( (k < sze) .and. (U(k,j) == 0.d0) )
|
||||
k = k+1
|
||||
enddo
|
||||
if(U(k,j) * u_in(k,j) < 0.d0) then
|
||||
do i = 1, sze
|
||||
W(i,j) = -W(i,j)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
enddo ! loop over while
|
||||
|
||||
! ---
|
||||
|
||||
do k = 1, N_st
|
||||
energies(k) = lambda(k)
|
||||
enddo
|
||||
write_buffer = '====='
|
||||
do i = 1, N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') trim(write_buffer)
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
deallocate(W)
|
||||
deallocate(U, h, y, lambda, residual_norm, i_omax)
|
||||
|
||||
FREE nthreads_davidson
|
||||
|
||||
end subroutine davidson_general_ext_rout_nonsym_b1space
|
||||
|
||||
! ---
|
@ -4,6 +4,12 @@ doc: Thresholds of Davidson's algorithm if threshold_davidson_from_pt2 is false.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-10
|
||||
|
||||
[threshold_nonsym_davidson]
|
||||
type: Threshold
|
||||
doc: Thresholds of non-symetric Davidson's algorithm
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-10
|
||||
|
||||
[threshold_davidson_from_pt2]
|
||||
type: logical
|
||||
doc: Thresholds of Davidson's algorithm is set to E(rPT2)*threshold_davidson_from_pt2
|
||||
|
@ -589,6 +589,67 @@ subroutine save_wavefunction_general(ndet,nstates,psidet,dim_psicoef,psicoef)
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine save_wavefunction_general_unormalized(ndet,nstates,psidet,dim_psicoef,psicoef)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Save the wave function into the |EZFIO| file
|
||||
END_DOC
|
||||
use bitmasks
|
||||
include 'constants.include.F'
|
||||
integer, intent(in) :: ndet,nstates,dim_psicoef
|
||||
integer(bit_kind), intent(in) :: psidet(N_int,2,ndet)
|
||||
double precision, intent(in) :: psicoef(dim_psicoef,nstates)
|
||||
integer*8, allocatable :: psi_det_save(:,:,:)
|
||||
double precision, allocatable :: psi_coef_save(:,:)
|
||||
|
||||
double precision :: accu_norm
|
||||
integer :: i,j,k, ndet_qp_edit
|
||||
|
||||
if (mpi_master) then
|
||||
ndet_qp_edit = min(ndet,N_det_qp_edit)
|
||||
|
||||
call ezfio_set_determinants_N_int(N_int)
|
||||
call ezfio_set_determinants_bit_kind(bit_kind)
|
||||
call ezfio_set_determinants_N_det(ndet)
|
||||
call ezfio_set_determinants_N_det_qp_edit(ndet_qp_edit)
|
||||
call ezfio_set_determinants_n_states(nstates)
|
||||
call ezfio_set_determinants_mo_label(mo_label)
|
||||
|
||||
allocate (psi_det_save(N_int,2,ndet))
|
||||
do i=1,ndet
|
||||
do j=1,2
|
||||
do k=1,N_int
|
||||
psi_det_save(k,j,i) = transfer(psidet(k,j,i),1_8)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call ezfio_set_determinants_psi_det(psi_det_save)
|
||||
call ezfio_set_determinants_psi_det_qp_edit(psi_det_save)
|
||||
deallocate (psi_det_save)
|
||||
|
||||
allocate (psi_coef_save(ndet,nstates))
|
||||
do k=1,nstates
|
||||
do i=1,ndet
|
||||
psi_coef_save(i,k) = psicoef(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call ezfio_set_determinants_psi_coef(psi_coef_save)
|
||||
deallocate (psi_coef_save)
|
||||
|
||||
allocate (psi_coef_save(ndet_qp_edit,nstates))
|
||||
do k=1,nstates
|
||||
do i=1,ndet_qp_edit
|
||||
psi_coef_save(i,k) = psicoef(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call ezfio_set_determinants_psi_coef_qp_edit(psi_coef_save)
|
||||
deallocate (psi_coef_save)
|
||||
|
||||
call write_int(6,ndet,'Saved determinants')
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
subroutine save_wavefunction_specified(ndet,nstates,psidet,psicoef,ndetsave,index_det_save)
|
||||
|
26
src/fci_tc_bi/13.fci_tc_bi_ortho.bats
Normal file
26
src/fci_tc_bi/13.fci_tc_bi_ortho.bats
Normal file
@ -0,0 +1,26 @@
|
||||
#!/usr/bin/env bats
|
||||
|
||||
source $QP_ROOT/tests/bats/common.bats.sh
|
||||
source $QP_ROOT/quantum_package.rc
|
||||
|
||||
|
||||
function run_O() {
|
||||
qp set_file O_tc_scf
|
||||
FILE=O_tc_scf/tc_bi_ortho/psi_l_coef_bi_ortho.gz
|
||||
if test -f "$FILE"; then
|
||||
rm O_tc_scf/tc_bi_ortho/psi*
|
||||
fi
|
||||
qp set determinants n_det_max 20000
|
||||
file=${EZFIO_FILE}.fci_tc_bi_ortho.out
|
||||
qp run fci_tc_bi_ortho | tee $file
|
||||
eref=-74.971188861115309
|
||||
energy="$(grep 'E(before) +rPT2 =' $file | tail -1 | cut -d '=' -f 2)"
|
||||
eq $energy $eref 1e-4
|
||||
}
|
||||
|
||||
|
||||
@test "O" {
|
||||
run_O
|
||||
}
|
||||
|
||||
|
17
src/fci_tc_bi/EZFIO.cfg
Normal file
17
src/fci_tc_bi/EZFIO.cfg
Normal file
@ -0,0 +1,17 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated Selected |FCI| energy
|
||||
interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
[energy_pt2]
|
||||
type: double precision
|
||||
doc: Calculated |FCI| energy + |PT2|
|
||||
interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
[cipsi_tc]
|
||||
type: character*(32)
|
||||
doc: TODO
|
||||
interface: ezfio,provider,ocaml
|
||||
default: h_tc
|
3
src/fci_tc_bi/NEED
Normal file
3
src/fci_tc_bi/NEED
Normal file
@ -0,0 +1,3 @@
|
||||
tc_bi_ortho
|
||||
davidson_undressed
|
||||
cipsi_tc_bi_ortho
|
12
src/fci_tc_bi/class.irp.f
Normal file
12
src/fci_tc_bi/class.irp.f
Normal file
@ -0,0 +1,12 @@
|
||||
BEGIN_PROVIDER [ logical, do_only_1h1p ]
|
||||
&BEGIN_PROVIDER [ logical, do_only_cas ]
|
||||
&BEGIN_PROVIDER [ logical, do_ddci ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! In the FCI case, all those are always false
|
||||
END_DOC
|
||||
do_only_1h1p = .False.
|
||||
do_only_cas = .False.
|
||||
do_ddci = .False.
|
||||
END_PROVIDER
|
||||
|
215
src/fci_tc_bi/copy_wf.irp.f
Normal file
215
src/fci_tc_bi/copy_wf.irp.f
Normal file
@ -0,0 +1,215 @@
|
||||
|
||||
use bitmasks
|
||||
|
||||
subroutine copy_H_apply_buffer_to_wf_tc
|
||||
use omp_lib
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Copies the H_apply buffer to psi_coef.
|
||||
! After calling this subroutine, N_det, psi_det and psi_coef need to be touched
|
||||
END_DOC
|
||||
integer(bit_kind), allocatable :: buffer_det(:,:,:)
|
||||
double precision, allocatable :: buffer_r_coef(:,:), buffer_l_coef(:,:)
|
||||
integer :: i,j,k
|
||||
integer :: N_det_old
|
||||
|
||||
PROVIDE H_apply_buffer_allocated
|
||||
|
||||
|
||||
ASSERT (N_int > 0)
|
||||
ASSERT (N_det > 0)
|
||||
|
||||
allocate ( buffer_det(N_int,2,N_det), buffer_r_coef(N_det,N_states), buffer_l_coef(N_det,N_states) )
|
||||
|
||||
! Backup determinants
|
||||
j=0
|
||||
do i=1,N_det
|
||||
! if (pruned(i)) cycle ! Pruned determinants
|
||||
j+=1
|
||||
ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num)
|
||||
buffer_det(:,:,j) = psi_det(:,:,i)
|
||||
enddo
|
||||
N_det_old = j
|
||||
|
||||
! Backup coefficients
|
||||
do k=1,N_states
|
||||
j=0
|
||||
do i=1,N_det
|
||||
! if (pruned(i)) cycle ! Pruned determinants
|
||||
j += 1
|
||||
buffer_r_coef(j,k) = psi_r_coef_bi_ortho(i,k)
|
||||
buffer_l_coef(j,k) = psi_l_coef_bi_ortho(i,k)
|
||||
enddo
|
||||
ASSERT ( j == N_det_old )
|
||||
enddo
|
||||
|
||||
! Update N_det
|
||||
N_det = N_det_old
|
||||
do j=0,nproc-1
|
||||
N_det = N_det + H_apply_buffer(j)%N_det
|
||||
enddo
|
||||
|
||||
! Update array sizes
|
||||
if (psi_det_size < N_det) then
|
||||
psi_det_size = N_det
|
||||
TOUCH psi_det_size
|
||||
endif
|
||||
|
||||
! Restore backup in resized array
|
||||
do i=1,N_det_old
|
||||
psi_det(:,:,i) = buffer_det(:,:,i)
|
||||
ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num )
|
||||
enddo
|
||||
do k=1,N_states
|
||||
do i=1,N_det_old
|
||||
psi_r_coef_bi_ortho(i,k) = buffer_r_coef(i,k)
|
||||
psi_l_coef_bi_ortho(i,k) = buffer_l_coef(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Copy new buffers
|
||||
|
||||
!$OMP PARALLEL DEFAULT(SHARED) &
|
||||
!$OMP PRIVATE(j,k,i) FIRSTPRIVATE(N_det_old) &
|
||||
!$OMP SHARED(N_int,H_apply_buffer,psi_det,psi_r_coef_bi_ortho,psi_l_coef_bi_ortho,N_states,psi_det_size)
|
||||
j=0
|
||||
!$ j=omp_get_thread_num()
|
||||
do k=0,j-1
|
||||
N_det_old += H_apply_buffer(k)%N_det
|
||||
enddo
|
||||
do i=1,H_apply_buffer(j)%N_det
|
||||
do k=1,N_int
|
||||
psi_det(k,1,i+N_det_old) = H_apply_buffer(j)%det(k,1,i)
|
||||
psi_det(k,2,i+N_det_old) = H_apply_buffer(j)%det(k,2,i)
|
||||
enddo
|
||||
ASSERT (sum(popcnt(psi_det(:,1,i+N_det_old))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(psi_det(:,2,i+N_det_old))) == elec_beta_num )
|
||||
enddo
|
||||
do k=1,N_states
|
||||
do i=1,H_apply_buffer(j)%N_det
|
||||
psi_r_coef_bi_ortho(i+N_det_old,k) = H_apply_buffer(j)%coef(i,k)
|
||||
psi_l_coef_bi_ortho(i+N_det_old,k) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
!$OMP BARRIER
|
||||
H_apply_buffer(j)%N_det = 0
|
||||
!$OMP END PARALLEL
|
||||
SOFT_TOUCH N_det psi_det psi_r_coef_bi_ortho psi_l_coef_bi_ortho
|
||||
|
||||
logical :: found_duplicates
|
||||
call remove_duplicates_in_psi_det_tc(found_duplicates)
|
||||
call bi_normalize(psi_l_coef_bi_ortho,psi_r_coef_bi_ortho,N_det,size(psi_l_coef_bi_ortho,1),N_states)
|
||||
SOFT_TOUCH N_det psi_det psi_r_coef_bi_ortho psi_l_coef_bi_ortho
|
||||
|
||||
end
|
||||
|
||||
subroutine remove_duplicates_in_psi_det_tc(found_duplicates)
|
||||
implicit none
|
||||
logical, intent(out) :: found_duplicates
|
||||
BEGIN_DOC
|
||||
! Removes duplicate determinants in the wave function.
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
integer(bit_kind), allocatable :: bit_tmp(:)
|
||||
logical,allocatable :: duplicate(:)
|
||||
logical :: dup
|
||||
|
||||
allocate (duplicate(N_det), bit_tmp(N_det))
|
||||
|
||||
found_duplicates = .False.
|
||||
|
||||
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,dup)
|
||||
|
||||
!$OMP DO
|
||||
do i=1,N_det
|
||||
integer, external :: det_search_key
|
||||
!$DIR FORCEINLINE
|
||||
bit_tmp(i) = det_search_key(psi_det_sorted_bit_tc(1,1,i),N_int)
|
||||
duplicate(i) = .False.
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO schedule(dynamic,1024)
|
||||
do i=1,N_det-1
|
||||
if (duplicate(i)) then
|
||||
cycle
|
||||
endif
|
||||
j = i+1
|
||||
do while (bit_tmp(j)==bit_tmp(i))
|
||||
if (duplicate(j)) then
|
||||
j = j+1
|
||||
if (j > N_det) then
|
||||
exit
|
||||
else
|
||||
cycle
|
||||
endif
|
||||
endif
|
||||
dup = .True.
|
||||
do k=1,N_int
|
||||
if ( (psi_det_sorted_bit_tc(k,1,i) /= psi_det_sorted_bit_tc(k,1,j) ) &
|
||||
.or. (psi_det_sorted_bit_tc(k,2,i) /= psi_det_sorted_bit_tc(k,2,j) ) ) then
|
||||
dup = .False.
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (dup) then
|
||||
duplicate(j) = .True.
|
||||
found_duplicates = .True.
|
||||
endif
|
||||
j += 1
|
||||
if (j > N_det) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
if (found_duplicates) then
|
||||
k=0
|
||||
do i=1,N_det
|
||||
if (.not.duplicate(i)) then
|
||||
k += 1
|
||||
psi_det(:,:,k) = psi_det_sorted_bit_tc (:,:,i)
|
||||
psi_r_coef_bi_ortho(k,:) = psi_r_coef_sorted_bit(i,:)
|
||||
psi_l_coef_bi_ortho(k,:) = psi_l_coef_sorted_bit(i,:)
|
||||
else
|
||||
if (sum(abs(psi_r_coef_sorted_bit(i,:))) /= 0.d0 ) then
|
||||
psi_r_coef_bi_ortho(k,:) = psi_r_coef_sorted_bit(i,:)
|
||||
psi_l_coef_bi_ortho(k,:) = psi_l_coef_sorted_bit(i,:)
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
N_det = k
|
||||
psi_det_sorted_bit_tc(:,:,1:N_det) = psi_det(:,:,1:N_det)
|
||||
psi_r_coef_sorted_bit(1:N_det,:) = psi_r_coef_bi_ortho(1:N_det,:)
|
||||
psi_l_coef_sorted_bit(1:N_det,:) = psi_l_coef_bi_ortho(1:N_det,:)
|
||||
TOUCH N_det psi_det psi_det_sorted_bit_tc c0_weight psi_r_coef_sorted_bit psi_l_coef_sorted_bit
|
||||
endif
|
||||
psi_det = psi_det_sorted_tc
|
||||
psi_r_coef_bi_ortho = psi_r_coef_sorted_bi_ortho
|
||||
psi_l_coef_bi_ortho = psi_l_coef_sorted_bi_ortho
|
||||
SOFT_TOUCH psi_det psi_r_coef_bi_ortho psi_l_coef_bi_ortho psi_det_sorted_bit_tc psi_r_coef_sorted_bit psi_l_coef_sorted_bit
|
||||
deallocate (duplicate,bit_tmp)
|
||||
end
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), psi_det_sorted_bit_tc, (N_int,2,psi_det_size) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_r_coef_sorted_bit, (N_det,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_l_coef_sorted_bit, (N_det,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Determinants on which we apply $\langle i|H|psi \rangle$ for perturbation.
|
||||
! They are sorted by determinants interpreted as integers. Useful
|
||||
! to accelerate the search of a random determinant in the wave
|
||||
! function.
|
||||
END_DOC
|
||||
|
||||
call sort_dets_by_det_search_key(N_det, psi_det, psi_r_coef_bi_ortho, size(psi_r_coef_bi_ortho,1), &
|
||||
psi_det_sorted_bit_tc, psi_r_coef_sorted_bit, N_states)
|
||||
call sort_dets_by_det_search_key(N_det, psi_det, psi_l_coef_bi_ortho, size(psi_l_coef_bi_ortho,1), &
|
||||
psi_det_sorted_bit_tc, psi_l_coef_sorted_bit, N_states)
|
||||
|
||||
END_PROVIDER
|
100
src/fci_tc_bi/diagonalize_ci.irp.f
Normal file
100
src/fci_tc_bi/diagonalize_ci.irp.f
Normal file
@ -0,0 +1,100 @@
|
||||
|
||||
subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
use selection_types
|
||||
implicit none
|
||||
integer, intent(inout) :: ndet ! number of determinants from before
|
||||
double precision, intent(inout) :: E_tc,norm ! E and norm from previous wave function
|
||||
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
|
||||
logical, intent(in) :: print_pt2
|
||||
BEGIN_DOC
|
||||
! Replace the coefficients of the CI states by the coefficients of the
|
||||
! eigenstates of the CI matrix
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision :: pt2_tmp,pt1_norm,rpt2_tmp,abs_pt2
|
||||
pt2_tmp = pt2_data % pt2(1)
|
||||
abs_pt2 = pt2_data % variance(1)
|
||||
pt1_norm = pt2_data % overlap(1,1)
|
||||
rpt2_tmp = pt2_tmp/(1.d0 + pt1_norm)
|
||||
print*,'*****'
|
||||
print*,'New wave function information'
|
||||
print*,'N_det tc = ',N_det
|
||||
print*,'norm_ground_left_right_bi_orth = ',norm_ground_left_right_bi_orth
|
||||
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1)
|
||||
print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1)
|
||||
print*,'*****'
|
||||
if(print_pt2)then
|
||||
print*,'*****'
|
||||
print*,'previous wave function info'
|
||||
print*,'norm(before) = ',norm
|
||||
print*,'E(before) = ',E_tc
|
||||
print*,'PT1 norm = ',dsqrt(pt1_norm)
|
||||
print*,'PT2 = ',pt2_tmp
|
||||
print*,'rPT2 = ',rpt2_tmp
|
||||
print*,'|PT2| = ',abs_pt2
|
||||
print*,'Positive PT2 = ',(pt2_tmp + abs_pt2)*0.5d0
|
||||
print*,'Negative PT2 = ',(pt2_tmp - abs_pt2)*0.5d0
|
||||
print*,'E(before) + PT2 = ',E_tc + pt2_tmp/norm
|
||||
print*,'E(before) +rPT2 = ',E_tc + rpt2_tmp/norm
|
||||
write(*,'(A28,X,I10,X,100(F16.8,X))')'Ndet,E,E+PT2,E+RPT2,|PT2|=',ndet,E_tc ,E_tc + pt2_tmp/norm,E_tc + rpt2_tmp/norm,abs_pt2
|
||||
print*,'*****'
|
||||
endif
|
||||
E_tc = eigval_right_tc_bi_orth(1)
|
||||
norm = norm_ground_left_right_bi_orth
|
||||
ndet = N_det
|
||||
do j=1,N_states
|
||||
do i=1,N_det
|
||||
psi_l_coef_bi_ortho(i,j) = leigvec_tc_bi_orth(i,j)
|
||||
psi_r_coef_bi_ortho(i,j) = reigvec_tc_bi_orth(i,j)
|
||||
psi_coef(i,j) = dabs(psi_l_coef_bi_ortho(i,j) * psi_r_coef_bi_ortho(i,j))
|
||||
enddo
|
||||
enddo
|
||||
SOFT_TOUCH eigval_left_tc_bi_orth eigval_right_tc_bi_orth leigvec_tc_bi_orth reigvec_tc_bi_orth norm_ground_left_right_bi_orth psi_coef psi_l_coef_bi_ortho psi_r_coef_bi_ortho
|
||||
|
||||
|
||||
|
||||
call save_tc_bi_ortho_wavefunction
|
||||
end
|
||||
|
||||
subroutine print_CI_dressed(ndet, E_tc,norm,pt2_data,print_pt2)
|
||||
use selection_types
|
||||
implicit none
|
||||
integer, intent(inout) :: ndet ! number of determinants from before
|
||||
double precision, intent(inout) :: E_tc,norm ! E and norm from previous wave function
|
||||
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
|
||||
logical, intent(in) :: print_pt2
|
||||
BEGIN_DOC
|
||||
! Replace the coefficients of the CI states by the coefficients of the
|
||||
! eigenstates of the CI matrix
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
print*,'*****'
|
||||
print*,'New wave function information'
|
||||
print*,'N_det tc = ',N_det
|
||||
print*,'norm_ground_left_right_bi_orth = ',norm_ground_left_right_bi_orth
|
||||
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1)
|
||||
print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1)
|
||||
print*,'*****'
|
||||
if(print_pt2)then
|
||||
print*,'*****'
|
||||
print*,'previous wave function info'
|
||||
print*,'norm(before) = ',norm
|
||||
print*,'E(before) = ',E_tc
|
||||
print*,'PT1 norm = ',dsqrt(pt2_data % overlap(1,1))
|
||||
print*,'E(before) + PT2 = ',E_tc + (pt2_data % pt2(1))/norm
|
||||
print*,'PT2 = ',pt2_data % pt2(1)
|
||||
print*,'Ndet, E_tc, E+PT2 = ',ndet,E_tc,E_tc + (pt2_data % pt2(1))/norm,dsqrt(pt2_data % overlap(1,1))
|
||||
print*,'*****'
|
||||
endif
|
||||
E_tc = eigval_right_tc_bi_orth(1)
|
||||
norm = norm_ground_left_right_bi_orth
|
||||
ndet = N_det
|
||||
do j=1,N_states
|
||||
do i=1,N_det
|
||||
psi_coef(i,j) = reigvec_tc_bi_orth(i,j)
|
||||
enddo
|
||||
enddo
|
||||
SOFT_TOUCH eigval_left_tc_bi_orth eigval_right_tc_bi_orth leigvec_tc_bi_orth norm_ground_left_right_bi_orth psi_coef reigvec_tc_bi_orth
|
||||
|
||||
end
|
||||
|
85
src/fci_tc_bi/fci_tc_bi_ortho.irp.f
Normal file
85
src/fci_tc_bi/fci_tc_bi_ortho.irp.f
Normal file
@ -0,0 +1,85 @@
|
||||
program fci
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Selected Full Configuration Interaction with stochastic selection
|
||||
! and PT2.
|
||||
!
|
||||
! This program performs a |CIPSI|-like selected |CI| using a
|
||||
! stochastic scheme for both the selection of the important Slater
|
||||
! determinants and the computation of the |PT2| correction. This
|
||||
! |CIPSI|-like algorithm will be performed for the lowest states of
|
||||
! the variational space (see :option:`determinants n_states`). The
|
||||
! |FCI| program will stop when reaching at least one the two following
|
||||
! conditions:
|
||||
!
|
||||
! * number of Slater determinants > :option:`determinants n_det_max`
|
||||
! * abs(|PT2|) less than :option:`perturbation pt2_max`
|
||||
!
|
||||
! The following other options can be of interest:
|
||||
!
|
||||
! :option:`determinants read_wf`
|
||||
! When set to |false|, the program starts with a ROHF-like Slater
|
||||
! determinant as a guess wave function. When set to |true|, the
|
||||
! program starts with the wave function(s) stored in the |EZFIO|
|
||||
! directory as guess wave function(s).
|
||||
!
|
||||
! :option:`determinants s2_eig`
|
||||
! When set to |true|, the selection will systematically add all the
|
||||
! necessary Slater determinants in order to have a pure spin wave
|
||||
! function with an |S^2| value corresponding to
|
||||
! :option:`determinants expected_s2`.
|
||||
!
|
||||
! For excited states calculations, it is recommended to start with
|
||||
! :ref:`cis` or :ref:`cisd` guess wave functions, eventually in
|
||||
! a restricted set of |MOs|, and to set :option:`determinants s2_eig`
|
||||
! to |true|.
|
||||
!
|
||||
END_DOC
|
||||
|
||||
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
pruning = -1.d0
|
||||
touch pruning
|
||||
! pt2_relative_error = 0.01d0
|
||||
! touch pt2_relative_error
|
||||
call run_cipsi_tc
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine run_cipsi_tc
|
||||
|
||||
implicit none
|
||||
|
||||
if (.not.is_zmq_slave) then
|
||||
PROVIDE psi_det psi_coef mo_bi_ortho_tc_two_e mo_bi_ortho_tc_one_e
|
||||
if(elec_alpha_num+elec_beta_num.ge.3)then
|
||||
if(three_body_h_tc)then
|
||||
call provide_all_three_ints_bi_ortho
|
||||
endif
|
||||
endif
|
||||
! ---
|
||||
|
||||
if (do_pt2) then
|
||||
call run_stochastic_cipsi
|
||||
else
|
||||
call run_cipsi
|
||||
endif
|
||||
|
||||
else
|
||||
PROVIDE mo_bi_ortho_tc_one_e mo_bi_ortho_tc_two_e pt2_min_parallel_tasks
|
||||
if(elec_alpha_num+elec_beta_num.ge.3)then
|
||||
if(three_body_h_tc)then
|
||||
call provide_all_three_ints_bi_ortho
|
||||
endif
|
||||
endif
|
||||
! ---
|
||||
|
||||
call run_slave_cipsi
|
||||
|
||||
endif
|
||||
|
||||
end
|
51
src/fci_tc_bi/generators.irp.f
Normal file
51
src/fci_tc_bi/generators.irp.f
Normal file
@ -0,0 +1,51 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ integer, N_det_generators ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! For Single reference wave functions, the number of generators is 1 : the
|
||||
! Hartree-Fock determinant
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision :: norm
|
||||
call write_time(6)
|
||||
norm = 1.d0
|
||||
N_det_generators = N_det
|
||||
do i=1,N_det
|
||||
norm = norm - psi_average_norm_contrib_sorted_tc(i)
|
||||
if (norm - 1.d-10 < 1.d0 - threshold_generators) then
|
||||
N_det_generators = i
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
N_det_generators = max(N_det_generators,1)
|
||||
call write_int(6,N_det_generators,'Number of generators')
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), psi_det_generators, (N_int,2,psi_det_size) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_coef_generators, (psi_det_size,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! For Single reference wave functions, the generator is the
|
||||
! Hartree-Fock determinant
|
||||
END_DOC
|
||||
psi_det_generators(1:N_int,1:2,1:N_det) = psi_det_sorted_tc(1:N_int,1:2,1:N_det)
|
||||
psi_coef_generators(1:N_det,1:N_states) = psi_coef_sorted_tc(1:N_det,1:N_states)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), psi_det_sorted_tc_gen, (N_int,2,psi_det_size) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_coef_sorted_tc_gen, (psi_det_size,N_states) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_det_sorted_tc_gen_order, (psi_det_size) ]
|
||||
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! For Single reference wave functions, the generator is the
|
||||
! Hartree-Fock determinant
|
||||
END_DOC
|
||||
psi_det_sorted_tc_gen = psi_det_sorted_tc
|
||||
psi_coef_sorted_tc_gen = psi_coef_sorted_tc
|
||||
psi_det_sorted_tc_gen_order = psi_det_sorted_tc_order
|
||||
END_PROVIDER
|
||||
|
||||
|
9
src/fci_tc_bi/save_energy.irp.f
Normal file
9
src/fci_tc_bi/save_energy.irp.f
Normal file
@ -0,0 +1,9 @@
|
||||
subroutine save_energy(E,pt2)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Saves the energy in |EZFIO|.
|
||||
END_DOC
|
||||
double precision, intent(in) :: E(N_states), pt2(N_states)
|
||||
call ezfio_set_fci_tc_energy(E(1:N_states))
|
||||
call ezfio_set_fci_tc_energy_pt2(E(1:N_states)+pt2(1:N_states))
|
||||
end
|
6
src/fci_tc_bi/scripts_fci_tc/CH2.xyz
Normal file
6
src/fci_tc_bi/scripts_fci_tc/CH2.xyz
Normal file
@ -0,0 +1,6 @@
|
||||
3
|
||||
|
||||
C 6.000000 0.000000 0.000000 0.173480
|
||||
H 1.000000 0.000000 -0.861500 -0.520430
|
||||
H 1.000000 0.000000 0.861500 -0.520430
|
||||
|
5
src/fci_tc_bi/scripts_fci_tc/FH.xyz
Normal file
5
src/fci_tc_bi/scripts_fci_tc/FH.xyz
Normal file
@ -0,0 +1,5 @@
|
||||
2
|
||||
|
||||
H 0.000000 0.000000 -0.825120
|
||||
F 0.000000 0.000000 0.091680
|
||||
|
16
src/fci_tc_bi/scripts_fci_tc/extract_tables.sh
Executable file
16
src/fci_tc_bi/scripts_fci_tc/extract_tables.sh
Executable file
@ -0,0 +1,16 @@
|
||||
|
||||
input=h2o
|
||||
basis=dz
|
||||
EZFIO=${input}_${basis}_bi_ortho
|
||||
file=${EZFIO}.tc_fci.out
|
||||
grep "Ndet,E,E+PT2,E+RPT2,|PT2|=" ${file} | cut -d "=" -f 2 > data_${EZFIO}
|
||||
file=${EZFIO}.tc_fci_normal_order.out
|
||||
grep "Ndet,E,E+PT2,E+RPT2=" ${file} | cut -d "=" -f 2 > data_${EZFIO}_normal
|
||||
|
||||
#EZFIO=${input}_${basis}_ortho
|
||||
#file=${EZFIO}.tc_fci.out
|
||||
#grep "Ndet, E_tc, E+PT2 =" ${file} | cut -d "=" -f 2 > data_${EZFIO}
|
||||
#file=${EZFIO}.tc_fci_normal_order.out
|
||||
#grep "Ndet, E_tc, E+PT2 =" ${file} | cut -d "=" -f 2 > data_${EZFIO}_normal
|
||||
|
||||
#zip data_${input}_${basis}.zip data*
|
41
src/fci_tc_bi/scripts_fci_tc/h2o.sh
Normal file
41
src/fci_tc_bi/scripts_fci_tc/h2o.sh
Normal file
@ -0,0 +1,41 @@
|
||||
#!/bin/bash
|
||||
# This is a sample PBS script
|
||||
# temps CPU a ajuster au calcul
|
||||
#PBS -l cput=2000:00:00
|
||||
#PBS -l nodes=1:ppn=16
|
||||
# memoire a ajuster au calcul
|
||||
#PBS -l vmem=100gb
|
||||
# a changer
|
||||
# Pour savoir sur quel noeud on est
|
||||
#echo $HOSTNAME
|
||||
# Startdir = ou sont les fichiers d'input, par defaut HOMEDIR
|
||||
#
|
||||
StartDir=$PBS_O_WORKDIR
|
||||
echo $StartDir
|
||||
#
|
||||
# SCRATCHDIR = espace temporaire (local au noeud et a vider apres le calcul)
|
||||
# NE PAS MODIFIER
|
||||
ulimit -s unlimited
|
||||
export SCRATCHDIR=/scratch/$USER/$PBS_JOBID
|
||||
#
|
||||
cd $StartDir
|
||||
|
||||
|
||||
############################################################################
|
||||
#### EXAMPLE OF SCRIPT TO RUN A CIPSI CALCULATION ON 5 STATES ON THE Ne^+ CATION
|
||||
#### USING NATURAL ORBITALS OF A SMALL CIPSI AS MOS
|
||||
#### ALL STATES WILL HAVE THE SAME SPIN SIMETRY : A DOUBLET
|
||||
|
||||
####### YOU PUT THE PATH TO YOUR
|
||||
QP_ROOT=/home_lct/eginer/programs/qp2
|
||||
source ${QP_ROOT}/quantum_package.rc
|
||||
####### YOU LOAD SOME LIBRARIES
|
||||
alias python3='/programmes/installation/Python/3.7.1/bin/python3'
|
||||
type -a python3
|
||||
|
||||
export OMP_NUM_THREADS=16
|
||||
|
||||
module load intel2016_OMPI-V2
|
||||
|
||||
source ~/programs/qp2/quantum_package.rc
|
||||
./script.sh h2o dz O 1
|
6
src/fci_tc_bi/scripts_fci_tc/h2o.xyz
Normal file
6
src/fci_tc_bi/scripts_fci_tc/h2o.xyz
Normal file
@ -0,0 +1,6 @@
|
||||
3
|
||||
|
||||
O 0.000000 0.000000 0.000000
|
||||
H 0.000000 0.000000 0.957200
|
||||
H -0.926627 0.000000 -0.239987
|
||||
|
31
src/fci_tc_bi/scripts_fci_tc/script.sh
Executable file
31
src/fci_tc_bi/scripts_fci_tc/script.sh
Executable file
@ -0,0 +1,31 @@
|
||||
source /home_lct/eginer/qp2/quantum_package.rc
|
||||
input=$1
|
||||
basis=$2
|
||||
atom=$3
|
||||
mul=$4
|
||||
EXPORT_OMP_NUM_THREADS=16
|
||||
dir=${input}_${basis}
|
||||
mkdir ${dir}
|
||||
cp ${input}.xyz ${dir}/
|
||||
cd $dir
|
||||
EZFIO=${input}_${basis}_bi_ortho
|
||||
qp create_ezfio -b "${atom}:cc-pcv${basis}|H:cc-pv${basis}" ${input}.xyz -m $mul -o $EZFIO
|
||||
qp run scf
|
||||
# Getting THE GOOD VALUE OF MU
|
||||
qp run print_mu_av_tc | tee ${EZFIO_FILE}.mu_av.out
|
||||
mu=`grep "average_mu_rs_c_lda =" ${EZFIO_FILE}.mu_av.out | cut -d "=" -f 2`
|
||||
qp set ao_two_e_erf_ints mu_erf $mu
|
||||
# Carrying the BI-ORTHO TC-SCF
|
||||
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
|
||||
# Three body terms without normal order
|
||||
### THREE E TERMS FOR FCI
|
||||
qp set tc_keywords three_body_h_tc True
|
||||
qp set tc_keywords double_normal_ord False
|
||||
qp set perturbation pt2_max 0.003
|
||||
qp run fci_tc_bi_ortho | tee ${EZFIO_FILE}.tc_fci.out
|
||||
# Three body terms with normal order
|
||||
qp set tc_keywords double_normal_ord True
|
||||
qp run fci_tc_bi_ortho | tee ${EZFIO_FILE}.tc_fci_normal_order.out
|
||||
|
||||
cd ../
|
||||
|
100
src/fci_tc_bi/selectors.irp.f
Normal file
100
src/fci_tc_bi/selectors.irp.f
Normal file
@ -0,0 +1,100 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ double precision, threshold_selectors ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Thresholds on selectors (fraction of the square of the norm)
|
||||
END_DOC
|
||||
threshold_selectors = dsqrt(threshold_generators)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, N_det_selectors]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! For Single reference wave functions, the number of selectors is 1 : the
|
||||
! Hartree-Fock determinant
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision :: norm, norm_max
|
||||
call write_time(6)
|
||||
N_det_selectors = N_det
|
||||
norm = 1.d0
|
||||
do i=1,N_det
|
||||
norm = norm - psi_average_norm_contrib_tc(i)
|
||||
if (norm - 1.d-10 < 1.d0 - threshold_selectors) then
|
||||
N_det_selectors = i
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
N_det_selectors = max(N_det_selectors,N_det_generators)
|
||||
call write_int(6,N_det_selectors,'Number of selectors')
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), psi_selectors, (N_int,2,psi_selectors_size) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_selectors_coef, (psi_selectors_size,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_selectors_coef_tc, (psi_selectors_size,2,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Determinants on which we apply <i|H|psi> for perturbation.
|
||||
END_DOC
|
||||
integer :: i,k
|
||||
|
||||
do i=1,N_det_selectors
|
||||
do k=1,N_int
|
||||
psi_selectors(k,1,i) = psi_det_sorted_tc(k,1,i)
|
||||
psi_selectors(k,2,i) = psi_det_sorted_tc(k,2,i)
|
||||
enddo
|
||||
enddo
|
||||
do k=1,N_states
|
||||
do i=1,N_det_selectors
|
||||
psi_selectors_coef(i,k) = psi_coef_sorted_tc_gen(i,k)
|
||||
psi_selectors_coef_tc(i,1,k) = psi_l_coef_sorted_bi_ortho(i,k)
|
||||
psi_selectors_coef_tc(i,2,k) = psi_r_coef_sorted_bi_ortho(i,k)
|
||||
! psi_selectors_coef_tc(i,1,k) = 1.d0
|
||||
! psi_selectors_coef_tc(i,2,k) = 1.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, psi_selectors_coef_transp, (N_states,psi_selectors_size) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_selectors_coef_transp_tc, (N_states,2,psi_selectors_size) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Transposed psi_selectors
|
||||
END_DOC
|
||||
integer :: i,k
|
||||
|
||||
do i=1,N_det_selectors
|
||||
do k=1,N_states
|
||||
psi_selectors_coef_transp(k,i) = psi_selectors_coef(i,k)
|
||||
psi_selectors_coef_transp_tc(k,1,i) = psi_selectors_coef_tc(i,1,k)
|
||||
psi_selectors_coef_transp_tc(k,2,i) = psi_selectors_coef_tc(i,2,k)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, psi_selectors_rcoef_bi_orth_transp, (N_states, psi_det_size) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_selectors_lcoef_bi_orth_transp, (N_states, psi_det_size) ]
|
||||
|
||||
implicit none
|
||||
integer :: i, k
|
||||
|
||||
psi_selectors_rcoef_bi_orth_transp = 0.d0
|
||||
psi_selectors_lcoef_bi_orth_transp = 0.d0
|
||||
|
||||
print*,'N_det,N_det_selectors',N_det,N_det_selectors
|
||||
do i = 1, N_det_selectors
|
||||
do k = 1, N_states
|
||||
psi_selectors_rcoef_bi_orth_transp(k,i) = psi_r_coef_sorted_bi_ortho(i,k)
|
||||
psi_selectors_lcoef_bi_orth_transp(k,i) = psi_l_coef_sorted_bi_ortho(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, psi_selectors_size ]
|
||||
implicit none
|
||||
psi_selectors_size = psi_det_size
|
||||
END_PROVIDER
|
||||
|
103
src/fci_tc_bi/zmq.irp.f
Normal file
103
src/fci_tc_bi/zmq.irp.f
Normal file
@ -0,0 +1,103 @@
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
integer function zmq_put_$X(zmq_to_qp_run_socket,worker_id)
|
||||
use f77_zmq
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Put $X on the qp_run scheduler
|
||||
END_DOC
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
|
||||
integer, intent(in) :: worker_id
|
||||
integer :: rc
|
||||
character*(256) :: msg
|
||||
|
||||
zmq_put_$X = 0
|
||||
|
||||
write(msg,'(A,1X,I8,1X,A200)') 'put_data '//trim(zmq_state), worker_id, '$X'
|
||||
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),ZMQ_SNDMORE)
|
||||
if (rc /= len(trim(msg))) then
|
||||
zmq_put_$X = -1
|
||||
return
|
||||
endif
|
||||
|
||||
rc = f77_zmq_send(zmq_to_qp_run_socket,$X,4,0)
|
||||
if (rc /= 4) then
|
||||
zmq_put_$X = -1
|
||||
return
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
|
||||
if (msg(1:rc) /= 'put_data_reply ok') then
|
||||
zmq_put_$X = -1
|
||||
return
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
integer function zmq_get_$X(zmq_to_qp_run_socket, worker_id)
|
||||
use f77_zmq
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Get $X from the qp_run scheduler
|
||||
END_DOC
|
||||
integer(ZMQ_PTR), intent(in) :: zmq_to_qp_run_socket
|
||||
integer, intent(in) :: worker_id
|
||||
integer :: rc
|
||||
character*(256) :: msg
|
||||
|
||||
PROVIDE zmq_state
|
||||
zmq_get_$X = 0
|
||||
if (mpi_master) then
|
||||
|
||||
write(msg,'(A,1X,I8,1X,A200)') 'get_data '//trim(zmq_state), worker_id, '$X'
|
||||
rc = f77_zmq_send(zmq_to_qp_run_socket,trim(msg),len(trim(msg)),0)
|
||||
if (rc /= len(trim(msg))) then
|
||||
zmq_get_$X = -1
|
||||
go to 10
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv(zmq_to_qp_run_socket,msg,len(msg),0)
|
||||
if (msg(1:14) /= 'get_data_reply') then
|
||||
zmq_get_$X = -1
|
||||
go to 10
|
||||
endif
|
||||
|
||||
rc = f77_zmq_recv(zmq_to_qp_run_socket,$X,4,0)
|
||||
if (rc /= 4) then
|
||||
zmq_get_$X = -1
|
||||
go to 10
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
10 continue
|
||||
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
|
||||
call MPI_BCAST (zmq_get_$X, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
print *, irp_here//': Unable to broadcast N_det_generators'
|
||||
stop -1
|
||||
endif
|
||||
call MPI_BCAST ($X, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
print *, irp_here//': Unable to broadcast N_det_generators'
|
||||
stop -1
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
end
|
||||
|
||||
SUBST [ X ]
|
||||
|
||||
N_det_generators ;;
|
||||
N_det_selectors ;;
|
||||
|
||||
END_TEMPLATE
|
||||
|
24
src/iterations_tc/EZFIO.cfg
Normal file
24
src/iterations_tc/EZFIO.cfg
Normal file
@ -0,0 +1,24 @@
|
||||
[n_iter]
|
||||
interface: ezfio
|
||||
doc: Number of saved iterations
|
||||
type:integer
|
||||
default: 1
|
||||
|
||||
[n_det_iterations]
|
||||
interface: ezfio, provider
|
||||
doc: Number of determinants at each iteration
|
||||
type: integer
|
||||
size: (100)
|
||||
|
||||
[energy_iterations]
|
||||
interface: ezfio, provider
|
||||
doc: The variational energy at each iteration
|
||||
type: double precision
|
||||
size: (determinants.n_states,100)
|
||||
|
||||
[pt2_iterations]
|
||||
interface: ezfio, provider
|
||||
doc: The |PT2| correction at each iteration
|
||||
type: double precision
|
||||
size: (determinants.n_states,100)
|
||||
|
0
src/iterations_tc/NEED
Normal file
0
src/iterations_tc/NEED
Normal file
37
src/iterations_tc/io.irp.f
Normal file
37
src/iterations_tc/io.irp.f
Normal file
@ -0,0 +1,37 @@
|
||||
BEGIN_PROVIDER [ integer, n_iter ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! number of iterations
|
||||
END_DOC
|
||||
|
||||
logical :: has
|
||||
PROVIDE ezfio_filename
|
||||
if (mpi_master) then
|
||||
|
||||
double precision :: zeros(N_states,100)
|
||||
integer :: izeros(100)
|
||||
zeros = 0.d0
|
||||
izeros = 0
|
||||
call ezfio_set_iterations_n_iter(0)
|
||||
call ezfio_set_iterations_energy_iterations(zeros)
|
||||
call ezfio_set_iterations_pt2_iterations(zeros)
|
||||
call ezfio_set_iterations_n_det_iterations(izeros)
|
||||
n_iter = 1
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( n_iter, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read n_iter with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
call write_time(6)
|
||||
|
||||
END_PROVIDER
|
||||
|
43
src/iterations_tc/iterations.irp.f
Normal file
43
src/iterations_tc/iterations.irp.f
Normal file
@ -0,0 +1,43 @@
|
||||
BEGIN_PROVIDER [ double precision, extrapolated_energy, (N_iter,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Extrapolated energy, using E_var = f(PT2) where PT2=0
|
||||
END_DOC
|
||||
! integer :: i
|
||||
extrapolated_energy = 0.D0
|
||||
END_PROVIDER
|
||||
|
||||
subroutine get_extrapolated_energy(Niter,ept2,pt1,extrap_energy)
|
||||
implicit none
|
||||
integer, intent(in) :: Niter
|
||||
double precision, intent(in) :: ept2(Niter),pt1(Niter),extrap_energy(Niter)
|
||||
call extrapolate_data(Niter,ept2,pt1,extrap_energy)
|
||||
end
|
||||
|
||||
subroutine save_iterations(e_, pt2_,n_)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Update the energy in the EZFIO file.
|
||||
END_DOC
|
||||
integer, intent(in) :: n_
|
||||
double precision, intent(in) :: e_(N_states), pt2_(N_states)
|
||||
integer :: i
|
||||
|
||||
if (N_iter == 101) then
|
||||
do i=2,N_iter-1
|
||||
energy_iterations(1:N_states,N_iter-1) = energy_iterations(1:N_states,N_iter)
|
||||
pt2_iterations(1:N_states,N_iter-1) = pt2_iterations(1:N_states,N_iter)
|
||||
enddo
|
||||
N_iter = N_iter-1
|
||||
TOUCH N_iter
|
||||
endif
|
||||
|
||||
energy_iterations(1:N_states,N_iter) = e_(1:N_states)
|
||||
pt2_iterations(1:N_states,N_iter) = pt2_(1:N_states)
|
||||
n_det_iterations(N_iter) = n_
|
||||
call ezfio_set_iterations_N_iter(N_iter)
|
||||
call ezfio_set_iterations_energy_iterations(energy_iterations)
|
||||
call ezfio_set_iterations_pt2_iterations(pt2_iterations)
|
||||
call ezfio_set_iterations_n_det_iterations(n_det_iterations)
|
||||
end
|
||||
|
46
src/iterations_tc/print_extrapolation.irp.f
Normal file
46
src/iterations_tc/print_extrapolation.irp.f
Normal file
@ -0,0 +1,46 @@
|
||||
subroutine print_extrapolated_energy
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Print the extrapolated energy in the output
|
||||
END_DOC
|
||||
|
||||
integer :: i,k
|
||||
|
||||
if (N_iter< 2) then
|
||||
return
|
||||
endif
|
||||
write(*,'(A)') ''
|
||||
write(*,'(A)') 'Extrapolated energies'
|
||||
write(*,'(A)') '------------------------'
|
||||
write(*,'(A)') ''
|
||||
|
||||
print *, ''
|
||||
print *, 'State ', 1
|
||||
print *, ''
|
||||
write(*,*) '=========== ', '==================='
|
||||
write(*,*) 'minimum PT2 ', 'Extrapolated energy'
|
||||
write(*,*) '=========== ', '==================='
|
||||
do k=2,min(N_iter,8)
|
||||
write(*,'(F11.4,2X,F18.8)') pt2_iterations(1,N_iter+1-k), extrapolated_energy(k,1)
|
||||
enddo
|
||||
write(*,*) '=========== ', '==================='
|
||||
|
||||
do i=2, min(N_states,N_det)
|
||||
print *, ''
|
||||
print *, 'State ', i
|
||||
print *, ''
|
||||
write(*,*) '=========== ', '=================== ', '=================== ', '==================='
|
||||
write(*,*) 'minimum PT2 ', 'Extrapolated energy ', ' Excitation (a.u) ', ' Excitation (eV) '
|
||||
write(*,*) '=========== ', '=================== ', '=================== ', '==================='
|
||||
do k=2,min(N_iter,8)
|
||||
write(*,'(F11.4,X,3(X,F18.8))') pt2_iterations(i,N_iter+1-k), extrapolated_energy(k,i), &
|
||||
extrapolated_energy(k,i) - extrapolated_energy(k,1), &
|
||||
(extrapolated_energy(k,i) - extrapolated_energy(k,1) ) * 27.211396641308d0
|
||||
enddo
|
||||
write(*,*) '=========== ', '=================== ', '=================== ', '==================='
|
||||
enddo
|
||||
|
||||
print *, ''
|
||||
|
||||
end subroutine
|
||||
|
104
src/iterations_tc/print_summary.irp.f
Normal file
104
src/iterations_tc/print_summary.irp.f
Normal file
@ -0,0 +1,104 @@
|
||||
subroutine print_summary(e_,pt2_data,pt2_data_err,n_det_,n_configuration_,n_st,s2_)
|
||||
use selection_types
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Print the extrapolated energy in the output
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: n_det_, n_configuration_, n_st
|
||||
double precision, intent(in) :: e_(n_st), s2_(n_st)
|
||||
type(pt2_type) , intent(in) :: pt2_data, pt2_data_err
|
||||
integer :: i, k
|
||||
integer :: N_states_p
|
||||
character*(9) :: pt2_string
|
||||
character*(512) :: fmt
|
||||
|
||||
if (do_pt2) then
|
||||
pt2_string = ' '
|
||||
else
|
||||
pt2_string = '(approx)'
|
||||
endif
|
||||
|
||||
N_states_p = min(N_det_,n_st)
|
||||
|
||||
print *, ''
|
||||
print '(A,I12)', 'Summary at N_det = ', N_det_
|
||||
print '(A)', '-----------------------------------'
|
||||
print *, ''
|
||||
|
||||
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
|
||||
write(*,fmt)
|
||||
write(fmt,*) '(13X,', N_states_p, '(6X,A7,1X,I6,10X))'
|
||||
write(*,fmt) ('State',k, k=1,N_states_p)
|
||||
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
|
||||
write(*,fmt)
|
||||
write(fmt,*) '(A13,', N_states_p, '(1X,F14.8,15X))'
|
||||
write(*,fmt) '# E ', e_(1:N_states_p)
|
||||
if (N_states_p > 1) then
|
||||
write(*,fmt) '# Excit. (au)', e_(1:N_states_p)-e_(1)
|
||||
write(*,fmt) '# Excit. (eV)', (e_(1:N_states_p)-e_(1))*27.211396641308d0
|
||||
endif
|
||||
write(fmt,*) '(A13,', 2*N_states_p, '(1X,F14.8))'
|
||||
write(*,fmt) '# PT2 '//pt2_string, (pt2_data % pt2(k), pt2_data_err % pt2(k), k=1,N_states_p)
|
||||
write(*,fmt) '# rPT2'//pt2_string, (pt2_data % rpt2(k), pt2_data_err % rpt2(k), k=1,N_states_p)
|
||||
write(*,'(A)') '#'
|
||||
write(*,fmt) '# E+PT2 ', (e_(k)+pt2_data % pt2(k),pt2_data_err % pt2(k), k=1,N_states_p)
|
||||
write(*,fmt) '# E+rPT2 ', (e_(k)+pt2_data % rpt2(k),pt2_data_err % rpt2(k), k=1,N_states_p)
|
||||
if (N_states_p > 1) then
|
||||
write(*,fmt) '# Excit. (au)', ( (e_(k)+pt2_data % pt2(k)-e_(1)-pt2_data % pt2(1)), &
|
||||
dsqrt(pt2_data_err % pt2(k)*pt2_data_err % pt2(k)+pt2_data_err % pt2(1)*pt2_data_err % pt2(1)), k=1,N_states_p)
|
||||
write(*,fmt) '# Excit. (eV)', ( (e_(k)+pt2_data % pt2(k)-e_(1)-pt2_data % pt2(1))*27.211396641308d0, &
|
||||
dsqrt(pt2_data_err % pt2(k)*pt2_data_err % pt2(k)+pt2_data_err % pt2(1)*pt2_data_err % pt2(1))*27.211396641308d0, k=1,N_states_p)
|
||||
endif
|
||||
write(fmt,*) '(''# ============'',', N_states_p, '(1X,''=============================''))'
|
||||
write(*,fmt)
|
||||
print *, ''
|
||||
|
||||
print *, 'N_det = ', N_det_
|
||||
print *, 'N_states = ', n_st
|
||||
if (s2_eig) then
|
||||
print *, 'N_cfg = ', N_configuration_
|
||||
if (only_expected_s2) then
|
||||
print *, 'N_csf = ', N_csf
|
||||
endif
|
||||
endif
|
||||
print *, ''
|
||||
|
||||
do k=1, N_states_p
|
||||
print*,'* State ',k
|
||||
print *, '< S^2 > = ', s2_(k)
|
||||
print *, 'E = ', e_(k)
|
||||
print *, 'Variance = ', pt2_data % variance(k), ' +/- ', pt2_data_err % variance(k)
|
||||
print *, 'PT norm = ', dsqrt(pt2_data % overlap(k,k)), ' +/- ', 0.5d0*dsqrt(pt2_data % overlap(k,k)) * pt2_data_err % overlap(k,k) / (pt2_data % overlap(k,k))
|
||||
print *, 'PT2 = ', pt2_data % pt2(k), ' +/- ', pt2_data_err % pt2(k)
|
||||
print *, 'rPT2 = ', pt2_data % rpt2(k), ' +/- ', pt2_data_err % rpt2(k)
|
||||
print *, 'E+PT2 '//pt2_string//' = ', e_(k)+pt2_data % pt2(k), ' +/- ', pt2_data_err % pt2(k)
|
||||
print *, 'E+rPT2'//pt2_string//' = ', e_(k)+pt2_data % rpt2(k), ' +/- ', pt2_data_err % rpt2(k)
|
||||
print *, ''
|
||||
enddo
|
||||
|
||||
print *, '-----'
|
||||
if(n_st.gt.1)then
|
||||
print *, 'Variational Energy difference (au | eV)'
|
||||
do i=2, N_states_p
|
||||
print*,'Delta E = ', (e_(i) - e_(1)), &
|
||||
(e_(i) - e_(1)) * 27.211396641308d0
|
||||
enddo
|
||||
print *, '-----'
|
||||
print*, 'Variational + perturbative Energy difference (au | eV)'
|
||||
do i=2, N_states_p
|
||||
print*,'Delta E = ', (e_(i)+ pt2_data % pt2(i) - (e_(1) + pt2_data % pt2(1))), &
|
||||
(e_(i)+ pt2_data % pt2(i) - (e_(1) + pt2_data % pt2(1))) * 27.211396641308d0
|
||||
enddo
|
||||
print *, '-----'
|
||||
print*, 'Variational + renormalized perturbative Energy difference (au | eV)'
|
||||
do i=2, N_states_p
|
||||
print*,'Delta E = ', (e_(i)+ pt2_data % rpt2(i) - (e_(1) + pt2_data % rpt2(1))), &
|
||||
(e_(i)+ pt2_data % rpt2(i) - (e_(1) + pt2_data % rpt2(1))) * 27.211396641308d0
|
||||
enddo
|
||||
endif
|
||||
|
||||
! call print_energy_components()
|
||||
|
||||
end subroutine
|
||||
|
@ -1,8 +1,29 @@
|
||||
subroutine give_integrals_3_body(i,j,m,k,l,n,integral)
|
||||
implicit none
|
||||
double precision, intent(out) :: integral
|
||||
integer, intent(in) :: i,j,m,k,l,n
|
||||
double precision :: weight
|
||||
BEGIN_DOC
|
||||
! <ijm|L|kln>
|
||||
END_DOC
|
||||
integer :: ipoint,mm
|
||||
integral = 0.d0
|
||||
do mm = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
integral += weight * mos_in_r_array_transp(ipoint,i) * mos_in_r_array_transp(ipoint,k) * x_W_ij_erf_rk(ipoint,mm,m,n) * x_W_ij_erf_rk(ipoint,mm,j,l)
|
||||
integral += weight * mos_in_r_array_transp(ipoint,j) * mos_in_r_array_transp(ipoint,l) * x_W_ij_erf_rk(ipoint,mm,m,n) * x_W_ij_erf_rk(ipoint,mm,i,k)
|
||||
integral += weight * mos_in_r_array_transp(ipoint,m) * mos_in_r_array_transp(ipoint,n) * x_W_ij_erf_rk(ipoint,mm,j,l) * x_W_ij_erf_rk(ipoint,mm,i,k)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_v_ij_erf_rk_cst_mu_naive, ( mo_num, mo_num,n_points_final_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! int dr phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1 )/(2|r - R|) on the MO basis
|
||||
!
|
||||
! WARNING: not on the BI-ORTHO MOs
|
||||
END_DOC
|
||||
integer :: i,j,k,l,ipoint
|
||||
do ipoint = 1, n_points_final_grid
|
||||
@ -23,6 +44,8 @@ BEGIN_PROVIDER [ double precision, mo_v_ij_erf_rk_cst_mu, ( mo_num, mo_num,n_poi
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! int dr phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1)/(2|r - R|) on the MO basis
|
||||
!
|
||||
! WARNING: not on the BI-ORTHO MOs
|
||||
END_DOC
|
||||
integer :: ipoint
|
||||
!$OMP PARALLEL &
|
||||
@ -42,6 +65,8 @@ BEGIN_PROVIDER [ double precision, mo_v_ij_erf_rk_cst_mu_transp, ( n_points_fina
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! int dr phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1)/(2|r - R|) on the MO basis
|
||||
!
|
||||
! WARNING: not on the BI-ORTHO MOs
|
||||
END_DOC
|
||||
integer :: ipoint,i,j
|
||||
do i = 1, mo_num
|
||||
@ -59,6 +84,8 @@ BEGIN_PROVIDER [ double precision, mo_x_v_ij_erf_rk_cst_mu_naive, ( mo_num, mo_n
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! int dr x * phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1 )/|r - R| on the MO basis
|
||||
!
|
||||
! WARNING: not on the BI-ORTHO MOs
|
||||
END_DOC
|
||||
integer :: i,j,k,l,ipoint,m
|
||||
do ipoint = 1, n_points_final_grid
|
||||
@ -81,6 +108,8 @@ BEGIN_PROVIDER [ double precision, mo_x_v_ij_erf_rk_cst_mu, ( mo_num, mo_num,3,n
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! int dr x * phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1)/2|r - R| on the MO basis
|
||||
!
|
||||
! WARNING: not on the BI-ORTHO MOs
|
||||
END_DOC
|
||||
integer :: ipoint,m
|
||||
!$OMP PARALLEL &
|
||||
@ -119,6 +148,8 @@ BEGIN_PROVIDER [ double precision, x_W_ij_erf_rk, ( n_points_final_grid,3,mo_num
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! W_mn^X(R) = \int dr phi_m(r) phi_n(r) (1 - erf(mu |r-R|)) (x-X)
|
||||
!
|
||||
! WARNING: not on the BI-ORTHO MOs
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
integer :: ipoint,m,i,j
|
||||
@ -160,48 +191,3 @@ BEGIN_PROVIDER [ double precision, sqrt_weight_at_r, (n_points_final_grid)]
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
!BEGIN_PROVIDER [ double precision, mos_in_r_array_transp_sq_weight, (n_points_final_grid,mo_num)]
|
||||
|
||||
|
||||
!BEGIN_PROVIDER [ double precision, gauss_ij_rk_transp, (ao_num, ao_num, n_points_final_grid) ]
|
||||
! implicit none
|
||||
! integer :: i,j,ipoint
|
||||
! do ipoint = 1, n_points_final_grid
|
||||
! do j = 1, ao_num
|
||||
! do i = 1, ao_num
|
||||
! gauss_ij_rk_transp(i,j,ipoint) = gauss_ij_rk(ipoint,i,j)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
!END_PROVIDER
|
||||
!
|
||||
!
|
||||
!BEGIN_PROVIDER [ double precision, mo_gauss_ij_rk, ( mo_num, mo_num,n_points_final_grid)]
|
||||
! implicit none
|
||||
! integer :: ipoint
|
||||
! !$OMP PARALLEL &
|
||||
! !$OMP DEFAULT (NONE) &
|
||||
! !$OMP PRIVATE (ipoint) &
|
||||
! !$OMP SHARED (n_points_final_grid,gauss_ij_rk_transp,mo_gauss_ij_rk)
|
||||
! !$OMP DO SCHEDULE (dynamic)
|
||||
! do ipoint = 1, n_points_final_grid
|
||||
! call ao_to_mo(gauss_ij_rk_transp(1,1,ipoint),size(gauss_ij_rk_transp,1),mo_gauss_ij_rk(1,1,ipoint),size(mo_gauss_ij_rk,1))
|
||||
! enddo
|
||||
! !$OMP END DO
|
||||
! !$OMP END PARALLEL
|
||||
!
|
||||
!END_PROVIDER
|
||||
!
|
||||
!BEGIN_PROVIDER [ double precision, mo_gauss_ij_rk_transp, (n_points_final_grid, mo_num, mo_num)]
|
||||
! implicit none
|
||||
! integer :: i,j,ipoint
|
||||
! do ipoint = 1, n_points_final_grid
|
||||
! do j = 1, mo_num
|
||||
! do i = 1, mo_num
|
||||
! mo_gauss_ij_rk_transp(ipoint,i,j) = mo_gauss_ij_rk(i,j,ipoint)
|
||||
! enddo
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
!END_PROVIDER
|
||||
!
|
49
src/tc_bi_ortho/12.tc_bi_ortho.bats
Normal file
49
src/tc_bi_ortho/12.tc_bi_ortho.bats
Normal file
@ -0,0 +1,49 @@
|
||||
#!/usr/bin/env bats
|
||||
|
||||
source $QP_ROOT/tests/bats/common.bats.sh
|
||||
source $QP_ROOT/quantum_package.rc
|
||||
|
||||
|
||||
function run_Ne() {
|
||||
qp set_file Ne_tc_scf
|
||||
qp run cisd
|
||||
qp run tc_bi_ortho | tee Ne_tc_scf.cisd_tc_bi_ortho.out
|
||||
eref=-128.77020441279302
|
||||
energy="$(grep "eigval_right_tc_bi_orth =" Ne_tc_scf.cisd_tc_bi_ortho.out)"
|
||||
eq $energy $eref 1e-6
|
||||
}
|
||||
|
||||
|
||||
@test "Ne" {
|
||||
run_Ne
|
||||
}
|
||||
|
||||
|
||||
function run_C() {
|
||||
qp set_file C_tc_scf
|
||||
qp run cisd
|
||||
qp run tc_bi_ortho | tee C_tc_scf.cisd_tc_bi_ortho.out
|
||||
eref=-37.757536149952514
|
||||
energy="$(grep "eigval_right_tc_bi_orth =" C_tc_scf.cisd_tc_bi_ortho.out)"
|
||||
eq $energy $eref 1e-6
|
||||
}
|
||||
|
||||
|
||||
@test "C" {
|
||||
run_C
|
||||
}
|
||||
|
||||
function run_O() {
|
||||
qp set_file C_tc_scf
|
||||
qp run cisd
|
||||
qp run tc_bi_ortho | tee O_tc_scf.cisd_tc_bi_ortho.out
|
||||
eref=-74.908518517716161
|
||||
energy="$(grep "eigval_right_tc_bi_orth =" O_tc_scf.cisd_tc_bi_ortho.out)"
|
||||
eq $energy $eref 1e-6
|
||||
}
|
||||
|
||||
|
||||
@test "O" {
|
||||
run_O
|
||||
}
|
||||
|
11
src/tc_bi_ortho/EZFIO.cfg
Normal file
11
src/tc_bi_ortho/EZFIO.cfg
Normal file
@ -0,0 +1,11 @@
|
||||
[psi_l_coef_bi_ortho]
|
||||
interface: ezfio
|
||||
doc: Coefficients for the left wave function
|
||||
type: double precision
|
||||
size: (determinants.n_det,determinants.n_states)
|
||||
|
||||
[psi_r_coef_bi_ortho]
|
||||
interface: ezfio
|
||||
doc: Coefficients for the right wave function
|
||||
type: double precision
|
||||
size: (determinants.n_det,determinants.n_states)
|
6
src/tc_bi_ortho/NEED
Normal file
6
src/tc_bi_ortho/NEED
Normal file
@ -0,0 +1,6 @@
|
||||
bi_ort_ints
|
||||
bi_ortho_mos
|
||||
tc_keywords
|
||||
non_hermit_dav
|
||||
dav_general_mat
|
||||
tc_scf
|
53
src/tc_bi_ortho/compute_deltamu_right.irp.f
Normal file
53
src/tc_bi_ortho/compute_deltamu_right.irp.f
Normal file
@ -0,0 +1,53 @@
|
||||
program compute_deltamu_right
|
||||
|
||||
implicit none
|
||||
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
|
||||
PROVIDE N_int
|
||||
call delta_right()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine delta_right()
|
||||
|
||||
implicit none
|
||||
integer :: k
|
||||
double precision, allocatable :: delta(:,:)
|
||||
|
||||
print *, j1b_type
|
||||
print *, j1b_pen
|
||||
print *, mu_erf
|
||||
|
||||
allocate( delta(N_det,N_states) )
|
||||
delta = 0.d0
|
||||
|
||||
do k = 1, N_states
|
||||
!do k = 1, 1
|
||||
|
||||
! get < I_left | H_mu - H | psi_right >
|
||||
!call get_h_bitc_right(psi_det, psi_r_coef_bi_ortho(:,k), N_det, N_int, delta(:,k))
|
||||
call get_delta_bitc_right(psi_det, psi_r_coef_bi_ortho(:,k), N_det, N_int, delta(:,k))
|
||||
|
||||
! order as QMCCHEM
|
||||
call dset_order(delta(:,k), psi_bilinear_matrix_order, N_det)
|
||||
|
||||
enddo
|
||||
|
||||
! call ezfio_set_dmc_dress_dmc_delta_h(delta)
|
||||
|
||||
deallocate(delta)
|
||||
|
||||
return
|
||||
end subroutine delta_right
|
||||
|
||||
! ---
|
||||
|
155
src/tc_bi_ortho/dressing_vectors_lr.irp.f
Normal file
155
src/tc_bi_ortho/dressing_vectors_lr.irp.f
Normal file
@ -0,0 +1,155 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine get_delta_bitc_right(psidet, psicoef, ndet, Nint, delta)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! delta(I) = < I_left | H_TC - H | Psi_right >
|
||||
!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: ndet, Nint
|
||||
double precision, intent(in) :: psicoef(ndet)
|
||||
integer(bit_kind), intent(in) :: psidet(Nint,2,ndet)
|
||||
double precision, intent(out) :: delta(ndet)
|
||||
|
||||
integer :: i, j
|
||||
double precision :: h_mono, h_twoe, h_tot
|
||||
double precision :: htc_mono, htc_twoe, htc_three, htc_tot
|
||||
double precision :: delta_mat
|
||||
|
||||
print *, ' get_delta_bitc_right ...'
|
||||
|
||||
i = 1
|
||||
j = 1
|
||||
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
call hmat_bi_ortho (psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
|
||||
|
||||
delta = 0.d0
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
|
||||
!$OMP SHARED(delta, ndet, psidet, psicoef, Nint) &
|
||||
!$OMP PRIVATE(i, j, delta_mat, h_mono, h_twoe, h_tot, &
|
||||
!$OMP htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
do i = 1, ndet
|
||||
do j = 1, ndet
|
||||
|
||||
! < I | Htilde | J >
|
||||
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
! < I | H | J >
|
||||
call hmat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
|
||||
|
||||
delta_mat = htc_tot - h_tot
|
||||
|
||||
delta(i) = delta(i) + psicoef(j) * delta_mat
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
end subroutine get_delta_bitc_right
|
||||
|
||||
! ---
|
||||
|
||||
subroutine get_htc_bitc_right(psidet, psicoef, ndet, Nint, delta)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! delta(I) = < I_left | H_TC | Psi_right >
|
||||
!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: ndet, Nint
|
||||
double precision, intent(in) :: psicoef(ndet)
|
||||
integer(bit_kind), intent(in) :: psidet(Nint,2,ndet)
|
||||
double precision, intent(out) :: delta(ndet)
|
||||
|
||||
integer :: i, j
|
||||
double precision :: htc_mono, htc_twoe, htc_three, htc_tot
|
||||
|
||||
print *, ' get_htc_bitc_right ...'
|
||||
|
||||
i = 1
|
||||
j = 1
|
||||
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
|
||||
delta = 0.d0
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
|
||||
!$OMP SHARED(delta, ndet, psidet, psicoef, Nint) &
|
||||
!$OMP PRIVATE(i, j, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
do i = 1, ndet
|
||||
do j = 1, ndet
|
||||
|
||||
! < I | Htilde | J >
|
||||
call htilde_mu_mat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, htc_mono, htc_twoe, htc_three, htc_tot)
|
||||
|
||||
delta(i) = delta(i) + psicoef(j) * htc_tot
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
end subroutine get_htc_bitc_right
|
||||
|
||||
! ---
|
||||
|
||||
subroutine get_h_bitc_right(psidet, psicoef, ndet, Nint, delta)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! delta(I) = < I_left | H | Psi_right >
|
||||
!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: ndet, Nint
|
||||
double precision, intent(in) :: psicoef(ndet)
|
||||
integer(bit_kind), intent(in) :: psidet(Nint,2,ndet)
|
||||
double precision, intent(out) :: delta(ndet)
|
||||
|
||||
integer :: i, j
|
||||
double precision :: h_mono, h_twoe, h_tot
|
||||
|
||||
print *, ' get_h_bitc_right ...'
|
||||
|
||||
i = 1
|
||||
j = 1
|
||||
call hmat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
|
||||
|
||||
!double precision :: norm
|
||||
!norm = 0.d0
|
||||
!do i = 1, ndet
|
||||
! norm += psicoef(i) * psicoef(i)
|
||||
!enddo
|
||||
!print*, ' norm = ', norm
|
||||
|
||||
call hmat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
|
||||
|
||||
delta = 0.d0
|
||||
! !$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
|
||||
! !$OMP SHARED(delta, ndet, psidet, psicoef, Nint) &
|
||||
! !$OMP PRIVATE(i, j, h_mono, h_twoe, h_tot)
|
||||
do i = 1, ndet
|
||||
do j = 1, ndet
|
||||
|
||||
! < I | H | J >
|
||||
call hmat_bi_ortho(psidet(1,1,i), psidet(1,1,j), Nint, h_mono, h_twoe, h_tot)
|
||||
|
||||
delta(i) = delta(i) + psicoef(j) * h_tot
|
||||
enddo
|
||||
enddo
|
||||
! !$OMP END PARALLEL DO
|
||||
|
||||
end subroutine get_h_bitc_right
|
||||
|
||||
! ---
|
||||
|
104
src/tc_bi_ortho/e_corr_bi_ortho.irp.f
Normal file
104
src/tc_bi_ortho/e_corr_bi_ortho.irp.f
Normal file
@ -0,0 +1,104 @@
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
BEGIN_PROVIDER [ double precision, e_tilde_00]
|
||||
implicit none
|
||||
double precision :: hmono,htwoe,hthree,htot
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,htot)
|
||||
e_tilde_00 = htot
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, e_pt2_tc_bi_orth]
|
||||
&BEGIN_PROVIDER [ double precision, e_pt2_tc_bi_orth_single]
|
||||
&BEGIN_PROVIDER [ double precision, e_pt2_tc_bi_orth_double]
|
||||
implicit none
|
||||
integer :: i,degree
|
||||
double precision :: hmono,htwoe,hthree,htilde_ij,coef_pt1,e_i0,delta_e
|
||||
e_pt2_tc_bi_orth = 0.d0
|
||||
e_pt2_tc_bi_orth_single = 0.d0
|
||||
e_pt2_tc_bi_orth_double = 0.d0
|
||||
do i = 1, N_det
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
|
||||
if(degree == 1 .or. degree == 2)then
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
|
||||
delta_e = e_tilde_00 - e_i0
|
||||
coef_pt1 = htilde_ij / delta_e
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
e_pt2_tc_bi_orth += coef_pt1 * htilde_ij
|
||||
if(degree == 1)then
|
||||
e_pt2_tc_bi_orth_single += coef_pt1 * htilde_ij
|
||||
else
|
||||
! print*,'coef_pt1, e_pt2',coef_pt1,coef_pt1 * htilde_ij
|
||||
e_pt2_tc_bi_orth_double += coef_pt1 * htilde_ij
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, e_tilde_bi_orth_00]
|
||||
implicit none
|
||||
double precision :: hmono,htwoe,hthree,htilde_ij
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,HF_bitmask,N_int,hmono,htwoe,hthree,e_tilde_bi_orth_00)
|
||||
e_tilde_bi_orth_00 += nuclear_repulsion
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, e_corr_bi_orth ]
|
||||
&BEGIN_PROVIDER [ double precision, e_corr_bi_orth_proj ]
|
||||
&BEGIN_PROVIDER [ double precision, e_corr_single_bi_orth ]
|
||||
&BEGIN_PROVIDER [ double precision, e_corr_double_bi_orth ]
|
||||
implicit none
|
||||
integer :: i,degree
|
||||
double precision :: hmono,htwoe,hthree,htilde_ij
|
||||
|
||||
e_corr_bi_orth = 0.d0
|
||||
e_corr_single_bi_orth = 0.d0
|
||||
e_corr_double_bi_orth = 0.d0
|
||||
do i = 1, N_det
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
if(degree == 1)then
|
||||
e_corr_single_bi_orth += reigvec_tc_bi_orth(i,1) * htilde_ij/reigvec_tc_bi_orth(1,1)
|
||||
else if(degree == 2)then
|
||||
e_corr_double_bi_orth += reigvec_tc_bi_orth(i,1) * htilde_ij/reigvec_tc_bi_orth(1,1)
|
||||
! print*,'coef_wf , e_cor',reigvec_tc_bi_orth(i,1)/reigvec_tc_bi_orth(1,1), reigvec_tc_bi_orth(i,1) * htilde_ij/reigvec_tc_bi_orth(1,1)
|
||||
endif
|
||||
enddo
|
||||
e_corr_bi_orth_proj = e_corr_single_bi_orth + e_corr_double_bi_orth
|
||||
e_corr_bi_orth = eigval_right_tc_bi_orth(1) - e_tilde_bi_orth_00
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, e_tc_left_right ]
|
||||
implicit none
|
||||
integer :: i,j
|
||||
double precision :: hmono,htwoe,hthree,htilde_ij,accu
|
||||
e_tc_left_right = 0.d0
|
||||
accu = 0.d0
|
||||
do i = 1, N_det
|
||||
accu += reigvec_tc_bi_orth(i,1) * leigvec_tc_bi_orth(i,1)
|
||||
do j = 1, N_det
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j),psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
e_tc_left_right += htilde_ij * reigvec_tc_bi_orth(i,1) * leigvec_tc_bi_orth(j,1)
|
||||
enddo
|
||||
enddo
|
||||
e_tc_left_right *= 1.d0/accu
|
||||
e_tc_left_right += nuclear_repulsion
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, coef_pt1_bi_ortho, (N_det)]
|
||||
implicit none
|
||||
integer :: i,degree
|
||||
double precision :: hmono,htwoe,hthree,htilde_ij,coef_pt1,e_i0,delta_e
|
||||
do i = 1, N_det
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
|
||||
if(degree==0)then
|
||||
coef_pt1_bi_ortho(i) = 1.d0
|
||||
else
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
|
||||
delta_e = e_tilde_00 - e_i0
|
||||
coef_pt1 = htilde_ij / delta_e
|
||||
coef_pt1_bi_ortho(i)= coef_pt1
|
||||
endif
|
||||
enddo
|
||||
END_PROVIDER
|
243
src/tc_bi_ortho/h_biortho.irp.f
Normal file
243
src/tc_bi_ortho/h_biortho.irp.f
Normal file
@ -0,0 +1,243 @@
|
||||
|
||||
! --
|
||||
|
||||
subroutine hmat_bi_ortho(key_j, key_i, Nint, hmono, htwoe, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! < key_j | H | key_i > where | key_j > is developed on the LEFT basis and | key_i > is developed on the RIGHT basis
|
||||
!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
|
||||
double precision, intent(out) :: hmono, htwoe, htot
|
||||
|
||||
integer :: degree
|
||||
|
||||
hmono = 0.d0
|
||||
htwoe = 0.d0
|
||||
htot = 0.d0
|
||||
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
if(degree .gt. 2) return
|
||||
|
||||
if(degree == 0) then
|
||||
|
||||
call diag_hmat_bi_ortho(Nint, key_i, hmono, htwoe)
|
||||
htot = htot + nuclear_repulsion
|
||||
|
||||
else if (degree == 1) then
|
||||
|
||||
call single_hmat_bi_ortho(Nint, key_j, key_i, hmono, htwoe)
|
||||
|
||||
else if(degree == 2) then
|
||||
|
||||
call double_hmat_bi_ortho(Nint, key_j, key_i, hmono, htwoe)
|
||||
|
||||
endif
|
||||
|
||||
htot += hmono + htwoe
|
||||
|
||||
return
|
||||
end subroutine hmat_bi_ortho
|
||||
|
||||
! ---
|
||||
|
||||
subroutine diag_hmat_bi_ortho(Nint, key_i, hmono, htwoe)
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_i(Nint,2)
|
||||
double precision, intent(out) :: hmono, htwoe
|
||||
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2), i, j, ii, jj, ispin, jspin
|
||||
|
||||
hmono = 0.d0
|
||||
htwoe = 0.d0
|
||||
|
||||
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
||||
|
||||
do ispin = 1, 2
|
||||
do i = 1, Ne(ispin)
|
||||
ii = occ(i,ispin)
|
||||
hmono += mo_bi_ortho_one_e(ii,ii)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! alpha/beta two-body
|
||||
ispin = 1
|
||||
jspin = 2
|
||||
do i = 1, Ne(ispin) ! electron 1
|
||||
ii = occ(i,ispin)
|
||||
do j = 1, Ne(jspin) ! electron 2
|
||||
jj = occ(j,jspin)
|
||||
htwoe += mo_bi_ortho_coul_e(jj,ii,jj,ii)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! alpha/alpha two-body
|
||||
do i = 1, Ne(ispin)
|
||||
ii = occ(i,ispin)
|
||||
do j = i+1, Ne(ispin)
|
||||
jj = occ(j,ispin)
|
||||
htwoe += mo_bi_ortho_coul_e(ii,jj,ii,jj) - mo_bi_ortho_coul_e(ii,jj,jj,ii)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! beta/beta two-body
|
||||
do i = 1, Ne(jspin)
|
||||
ii = occ(i,jspin)
|
||||
do j = i+1, Ne(jspin)
|
||||
jj = occ(j,jspin)
|
||||
htwoe += mo_bi_ortho_coul_e(ii,jj,ii,jj) - mo_bi_ortho_coul_e(ii,jj,jj,ii)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
return
|
||||
end subroutine diag_hmat_bi_ortho
|
||||
|
||||
! ---
|
||||
|
||||
subroutine single_hmat_bi_ortho(Nint, key_j, key_i, hmono, htwoe)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! < key_j | H | key_i > for single excitation
|
||||
!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
|
||||
double precision, intent(out) :: hmono, htwoe
|
||||
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2), i, j, ii, ispin, jspin
|
||||
integer :: degree,exc(0:2,2,2)
|
||||
integer :: h1, p1, h2, p2, s1, s2
|
||||
integer :: other_spin(2)
|
||||
double precision :: phase
|
||||
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
|
||||
hmono = 0.d0
|
||||
htwoe = 0.d0
|
||||
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
if(degree .ne. 1) then
|
||||
return
|
||||
endif
|
||||
|
||||
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
||||
|
||||
call get_single_excitation(key_i, key_j, exc, phase, Nint)
|
||||
call decode_exc(exc, 1, h1, p1, h2, p2, s1, s2)
|
||||
|
||||
hmono = mo_bi_ortho_one_e(p1,h1) * phase
|
||||
|
||||
! alpha/beta two-body
|
||||
ispin = other_spin(s1)
|
||||
if(s1 == 1) then
|
||||
|
||||
! single alpha
|
||||
do i = 1, Ne(ispin) ! electron 2
|
||||
ii = occ(i,ispin)
|
||||
htwoe += mo_bi_ortho_coul_e(ii,p1,ii,h1)
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
! single beta
|
||||
do i = 1, Ne(ispin) ! electron 1
|
||||
ii = occ(i,ispin)
|
||||
htwoe += mo_bi_ortho_coul_e(p1,ii,h1,ii)
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
! same spin two-body
|
||||
do i = 1, Ne(s1)
|
||||
ii = occ(i,s1)
|
||||
! ( h1 p1 |ii ii ) - ( h1 ii | p1 ii )
|
||||
htwoe += mo_bi_ortho_coul_e(ii,p1,ii,h1) - mo_bi_ortho_coul_e(p1,ii,ii,h1)
|
||||
enddo
|
||||
|
||||
htwoe *= phase
|
||||
|
||||
end subroutine single_hmat_bi_ortho
|
||||
|
||||
! ---
|
||||
|
||||
subroutine double_hmat_bi_ortho(Nint, key_j, key_i, hmono, htwoe)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! < key_j | H | key_i> for double excitation
|
||||
!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
|
||||
double precision, intent(out) :: hmono, htwoe
|
||||
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2), i, j, ii, ispin, jspin
|
||||
integer :: degree,exc(0:2,2,2)
|
||||
integer :: h1, p1, h2, p2, s1, s2
|
||||
integer :: other_spin(2)
|
||||
double precision :: phase
|
||||
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
|
||||
hmono = 0.d0
|
||||
htwoe = 0.d0
|
||||
|
||||
if(degree .ne. 2) then
|
||||
return
|
||||
endif
|
||||
|
||||
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
||||
|
||||
call get_double_excitation(key_i, key_j, exc, phase, Nint)
|
||||
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
|
||||
|
||||
if(s1 .ne. s2) then
|
||||
|
||||
htwoe = mo_bi_ortho_coul_e(p2,p1,h2,h1)
|
||||
|
||||
else
|
||||
|
||||
! same spin two-body
|
||||
|
||||
! direct terms exchange terms
|
||||
htwoe = mo_bi_ortho_coul_e(p2,p1,h2,h1) - mo_bi_ortho_coul_e(p1,p2,h2,h1)
|
||||
|
||||
endif
|
||||
|
||||
htwoe *= phase
|
||||
|
||||
end subroutine double_hmat_bi_ortho
|
||||
|
||||
! ---
|
||||
|
||||
|
92
src/tc_bi_ortho/h_tc_bi_ortho_psi.irp.f
Normal file
92
src/tc_bi_ortho/h_tc_bi_ortho_psi.irp.f
Normal file
@ -0,0 +1,92 @@
|
||||
subroutine htc_bi_ortho_calc_tdav(v, u, N_st, sze)
|
||||
|
||||
use bitmasks
|
||||
|
||||
BEGIN_DOC
|
||||
! Application of H_TC on a vector
|
||||
!
|
||||
! v(i,istate) = \sum_j u(j,istate) H_TC(i,j), with:
|
||||
! H_TC(i,j) = < Di | H_TC | Dj >
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: N_st, sze
|
||||
double precision, intent(in) :: u(sze,N_st)
|
||||
double precision, intent(inout) :: v(sze,N_st)
|
||||
|
||||
integer :: i, j, istate
|
||||
double precision :: htot
|
||||
|
||||
PROVIDE N_int
|
||||
PROVIDE psi_det
|
||||
|
||||
|
||||
! TODO : transform it with the bi-linear representation in terms of alpha-beta.
|
||||
|
||||
i = 1
|
||||
j = 1
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
|
||||
|
||||
v = 0.d0
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
|
||||
!$OMP SHARED(N_st, sze, N_int, psi_det, u, v) &
|
||||
!$OMP PRIVATE(istate, i, j, htot)
|
||||
do istate = 1, N_st
|
||||
do i = 1, sze
|
||||
do j = 1, sze
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
|
||||
v(i,istate) = v(i,istate) + htot * u(j,istate)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
end
|
||||
|
||||
subroutine htcdag_bi_ortho_calc_tdav(v, u, N_st, sze)
|
||||
|
||||
use bitmasks
|
||||
|
||||
BEGIN_DOC
|
||||
! Application of (H_TC)^dagger on a vector
|
||||
!
|
||||
! v(i,istate) = \sum_j u(j,istate) H_TC(j,i), with:
|
||||
! H_TC(i,j) = < Di | H_TC | Dj >
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: N_st, sze
|
||||
double precision, intent(in) :: u(sze,N_st)
|
||||
double precision, intent(inout) :: v(sze,N_st)
|
||||
|
||||
integer :: i, j, istate
|
||||
double precision :: htot
|
||||
|
||||
PROVIDE N_int
|
||||
PROVIDE psi_det
|
||||
|
||||
i = 1
|
||||
j = 1
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,j), N_int, htot)
|
||||
|
||||
v = 0.d0
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
|
||||
!$OMP SHARED(N_st, sze, N_int, psi_det, u, v) &
|
||||
!$OMP PRIVATE(istate, i, j, htot)
|
||||
do istate = 1, N_st
|
||||
do i = 1, sze
|
||||
do j = 1, sze
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,j), psi_det(1,1,i), N_int, htot)
|
||||
v(i,istate) = v(i,istate) + htot * u(j,istate)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
end
|
||||
|
319
src/tc_bi_ortho/normal_ordered.irp.f
Normal file
319
src/tc_bi_ortho/normal_ordered.irp.f
Normal file
@ -0,0 +1,319 @@
|
||||
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Normal ordering of the three body interaction on the HF density
|
||||
END_DOC
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i,h1,p1,h2,p2
|
||||
integer :: hh1,hh2,pp1,pp2
|
||||
integer :: Ne(2)
|
||||
integer, allocatable :: occ(:,:)
|
||||
integer(bit_kind), allocatable :: key_i_core(:,:)
|
||||
double precision :: hthree_aba,hthree_aaa,hthree_aab
|
||||
double precision :: wall0,wall1
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
allocate( occ(N_int*bit_kind_size,2) )
|
||||
allocate( key_i_core(N_int,2) )
|
||||
|
||||
if(core_tc_op) then
|
||||
do i = 1, N_int
|
||||
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
|
||||
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
|
||||
enddo
|
||||
call bitstring_to_list_ab(key_i_core,occ,Ne,N_int)
|
||||
else
|
||||
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
|
||||
endif
|
||||
|
||||
normal_two_body_bi_orth = 0.d0
|
||||
print*,'Providing normal_two_body_bi_orth ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, hthree_aba, hthree_aab, hthree_aaa) &
|
||||
!$OMP SHARED (N_int, n_act_orb, list_act, Ne, occ, normal_two_body_bi_orth)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do hh1 = 1, n_act_orb
|
||||
h1 = list_act(hh1)
|
||||
do pp1 = 1, n_act_orb
|
||||
p1 = list_act(pp1)
|
||||
do hh2 = 1, n_act_orb
|
||||
h2 = list_act(hh2)
|
||||
do pp2 = 1, n_act_orb
|
||||
p2 = list_act(pp2)
|
||||
! opposite spin double excitations
|
||||
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aba)
|
||||
! same spin double excitations with opposite spin contributions
|
||||
if(h1<h2.and.p1.gt.p2)then
|
||||
call give_aab_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aab) ! exchange h1<->h2
|
||||
! same spin double excitations with same spin contributions
|
||||
if(Ne(2).ge.3)then
|
||||
call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2
|
||||
else
|
||||
hthree_aaa = 0.d0
|
||||
endif
|
||||
else
|
||||
call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab)
|
||||
if(Ne(2).ge.3)then
|
||||
call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa)
|
||||
else
|
||||
hthree_aaa = 0.d0
|
||||
endif
|
||||
endif
|
||||
normal_two_body_bi_orth(p2,h2,p1,h1) = 0.5d0*(hthree_aba + hthree_aab + hthree_aaa)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print*,'Wall time for normal_two_body_bi_orth ',wall1-wall0
|
||||
|
||||
deallocate( occ )
|
||||
deallocate( key_i_core )
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
subroutine give_aba_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint, h1, h2, p1, p2
|
||||
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
|
||||
double precision, intent(out) :: hthree
|
||||
integer :: ii, i
|
||||
double precision :: int_direct, int_exc_12, int_exc_13, integral
|
||||
|
||||
!!!! double alpha/beta
|
||||
hthree = 0.d0
|
||||
do ii = 1, Ne(2) ! purely closed shell part
|
||||
i = occ(ii,2)
|
||||
call give_integrals_3_body_bi_ort(i ,p2,p1,i,h2,h1,integral)
|
||||
int_direct = -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p1,p2, i,i,h2,h1,integral)
|
||||
int_exc_13 = -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p2, i,p1,i,h2,h1,integral)
|
||||
int_exc_12 = -1.d0 * integral
|
||||
hthree += 2.d0 * int_direct - 1.d0 * ( int_exc_13 + int_exc_12)
|
||||
enddo
|
||||
do ii = Ne(2) + 1, Ne(1) ! purely open-shell part
|
||||
i = occ(ii,1)
|
||||
call give_integrals_3_body_bi_ort(i ,p2,p1,i,h2,h1,integral)
|
||||
int_direct = -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p1,p2, i,i,h2,h1,integral)
|
||||
int_exc_13 = -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p2, i,p1,i,h2,h1,integral)
|
||||
int_exc_12 = -1.d0 * integral
|
||||
hthree += 1.d0 * int_direct - 0.5d0* ( int_exc_13 + int_exc_12)
|
||||
enddo
|
||||
|
||||
end subroutine give_aba_contraction
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_ab, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Normal ordered two-body sector of the three-body terms for opposite spin double excitations
|
||||
END_DOC
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
integer :: h1, p1, h2, p2, i
|
||||
integer :: hh1, hh2, pp1, pp2
|
||||
integer :: Ne(2)
|
||||
integer, allocatable :: occ(:,:)
|
||||
integer(bit_kind), allocatable :: key_i_core(:,:)
|
||||
double precision :: hthree
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
allocate( key_i_core(N_int,2) )
|
||||
allocate( occ(N_int*bit_kind_size,2) )
|
||||
|
||||
if(core_tc_op)then
|
||||
do i = 1, N_int
|
||||
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
|
||||
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
|
||||
enddo
|
||||
call bitstring_to_list_ab(key_i_core,occ,Ne,N_int)
|
||||
else
|
||||
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
|
||||
endif
|
||||
normal_two_body_bi_orth_ab = 0.d0
|
||||
do hh1 = 1, n_act_orb
|
||||
h1 = list_act(hh1)
|
||||
do pp1 = 1, n_act_orb
|
||||
p1 = list_act(pp1)
|
||||
do hh2 = 1, n_act_orb
|
||||
h2 = list_act(hh2)
|
||||
do pp2 = 1, n_act_orb
|
||||
p2 = list_act(pp2)
|
||||
call give_aba_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree)
|
||||
normal_two_body_bi_orth_ab(p2,h2,p1,h1) = hthree
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate( key_i_core )
|
||||
deallocate( occ )
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, normal_two_body_bi_orth_aa_bb, (n_act_orb, n_act_orb, n_act_orb, n_act_orb)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Normal ordered two-body sector of the three-body terms for same spin double excitations
|
||||
END_DOC
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
integer :: i,ii,j,h1,p1,h2,p2
|
||||
integer :: hh1,hh2,pp1,pp2
|
||||
integer :: Ne(2)
|
||||
integer, allocatable :: occ(:,:)
|
||||
integer(bit_kind), allocatable :: key_i_core(:,:)
|
||||
double precision :: hthree_aab, hthree_aaa
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
allocate( key_i_core(N_int,2) )
|
||||
allocate( occ(N_int*bit_kind_size,2) )
|
||||
|
||||
if(core_tc_op)then
|
||||
do i = 1, N_int
|
||||
key_i_core(i,1) = xor(ref_bitmask(i,1),core_bitmask(i,1))
|
||||
key_i_core(i,2) = xor(ref_bitmask(i,2),core_bitmask(i,2))
|
||||
enddo
|
||||
call bitstring_to_list_ab(key_i_core, occ, Ne, N_int)
|
||||
else
|
||||
call bitstring_to_list_ab(ref_bitmask, occ, Ne, N_int)
|
||||
endif
|
||||
|
||||
normal_two_body_bi_orth_aa_bb = 0.d0
|
||||
do hh1 = 1, n_act_orb
|
||||
h1 = list_act(hh1)
|
||||
do pp1 = 1 , n_act_orb
|
||||
p1 = list_act(pp1)
|
||||
do hh2 = 1, n_act_orb
|
||||
h2 = list_act(hh2)
|
||||
do pp2 = 1 , n_act_orb
|
||||
p2 = list_act(pp2)
|
||||
if(h1<h2.and.p1.gt.p2)then
|
||||
call give_aab_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aab) ! exchange h1<->h2
|
||||
if(Ne(2).ge.3)then
|
||||
call give_aaa_contraction(N_int, h2, h1, p1, p2, Ne, occ, hthree_aaa) ! exchange h1<->h2
|
||||
else
|
||||
hthree_aaa = 0.d0
|
||||
endif
|
||||
else
|
||||
call give_aab_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aab)
|
||||
if(Ne(2).ge.3)then
|
||||
call give_aaa_contraction(N_int, h1, h2, p1, p2, Ne, occ, hthree_aaa)
|
||||
else
|
||||
hthree_aaa = 0.d0
|
||||
endif
|
||||
endif
|
||||
normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1) = hthree_aab + hthree_aaa
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate( key_i_core )
|
||||
deallocate( occ )
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
subroutine give_aaa_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint, h1, h2, p1, p2
|
||||
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
|
||||
double precision, intent(out) :: hthree
|
||||
integer :: ii,i
|
||||
double precision :: int_direct,int_exc_12,int_exc_13,int_exc_23
|
||||
double precision :: integral,int_exc_l,int_exc_ll
|
||||
|
||||
hthree = 0.d0
|
||||
do ii = 1, Ne(2) ! purely closed shell part
|
||||
i = occ(ii,2)
|
||||
call give_integrals_3_body_bi_ort(i ,p2,p1,i,h2,h1,integral)
|
||||
int_direct = -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p2,p1,i ,i,h2,h1,integral)
|
||||
int_exc_l = -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p1,i ,p2,i,h2,h1,integral)
|
||||
int_exc_ll= -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p2,i ,p1,i,h2,h1,integral)
|
||||
int_exc_12= -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p1,p2, i,i,h2,h1,integral)
|
||||
int_exc_13= -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(i ,p1,p2,i,h2,h1,integral)
|
||||
int_exc_23= -1.d0 * integral
|
||||
|
||||
hthree += 1.d0 * int_direct + int_exc_l + int_exc_ll -( int_exc_12+ int_exc_13+ int_exc_23 )
|
||||
enddo
|
||||
do ii = Ne(2)+1,Ne(1) ! purely open-shell part
|
||||
i = occ(ii,1)
|
||||
call give_integrals_3_body_bi_ort(i ,p2,p1,i,h2,h1,integral)
|
||||
int_direct = -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p2,p1,i ,i,h2,h1,integral)
|
||||
int_exc_l = -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p1,i ,p2,i,h2,h1,integral)
|
||||
int_exc_ll= -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p2,i ,p1,i,h2,h1,integral)
|
||||
int_exc_12= -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p1,p2, i,i,h2,h1,integral)
|
||||
int_exc_13= -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(i ,p1,p2,i,h2,h1,integral)
|
||||
int_exc_23= -1.d0 * integral
|
||||
|
||||
hthree += 1.d0 * int_direct + 0.5d0 * (int_exc_l + int_exc_ll -( int_exc_12+ int_exc_13+ int_exc_23 ))
|
||||
enddo
|
||||
|
||||
end subroutine give_aaa_contraction
|
||||
|
||||
|
||||
|
||||
subroutine give_aab_contraction(Nint, h1, h2, p1, p2, Ne, occ, hthree)
|
||||
implicit none
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
integer, intent(in) :: Nint, h1, h2, p1, p2
|
||||
integer, intent(in) :: Ne(2), occ(Nint*bit_kind_size,2)
|
||||
double precision, intent(out) :: hthree
|
||||
integer :: ii, i
|
||||
double precision :: int_direct, int_exc_12, int_exc_13, int_exc_23
|
||||
double precision :: integral, int_exc_l, int_exc_ll
|
||||
|
||||
hthree = 0.d0
|
||||
do ii = 1, Ne(2) ! purely closed shell part
|
||||
i = occ(ii,2)
|
||||
call give_integrals_3_body_bi_ort(p2,p1,i,h2,h1,i,integral)
|
||||
int_direct = -1.d0 * integral
|
||||
call give_integrals_3_body_bi_ort(p1,p2,i,h2,h1,i,integral)
|
||||
int_exc_23= -1.d0 * integral
|
||||
hthree += 1.d0 * int_direct - int_exc_23
|
||||
enddo
|
||||
|
||||
end subroutine give_aab_contraction
|
142
src/tc_bi_ortho/print_he_tc_energy.irp.f
Normal file
142
src/tc_bi_ortho/print_he_tc_energy.irp.f
Normal file
@ -0,0 +1,142 @@
|
||||
|
||||
! ---
|
||||
|
||||
program print_he_tc_energy
|
||||
|
||||
implicit none
|
||||
|
||||
call print_overlap()
|
||||
|
||||
call print_energy1()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine print_overlap()
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, l
|
||||
double precision :: S_ij
|
||||
|
||||
print *, ' ao_overlap:'
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
print *, j, i, ao_overlap(j,i)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, ' mo_overlap:'
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
|
||||
S_ij = 0.d0
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
S_ij += mo_l_coef(k,i) * ao_overlap(k,l) * mo_r_coef(l,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, i, j, S_ij
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end subroutine print_overlap
|
||||
|
||||
! ---
|
||||
|
||||
subroutine print_energy1()
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, l
|
||||
double precision :: e, n, e_tmp, n_tmp, e_ns
|
||||
double precision, external :: ao_two_e_integral
|
||||
|
||||
e = 0.d0
|
||||
n = 0.d0
|
||||
|
||||
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
||||
|
||||
! < phi_1 phi_1 | h1 | phi_1 phi_1 >
|
||||
|
||||
e_tmp = 0.d0
|
||||
n_tmp = 0.d0
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
e_tmp += mo_l_coef(i,1) * ao_one_e_integrals(i,j) * mo_r_coef(j,1)
|
||||
n_tmp += mo_l_coef(i,1) * ao_overlap(i,j) * mo_r_coef(j,1)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
e += e_tmp * n_tmp
|
||||
|
||||
! ---
|
||||
|
||||
! < phi_1 phi_1 | h2 | phi_1 phi_1 >
|
||||
|
||||
e_tmp = 0.d0
|
||||
n_tmp = 0.d0
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
n_tmp += mo_l_coef(i,1) * ao_overlap(i,j) * mo_r_coef(j,1)
|
||||
e_tmp += mo_l_coef(i,1) * ao_one_e_integrals(i,j) * mo_r_coef(j,1)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
e += e_tmp * n_tmp
|
||||
|
||||
! ---
|
||||
|
||||
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
||||
|
||||
! ---
|
||||
|
||||
e_ns = 0.d0
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
do k = 1, ao_num
|
||||
do l = 1, ao_num
|
||||
|
||||
! ao_two_e_tc_tot(i,j,k,l) = <k i| V^TC(r_12) |l j>
|
||||
e += mo_l_coef(i,1) * mo_l_coef(k,1) * ao_two_e_tc_tot(i,j,k,l) * mo_r_coef(j,1) * mo_r_coef(l,1)
|
||||
|
||||
e_ns += mo_l_coef(i,1) * mo_l_coef(k,1) * ao_non_hermit_term_chemist(i,j,k,l) * mo_r_coef(j,1) * mo_r_coef(l,1)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
||||
|
||||
! ---
|
||||
|
||||
! < phi_1 phi_1 | phi_1 phi_1 >
|
||||
e_tmp = 0.d0
|
||||
n_tmp = 0.d0
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
e_tmp += mo_l_coef(i,1) * ao_overlap(i,j) * mo_r_coef(j,1)
|
||||
n_tmp += mo_l_coef(i,1) * ao_overlap(i,j) * mo_r_coef(j,1)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
n += e_tmp * n_tmp
|
||||
|
||||
! ---
|
||||
|
||||
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
||||
|
||||
e = e / n
|
||||
e_ns = e_ns / n
|
||||
|
||||
print *, ' tc energy = ', e
|
||||
print *, ' non-sym energy = ', e_ns
|
||||
|
||||
end subroutine print_energy1
|
||||
|
||||
! ---
|
||||
|
||||
|
104
src/tc_bi_ortho/print_tc_wf.irp.f
Normal file
104
src/tc_bi_ortho/print_tc_wf.irp.f
Normal file
@ -0,0 +1,104 @@
|
||||
program print_tc_bi_ortho
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
! if(three_body_h_tc)then
|
||||
! call provide_all_three_ints_bi_ortho
|
||||
! endif
|
||||
! call routine
|
||||
call write_l_r_wf
|
||||
end
|
||||
|
||||
subroutine write_l_r_wf
|
||||
implicit none
|
||||
character*(128) :: output
|
||||
integer :: i_unit_output,getUnitAndOpen
|
||||
output=trim(ezfio_filename)//'.tc_wf'
|
||||
i_unit_output = getUnitAndOpen(output,'w')
|
||||
integer :: i
|
||||
print*,'Writing the left-right wf'
|
||||
do i = 1, N_det
|
||||
write(i_unit_output,*)i,psi_l_coef_sorted_bi_ortho_left(i),psi_r_coef_sorted_bi_ortho_right(i)
|
||||
enddo
|
||||
|
||||
|
||||
end
|
||||
|
||||
subroutine routine
|
||||
implicit none
|
||||
integer :: i,degree
|
||||
integer :: exc(0:2,2,2),h1,p1,s1,h2,p2,s2
|
||||
double precision :: hmono,htwoe,hthree,htilde_ij,coef_pt1,e_i0,delta_e,e_pt2
|
||||
double precision :: contrib_pt,e_corr,coef,contrib,phase
|
||||
double precision :: accu_positive,accu_positive_pt, accu_positive_core,accu_positive_core_pt
|
||||
e_pt2 = 0.d0
|
||||
accu_positive = 0.D0
|
||||
accu_positive_pt = 0.D0
|
||||
accu_positive_core = 0.d0
|
||||
accu_positive_core_pt = 0.d0
|
||||
|
||||
do i = 1, N_det
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
|
||||
if(degree == 1 .or. degree == 2)then
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i),psi_det(1,1,i),N_int,hmono,htwoe,hthree,e_i0)
|
||||
delta_e = e_tilde_00 - e_i0
|
||||
coef_pt1 = htilde_ij / delta_e
|
||||
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
contrib_pt = coef_pt1 * htilde_ij
|
||||
e_pt2 += contrib_pt
|
||||
|
||||
coef = psi_r_coef_bi_ortho(i,1)/psi_r_coef_bi_ortho(1,1)
|
||||
contrib = coef * htilde_ij
|
||||
e_corr += contrib
|
||||
call get_excitation(HF_bitmask,psi_det(1,1,i),exc,degree,phase,N_int)
|
||||
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
print*,'*********'
|
||||
if(degree==1)then
|
||||
print*,'s1',s1
|
||||
print*,'h1,p1 = ',h1,p1
|
||||
else if(degree ==2)then
|
||||
print*,'s1',s1
|
||||
print*,'h1,p1 = ',h1,p1
|
||||
print*,'s2',s2
|
||||
print*,'h2,p2 = ',h2,p2
|
||||
endif
|
||||
print*,'coef_pt1 = ',coef_pt1
|
||||
print*,'coef = ',coef
|
||||
print*,'contrib_pt ',contrib_pt
|
||||
print*,'contrib = ',contrib
|
||||
if(contrib.gt.0.d0)then
|
||||
accu_positive += contrib
|
||||
if(h1==1.or.h2==1)then
|
||||
accu_positive_core += contrib
|
||||
endif
|
||||
if(dabs(contrib).gt.1.d-5)then
|
||||
print*,'Found a positive contribution to correlation energy !!'
|
||||
endif
|
||||
endif
|
||||
if(contrib_pt.gt.0.d0)then
|
||||
accu_positive_pt += contrib_pt
|
||||
if(h2==1.or.h1==1)then
|
||||
accu_positive_core_pt += contrib_pt
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
print*,''
|
||||
print*,''
|
||||
print*,'Total correlation energy = ',e_corr
|
||||
print*,'Total correlation energy PT = ',e_pt2
|
||||
print*,'Positive contribution to ecorr = ',accu_positive
|
||||
print*,'Positive contribution to ecorr PT = ',accu_positive_pt
|
||||
print*,'Pure core contribution = ',accu_positive_core
|
||||
print*,'Pure core contribution PT = ',accu_positive_core_pt
|
||||
end
|
157
src/tc_bi_ortho/psi_det_tc_sorted.irp.f
Normal file
157
src/tc_bi_ortho/psi_det_tc_sorted.irp.f
Normal file
@ -0,0 +1,157 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ double precision, psi_average_norm_contrib_tc, (psi_det_size) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Contribution of determinants to the state-averaged density.
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
double precision :: f
|
||||
|
||||
psi_average_norm_contrib_tc(:) = 0.d0
|
||||
do k=1,N_states
|
||||
do i=1,N_det
|
||||
psi_average_norm_contrib_tc(i) = psi_average_norm_contrib_tc(i) + &
|
||||
dabs(psi_l_coef_bi_ortho(i,k)*psi_r_coef_bi_ortho(i,k))*state_average_weight(k)
|
||||
enddo
|
||||
enddo
|
||||
f = 1.d0/sum(psi_average_norm_contrib_tc(1:N_det))
|
||||
do i=1,N_det
|
||||
psi_average_norm_contrib_tc(i) = psi_average_norm_contrib_tc(i)*f
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), psi_det_sorted_tc, (N_int,2,psi_det_size) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_coef_sorted_tc, (psi_det_size,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_average_norm_contrib_sorted_tc, (psi_det_size) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_det_sorted_tc_order, (psi_det_size) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Wave function sorted by determinants contribution to the norm (state-averaged)
|
||||
!
|
||||
! psi_det_sorted_tc_order(i) -> k : index in psi_det
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
integer, allocatable :: iorder(:)
|
||||
allocate ( iorder(N_det) )
|
||||
do i=1,N_det
|
||||
psi_average_norm_contrib_sorted_tc(i) = -psi_average_norm_contrib_tc(i)
|
||||
iorder(i) = i
|
||||
enddo
|
||||
call dsort(psi_average_norm_contrib_sorted_tc,iorder,N_det)
|
||||
do i=1,N_det
|
||||
do j=1,N_int
|
||||
psi_det_sorted_tc(j,1,i) = psi_det(j,1,iorder(i))
|
||||
psi_det_sorted_tc(j,2,i) = psi_det(j,2,iorder(i))
|
||||
enddo
|
||||
psi_average_norm_contrib_sorted_tc(i) = -psi_average_norm_contrib_sorted_tc(i)
|
||||
psi_det_sorted_tc_order(iorder(i)) = i
|
||||
enddo
|
||||
double precision :: accu
|
||||
do k=1,N_states
|
||||
accu = 0.d0
|
||||
do i=1,N_det
|
||||
psi_coef_sorted_tc(i,k) = dsqrt(dabs(psi_l_coef_bi_ortho(iorder(i),k)*psi_r_coef_bi_ortho(iorder(i),k)))
|
||||
accu += psi_coef_sorted_tc(i,k)**2
|
||||
enddo
|
||||
accu = 1.d0/dsqrt(accu)
|
||||
do i=1,N_det
|
||||
psi_coef_sorted_tc(i,k) *= accu
|
||||
enddo
|
||||
enddo
|
||||
|
||||
psi_det_sorted_tc(:,:,N_det+1:psi_det_size) = 0_bit_kind
|
||||
psi_coef_sorted_tc(N_det+1:psi_det_size,:) = 0.d0
|
||||
psi_average_norm_contrib_sorted_tc(N_det+1:psi_det_size) = 0.d0
|
||||
psi_det_sorted_tc_order(N_det+1:psi_det_size) = 0
|
||||
|
||||
deallocate(iorder)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, psi_r_coef_sorted_bi_ortho, (psi_det_size, N_states)]
|
||||
&BEGIN_PROVIDER [double precision, psi_l_coef_sorted_bi_ortho, (psi_det_size, N_states)]
|
||||
BEGIN_DOC
|
||||
! psi_r_coef_sorted_bi_ortho : right coefficients corresponding to psi_det_sorted_tc
|
||||
! psi_l_coef_sorted_bi_ortho : left coefficients corresponding to psi_det_sorted_tc
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i, j, k
|
||||
psi_r_coef_sorted_bi_ortho = 0.d0
|
||||
psi_l_coef_sorted_bi_ortho = 0.d0
|
||||
do i = 1, N_det
|
||||
psi_r_coef_sorted_bi_ortho(i,1) = psi_r_coef_bi_ortho(psi_det_sorted_tc_order(i),1)
|
||||
psi_l_coef_sorted_bi_ortho(i,1) = psi_l_coef_bi_ortho(psi_det_sorted_tc_order(i),1)
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), psi_det_sorted_tc_bit, (N_int,2,psi_det_size) ]
|
||||
&BEGIN_PROVIDER [ double precision, psi_coef_sorted_tc_bit, (psi_det_size,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Determinants on which we apply $\langle i|H|psi \rangle$ for perturbation.
|
||||
! They are sorted by determinants interpreted as integers. Useful
|
||||
! to accelerate the search of a random determinant in the wave
|
||||
! function.
|
||||
END_DOC
|
||||
|
||||
call sort_dets_by_det_search_key(N_det, psi_det, psi_coef, size(psi_coef,1), &
|
||||
psi_det_sorted_tc_bit, psi_coef_sorted_tc_bit, N_states)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), psi_det_sorted_tc_right, (N_int,2,N_det) ]
|
||||
&BEGIN_PROVIDER [double precision, psi_r_coef_sorted_bi_ortho_right, (N_det)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! psi_det_sorted_tc_right : Slater determinants sorted by decreasing value of |right- coefficients|
|
||||
!
|
||||
! psi_r_coef_sorted_bi_ortho_right : right wave function according to psi_det_sorted_tc_right
|
||||
END_DOC
|
||||
integer, allocatable :: iorder(:)
|
||||
double precision, allocatable :: coef(:)
|
||||
integer :: i,j
|
||||
allocate ( iorder(N_det) , coef(N_det))
|
||||
do i=1,N_det
|
||||
coef(i) = -dabs(psi_r_coef_bi_ortho(i,1)/psi_r_coef_bi_ortho(1,1))
|
||||
iorder(i) = i
|
||||
enddo
|
||||
call dsort(coef,iorder,N_det)
|
||||
do i=1,N_det
|
||||
do j=1,N_int
|
||||
psi_det_sorted_tc_right(j,1,i) = psi_det(j,1,iorder(i))
|
||||
psi_det_sorted_tc_right(j,2,i) = psi_det(j,2,iorder(i))
|
||||
enddo
|
||||
psi_r_coef_sorted_bi_ortho_right(i) = psi_r_coef_bi_ortho(iorder(i),1)/psi_r_coef_bi_ortho(iorder(1),1)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), psi_det_sorted_tc_left, (N_int,2,N_det) ]
|
||||
&BEGIN_PROVIDER [double precision, psi_l_coef_sorted_bi_ortho_left, (N_det)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! psi_det_sorted_tc_left : Slater determinants sorted by decreasing value of |LEFTt- coefficients|
|
||||
!
|
||||
! psi_r_coef_sorted_bi_ortho_left : LEFT wave function according to psi_det_sorted_tc_left
|
||||
END_DOC
|
||||
integer, allocatable :: iorder(:)
|
||||
double precision, allocatable :: coef(:)
|
||||
integer :: i,j
|
||||
allocate ( iorder(N_det) , coef(N_det))
|
||||
do i=1,N_det
|
||||
coef(i) = -dabs(psi_l_coef_bi_ortho(i,1)/psi_r_coef_bi_ortho(1,1))
|
||||
iorder(i) = i
|
||||
enddo
|
||||
call dsort(coef,iorder,N_det)
|
||||
do i=1,N_det
|
||||
do j=1,N_int
|
||||
psi_det_sorted_tc_left(j,1,i) = psi_det(j,1,iorder(i))
|
||||
psi_det_sorted_tc_left(j,2,i) = psi_det(j,2,iorder(i))
|
||||
enddo
|
||||
psi_l_coef_sorted_bi_ortho_left(i) = psi_l_coef_bi_ortho(iorder(i),1)/psi_l_coef_bi_ortho(iorder(1),1)
|
||||
enddo
|
||||
END_PROVIDER
|
44
src/tc_bi_ortho/psi_left_qmc.irp.f
Normal file
44
src/tc_bi_ortho/psi_left_qmc.irp.f
Normal file
@ -0,0 +1,44 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, psi_bitcleft_bilinear_matrix_values, (N_det,N_states) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! Sparse coefficient matrix if the wave function is expressed in a bilinear form :
|
||||
! $D_\alpha^\dagger.C.D_\beta$
|
||||
!
|
||||
! Rows are $\alpha$ determinants and columns are $\beta$.
|
||||
!
|
||||
! Order refers to psi_det
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer :: k, l
|
||||
|
||||
if(N_det .eq. 1) then
|
||||
|
||||
do l = 1, N_states
|
||||
psi_bitcleft_bilinear_matrix_values(1,l) = 1.d0
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
do l = 1, N_states
|
||||
do k = 1, N_det
|
||||
psi_bitcleft_bilinear_matrix_values(k,l) = psi_l_coef_bi_ortho(k,l)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
PROVIDE psi_bilinear_matrix_order
|
||||
do l = 1, N_states
|
||||
call dset_order(psi_bitcleft_bilinear_matrix_values(1,l), psi_bilinear_matrix_order, N_det)
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
234
src/tc_bi_ortho/psi_r_l_prov.irp.f
Normal file
234
src/tc_bi_ortho/psi_r_l_prov.irp.f
Normal file
@ -0,0 +1,234 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ double precision, psi_l_coef_bi_ortho, (psi_det_size,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! The wave function coefficients. Initialized with Hartree-Fock if the |EZFIO| file
|
||||
! is empty.
|
||||
END_DOC
|
||||
|
||||
integer :: i,k, N_int2
|
||||
logical :: exists
|
||||
character*(64) :: label
|
||||
|
||||
PROVIDE read_wf N_det mo_label ezfio_filename nproc
|
||||
psi_l_coef_bi_ortho = 0.d0
|
||||
do i=1,min(N_states,N_det)
|
||||
psi_l_coef_bi_ortho(i,i) = 1.d0
|
||||
enddo
|
||||
|
||||
if (mpi_master) then
|
||||
if (read_wf) then
|
||||
call ezfio_has_tc_bi_ortho_psi_l_coef_bi_ortho(exists)
|
||||
! if (exists) then
|
||||
! call ezfio_has_tc_bi_ortho_mo_label(exists)
|
||||
! if (exists) then
|
||||
! call ezfio_get_tc_bi_ortho_mo_label(label)
|
||||
! exists = (label == mo_label)
|
||||
! endif
|
||||
! endif
|
||||
|
||||
if (exists) then
|
||||
|
||||
double precision, allocatable :: psi_l_coef_bi_ortho_read(:,:)
|
||||
allocate (psi_l_coef_bi_ortho_read(N_det,N_states))
|
||||
print *, 'Read psi_l_coef_bi_ortho', N_det, N_states
|
||||
call ezfio_get_tc_bi_ortho_psi_l_coef_bi_ortho(psi_l_coef_bi_ortho_read)
|
||||
do k=1,N_states
|
||||
do i=1,N_det
|
||||
psi_l_coef_bi_ortho(i,k) = psi_l_coef_bi_ortho_read(i,k)
|
||||
enddo
|
||||
enddo
|
||||
deallocate(psi_l_coef_bi_ortho_read)
|
||||
|
||||
else
|
||||
|
||||
print*, 'psi_l_coef_bi_ortho are psi_coef'
|
||||
do k=1,N_states
|
||||
do i=1,N_det
|
||||
psi_l_coef_bi_ortho(i,k) = psi_coef(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( psi_l_coef_bi_ortho, size(psi_l_coef_bi_ortho), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read psi_l_coef_bi_ortho with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, psi_r_coef_bi_ortho, (psi_det_size,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! The wave function coefficients. Initialized with Hartree-Fock if the |EZFIO| file
|
||||
! is empty.
|
||||
END_DOC
|
||||
|
||||
integer :: i,k, N_int2
|
||||
logical :: exists
|
||||
character*(64) :: label
|
||||
|
||||
PROVIDE read_wf N_det mo_label ezfio_filename nproc
|
||||
psi_r_coef_bi_ortho = 0.d0
|
||||
do i=1,min(N_states,N_det)
|
||||
psi_r_coef_bi_ortho(i,i) = 1.d0
|
||||
enddo
|
||||
|
||||
if (mpi_master) then
|
||||
if (read_wf) then
|
||||
call ezfio_has_tc_bi_ortho_psi_r_coef_bi_ortho(exists)
|
||||
! if (exists) then
|
||||
! call ezfio_has_tc_bi_ortho_mo_label(exists)
|
||||
! if (exists) then
|
||||
! call ezfio_get_tc_bi_ortho_mo_label(label)
|
||||
! exists = (label == mo_label)
|
||||
! endif
|
||||
! endif
|
||||
|
||||
if (exists) then
|
||||
|
||||
double precision, allocatable :: psi_r_coef_bi_ortho_read(:,:)
|
||||
allocate (psi_r_coef_bi_ortho_read(N_det,N_states))
|
||||
print *, 'Read psi_r_coef_bi_ortho', N_det, N_states
|
||||
call ezfio_get_tc_bi_ortho_psi_r_coef_bi_ortho(psi_r_coef_bi_ortho_read)
|
||||
do k=1,N_states
|
||||
do i=1,N_det
|
||||
psi_r_coef_bi_ortho(i,k) = psi_r_coef_bi_ortho_read(i,k)
|
||||
enddo
|
||||
enddo
|
||||
deallocate(psi_r_coef_bi_ortho_read)
|
||||
|
||||
else
|
||||
|
||||
print*, 'psi_r_coef_bi_ortho are psi_coef'
|
||||
do k=1,N_states
|
||||
do i=1,N_det
|
||||
psi_r_coef_bi_ortho(i,k) = psi_coef(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( psi_r_coef_bi_ortho, size(psi_r_coef_bi_ortho), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read psi_r_coef_bi_ortho with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine save_tc_wavefunction_general(ndet,nstates,psidet,dim_psicoef,psilcoef,psircoef)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Save the wave function into the |EZFIO| file
|
||||
END_DOC
|
||||
use bitmasks
|
||||
include 'constants.include.F'
|
||||
integer, intent(in) :: ndet,nstates,dim_psicoef
|
||||
integer(bit_kind), intent(in) :: psidet(N_int,2,ndet)
|
||||
double precision, intent(in) :: psilcoef(dim_psicoef,nstates)
|
||||
double precision, intent(in) :: psircoef(dim_psicoef,nstates)
|
||||
integer*8, allocatable :: psi_det_save(:,:,:)
|
||||
double precision, allocatable :: psil_coef_save(:,:)
|
||||
double precision, allocatable :: psir_coef_save(:,:)
|
||||
|
||||
double precision :: accu_norm
|
||||
integer :: i,j,k, ndet_qp_edit
|
||||
|
||||
if (mpi_master) then
|
||||
ndet_qp_edit = min(ndet,N_det_qp_edit)
|
||||
|
||||
call ezfio_set_determinants_N_int(N_int)
|
||||
call ezfio_set_determinants_bit_kind(bit_kind)
|
||||
call ezfio_set_determinants_N_det(ndet)
|
||||
call ezfio_set_determinants_N_det_qp_edit(ndet_qp_edit)
|
||||
call ezfio_set_determinants_n_states(nstates)
|
||||
call ezfio_set_determinants_mo_label(mo_label)
|
||||
|
||||
allocate (psi_det_save(N_int,2,ndet))
|
||||
do i=1,ndet
|
||||
do j=1,2
|
||||
do k=1,N_int
|
||||
psi_det_save(k,j,i) = transfer(psidet(k,j,i),1_8)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call ezfio_set_determinants_psi_det(psi_det_save)
|
||||
call ezfio_set_determinants_psi_det_qp_edit(psi_det_save)
|
||||
deallocate (psi_det_save)
|
||||
|
||||
allocate (psil_coef_save(ndet,nstates),psir_coef_save(ndet,nstates))
|
||||
do k=1,nstates
|
||||
do i=1,ndet
|
||||
psil_coef_save(i,k) = psilcoef(i,k)
|
||||
psir_coef_save(i,k) = psircoef(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call ezfio_set_tc_bi_ortho_psi_l_coef_bi_ortho(psil_coef_save)
|
||||
call ezfio_set_tc_bi_ortho_psi_r_coef_bi_ortho(psir_coef_save)
|
||||
deallocate (psil_coef_save,psir_coef_save)
|
||||
|
||||
! allocate (psi_coef_save(ndet_qp_edit,nstates))
|
||||
! do k=1,nstates
|
||||
! do i=1,ndet_qp_edit
|
||||
! psi_coef_save(i,k) = psicoef(i,k)
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
! call ezfio_set_determinants_psi_coef_qp_edit(psi_coef_save)
|
||||
! deallocate (psi_coef_save)
|
||||
|
||||
call write_int(6,ndet,'Saved determinantsi and psi_r/psi_l coef')
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine save_tc_bi_ortho_wavefunction
|
||||
implicit none
|
||||
call save_tc_wavefunction_general(N_det,N_states,psi_det,size(psi_l_coef_bi_ortho, 1),psi_l_coef_bi_ortho,psi_r_coef_bi_ortho)
|
||||
call routine_save_right_bi_ortho
|
||||
end
|
||||
|
||||
subroutine routine_save_right_bi_ortho
|
||||
implicit none
|
||||
double precision, allocatable :: coef_tmp(:,:)
|
||||
integer :: i
|
||||
allocate(coef_tmp(N_det, N_states))
|
||||
do i = 1, N_det
|
||||
coef_tmp(i,1:N_states) = psi_r_coef_bi_ortho(i,1:N_states)
|
||||
enddo
|
||||
call save_wavefunction_general_unormalized(N_det,N_states,psi_det,size(coef_tmp,1),coef_tmp(1,1))
|
||||
end
|
||||
|
||||
subroutine routine_save_left_right_bi_ortho
|
||||
implicit none
|
||||
double precision, allocatable :: coef_tmp(:,:)
|
||||
integer :: i,n_states_tmp
|
||||
n_states_tmp = 2
|
||||
allocate(coef_tmp(N_det, n_states_tmp))
|
||||
do i = 1, N_det
|
||||
coef_tmp(i,1) = psi_r_coef_bi_ortho(i,1)
|
||||
coef_tmp(i,2) = psi_l_coef_bi_ortho(i,1)
|
||||
enddo
|
||||
call save_wavefunction_general_unormalized(N_det,n_states_tmp,psi_det,size(coef_tmp,1),coef_tmp(1,1))
|
||||
end
|
||||
|
76
src/tc_bi_ortho/save_bitcpsileft_for_qmcchem.irp.pouet
Normal file
76
src/tc_bi_ortho/save_bitcpsileft_for_qmcchem.irp.pouet
Normal file
@ -0,0 +1,76 @@
|
||||
program save_bitcpsileft_for_qmcchem
|
||||
|
||||
integer :: iunit
|
||||
logical :: exists
|
||||
double precision :: e_ref
|
||||
|
||||
print *, ' '
|
||||
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
|
||||
print *, ' call save_for_qmcchem before '
|
||||
print *, ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
|
||||
print *, ' '
|
||||
|
||||
call write_lr_spindeterminants()
|
||||
|
||||
e_ref = 0.d0
|
||||
iunit = 13
|
||||
open(unit=iunit, file=trim(ezfio_filename)//'/simulation/e_ref', action='write')
|
||||
|
||||
call ezfio_has_fci_energy_pt2(exists)
|
||||
if(.not.exists) then
|
||||
|
||||
call ezfio_has_fci_energy(exists)
|
||||
if(.not.exists) then
|
||||
|
||||
call ezfio_has_cisd_energy(exists)
|
||||
if(.not.exists) then
|
||||
|
||||
call ezfio_has_tc_scf_bitc_energy(exists)
|
||||
if(exists) then
|
||||
call ezfio_get_tc_scf_bitc_energy(e_ref)
|
||||
endif
|
||||
|
||||
else
|
||||
call ezfio_get_cisd_energy(e_ref)
|
||||
endif
|
||||
|
||||
else
|
||||
call ezfio_get_fci_energy(e_ref)
|
||||
endif
|
||||
|
||||
else
|
||||
call ezfio_get_fci_energy_pt2(e_ref)
|
||||
endif
|
||||
|
||||
write(iunit,*) e_ref
|
||||
|
||||
close(iunit)
|
||||
|
||||
end
|
||||
|
||||
! --
|
||||
|
||||
subroutine write_lr_spindeterminants()
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: k, l
|
||||
double precision, allocatable :: buffer(:,:)
|
||||
|
||||
PROVIDE psi_bitcleft_bilinear_matrix_values
|
||||
|
||||
allocate(buffer(N_det,N_states))
|
||||
do l = 1, N_states
|
||||
do k = 1, N_det
|
||||
buffer(k,l) = psi_bitcleft_bilinear_matrix_values(k,l)
|
||||
enddo
|
||||
enddo
|
||||
call ezfio_set_spindeterminants_psi_left_coef_matrix_values(buffer)
|
||||
deallocate(buffer)
|
||||
|
||||
end subroutine write_lr_spindeterminants
|
||||
|
||||
! ---
|
||||
|
15
src/tc_bi_ortho/save_lr_bi_ortho_states.irp.f
Normal file
15
src/tc_bi_ortho/save_lr_bi_ortho_states.irp.f
Normal file
@ -0,0 +1,15 @@
|
||||
program tc_bi_ortho
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
call routine_save_left_right_bi_ortho
|
||||
! call test
|
||||
end
|
35
src/tc_bi_ortho/save_tc_bi_ortho_nat.irp.f
Normal file
35
src/tc_bi_ortho/save_tc_bi_ortho_nat.irp.f
Normal file
@ -0,0 +1,35 @@
|
||||
program tc_natorb_bi_ortho
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
call print_energy_and_mos
|
||||
call save_tc_natorb
|
||||
! call minimize_tc_orb_angles
|
||||
end
|
||||
|
||||
subroutine save_tc_natorb
|
||||
implicit none
|
||||
print*,'Saving the natorbs '
|
||||
provide natorb_tc_leigvec_ao natorb_tc_reigvec_ao
|
||||
call ezfio_set_bi_ortho_mos_mo_l_coef(natorb_tc_leigvec_ao)
|
||||
call ezfio_set_bi_ortho_mos_mo_r_coef(natorb_tc_reigvec_ao)
|
||||
call save_ref_determinant_nstates_1
|
||||
call ezfio_set_determinants_read_wf(.False.)
|
||||
end
|
||||
|
||||
subroutine save_ref_determinant_nstates_1
|
||||
implicit none
|
||||
use bitmasks
|
||||
double precision :: buffer(1,N_states)
|
||||
buffer = 0.d0
|
||||
buffer(1,1) = 1.d0
|
||||
call save_wavefunction_general(1,1,ref_bitmask,1,buffer)
|
||||
end
|
61
src/tc_bi_ortho/select_dets_bi_ortho.irp.f
Normal file
61
src/tc_bi_ortho/select_dets_bi_ortho.irp.f
Normal file
@ -0,0 +1,61 @@
|
||||
program tc_bi_ortho
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
!!!!!!!!!!!!!!! WARNING NO 3-BODY
|
||||
!!!!!!!!!!!!!!! WARNING NO 3-BODY
|
||||
three_body_h_tc = .False.
|
||||
touch three_body_h_tc
|
||||
!!!!!!!!!!!!!!! WARNING NO 3-BODY
|
||||
!!!!!!!!!!!!!!! WARNING NO 3-BODY
|
||||
|
||||
call routine_test
|
||||
! call test
|
||||
end
|
||||
|
||||
subroutine routine_test
|
||||
implicit none
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
integer :: i,n_good,degree
|
||||
integer(bit_kind), allocatable :: dets(:,:,:)
|
||||
integer, allocatable :: iorder(:)
|
||||
double precision, allocatable :: coef(:),coef_new(:,:)
|
||||
double precision :: thr
|
||||
allocate(coef(N_det), iorder(N_det))
|
||||
do i = 1, N_det
|
||||
iorder(i) = i
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
|
||||
if(degree==1)then
|
||||
coef(i) = -0.5d0
|
||||
else
|
||||
coef(i) = -dabs(coef_pt1_bi_ortho(i))
|
||||
endif
|
||||
enddo
|
||||
call dsort(coef,iorder,N_det)
|
||||
!thr = save_threshold
|
||||
thr = 1d-15
|
||||
n_good = 0
|
||||
do i = 1, N_det
|
||||
if(dabs(coef(i)).gt.thr)then
|
||||
n_good += 1
|
||||
endif
|
||||
enddo
|
||||
print*,'n_good = ',n_good
|
||||
allocate(dets(N_int,2,n_good),coef_new(n_good,n_states))
|
||||
do i = 1, n_good
|
||||
dets(:,:,i) = psi_det(:,:,iorder(i))
|
||||
coef_new(i,:) = psi_coef(iorder(i),:)
|
||||
enddo
|
||||
call save_wavefunction_general(n_good,n_states,dets,n_good,coef_new)
|
||||
|
||||
|
||||
end
|
376
src/tc_bi_ortho/slater_tc.irp.f
Normal file
376
src/tc_bi_ortho/slater_tc.irp.f
Normal file
@ -0,0 +1,376 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine htilde_mu_mat_bi_ortho_tot(key_j, key_i, Nint, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
|
||||
!!
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
|
||||
double precision, intent(out) :: htot
|
||||
double precision :: hmono, htwoe, hthree
|
||||
integer :: degree
|
||||
|
||||
call get_excitation_degree(key_j, key_i, degree, Nint)
|
||||
if(degree.gt.2)then
|
||||
htot = 0.d0
|
||||
else
|
||||
call htilde_mu_mat_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
|
||||
endif
|
||||
|
||||
end subroutine htilde_mu_mat_bi_ortho_tot
|
||||
|
||||
! --
|
||||
|
||||
subroutine htilde_mu_mat_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
|
||||
!!
|
||||
! Returns the detail of the matrix element in terms of single, two and three electron contribution.
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
|
||||
double precision, intent(out) :: hmono, htwoe, hthree, htot
|
||||
integer :: degree
|
||||
|
||||
hmono = 0.d0
|
||||
htwoe = 0.d0
|
||||
htot = 0.d0
|
||||
hthree = 0.D0
|
||||
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
if(degree.gt.2) return
|
||||
|
||||
if(degree == 0)then
|
||||
call diag_htilde_mu_mat_bi_ortho(Nint, key_i, hmono, htwoe, htot)
|
||||
else if (degree == 1)then
|
||||
call single_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
else if(degree == 2)then
|
||||
call double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
endif
|
||||
|
||||
if(three_body_h_tc) then
|
||||
if(degree == 2) then
|
||||
if(.not.double_normal_ord) then
|
||||
call double_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
|
||||
endif
|
||||
else if(degree == 1) then
|
||||
call single_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
|
||||
else if(degree == 0) then
|
||||
call diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
|
||||
endif
|
||||
endif
|
||||
|
||||
htot = hmono + htwoe + hthree
|
||||
if(degree==0) then
|
||||
htot += nuclear_repulsion
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine diag_htilde_mu_mat_bi_ortho(Nint, key_i, hmono, htwoe, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
! diagonal element of htilde ONLY FOR ONE- AND TWO-BODY TERMS
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_i(Nint,2)
|
||||
double precision, intent(out) :: hmono,htwoe,htot
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
|
||||
double precision :: get_mo_two_e_integral_tc_int
|
||||
integer(bit_kind) :: key_i_core(Nint,2)
|
||||
|
||||
! PROVIDE mo_two_e_integrals_tc_int_in_map mo_bi_ortho_tc_two_e
|
||||
!
|
||||
! PROVIDE mo_integrals_erf_map core_energy nuclear_repulsion core_bitmask
|
||||
! PROVIDE core_fock_operator
|
||||
!
|
||||
! PROVIDE j1b_gauss
|
||||
|
||||
! if(core_tc_op)then
|
||||
! print*,'core_tc_op not already taken into account for bi ortho'
|
||||
! print*,'stopping ...'
|
||||
! stop
|
||||
! do i = 1, Nint
|
||||
! key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
|
||||
! key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
|
||||
! enddo
|
||||
! call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
|
||||
! hmono = core_energy - nuclear_repulsion
|
||||
! else
|
||||
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
||||
hmono = 0.d0
|
||||
! endif
|
||||
htwoe= 0.d0
|
||||
htot = 0.d0
|
||||
|
||||
do ispin = 1, 2
|
||||
do i = 1, Ne(ispin) !
|
||||
ii = occ(i,ispin)
|
||||
hmono += mo_bi_ortho_tc_one_e(ii,ii)
|
||||
|
||||
! if(j1b_gauss .eq. 1) then
|
||||
! print*,'j1b not implemented for bi ortho TC'
|
||||
! print*,'stopping ....'
|
||||
! stop
|
||||
! !hmono += mo_j1b_gauss_hermI (ii,ii) &
|
||||
! ! + mo_j1b_gauss_hermII (ii,ii) &
|
||||
! ! + mo_j1b_gauss_nonherm(ii,ii)
|
||||
! endif
|
||||
|
||||
! if(core_tc_op)then
|
||||
! print*,'core_tc_op not already taken into account for bi ortho'
|
||||
! print*,'stopping ...'
|
||||
! stop
|
||||
! hmono += core_fock_operator(ii,ii) ! add the usual Coulomb - Exchange from the core
|
||||
! endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
! alpha/beta two-body
|
||||
ispin = 1
|
||||
jspin = 2
|
||||
do i = 1, Ne(ispin) ! electron 1 (so it can be associated to mu(r1))
|
||||
ii = occ(i,ispin)
|
||||
do j = 1, Ne(jspin) ! electron 2
|
||||
jj = occ(j,jspin)
|
||||
htwoe += mo_bi_ortho_tc_two_e(jj,ii,jj,ii)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! alpha/alpha two-body
|
||||
do i = 1, Ne(ispin)
|
||||
ii = occ(i,ispin)
|
||||
do j = i+1, Ne(ispin)
|
||||
jj = occ(j,ispin)
|
||||
htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! beta/beta two-body
|
||||
do i = 1, Ne(jspin)
|
||||
ii = occ(i,jspin)
|
||||
do j = i+1, Ne(jspin)
|
||||
jj = occ(j,jspin)
|
||||
htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii)
|
||||
enddo
|
||||
enddo
|
||||
htot = hmono + htwoe
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine double_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> for double excitation ONLY FOR ONE- AND TWO-BODY TERMS
|
||||
!!
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
|
||||
double precision, intent(out) :: hmono, htwoe, htot
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
|
||||
integer :: degree,exc(0:2,2,2)
|
||||
integer :: h1, p1, h2, p2, s1, s2
|
||||
integer :: other_spin(2)
|
||||
integer(bit_kind) :: key_i_core(Nint,2)
|
||||
double precision :: get_mo_two_e_integral_tc_int,phase
|
||||
|
||||
! PROVIDE mo_two_e_integrals_tc_int_in_map mo_bi_ortho_tc_two_e
|
||||
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
|
||||
hmono = 0.d0
|
||||
htwoe= 0.d0
|
||||
htot = 0.d0
|
||||
|
||||
if(degree.ne.2)then
|
||||
return
|
||||
endif
|
||||
|
||||
! if(core_tc_op)then
|
||||
! print*,'core_tc_op not already taken into account for bi ortho'
|
||||
! print*,'stopping ...'
|
||||
! stop
|
||||
! do i = 1, Nint
|
||||
! key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
|
||||
! key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
|
||||
! enddo
|
||||
! call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
|
||||
! else
|
||||
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
||||
! endif
|
||||
call get_double_excitation(key_i, key_j, exc, phase, Nint)
|
||||
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
|
||||
|
||||
if(s1.ne.s2)then
|
||||
! opposite spin two-body
|
||||
! key_j, key_i
|
||||
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
|
||||
if(double_normal_ord.and.+Ne(1).gt.2)then
|
||||
htwoe += normal_two_body_bi_orth(p2,h2,p1,h1)!!! WTF ???
|
||||
endif
|
||||
else
|
||||
! same spin two-body
|
||||
! direct terms
|
||||
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
|
||||
! exchange terms
|
||||
htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
|
||||
if(double_normal_ord.and.+Ne(1).gt.2)then
|
||||
htwoe -= normal_two_body_bi_orth(h2,p1,h1,p2)!!! WTF ???
|
||||
htwoe += normal_two_body_bi_orth(h1,p1,h2,p2)!!! WTF ???
|
||||
endif
|
||||
endif
|
||||
htwoe *= phase
|
||||
htot = htwoe
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine single_htilde_mu_mat_bi_ortho(Nint, key_j, key_i, hmono, htwoe, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> for single excitation ONLY FOR ONE- AND TWO-BODY TERMS
|
||||
!!
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
|
||||
double precision, intent(out) :: hmono, htwoe, htot
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
|
||||
integer :: degree,exc(0:2,2,2)
|
||||
integer :: h1, p1, h2, p2, s1, s2
|
||||
double precision :: get_mo_two_e_integral_tc_int, phase
|
||||
double precision :: direct_int, exchange_int_12, exchange_int_23, exchange_int_13
|
||||
integer :: other_spin(2)
|
||||
integer(bit_kind) :: key_j_core(Nint,2), key_i_core(Nint,2)
|
||||
|
||||
! PROVIDE mo_two_e_integrals_tc_int_in_map mo_bi_ortho_tc_two_e
|
||||
!
|
||||
! PROVIDE core_bitmask core_fock_operator mo_integrals_erf_map
|
||||
|
||||
! PROVIDE j1b_gauss
|
||||
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
|
||||
hmono = 0.d0
|
||||
htwoe= 0.d0
|
||||
htot = 0.d0
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
if(degree.ne.1)then
|
||||
return
|
||||
endif
|
||||
! if(core_tc_op)then
|
||||
! print*,'core_tc_op not already taken into account for bi ortho'
|
||||
! print*,'stopping ...'
|
||||
! stop
|
||||
! do i = 1, Nint
|
||||
! key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
|
||||
! key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
|
||||
! key_j_core(i,1) = xor(key_j(i,1),core_bitmask(i,1))
|
||||
! key_j_core(i,2) = xor(key_j(i,2),core_bitmask(i,2))
|
||||
! enddo
|
||||
! call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
|
||||
! else
|
||||
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
||||
! endif
|
||||
|
||||
call get_single_excitation(key_i, key_j, exc, phase, Nint)
|
||||
call decode_exc(exc,1,h1,p1,h2,p2,s1,s2)
|
||||
! if(h1==14.and.p1==2)then
|
||||
! print*,'h1,p1 old = ',h1,p1
|
||||
! endif
|
||||
|
||||
hmono = mo_bi_ortho_tc_one_e(p1,h1) * phase
|
||||
|
||||
! if(j1b_gauss .eq. 1) then
|
||||
! print*,'j1b not implemented for bi ortho TC'
|
||||
! print*,'stopping ....'
|
||||
! stop
|
||||
! !hmono += ( mo_j1b_gauss_hermI (h1,p1) &
|
||||
! ! + mo_j1b_gauss_hermII (h1,p1) &
|
||||
! ! + mo_j1b_gauss_nonherm(h1,p1) ) * phase
|
||||
! endif
|
||||
|
||||
! if(core_tc_op)then
|
||||
! print*,'core_tc_op not already taken into account for bi ortho'
|
||||
! print*,'stopping ...'
|
||||
! stop
|
||||
! hmono += phase * core_fock_operator(h1,p1)
|
||||
! endif
|
||||
|
||||
! alpha/beta two-body
|
||||
ispin = other_spin(s1)
|
||||
if(s1==1)then
|
||||
! single alpha
|
||||
do i = 1, Ne(ispin) ! electron 2
|
||||
ii = occ(i,ispin)
|
||||
htwoe += mo_bi_ortho_tc_two_e(ii,p1,ii,h1)
|
||||
enddo
|
||||
else
|
||||
! single beta
|
||||
do i = 1, Ne(ispin) ! electron 1
|
||||
ii = occ(i,ispin)
|
||||
htwoe += mo_bi_ortho_tc_two_e(p1,ii,h1,ii)
|
||||
enddo
|
||||
endif
|
||||
! ! same spin two-body
|
||||
do i = 1, Ne(s1)
|
||||
ii = occ(i,s1)
|
||||
! (h1p1|ii ii) - (h1 ii| p1 ii)
|
||||
htwoe += mo_bi_ortho_tc_two_e(ii,p1,ii,h1) - mo_bi_ortho_tc_two_e(p1,ii,ii,h1)
|
||||
enddo
|
||||
|
||||
htwoe *= phase
|
||||
htot = hmono + htwoe
|
||||
|
||||
end
|
||||
|
||||
|
288
src/tc_bi_ortho/slater_tc_3e.irp.f
Normal file
288
src/tc_bi_ortho/slater_tc_3e.irp.f
Normal file
@ -0,0 +1,288 @@
|
||||
subroutine provide_all_three_ints_bi_ortho
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! routine that provides all necessary three-electron integrals
|
||||
END_DOC
|
||||
if(three_body_h_tc)then
|
||||
PROVIDE three_e_3_idx_direct_bi_ort three_e_3_idx_cycle_1_bi_ort three_e_3_idx_cycle_2_bi_ort
|
||||
PROVIDE three_e_3_idx_exch23_bi_ort three_e_3_idx_exch13_bi_ort three_e_3_idx_exch12_bi_ort
|
||||
PROVIDE three_e_4_idx_direct_bi_ort three_e_4_idx_cycle_1_bi_ort three_e_4_idx_cycle_2_bi_ort
|
||||
PROVIDE three_e_4_idx_exch23_bi_ort three_e_4_idx_exch13_bi_ort three_e_4_idx_exch12_bi_ort
|
||||
endif
|
||||
if(.not.double_normal_ord)then
|
||||
PROVIDE three_e_5_idx_direct_bi_ort three_e_5_idx_cycle_1_bi_ort three_e_5_idx_cycle_2_bi_ort
|
||||
PROVIDE three_e_5_idx_exch23_bi_ort three_e_5_idx_exch13_bi_ort three_e_5_idx_exch12_bi_ort
|
||||
else
|
||||
PROVIDE normal_two_body_bi_orth
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
|
||||
|
||||
BEGIN_DOC
|
||||
! diagonal element of htilde ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_i(Nint,2)
|
||||
double precision, intent(out) :: hthree
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm
|
||||
integer(bit_kind) :: key_i_core(Nint,2)
|
||||
double precision :: direct_int, exchange_int
|
||||
double precision :: sym_3_e_int_from_6_idx_tensor
|
||||
double precision :: three_e_diag_parrallel_spin
|
||||
|
||||
if(core_tc_op)then
|
||||
do i = 1, Nint
|
||||
key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
|
||||
key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
|
||||
enddo
|
||||
call bitstring_to_list_ab(key_i_core,occ,Ne,Nint)
|
||||
else
|
||||
call bitstring_to_list_ab(key_i,occ,Ne,Nint)
|
||||
endif
|
||||
hthree = 0.d0
|
||||
|
||||
if(Ne(1)+Ne(2).ge.3)then
|
||||
!! ! alpha/alpha/beta three-body
|
||||
do i = 1, Ne(1)
|
||||
ii = occ(i,1)
|
||||
do j = i+1, Ne(1)
|
||||
jj = occ(j,1)
|
||||
do m = 1, Ne(2)
|
||||
mm = occ(m,2)
|
||||
! direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) USES THE 6-IDX TENSOR
|
||||
! exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) USES THE 6-IDX TENSOR
|
||||
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) ! USES 3-IDX TENSOR
|
||||
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) ! USES 3-IDX TENSOR
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! beta/beta/alpha three-body
|
||||
do i = 1, Ne(2)
|
||||
ii = occ(i,2)
|
||||
do j = i+1, Ne(2)
|
||||
jj = occ(j,2)
|
||||
do m = 1, Ne(1)
|
||||
mm = occ(m,1)
|
||||
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii)
|
||||
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii)
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! alpha/alpha/alpha three-body
|
||||
do i = 1, Ne(1)
|
||||
ii = occ(i,1) ! 1
|
||||
do j = i+1, Ne(1)
|
||||
jj = occ(j,1) ! 2
|
||||
do m = j+1, Ne(1)
|
||||
mm = occ(m,1) ! 3
|
||||
! ref = sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) USES THE 6 IDX TENSOR
|
||||
hthree += three_e_diag_parrallel_spin(mm,jj,ii) ! USES ONLY 3-IDX TENSORS
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! beta/beta/beta three-body
|
||||
do i = 1, Ne(2)
|
||||
ii = occ(i,2) ! 1
|
||||
do j = i+1, Ne(2)
|
||||
jj = occ(j,2) ! 2
|
||||
do m = j+1, Ne(2)
|
||||
mm = occ(m,2) ! 3
|
||||
! ref = sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) USES THE 6 IDX TENSOR
|
||||
hthree += three_e_diag_parrallel_spin(mm,jj,ii) ! USES ONLY 3-IDX TENSORS
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine single_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
|
||||
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> for single excitation ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
|
||||
!!
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
|
||||
double precision, intent(out) :: hthree
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2),i,j,ii,jj,ispin,jspin,k,kk
|
||||
integer :: degree,exc(0:2,2,2)
|
||||
integer :: h1, p1, h2, p2, s1, s2
|
||||
double precision :: direct_int,phase,exchange_int,three_e_single_parrallel_spin
|
||||
double precision :: sym_3_e_int_from_6_idx_tensor
|
||||
integer :: other_spin(2)
|
||||
integer(bit_kind) :: key_j_core(Nint,2),key_i_core(Nint,2)
|
||||
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
|
||||
|
||||
hthree = 0.d0
|
||||
call get_excitation_degree(key_i,key_j,degree,Nint)
|
||||
if(degree.ne.1)then
|
||||
return
|
||||
endif
|
||||
if(core_tc_op)then
|
||||
do i = 1, Nint
|
||||
key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
|
||||
key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
|
||||
key_j_core(i,1) = xor(key_j(i,1),core_bitmask(i,1))
|
||||
key_j_core(i,2) = xor(key_j(i,2),core_bitmask(i,2))
|
||||
enddo
|
||||
call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
|
||||
else
|
||||
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
||||
endif
|
||||
|
||||
call get_single_excitation(key_i, key_j, exc, phase, Nint)
|
||||
call decode_exc(exc, 1, h1, p1, h2, p2, s1, s2)
|
||||
|
||||
! alpha/alpha/beta three-body
|
||||
! print*,'IN SLAT RULES'
|
||||
if(Ne(1)+Ne(2).ge.3)then
|
||||
! hole of spin s1 :: contribution from purely other spin
|
||||
ispin = other_spin(s1) ! ispin is the other spin than s1
|
||||
do i = 1, Ne(ispin) ! i is the orbitals of the other spin than s1
|
||||
ii = occ(i,ispin)
|
||||
do j = i+1, Ne(ispin) ! j has the same spin than s1
|
||||
jj = occ(j,ispin)
|
||||
! is == ispin in ::: s1 is is s1 is is s1 is is s1 is is
|
||||
! < h1 j i | p1 j i > - < h1 j i | p1 i j >
|
||||
!
|
||||
direct_int = three_e_4_idx_direct_bi_ort(jj,ii,p1,h1)
|
||||
exchange_int = three_e_4_idx_exch23_bi_ort(jj,ii,p1,h1)
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! hole of spin s1 :: contribution from mixed other spin / same spin
|
||||
do i = 1, Ne(ispin) ! other spin
|
||||
ii = occ(i,ispin) ! other spin
|
||||
do j = 1, Ne(s1) ! same spin
|
||||
jj = occ(j,s1) ! same spin
|
||||
direct_int = three_e_4_idx_direct_bi_ort(jj,ii,p1,h1)
|
||||
exchange_int = three_e_4_idx_exch13_bi_ort(jj,ii,p1,h1)
|
||||
! < h1 j i | p1 j i > - < h1 j i | j p1 i >
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
enddo
|
||||
!
|
||||
! hole of spin s1 :: PURE SAME SPIN CONTRIBUTIONS !!!
|
||||
do i = 1, Ne(s1)
|
||||
ii = occ(i,s1)
|
||||
do j = i+1, Ne(s1)
|
||||
jj = occ(j,s1)
|
||||
! ref = sym_3_e_int_from_6_idx_tensor(jj,ii,p1,jj,ii,h1)
|
||||
hthree += three_e_single_parrallel_spin(jj,ii,p1,h1) ! USES THE 4-IDX TENSOR
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
hthree *= phase
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine double_htilde_three_body_ints_bi_ort(Nint, key_j, key_i, hthree)
|
||||
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> for double excitation ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
|
||||
!!
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
|
||||
double precision, intent(out) :: hthree
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm
|
||||
integer :: degree,exc(0:2,2,2)
|
||||
integer :: h1, p1, h2, p2, s1, s2
|
||||
double precision :: phase
|
||||
integer :: other_spin(2)
|
||||
integer(bit_kind) :: key_i_core(Nint,2)
|
||||
double precision :: direct_int,exchange_int,sym_3_e_int_from_6_idx_tensor
|
||||
double precision :: three_e_double_parrallel_spin
|
||||
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
|
||||
hthree = 0.d0
|
||||
|
||||
if(degree.ne.2)then
|
||||
return
|
||||
endif
|
||||
|
||||
if(core_tc_op) then
|
||||
do i = 1, Nint
|
||||
key_i_core(i,1) = xor(key_i(i,1),core_bitmask(i,1))
|
||||
key_i_core(i,2) = xor(key_i(i,2),core_bitmask(i,2))
|
||||
enddo
|
||||
call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
|
||||
else
|
||||
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
||||
endif
|
||||
call get_double_excitation(key_i, key_j, exc, phase, Nint)
|
||||
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
|
||||
|
||||
|
||||
if(Ne(1)+Ne(2).ge.3)then
|
||||
if(s1==s2)then ! same spin excitation
|
||||
ispin = other_spin(s1)
|
||||
do m = 1, Ne(ispin) ! direct(other_spin) - exchange(s1)
|
||||
mm = occ(m,ispin)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
|
||||
exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
do m = 1, Ne(s1) ! pure contribution from s1
|
||||
mm = occ(m,s1)
|
||||
hthree += three_e_double_parrallel_spin(mm,p2,h2,p1,h1)
|
||||
enddo
|
||||
else ! different spin excitation
|
||||
do m = 1, Ne(s1)
|
||||
mm = occ(m,s1) !
|
||||
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
|
||||
exchange_int = three_e_5_idx_exch13_bi_ort(mm,p2,h2,p1,h1)
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
do m = 1, Ne(s2)
|
||||
mm = occ(m,s2) !
|
||||
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
|
||||
exchange_int = three_e_5_idx_exch23_bi_ort(mm,p2,h2,p1,h1)
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
endif
|
||||
endif
|
||||
hthree *= phase
|
||||
end
|
||||
|
||||
! ---
|
||||
|
105
src/tc_bi_ortho/slater_tc_opt.irp.f
Normal file
105
src/tc_bi_ortho/slater_tc_opt.irp.f
Normal file
@ -0,0 +1,105 @@
|
||||
subroutine htilde_mu_mat_opt_bi_ortho_tot(key_j, key_i, Nint, htot)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
!
|
||||
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
|
||||
!!
|
||||
! Returns the total matrix element
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
|
||||
double precision, intent(out) :: htot
|
||||
double precision :: hmono, htwoe, hthree
|
||||
call htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
|
||||
end
|
||||
subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
|
||||
BEGIN_DOC
|
||||
!
|
||||
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
|
||||
!!
|
||||
! Returns the detail of the matrix element in terms of single, two and three electron contribution.
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
|
||||
double precision, intent(out) :: hmono, htwoe, hthree, htot
|
||||
integer :: degree
|
||||
|
||||
hmono = 0.d0
|
||||
htwoe = 0.d0
|
||||
htot = 0.d0
|
||||
hthree = 0.D0
|
||||
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
if(degree.gt.2) return
|
||||
|
||||
if(degree == 0)then
|
||||
call diag_htilde_mu_mat_fock_bi_ortho (Nint, key_i, hmono, htwoe, hthree, htot)
|
||||
else if (degree == 1)then
|
||||
call single_htilde_mu_mat_fock_bi_ortho(Nint,key_j, key_i , hmono, htwoe, hthree, htot)
|
||||
else if(degree == 2)then
|
||||
call double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
|
||||
endif
|
||||
|
||||
if(degree==0) then
|
||||
htot += nuclear_repulsion
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine htilde_mu_mat_opt_bi_ortho_no_3e(key_j, key_i, Nint, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! <key_j | H_tilde | key_i> where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis
|
||||
!!
|
||||
! Returns the detail of the matrix element WITHOUT ANY CONTRIBUTION FROM THE THREE ELECTRON TERMS
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
|
||||
double precision, intent(out) :: htot
|
||||
integer :: degree
|
||||
|
||||
htot = 0.d0
|
||||
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
if(degree.gt.2) return
|
||||
|
||||
if(degree == 0)then
|
||||
call diag_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_i,htot)
|
||||
else if (degree == 1)then
|
||||
call single_htilde_mu_mat_fock_bi_ortho_no_3e(Nint,key_j, key_i , htot)
|
||||
else if(degree == 2)then
|
||||
call double_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot)
|
||||
endif
|
||||
|
||||
if(degree==0) then
|
||||
htot += nuclear_repulsion
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
! ---
|
473
src/tc_bi_ortho/slater_tc_opt_diag.irp.f
Normal file
473
src/tc_bi_ortho/slater_tc_opt_diag.irp.f
Normal file
@ -0,0 +1,473 @@
|
||||
BEGIN_PROVIDER [ double precision, ref_tc_energy_tot]
|
||||
&BEGIN_PROVIDER [ double precision, ref_tc_energy_1e]
|
||||
&BEGIN_PROVIDER [ double precision, ref_tc_energy_2e]
|
||||
&BEGIN_PROVIDER [ double precision, ref_tc_energy_3e]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Various component of the TC energy for the reference "HF" Slater determinant
|
||||
END_DOC
|
||||
double precision :: hmono, htwoe, htot, hthree
|
||||
call diag_htilde_mu_mat_bi_ortho(N_int,HF_bitmask , hmono, htwoe, htot)
|
||||
ref_tc_energy_1e = hmono
|
||||
ref_tc_energy_2e = htwoe
|
||||
if(three_body_h_tc)then
|
||||
call diag_htilde_three_body_ints_bi_ort(N_int, HF_bitmask, hthree)
|
||||
ref_tc_energy_3e = hthree
|
||||
else
|
||||
ref_tc_energy_3e = 0.d0
|
||||
endif
|
||||
ref_tc_energy_tot = ref_tc_energy_1e + ref_tc_energy_2e + ref_tc_energy_3e
|
||||
END_PROVIDER
|
||||
|
||||
subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree, htot)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes $\langle i|H|i \rangle$.
|
||||
END_DOC
|
||||
integer,intent(in) :: Nint
|
||||
integer(bit_kind),intent(in) :: det_in(Nint,2)
|
||||
double precision, intent(out) :: hmono,htwoe,htot,hthree
|
||||
|
||||
integer(bit_kind) :: hole(Nint,2)
|
||||
integer(bit_kind) :: particle(Nint,2)
|
||||
integer :: i, nexc(2), ispin
|
||||
integer :: occ_particle(Nint*bit_kind_size,2)
|
||||
integer :: occ_hole(Nint*bit_kind_size,2)
|
||||
integer(bit_kind) :: det_tmp(Nint,2)
|
||||
integer :: na, nb
|
||||
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
|
||||
|
||||
|
||||
nexc(1) = 0
|
||||
nexc(2) = 0
|
||||
do i=1,Nint
|
||||
hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1))
|
||||
hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2))
|
||||
particle(i,1) = iand(hole(i,1),det_in(i,1))
|
||||
particle(i,2) = iand(hole(i,2),det_in(i,2))
|
||||
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
|
||||
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
|
||||
nexc(1) = nexc(1) + popcnt(hole(i,1))
|
||||
nexc(2) = nexc(2) + popcnt(hole(i,2))
|
||||
enddo
|
||||
|
||||
if (nexc(1)+nexc(2) == 0) then
|
||||
hmono = ref_tc_energy_1e
|
||||
htwoe = ref_tc_energy_2e
|
||||
hthree= ref_tc_energy_3e
|
||||
htot = ref_tc_energy_tot
|
||||
return
|
||||
endif
|
||||
|
||||
!call debug_det(det_in,Nint)
|
||||
integer :: tmp(2)
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(particle, occ_particle, tmp, Nint)
|
||||
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
|
||||
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(hole, occ_hole, tmp, Nint)
|
||||
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
|
||||
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
|
||||
|
||||
|
||||
det_tmp = ref_bitmask
|
||||
hmono = ref_tc_energy_1e
|
||||
htwoe = ref_tc_energy_2e
|
||||
hthree= ref_tc_energy_3e
|
||||
do ispin=1,2
|
||||
na = elec_num_tab(ispin)
|
||||
nb = elec_num_tab(iand(ispin,1)+1)
|
||||
do i=1,nexc(ispin)
|
||||
!DIR$ FORCEINLINE
|
||||
call ac_tc_operator( occ_particle(i,ispin), ispin, det_tmp, hmono,htwoe,hthree, Nint,na,nb)
|
||||
!DIR$ FORCEINLINE
|
||||
call a_tc_operator ( occ_hole (i,ispin), ispin, det_tmp, hmono,htwoe,hthree, Nint,na,nb)
|
||||
enddo
|
||||
enddo
|
||||
htot = hmono+htwoe+hthree
|
||||
end
|
||||
|
||||
subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Routine that computes one- and two-body energy corresponding
|
||||
!
|
||||
! to the ADDITION of an electron in an orbital 'iorb' of spin 'ispin'
|
||||
!
|
||||
! onto a determinant 'key'.
|
||||
!
|
||||
! in output, the determinant key is changed by the ADDITION of that electron
|
||||
!
|
||||
! and the quantities hmono,htwoe,hthree are INCREMENTED
|
||||
END_DOC
|
||||
integer, intent(in) :: iorb, ispin, Nint
|
||||
integer, intent(inout) :: na, nb
|
||||
integer(bit_kind), intent(inout) :: key(Nint,2)
|
||||
double precision, intent(inout) :: hmono,htwoe,hthree
|
||||
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: other_spin
|
||||
integer :: k,l,i,jj,mm,j,m
|
||||
double precision :: direct_int, exchange_int
|
||||
|
||||
|
||||
if (iorb < 1) then
|
||||
print *, irp_here, ': iorb < 1'
|
||||
print *, iorb, mo_num
|
||||
stop -1
|
||||
endif
|
||||
if (iorb > mo_num) then
|
||||
print *, irp_here, ': iorb > mo_num'
|
||||
print *, iorb, mo_num
|
||||
stop -1
|
||||
endif
|
||||
|
||||
ASSERT (ispin > 0)
|
||||
ASSERT (ispin < 3)
|
||||
ASSERT (Nint > 0)
|
||||
|
||||
integer :: tmp(2)
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(key, occ, tmp, Nint)
|
||||
ASSERT (tmp(1) == elec_alpha_num)
|
||||
ASSERT (tmp(2) == elec_beta_num)
|
||||
|
||||
k = shiftr(iorb-1,bit_kind_shift)+1
|
||||
ASSERT (k >0)
|
||||
l = iorb - shiftl(k-1,bit_kind_shift)-1
|
||||
ASSERT (l >= 0)
|
||||
key(k,ispin) = ibset(key(k,ispin),l)
|
||||
other_spin = iand(ispin,1)+1
|
||||
|
||||
hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb)
|
||||
|
||||
! Same spin
|
||||
do i=1,na
|
||||
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
|
||||
enddo
|
||||
|
||||
! Opposite spin
|
||||
do i=1,nb
|
||||
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
|
||||
enddo
|
||||
|
||||
if(three_body_h_tc)then
|
||||
!!!!! 3-e part
|
||||
!! same-spin/same-spin
|
||||
do j = 1, na
|
||||
jj = occ(j,ispin)
|
||||
do m = j+1, na
|
||||
mm = occ(m,ispin)
|
||||
hthree += three_e_diag_parrallel_spin_prov(mm,jj,iorb)
|
||||
enddo
|
||||
enddo
|
||||
!! same-spin/oposite-spin
|
||||
do j = 1, na
|
||||
jj = occ(j,ispin)
|
||||
do m = 1, nb
|
||||
mm = occ(m,other_spin)
|
||||
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
||||
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
enddo
|
||||
!! oposite-spin/opposite-spin
|
||||
do j = 1, nb
|
||||
jj = occ(j,other_spin)
|
||||
do m = j+1, nb
|
||||
mm = occ(m,other_spin)
|
||||
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
||||
exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
na = na+1
|
||||
end
|
||||
|
||||
subroutine a_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Routine that computes one- and two-body energy corresponding
|
||||
!
|
||||
! to the REMOVAL of an electron in an orbital 'iorb' of spin 'ispin'
|
||||
!
|
||||
! onto a determinant 'key'.
|
||||
!
|
||||
! in output, the determinant key is changed by the REMOVAL of that electron
|
||||
!
|
||||
! and the quantities hmono,htwoe,hthree are INCREMENTED
|
||||
END_DOC
|
||||
integer, intent(in) :: iorb, ispin, Nint
|
||||
integer, intent(inout) :: na, nb
|
||||
integer(bit_kind), intent(inout) :: key(Nint,2)
|
||||
double precision, intent(inout) :: hmono,htwoe,hthree
|
||||
|
||||
double precision :: direct_int, exchange_int
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: other_spin
|
||||
integer :: k,l,i,jj,mm,j,m
|
||||
integer :: tmp(2)
|
||||
|
||||
ASSERT (iorb > 0)
|
||||
ASSERT (ispin > 0)
|
||||
ASSERT (ispin < 3)
|
||||
ASSERT (Nint > 0)
|
||||
|
||||
k = shiftr(iorb-1,bit_kind_shift)+1
|
||||
ASSERT (k>0)
|
||||
l = iorb - shiftl(k-1,bit_kind_shift)-1
|
||||
key(k,ispin) = ibclr(key(k,ispin),l)
|
||||
other_spin = iand(ispin,1)+1
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(key, occ, tmp, Nint)
|
||||
na = na-1
|
||||
|
||||
hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb)
|
||||
|
||||
! Same spin
|
||||
do i=1,na
|
||||
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
|
||||
enddo
|
||||
|
||||
! Opposite spin
|
||||
do i=1,nb
|
||||
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
|
||||
enddo
|
||||
|
||||
if(three_body_h_tc)then
|
||||
!!!!! 3-e part
|
||||
!! same-spin/same-spin
|
||||
do j = 1, na
|
||||
jj = occ(j,ispin)
|
||||
do m = j+1, na
|
||||
mm = occ(m,ispin)
|
||||
hthree -= three_e_diag_parrallel_spin_prov(mm,jj,iorb)
|
||||
enddo
|
||||
enddo
|
||||
!! same-spin/oposite-spin
|
||||
do j = 1, na
|
||||
jj = occ(j,ispin)
|
||||
do m = 1, nb
|
||||
mm = occ(m,other_spin)
|
||||
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
||||
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
||||
hthree -= (direct_int - exchange_int)
|
||||
enddo
|
||||
enddo
|
||||
!! oposite-spin/opposite-spin
|
||||
do j = 1, nb
|
||||
jj = occ(j,other_spin)
|
||||
do m = j+1, nb
|
||||
mm = occ(m,other_spin)
|
||||
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
||||
exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
|
||||
hthree -= (direct_int - exchange_int)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine diag_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, det_in,htot)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes $\langle i|H|i \rangle$. WITHOUT ANY CONTRIBUTIONS FROM 3E TERMS
|
||||
END_DOC
|
||||
integer,intent(in) :: Nint
|
||||
integer(bit_kind),intent(in) :: det_in(Nint,2)
|
||||
double precision, intent(out) :: htot
|
||||
double precision :: hmono,htwoe
|
||||
|
||||
integer(bit_kind) :: hole(Nint,2)
|
||||
integer(bit_kind) :: particle(Nint,2)
|
||||
integer :: i, nexc(2), ispin
|
||||
integer :: occ_particle(Nint*bit_kind_size,2)
|
||||
integer :: occ_hole(Nint*bit_kind_size,2)
|
||||
integer(bit_kind) :: det_tmp(Nint,2)
|
||||
integer :: na, nb
|
||||
|
||||
ASSERT (Nint > 0)
|
||||
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
|
||||
|
||||
|
||||
nexc(1) = 0
|
||||
nexc(2) = 0
|
||||
do i=1,Nint
|
||||
hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1))
|
||||
hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2))
|
||||
particle(i,1) = iand(hole(i,1),det_in(i,1))
|
||||
particle(i,2) = iand(hole(i,2),det_in(i,2))
|
||||
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
|
||||
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
|
||||
nexc(1) = nexc(1) + popcnt(hole(i,1))
|
||||
nexc(2) = nexc(2) + popcnt(hole(i,2))
|
||||
enddo
|
||||
|
||||
if (nexc(1)+nexc(2) == 0) then
|
||||
hmono = ref_tc_energy_1e
|
||||
htwoe = ref_tc_energy_2e
|
||||
htot = ref_tc_energy_tot
|
||||
return
|
||||
endif
|
||||
|
||||
!call debug_det(det_in,Nint)
|
||||
integer :: tmp(2)
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(particle, occ_particle, tmp, Nint)
|
||||
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
|
||||
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(hole, occ_hole, tmp, Nint)
|
||||
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
|
||||
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
|
||||
|
||||
|
||||
det_tmp = ref_bitmask
|
||||
hmono = ref_tc_energy_1e
|
||||
htwoe = ref_tc_energy_2e
|
||||
do ispin=1,2
|
||||
na = elec_num_tab(ispin)
|
||||
nb = elec_num_tab(iand(ispin,1)+1)
|
||||
do i=1,nexc(ispin)
|
||||
!DIR$ FORCEINLINE
|
||||
call ac_tc_operator_no_3e( occ_particle(i,ispin), ispin, det_tmp, hmono,htwoe, Nint,na,nb)
|
||||
!DIR$ FORCEINLINE
|
||||
call a_tc_operator_no_3e ( occ_hole (i,ispin), ispin, det_tmp, hmono,htwoe, Nint,na,nb)
|
||||
enddo
|
||||
enddo
|
||||
htot = hmono+htwoe
|
||||
end
|
||||
|
||||
subroutine ac_tc_operator_no_3e(iorb,ispin,key,hmono,htwoe,Nint,na,nb)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Routine that computes one- and two-body energy corresponding
|
||||
!
|
||||
! to the ADDITION of an electron in an orbital 'iorb' of spin 'ispin'
|
||||
!
|
||||
! onto a determinant 'key'.
|
||||
!
|
||||
! in output, the determinant key is changed by the ADDITION of that electron
|
||||
!
|
||||
! and the quantities hmono,htwoe are INCREMENTED
|
||||
END_DOC
|
||||
integer, intent(in) :: iorb, ispin, Nint
|
||||
integer, intent(inout) :: na, nb
|
||||
integer(bit_kind), intent(inout) :: key(Nint,2)
|
||||
double precision, intent(inout) :: hmono,htwoe
|
||||
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: other_spin
|
||||
integer :: k,l,i,jj,mm,j,m
|
||||
double precision :: direct_int, exchange_int
|
||||
|
||||
|
||||
if (iorb < 1) then
|
||||
print *, irp_here, ': iorb < 1'
|
||||
print *, iorb, mo_num
|
||||
stop -1
|
||||
endif
|
||||
if (iorb > mo_num) then
|
||||
print *, irp_here, ': iorb > mo_num'
|
||||
print *, iorb, mo_num
|
||||
stop -1
|
||||
endif
|
||||
|
||||
ASSERT (ispin > 0)
|
||||
ASSERT (ispin < 3)
|
||||
ASSERT (Nint > 0)
|
||||
|
||||
integer :: tmp(2)
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(key, occ, tmp, Nint)
|
||||
ASSERT (tmp(1) == elec_alpha_num)
|
||||
ASSERT (tmp(2) == elec_beta_num)
|
||||
|
||||
k = shiftr(iorb-1,bit_kind_shift)+1
|
||||
ASSERT (k >0)
|
||||
l = iorb - shiftl(k-1,bit_kind_shift)-1
|
||||
ASSERT (l >= 0)
|
||||
key(k,ispin) = ibset(key(k,ispin),l)
|
||||
other_spin = iand(ispin,1)+1
|
||||
|
||||
hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb)
|
||||
|
||||
! Same spin
|
||||
do i=1,na
|
||||
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
|
||||
enddo
|
||||
|
||||
! Opposite spin
|
||||
do i=1,nb
|
||||
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
|
||||
enddo
|
||||
|
||||
na = na+1
|
||||
end
|
||||
|
||||
subroutine a_tc_operator_no_3e(iorb,ispin,key,hmono,htwoe,Nint,na,nb)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Routine that computes one- and two-body energy corresponding
|
||||
!
|
||||
! to the REMOVAL of an electron in an orbital 'iorb' of spin 'ispin'
|
||||
!
|
||||
! onto a determinant 'key'.
|
||||
!
|
||||
! in output, the determinant key is changed by the REMOVAL of that electron
|
||||
!
|
||||
! and the quantities hmono,htwoe are INCREMENTED
|
||||
END_DOC
|
||||
integer, intent(in) :: iorb, ispin, Nint
|
||||
integer, intent(inout) :: na, nb
|
||||
integer(bit_kind), intent(inout) :: key(Nint,2)
|
||||
double precision, intent(inout) :: hmono,htwoe
|
||||
|
||||
double precision :: direct_int, exchange_int
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: other_spin
|
||||
integer :: k,l,i,jj,mm,j,m
|
||||
integer :: tmp(2)
|
||||
|
||||
ASSERT (iorb > 0)
|
||||
ASSERT (ispin > 0)
|
||||
ASSERT (ispin < 3)
|
||||
ASSERT (Nint > 0)
|
||||
|
||||
k = shiftr(iorb-1,bit_kind_shift)+1
|
||||
ASSERT (k>0)
|
||||
l = iorb - shiftl(k-1,bit_kind_shift)-1
|
||||
key(k,ispin) = ibclr(key(k,ispin),l)
|
||||
other_spin = iand(ispin,1)+1
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(key, occ, tmp, Nint)
|
||||
na = na-1
|
||||
|
||||
hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb)
|
||||
|
||||
! Same spin
|
||||
do i=1,na
|
||||
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
|
||||
enddo
|
||||
|
||||
! Opposite spin
|
||||
do i=1,nb
|
||||
htwoe= htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
476
src/tc_bi_ortho/slater_tc_opt_double.irp.f
Normal file
476
src/tc_bi_ortho/slater_tc_opt_double.irp.f
Normal file
@ -0,0 +1,476 @@
|
||||
|
||||
subroutine double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> for double excitation ONLY FOR ONE- AND TWO-BODY TERMS
|
||||
!!
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
|
||||
double precision, intent(out) :: hmono, htwoe, hthree, htot
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
|
||||
integer :: degree,exc(0:2,2,2)
|
||||
integer :: h1, p1, h2, p2, s1, s2
|
||||
double precision :: get_mo_two_e_integral_tc_int,phase
|
||||
|
||||
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
|
||||
hmono = 0.d0
|
||||
htwoe = 0.d0
|
||||
hthree = 0.d0
|
||||
htot = 0.d0
|
||||
|
||||
if(degree.ne.2)then
|
||||
return
|
||||
endif
|
||||
integer :: degree_i,degree_j
|
||||
call get_excitation_degree(ref_bitmask,key_i,degree_i,N_int)
|
||||
call get_excitation_degree(ref_bitmask,key_j,degree_j,N_int)
|
||||
call get_double_excitation(key_i, key_j, exc, phase, Nint)
|
||||
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
|
||||
|
||||
if(s1.ne.s2)then
|
||||
! opposite spin two-body
|
||||
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
|
||||
if(three_body_h_tc)then
|
||||
if(.not.double_normal_ord)then
|
||||
if(degree_i>degree_j)then
|
||||
call three_comp_two_e_elem(key_j,h1,h2,p1,p2,s1,s2,hthree)
|
||||
else
|
||||
call three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
|
||||
endif
|
||||
elseif(double_normal_ord.and.elec_num+elec_num.gt.2)then
|
||||
htwoe += normal_two_body_bi_orth(p2,h2,p1,h1)!!! WTF ???
|
||||
endif
|
||||
endif
|
||||
else
|
||||
! same spin two-body
|
||||
! direct terms
|
||||
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
|
||||
! exchange terms
|
||||
htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
|
||||
if(three_body_h_tc)then
|
||||
if(.not.double_normal_ord)then
|
||||
if(degree_i>degree_j)then
|
||||
call three_comp_two_e_elem(key_j,h1,h2,p1,p2,s1,s2,hthree)
|
||||
else
|
||||
call three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
|
||||
endif
|
||||
elseif(double_normal_ord.and.elec_num+elec_num.gt.2)then
|
||||
htwoe -= normal_two_body_bi_orth(h2,p1,h1,p2)!!! WTF ???
|
||||
htwoe += normal_two_body_bi_orth(h1,p1,h2,p2)!!! WTF ???
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
hthree *= phase
|
||||
htwoe *= phase
|
||||
htot = htwoe + hthree
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_i(N_int,2)
|
||||
integer, intent(in) :: h1,h2,p1,p2,s1,s2
|
||||
double precision, intent(out) :: hthree
|
||||
integer :: nexc(2),i,ispin,na,nb
|
||||
integer(bit_kind) :: hole(N_int,2)
|
||||
integer(bit_kind) :: particle(N_int,2)
|
||||
integer :: occ_hole(N_int*bit_kind_size,2)
|
||||
integer :: occ_particle(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab_hole(2),n_occ_ab_particle(2)
|
||||
integer(bit_kind) :: det_tmp(N_int,2)
|
||||
integer :: ipart, ihole
|
||||
double precision :: direct_int, exchange_int
|
||||
|
||||
nexc(1) = 0
|
||||
nexc(2) = 0
|
||||
!! Get all the holes and particles of key_i with respect to the ROHF determinant
|
||||
do i=1,N_int
|
||||
hole(i,1) = xor(key_i(i,1),ref_bitmask(i,1))
|
||||
hole(i,2) = xor(key_i(i,2),ref_bitmask(i,2))
|
||||
particle(i,1) = iand(hole(i,1),key_i(i,1))
|
||||
particle(i,2) = iand(hole(i,2),key_i(i,2))
|
||||
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
|
||||
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
|
||||
nexc(1) = nexc(1) + popcnt(hole(i,1))
|
||||
nexc(2) = nexc(2) + popcnt(hole(i,2))
|
||||
enddo
|
||||
integer :: tmp(2)
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(particle, occ_particle, tmp, N_int)
|
||||
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
|
||||
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(hole, occ_hole, tmp, N_int)
|
||||
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
|
||||
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
|
||||
if(s1==s2.and.s1==1)then
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!! alpha/alpha double exc
|
||||
hthree = eff_2_e_from_3_e_aa(p2,p1,h2,h1)
|
||||
if(nexc(1)+nexc(2) ==0)return !! if you're on the reference determinant
|
||||
!!!!!!!! the matrix element is already exact
|
||||
!!!!!!!! else you need to take care of holes and particles
|
||||
!!!!!!!!!!!!! Holes and particles !!!!!!!!!!!!!!!!!!!!!!!
|
||||
ispin = 1 ! i==alpha ==> pure same spin terms
|
||||
do i = 1, nexc(ispin) ! number of couple of holes/particles
|
||||
ipart=occ_particle(i,ispin)
|
||||
hthree += three_e_double_parrallel_spin_prov(ipart,p2,h2,p1,h1)
|
||||
ihole=occ_hole(i,ispin)
|
||||
hthree -= three_e_double_parrallel_spin_prov(ihole,p2,h2,p1,h1)
|
||||
enddo
|
||||
ispin = 2 ! i==beta ==> alpha/alpha/beta terms
|
||||
do i = 1, nexc(ispin) ! number of couple of holes/particles
|
||||
! exchange between (h1,p1) and (h2,p2)
|
||||
ipart=occ_particle(i,ispin)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
|
||||
exchange_int = three_e_5_idx_exch12_bi_ort(ipart,p2,h2,p1,h1)
|
||||
hthree += direct_int - exchange_int
|
||||
ihole=occ_hole(i,ispin)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
|
||||
exchange_int = three_e_5_idx_exch12_bi_ort(ihole,p2,h2,p1,h1)
|
||||
hthree -= direct_int - exchange_int
|
||||
enddo
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
elseif(s1==s2.and.s1==2)then
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!! beta/beta double exc
|
||||
hthree = eff_2_e_from_3_e_bb(p2,p1,h2,h1)
|
||||
if(nexc(1)+nexc(2) ==0)return !! if you're on the reference determinant
|
||||
!!!!!!!! the matrix element is already exact
|
||||
!!!!!!!! else you need to take care of holes and particles
|
||||
!!!!!!!!!!!!! Holes and particles !!!!!!!!!!!!!!!!!!!!!!!
|
||||
ispin = 2 ! i==beta ==> pure same spin terms
|
||||
do i = 1, nexc(ispin) ! number of couple of holes/particles
|
||||
ipart=occ_particle(i,ispin)
|
||||
hthree += three_e_double_parrallel_spin_prov(ipart,p2,h2,p1,h1)
|
||||
ihole=occ_hole(i,ispin)
|
||||
hthree -= three_e_double_parrallel_spin_prov(ihole,p2,h2,p1,h1)
|
||||
enddo
|
||||
ispin = 1 ! i==alpha==> beta/beta/alpha terms
|
||||
do i = 1, nexc(ispin) ! number of couple of holes/particles
|
||||
! exchange between (h1,p1) and (h2,p2)
|
||||
ipart=occ_particle(i,ispin)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
|
||||
exchange_int = three_e_5_idx_exch12_bi_ort(ipart,p2,h2,p1,h1)
|
||||
hthree += direct_int - exchange_int
|
||||
ihole=occ_hole(i,ispin)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
|
||||
exchange_int = three_e_5_idx_exch12_bi_ort(ihole,p2,h2,p1,h1)
|
||||
hthree -= direct_int - exchange_int
|
||||
enddo
|
||||
else ! (h1,p1) == alpha/(h2,p2) == beta
|
||||
hthree = eff_2_e_from_3_e_ab(p2,p1,h2,h1)
|
||||
if(nexc(1)+nexc(2) ==0)return !! if you're on the reference determinant
|
||||
!!!!!!!! the matrix element is already exact
|
||||
!!!!!!!! else you need to take care of holes and particles
|
||||
!!!!!!!!!!!!! Holes and particles !!!!!!!!!!!!!!!!!!!!!!!
|
||||
ispin = 1 ! i==alpha ==> alpha/beta/alpha terms
|
||||
do i = 1, nexc(ispin) ! number of couple of holes/particles
|
||||
! exchange between (h1,p1) and i
|
||||
ipart=occ_particle(i,ispin)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
|
||||
exchange_int = three_e_5_idx_exch13_bi_ort(ipart,p2,h2,p1,h1)
|
||||
hthree += direct_int - exchange_int
|
||||
ihole=occ_hole(i,ispin)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
|
||||
exchange_int = three_e_5_idx_exch13_bi_ort(ihole,p2,h2,p1,h1)
|
||||
hthree -= direct_int - exchange_int
|
||||
enddo
|
||||
ispin = 2 ! i==beta ==> alpha/beta/beta terms
|
||||
do i = 1, nexc(ispin) ! number of couple of holes/particles
|
||||
! exchange between (h2,p2) and i
|
||||
ipart=occ_particle(i,ispin)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1)
|
||||
exchange_int = three_e_5_idx_exch23_bi_ort(ipart,p2,h2,p1,h1)
|
||||
hthree += direct_int - exchange_int
|
||||
ihole=occ_hole(i,ispin)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1)
|
||||
exchange_int = three_e_5_idx_exch23_bi_ort(ihole,p2,h2,p1,h1)
|
||||
hthree -= direct_int - exchange_int
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, eff_2_e_from_3_e_ab, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! eff_2_e_from_3_e_ab(p2,p1,h2,h1) = Effective Two-electron operator for alpha/beta double excitations
|
||||
!
|
||||
! from contraction with HF density = a^{dagger}_p1_alpha a^{dagger}_p2_beta a_h2_beta a_h1_alpha
|
||||
END_DOC
|
||||
integer :: i,h1,p1,h2,p2
|
||||
integer :: hh1,hh2,pp1,pp2,m,mm
|
||||
integer :: Ne(2)
|
||||
integer, allocatable :: occ(:,:)
|
||||
double precision :: contrib
|
||||
allocate( occ(N_int*bit_kind_size,2) )
|
||||
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
|
||||
call give_contrib_for_abab(1,1,1,1,occ,Ne,contrib)
|
||||
eff_2_e_from_3_e_ab = 0.d0
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, contrib) &
|
||||
!$OMP SHARED (n_act_orb, list_act, Ne,occ, eff_2_e_from_3_e_ab)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do hh1 = 1, n_act_orb !! alpha
|
||||
h1 = list_act(hh1)
|
||||
do hh2 = 1, n_act_orb !! beta
|
||||
h2 = list_act(hh2)
|
||||
do pp1 = 1, n_act_orb !! alpha
|
||||
p1 = list_act(pp1)
|
||||
do pp2 = 1, n_act_orb !! beta
|
||||
p2 = list_act(pp2)
|
||||
call give_contrib_for_abab(h1,h2,p1,p2,occ,Ne,contrib)
|
||||
eff_2_e_from_3_e_ab(p2,p1,h2,h1) = contrib
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine give_contrib_for_abab(h1,h2,p1,p2,occ,Ne,contrib)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! gives the contribution for a double excitation (h1,p1)_alpha (h2,p2)_beta
|
||||
!
|
||||
! on top of a determinant whose occupied orbitals is in (occ, Ne)
|
||||
END_DOC
|
||||
integer, intent(in) :: h1,h2,p1,p2,occ(N_int*bit_kind_size,2),Ne(2)
|
||||
double precision, intent(out) :: contrib
|
||||
integer :: mm,m
|
||||
double precision :: direct_int, exchange_int
|
||||
!! h1,p1 == alpha
|
||||
!! h2,p2 == beta
|
||||
contrib = 0.d0
|
||||
do mm = 1, Ne(1) !! alpha
|
||||
m = occ(mm,1)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
|
||||
! exchange between (h1,p1) and m
|
||||
exchange_int = three_e_5_idx_exch13_bi_ort(mm,p2,h2,p1,h1)
|
||||
contrib += direct_int - exchange_int
|
||||
enddo
|
||||
|
||||
do mm = 1, Ne(2) !! beta
|
||||
m = occ(mm,2)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
|
||||
! exchange between (h2,p2) and m
|
||||
exchange_int = three_e_5_idx_exch23_bi_ort(mm,p2,h2,p1,h1)
|
||||
contrib += direct_int - exchange_int
|
||||
enddo
|
||||
end
|
||||
|
||||
BEGIN_PROVIDER [ double precision, eff_2_e_from_3_e_aa, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! eff_2_e_from_3_e_ab(p2,p1,h2,h1) = Effective Two-electron operator for alpha/alpha double excitations
|
||||
!
|
||||
! from contractionelec_alpha_num with HF density = a^{dagger}_p1_alpha a^{dagger}_p2_alpha a_h2_alpha a_h1_alpha
|
||||
!
|
||||
! WARNING :: to be coherent with the phase convention used in the Hamiltonian matrix elements, you must fulfill
|
||||
!
|
||||
! |||| h2>h1, p2>p1 ||||
|
||||
END_DOC
|
||||
integer :: i,h1,p1,h2,p2
|
||||
integer :: hh1,hh2,pp1,pp2,m,mm
|
||||
integer :: Ne(2)
|
||||
integer, allocatable :: occ(:,:)
|
||||
double precision :: contrib
|
||||
allocate( occ(N_int*bit_kind_size,2) )
|
||||
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
|
||||
call give_contrib_for_aaaa(1 ,1 ,1 ,1 ,occ,Ne,contrib)
|
||||
eff_2_e_from_3_e_aa = 100000000.d0
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, contrib) &
|
||||
!$OMP SHARED (n_act_orb, list_act, Ne,occ, eff_2_e_from_3_e_aa)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do hh1 = 1, n_act_orb !! alpha
|
||||
h1 = list_act(hh1)
|
||||
do hh2 = hh1+1, n_act_orb !! alpha
|
||||
h2 = list_act(hh2)
|
||||
do pp1 = 1, n_act_orb !! alpha
|
||||
p1 = list_act(pp1)
|
||||
do pp2 = pp1+1, n_act_orb !! alpha
|
||||
p2 = list_act(pp2)
|
||||
call give_contrib_for_aaaa(h1,h2,p1,p2,occ,Ne,contrib)
|
||||
eff_2_e_from_3_e_aa(p2,p1,h2,h1) = contrib
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine give_contrib_for_aaaa(h1,h2,p1,p2,occ,Ne,contrib)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! gives the contribution for a double excitation (h1,p1)_alpha (h2,p2)_alpha
|
||||
!
|
||||
! on top of a determinant whose occupied orbitals is in (occ, Ne)
|
||||
END_DOC
|
||||
integer, intent(in) :: h1,h2,p1,p2,occ(N_int*bit_kind_size,2),Ne(2)
|
||||
double precision, intent(out) :: contrib
|
||||
integer :: mm,m
|
||||
double precision :: direct_int, exchange_int
|
||||
!! h1,p1 == alpha
|
||||
!! h2,p2 == alpha
|
||||
contrib = 0.d0
|
||||
do mm = 1, Ne(1) !! alpha ==> pure parallele spin contribution
|
||||
m = occ(mm,1)
|
||||
contrib += three_e_double_parrallel_spin_prov(m,p2,h2,p1,h1)
|
||||
enddo
|
||||
|
||||
do mm = 1, Ne(2) !! beta
|
||||
m = occ(mm,2)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
|
||||
! exchange between (h1,p1) and (h2,p2)
|
||||
exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
|
||||
contrib += direct_int - exchange_int
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, eff_2_e_from_3_e_bb, (mo_num, mo_num, mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! eff_2_e_from_3_e_ab(p2,p1,h2,h1) = Effective Two-electron operator for beta/beta double excitations
|
||||
!
|
||||
! from contractionelec_beta_num with HF density = a^{dagger}_p1_beta a^{dagger}_p2_beta a_h2_beta a_h1_beta
|
||||
!
|
||||
! WARNING :: to be coherent with the phase convention used in the Hamiltonian matrix elements, you must fulfill
|
||||
!
|
||||
! |||| h2>h1, p2>p1 ||||
|
||||
END_DOC
|
||||
integer :: i,h1,p1,h2,p2
|
||||
integer :: hh1,hh2,pp1,pp2,m,mm
|
||||
integer :: Ne(2)
|
||||
integer, allocatable :: occ(:,:)
|
||||
double precision :: contrib
|
||||
allocate( occ(N_int*bit_kind_size,2) )
|
||||
call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int)
|
||||
call give_contrib_for_bbbb(1,1 ,1 ,1 ,occ,Ne,contrib)
|
||||
eff_2_e_from_3_e_bb = 100000000.d0
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, contrib) &
|
||||
!$OMP SHARED (n_act_orb, list_act, Ne,occ, eff_2_e_from_3_e_bb)
|
||||
!$OMP DO SCHEDULE (static)
|
||||
do hh1 = 1, n_act_orb !! beta
|
||||
h1 = list_act(hh1)
|
||||
do hh2 = hh1+1, n_act_orb !! beta
|
||||
h2 = list_act(hh2)
|
||||
do pp1 = 1, n_act_orb !! beta
|
||||
p1 = list_act(pp1)
|
||||
do pp2 = pp1+1, n_act_orb !! beta
|
||||
p2 = list_act(pp2)
|
||||
call give_contrib_for_bbbb(h1,h2,p1,p2,occ,Ne,contrib)
|
||||
eff_2_e_from_3_e_bb(p2,p1,h2,h1) = contrib
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine give_contrib_for_bbbb(h1,h2,p1,p2,occ,Ne,contrib)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! gives the contribution for a double excitation (h1,p1)_beta (h2,p2)_beta
|
||||
!
|
||||
! on top of a determinant whose occupied orbitals is in (occ, Ne)
|
||||
END_DOC
|
||||
integer, intent(in) :: h1,h2,p1,p2,occ(N_int*bit_kind_size,2),Ne(2)
|
||||
double precision, intent(out) :: contrib
|
||||
integer :: mm,m
|
||||
double precision :: direct_int, exchange_int
|
||||
!! h1,p1 == beta
|
||||
!! h2,p2 == beta
|
||||
contrib = 0.d0
|
||||
do mm = 1, Ne(2) !! beta ==> pure parallele spin contribution
|
||||
m = occ(mm,1)
|
||||
contrib += three_e_double_parrallel_spin_prov(m,p2,h2,p1,h1)
|
||||
enddo
|
||||
|
||||
do mm = 1, Ne(1) !! alpha
|
||||
m = occ(mm,1)
|
||||
direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1)
|
||||
! exchange between (h1,p1) and (h2,p2)
|
||||
exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1)
|
||||
contrib += direct_int - exchange_int
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
subroutine double_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot)
|
||||
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> for double excitation ONLY FOR ONE- AND TWO-BODY TERMS
|
||||
!!
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
|
||||
double precision, intent(out) :: htot
|
||||
double precision :: hmono, htwoe
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
|
||||
integer :: degree,exc(0:2,2,2)
|
||||
integer :: h1, p1, h2, p2, s1, s2
|
||||
double precision :: get_mo_two_e_integral_tc_int,phase
|
||||
|
||||
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
|
||||
hmono = 0.d0
|
||||
htwoe = 0.d0
|
||||
htot = 0.d0
|
||||
|
||||
if(degree.ne.2)then
|
||||
return
|
||||
endif
|
||||
integer :: degree_i,degree_j
|
||||
call get_excitation_degree(ref_bitmask,key_i,degree_i,N_int)
|
||||
call get_excitation_degree(ref_bitmask,key_j,degree_j,N_int)
|
||||
call get_double_excitation(key_i, key_j, exc, phase, Nint)
|
||||
call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2)
|
||||
|
||||
if(s1.ne.s2)then
|
||||
! opposite spin two-body
|
||||
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
|
||||
else
|
||||
! same spin two-body
|
||||
! direct terms
|
||||
htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
|
||||
! exchange terms
|
||||
htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1)
|
||||
endif
|
||||
htwoe *= phase
|
||||
htot = htwoe
|
||||
|
||||
end
|
||||
|
572
src/tc_bi_ortho/slater_tc_opt_single.irp.f
Normal file
572
src/tc_bi_ortho/slater_tc_opt_single.irp.f
Normal file
@ -0,0 +1,572 @@
|
||||
|
||||
|
||||
subroutine single_htilde_mu_mat_fock_bi_ortho (Nint, key_j, key_i, hmono, htwoe, hthree, htot)
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> for single excitation ONLY FOR ONE- AND TWO-BODY TERMS
|
||||
!!
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
|
||||
double precision, intent(out) :: hmono, htwoe, hthree, htot
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
|
||||
integer :: degree,exc(0:2,2,2)
|
||||
integer :: h1, p1, h2, p2, s1, s2
|
||||
double precision :: get_mo_two_e_integral_tc_int, phase
|
||||
double precision :: direct_int, exchange_int_12, exchange_int_23, exchange_int_13
|
||||
integer :: other_spin(2)
|
||||
integer(bit_kind) :: key_j_core(Nint,2), key_i_core(Nint,2)
|
||||
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
|
||||
hmono = 0.d0
|
||||
htwoe = 0.d0
|
||||
hthree = 0.d0
|
||||
htot = 0.d0
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
if(degree.ne.1)then
|
||||
return
|
||||
endif
|
||||
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
||||
|
||||
call get_single_excitation(key_i, key_j, exc, phase, Nint)
|
||||
call decode_exc(exc,1,h1,p1,h2,p2,s1,s2)
|
||||
call get_single_excitation_from_fock_tc(key_i,key_j,h1,p1,s1,phase,hmono,htwoe,hthree,htot)
|
||||
end
|
||||
|
||||
|
||||
subroutine get_single_excitation_from_fock_tc(key_i,key_j,h,p,spin,phase,hmono,htwoe,hthree,htot)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer,intent(in) :: h,p,spin
|
||||
double precision, intent(in) :: phase
|
||||
integer(bit_kind), intent(in) :: key_i(N_int,2), key_j(N_int,2)
|
||||
double precision, intent(out) :: hmono,htwoe,hthree,htot
|
||||
integer(bit_kind) :: differences(N_int,2)
|
||||
integer(bit_kind) :: hole(N_int,2)
|
||||
integer(bit_kind) :: partcl(N_int,2)
|
||||
integer :: occ_hole(N_int*bit_kind_size,2)
|
||||
integer :: occ_partcl(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab_hole(2),n_occ_ab_partcl(2)
|
||||
integer :: i0,i
|
||||
double precision :: buffer_c(mo_num),buffer_x(mo_num)
|
||||
do i=1, mo_num
|
||||
buffer_c(i) = tc_2e_3idx_coulomb_integrals(i,p,h)
|
||||
buffer_x(i) = tc_2e_3idx_exchange_integrals(i,p,h)
|
||||
enddo
|
||||
do i = 1, N_int
|
||||
differences(i,1) = xor(key_i(i,1),ref_closed_shell_bitmask(i,1))
|
||||
differences(i,2) = xor(key_i(i,2),ref_closed_shell_bitmask(i,2))
|
||||
hole(i,1) = iand(differences(i,1),ref_closed_shell_bitmask(i,1))
|
||||
hole(i,2) = iand(differences(i,2),ref_closed_shell_bitmask(i,2))
|
||||
partcl(i,1) = iand(differences(i,1),key_i(i,1))
|
||||
partcl(i,2) = iand(differences(i,2),key_i(i,2))
|
||||
enddo
|
||||
call bitstring_to_list_ab(hole, occ_hole, n_occ_ab_hole, N_int)
|
||||
call bitstring_to_list_ab(partcl, occ_partcl, n_occ_ab_partcl, N_int)
|
||||
hmono = mo_bi_ortho_tc_one_e(p,h)
|
||||
htwoe = fock_op_2_e_tc_closed_shell(p,h)
|
||||
! holes :: direct terms
|
||||
do i0 = 1, n_occ_ab_hole(1)
|
||||
i = occ_hole(i0,1)
|
||||
htwoe -= buffer_c(i)
|
||||
enddo
|
||||
do i0 = 1, n_occ_ab_hole(2)
|
||||
i = occ_hole(i0,2)
|
||||
htwoe -= buffer_c(i)
|
||||
enddo
|
||||
|
||||
! holes :: exchange terms
|
||||
do i0 = 1, n_occ_ab_hole(spin)
|
||||
i = occ_hole(i0,spin)
|
||||
htwoe += buffer_x(i)
|
||||
enddo
|
||||
|
||||
! particles :: direct terms
|
||||
do i0 = 1, n_occ_ab_partcl(1)
|
||||
i = occ_partcl(i0,1)
|
||||
htwoe += buffer_c(i)
|
||||
enddo
|
||||
do i0 = 1, n_occ_ab_partcl(2)
|
||||
i = occ_partcl(i0,2)
|
||||
htwoe += buffer_c(i)
|
||||
enddo
|
||||
|
||||
! particles :: exchange terms
|
||||
do i0 = 1, n_occ_ab_partcl(spin)
|
||||
i = occ_partcl(i0,spin)
|
||||
htwoe -= buffer_x(i)
|
||||
enddo
|
||||
hthree = 0.d0
|
||||
if (three_body_h_tc)then
|
||||
call three_comp_fock_elem(key_i,h,p,spin,hthree)
|
||||
endif
|
||||
|
||||
|
||||
htwoe = htwoe * phase
|
||||
hmono = hmono * phase
|
||||
hthree = hthree * phase
|
||||
htot = htwoe + hmono + hthree
|
||||
|
||||
end
|
||||
|
||||
subroutine three_comp_fock_elem(key_i,h_fock,p_fock,ispin_fock,hthree)
|
||||
implicit none
|
||||
integer,intent(in) :: h_fock,p_fock,ispin_fock
|
||||
integer(bit_kind), intent(in) :: key_i(N_int,2)
|
||||
double precision, intent(out) :: hthree
|
||||
integer :: nexc(2),i,ispin,na,nb
|
||||
integer(bit_kind) :: hole(N_int,2)
|
||||
integer(bit_kind) :: particle(N_int,2)
|
||||
integer :: occ_hole(N_int*bit_kind_size,2)
|
||||
integer :: occ_particle(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab_hole(2),n_occ_ab_particle(2)
|
||||
integer(bit_kind) :: det_tmp(N_int,2)
|
||||
|
||||
|
||||
nexc(1) = 0
|
||||
nexc(2) = 0
|
||||
!! Get all the holes and particles of key_i with respect to the ROHF determinant
|
||||
do i=1,N_int
|
||||
hole(i,1) = xor(key_i(i,1),ref_bitmask(i,1))
|
||||
hole(i,2) = xor(key_i(i,2),ref_bitmask(i,2))
|
||||
particle(i,1) = iand(hole(i,1),key_i(i,1))
|
||||
particle(i,2) = iand(hole(i,2),key_i(i,2))
|
||||
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
|
||||
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
|
||||
nexc(1) = nexc(1) + popcnt(hole(i,1))
|
||||
nexc(2) = nexc(2) + popcnt(hole(i,2))
|
||||
enddo
|
||||
integer :: tmp(2)
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(particle, occ_particle, tmp, N_int)
|
||||
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
|
||||
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(hole, occ_hole, tmp, N_int)
|
||||
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
|
||||
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
|
||||
|
||||
!! Initialize the matrix element with the reference ROHF Slater determinant Fock element
|
||||
if(ispin_fock==1)then
|
||||
hthree = fock_a_tot_3e_bi_orth(p_fock,h_fock)
|
||||
else
|
||||
hthree = fock_b_tot_3e_bi_orth(p_fock,h_fock)
|
||||
endif
|
||||
det_tmp = ref_bitmask
|
||||
do ispin=1,2
|
||||
na = elec_num_tab(ispin)
|
||||
nb = elec_num_tab(iand(ispin,1)+1)
|
||||
do i=1,nexc(ispin)
|
||||
!DIR$ FORCEINLINE
|
||||
call fock_ac_tc_operator( occ_particle(i,ispin), ispin, det_tmp, h_fock,p_fock, ispin_fock, hthree, N_int,na,nb)
|
||||
!DIR$ FORCEINLINE
|
||||
call fock_a_tc_operator ( occ_hole (i,ispin), ispin, det_tmp, h_fock,p_fock, ispin_fock, hthree, N_int,na,nb)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine fock_ac_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,Nint,na,nb)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Routine that computes the contribution to the three-electron part of the Fock operator
|
||||
!
|
||||
! a^dagger_{p_fock} a_{h_fock} of spin ispin_fock
|
||||
!
|
||||
! on top of a determinant 'key' on which you ADD an electron of spin ispin in orbital iorb
|
||||
!
|
||||
! in output, the determinant key is changed by the ADDITION of that electron
|
||||
!
|
||||
! the output hthree is INCREMENTED
|
||||
END_DOC
|
||||
integer, intent(in) :: iorb, ispin, Nint, h_fock,p_fock, ispin_fock
|
||||
integer, intent(inout) :: na, nb
|
||||
integer(bit_kind), intent(inout) :: key(Nint,2)
|
||||
double precision, intent(inout) :: hthree
|
||||
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: other_spin
|
||||
integer :: k,l,i,jj,j
|
||||
double precision :: direct_int, exchange_int
|
||||
|
||||
|
||||
if (iorb < 1) then
|
||||
print *, irp_here, ': iorb < 1'
|
||||
print *, iorb, mo_num
|
||||
stop -1
|
||||
endif
|
||||
if (iorb > mo_num) then
|
||||
print *, irp_here, ': iorb > mo_num'
|
||||
print *, iorb, mo_num
|
||||
stop -1
|
||||
endif
|
||||
|
||||
ASSERT (ispin > 0)
|
||||
ASSERT (ispin < 3)
|
||||
ASSERT (Nint > 0)
|
||||
|
||||
integer :: tmp(2)
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(key, occ, tmp, Nint)
|
||||
ASSERT (tmp(1) == elec_alpha_num)
|
||||
ASSERT (tmp(2) == elec_beta_num)
|
||||
|
||||
k = shiftr(iorb-1,bit_kind_shift)+1
|
||||
ASSERT (k >0)
|
||||
l = iorb - shiftl(k-1,bit_kind_shift)-1
|
||||
ASSERT (l >= 0)
|
||||
key(k,ispin) = ibset(key(k,ispin),l)
|
||||
other_spin = iand(ispin,1)+1
|
||||
|
||||
|
||||
!! spin of other electrons == ispin
|
||||
if(ispin == ispin_fock)then
|
||||
!! in what follows :: jj == other electrons in the determinant
|
||||
!! :: iorb == electron that has been added of spin ispin
|
||||
!! :: p_fock, h_fock == hole particle of spin ispin_fock
|
||||
!! jj = ispin = ispin_fock >> pure parallel spin
|
||||
do j = 1, na
|
||||
jj = occ(j,ispin)
|
||||
hthree += three_e_single_parrallel_spin_prov(jj,iorb,p_fock,h_fock)
|
||||
enddo
|
||||
!! spin of jj == other spin than ispin AND ispin_fock
|
||||
!! exchange between the iorb and (h_fock, p_fock)
|
||||
do j = 1, nb
|
||||
jj = occ(j,other_spin)
|
||||
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
exchange_int = three_e_4_idx_exch12_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
else !! ispin NE to ispin_fock
|
||||
!! jj = ispin BUT NON EQUAL TO ispin_fock
|
||||
!! exchange between the jj and iorb
|
||||
do j = 1, na
|
||||
jj = occ(j,ispin)
|
||||
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
exchange_int = three_e_4_idx_exch23_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
!! jj = other_spin than ispin BUT jj == ispin_fock
|
||||
!! exchange between jj and (h_fock,p_fock)
|
||||
do j = 1, nb
|
||||
jj = occ(j,other_spin)
|
||||
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
exchange_int = three_e_4_idx_exch13_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
hthree += direct_int - exchange_int
|
||||
enddo
|
||||
endif
|
||||
|
||||
na = na+1
|
||||
end
|
||||
|
||||
subroutine fock_a_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,Nint,na,nb)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Routine that computes the contribution to the three-electron part of the Fock operator
|
||||
!
|
||||
! a^dagger_{p_fock} a_{h_fock} of spin ispin_fock
|
||||
!
|
||||
! on top of a determinant 'key' on which you REMOVE an electron of spin ispin in orbital iorb
|
||||
!
|
||||
! in output, the determinant key is changed by the REMOVAL of that electron
|
||||
!
|
||||
! the output hthree is INCREMENTED
|
||||
END_DOC
|
||||
integer, intent(in) :: iorb, ispin, Nint, h_fock,p_fock, ispin_fock
|
||||
integer, intent(inout) :: na, nb
|
||||
integer(bit_kind), intent(inout) :: key(Nint,2)
|
||||
double precision, intent(inout) :: hthree
|
||||
|
||||
double precision :: direct_int, exchange_int
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: other_spin
|
||||
integer :: k,l,i,jj,mm,j,m
|
||||
integer :: tmp(2)
|
||||
|
||||
ASSERT (iorb > 0)
|
||||
ASSERT (ispin > 0)
|
||||
ASSERT (ispin < 3)
|
||||
ASSERT (Nint > 0)
|
||||
|
||||
k = shiftr(iorb-1,bit_kind_shift)+1
|
||||
ASSERT (k>0)
|
||||
l = iorb - shiftl(k-1,bit_kind_shift)-1
|
||||
key(k,ispin) = ibclr(key(k,ispin),l)
|
||||
other_spin = iand(ispin,1)+1
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call bitstring_to_list_ab(key, occ, tmp, Nint)
|
||||
na = na-1
|
||||
!! spin of other electrons == ispin
|
||||
if(ispin == ispin_fock)then
|
||||
!! in what follows :: jj == other electrons in the determinant
|
||||
!! :: iorb == electron that has been added of spin ispin
|
||||
!! :: p_fock, h_fock == hole particle of spin ispin_fock
|
||||
!! jj = ispin = ispin_fock >> pure parallel spin
|
||||
do j = 1, na
|
||||
jj = occ(j,ispin)
|
||||
hthree -= three_e_single_parrallel_spin_prov(jj,iorb,p_fock,h_fock)
|
||||
enddo
|
||||
!! spin of jj == other spin than ispin AND ispin_fock
|
||||
!! exchange between the iorb and (h_fock, p_fock)
|
||||
do j = 1, nb
|
||||
jj = occ(j,other_spin)
|
||||
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
exchange_int = three_e_4_idx_exch12_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
hthree -= direct_int - exchange_int
|
||||
enddo
|
||||
else !! ispin NE to ispin_fock
|
||||
!! jj = ispin BUT NON EQUAL TO ispin_fock
|
||||
!! exchange between the jj and iorb
|
||||
do j = 1, na
|
||||
jj = occ(j,ispin)
|
||||
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
exchange_int = three_e_4_idx_exch23_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
hthree -= direct_int - exchange_int
|
||||
enddo
|
||||
!! jj = other_spin than ispin BUT jj == ispin_fock
|
||||
!! exchange between jj and (h_fock,p_fock)
|
||||
do j = 1, nb
|
||||
jj = occ(j,other_spin)
|
||||
direct_int = three_e_4_idx_direct_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
exchange_int = three_e_4_idx_exch13_bi_ort(jj,iorb,p_fock,h_fock) ! USES 4-IDX TENSOR
|
||||
hthree -= direct_int - exchange_int
|
||||
enddo
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, fock_op_2_e_tc_closed_shell, (mo_num, mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Closed-shell part of the Fock operator for the TC operator
|
||||
END_DOC
|
||||
integer :: h0,p0,h,p,k0,k,i
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab_virt(2)
|
||||
integer :: occ_virt(N_int*bit_kind_size,2)
|
||||
integer(bit_kind) :: key_test(N_int)
|
||||
integer(bit_kind) :: key_virt(N_int,2)
|
||||
double precision :: accu
|
||||
|
||||
fock_op_2_e_tc_closed_shell = -1000.d0
|
||||
call bitstring_to_list_ab(ref_closed_shell_bitmask, occ, n_occ_ab, N_int)
|
||||
do i = 1, N_int
|
||||
key_virt(i,1) = full_ijkl_bitmask(i)
|
||||
key_virt(i,2) = full_ijkl_bitmask(i)
|
||||
key_virt(i,1) = xor(key_virt(i,1),ref_closed_shell_bitmask(i,1))
|
||||
key_virt(i,2) = xor(key_virt(i,2),ref_closed_shell_bitmask(i,2))
|
||||
enddo
|
||||
call bitstring_to_list_ab(key_virt, occ_virt, n_occ_ab_virt, N_int)
|
||||
! docc ---> virt single excitations
|
||||
do h0 = 1, n_occ_ab(1)
|
||||
h=occ(h0,1)
|
||||
do p0 = 1, n_occ_ab_virt(1)
|
||||
p = occ_virt(p0,1)
|
||||
accu = 0.d0
|
||||
do k0 = 1, n_occ_ab(1)
|
||||
k = occ(k0,1)
|
||||
accu += 2.d0 * tc_2e_3idx_coulomb_integrals(k,p,h) - tc_2e_3idx_exchange_integrals(k,p,h)
|
||||
enddo
|
||||
fock_op_2_e_tc_closed_shell(p,h) = accu
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do h0 = 1, n_occ_ab_virt(1)
|
||||
h = occ_virt(h0,1)
|
||||
do p0 = 1, n_occ_ab(1)
|
||||
p=occ(p0,1)
|
||||
accu = 0.d0
|
||||
do k0 = 1, n_occ_ab(1)
|
||||
k = occ(k0,1)
|
||||
accu += 2.d0 * tc_2e_3idx_coulomb_integrals(k,p,h) - tc_2e_3idx_exchange_integrals(k,p,h)
|
||||
enddo
|
||||
fock_op_2_e_tc_closed_shell(p,h) = accu
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! virt ---> virt single excitations
|
||||
do h0 = 1, n_occ_ab_virt(1)
|
||||
h=occ_virt(h0,1)
|
||||
do p0 = 1, n_occ_ab_virt(1)
|
||||
p = occ_virt(p0,1)
|
||||
accu = 0.d0
|
||||
do k0 = 1, n_occ_ab(1)
|
||||
k = occ(k0,1)
|
||||
accu += 2.d0 * tc_2e_3idx_coulomb_integrals(k,p,h) - tc_2e_3idx_exchange_integrals(k,p,h)
|
||||
enddo
|
||||
fock_op_2_e_tc_closed_shell(p,h) = accu
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do h0 = 1, n_occ_ab_virt(1)
|
||||
h = occ_virt(h0,1)
|
||||
do p0 = 1, n_occ_ab_virt(1)
|
||||
p=occ_virt(p0,1)
|
||||
accu = 0.d0
|
||||
do k0 = 1, n_occ_ab(1)
|
||||
k = occ(k0,1)
|
||||
accu += 2.d0 * tc_2e_3idx_coulomb_integrals(k,p,h) - tc_2e_3idx_exchange_integrals(k,p,h)
|
||||
enddo
|
||||
fock_op_2_e_tc_closed_shell(p,h) = accu
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
! docc ---> docc single excitations
|
||||
do h0 = 1, n_occ_ab(1)
|
||||
h=occ(h0,1)
|
||||
do p0 = 1, n_occ_ab(1)
|
||||
p = occ(p0,1)
|
||||
accu = 0.d0
|
||||
do k0 = 1, n_occ_ab(1)
|
||||
k = occ(k0,1)
|
||||
accu += 2.d0 * tc_2e_3idx_coulomb_integrals(k,p,h) - tc_2e_3idx_exchange_integrals(k,p,h)
|
||||
enddo
|
||||
fock_op_2_e_tc_closed_shell(p,h) = accu
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do h0 = 1, n_occ_ab(1)
|
||||
h = occ(h0,1)
|
||||
do p0 = 1, n_occ_ab(1)
|
||||
p=occ(p0,1)
|
||||
accu = 0.d0
|
||||
do k0 = 1, n_occ_ab(1)
|
||||
k = occ(k0,1)
|
||||
accu += 2.d0 * tc_2e_3idx_coulomb_integrals(k,p,h) - tc_2e_3idx_exchange_integrals(k,p,h)
|
||||
enddo
|
||||
fock_op_2_e_tc_closed_shell(p,h) = accu
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! do i = 1, mo_num
|
||||
! write(*,'(100(F10.5,X))')fock_op_2_e_tc_closed_shell(:,i)
|
||||
! enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine single_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot)
|
||||
BEGIN_DOC
|
||||
! <key_j | H_tilde | key_i> for single excitation ONLY FOR ONE- AND TWO-BODY TERMS
|
||||
!!
|
||||
!! WARNING !!
|
||||
!
|
||||
! Non hermitian !!
|
||||
END_DOC
|
||||
|
||||
use bitmasks
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
|
||||
double precision, intent(out) :: htot
|
||||
double precision :: hmono, htwoe
|
||||
integer :: occ(Nint*bit_kind_size,2)
|
||||
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
|
||||
integer :: degree,exc(0:2,2,2)
|
||||
integer :: h1, p1, h2, p2, s1, s2
|
||||
double precision :: get_mo_two_e_integral_tc_int, phase
|
||||
double precision :: direct_int, exchange_int_12, exchange_int_23, exchange_int_13
|
||||
integer :: other_spin(2)
|
||||
integer(bit_kind) :: key_j_core(Nint,2), key_i_core(Nint,2)
|
||||
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
|
||||
hmono = 0.d0
|
||||
htwoe = 0.d0
|
||||
htot = 0.d0
|
||||
call get_excitation_degree(key_i, key_j, degree, Nint)
|
||||
if(degree.ne.1)then
|
||||
return
|
||||
endif
|
||||
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
|
||||
|
||||
call get_single_excitation(key_i, key_j, exc, phase, Nint)
|
||||
call decode_exc(exc,1,h1,p1,h2,p2,s1,s2)
|
||||
call get_single_excitation_from_fock_tc_no_3e(key_i,key_j,h1,p1,s1,phase,hmono,htwoe,htot)
|
||||
end
|
||||
|
||||
|
||||
subroutine get_single_excitation_from_fock_tc_no_3e(key_i,key_j,h,p,spin,phase,hmono,htwoe,htot)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer,intent(in) :: h,p,spin
|
||||
double precision, intent(in) :: phase
|
||||
integer(bit_kind), intent(in) :: key_i(N_int,2), key_j(N_int,2)
|
||||
double precision, intent(out) :: hmono,htwoe,htot
|
||||
integer(bit_kind) :: differences(N_int,2)
|
||||
integer(bit_kind) :: hole(N_int,2)
|
||||
integer(bit_kind) :: partcl(N_int,2)
|
||||
integer :: occ_hole(N_int*bit_kind_size,2)
|
||||
integer :: occ_partcl(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab_hole(2),n_occ_ab_partcl(2)
|
||||
integer :: i0,i
|
||||
double precision :: buffer_c(mo_num),buffer_x(mo_num)
|
||||
do i=1, mo_num
|
||||
buffer_c(i) = tc_2e_3idx_coulomb_integrals(i,p,h)
|
||||
buffer_x(i) = tc_2e_3idx_exchange_integrals(i,p,h)
|
||||
enddo
|
||||
do i = 1, N_int
|
||||
differences(i,1) = xor(key_i(i,1),ref_closed_shell_bitmask(i,1))
|
||||
differences(i,2) = xor(key_i(i,2),ref_closed_shell_bitmask(i,2))
|
||||
hole(i,1) = iand(differences(i,1),ref_closed_shell_bitmask(i,1))
|
||||
hole(i,2) = iand(differences(i,2),ref_closed_shell_bitmask(i,2))
|
||||
partcl(i,1) = iand(differences(i,1),key_i(i,1))
|
||||
partcl(i,2) = iand(differences(i,2),key_i(i,2))
|
||||
enddo
|
||||
call bitstring_to_list_ab(hole, occ_hole, n_occ_ab_hole, N_int)
|
||||
call bitstring_to_list_ab(partcl, occ_partcl, n_occ_ab_partcl, N_int)
|
||||
hmono = mo_bi_ortho_tc_one_e(p,h)
|
||||
htwoe = fock_op_2_e_tc_closed_shell(p,h)
|
||||
! holes :: direct terms
|
||||
do i0 = 1, n_occ_ab_hole(1)
|
||||
i = occ_hole(i0,1)
|
||||
htwoe -= buffer_c(i)
|
||||
enddo
|
||||
do i0 = 1, n_occ_ab_hole(2)
|
||||
i = occ_hole(i0,2)
|
||||
htwoe -= buffer_c(i)
|
||||
enddo
|
||||
|
||||
! holes :: exchange terms
|
||||
do i0 = 1, n_occ_ab_hole(spin)
|
||||
i = occ_hole(i0,spin)
|
||||
htwoe += buffer_x(i)
|
||||
enddo
|
||||
|
||||
! particles :: direct terms
|
||||
do i0 = 1, n_occ_ab_partcl(1)
|
||||
i = occ_partcl(i0,1)
|
||||
htwoe += buffer_c(i)
|
||||
enddo
|
||||
do i0 = 1, n_occ_ab_partcl(2)
|
||||
i = occ_partcl(i0,2)
|
||||
htwoe += buffer_c(i)
|
||||
enddo
|
||||
|
||||
! particles :: exchange terms
|
||||
do i0 = 1, n_occ_ab_partcl(spin)
|
||||
i = occ_partcl(i0,spin)
|
||||
htwoe -= buffer_x(i)
|
||||
enddo
|
||||
htwoe = htwoe * phase
|
||||
hmono = hmono * phase
|
||||
htot = htwoe + hmono
|
||||
|
||||
end
|
||||
|
111
src/tc_bi_ortho/symmetrized_3_e_int.irp.f
Normal file
111
src/tc_bi_ortho/symmetrized_3_e_int.irp.f
Normal file
@ -0,0 +1,111 @@
|
||||
subroutine give_all_perm_for_three_e(n,l,k,m,j,i,idx_list,phase)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns all the list of permutting indices for the antimmetrization of
|
||||
!
|
||||
! (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins
|
||||
!
|
||||
! idx_list(:,i) == list of the 6 indices corresponding the permutation "i"
|
||||
!
|
||||
! phase(i) == phase of the permutation "i"
|
||||
!
|
||||
! there are in total 6 permutations with different indices
|
||||
END_DOC
|
||||
integer, intent(in) :: n,l,k,m,j,i
|
||||
integer, intent(out) :: idx_list(6,6)
|
||||
double precision :: phase(6)
|
||||
integer :: list(6)
|
||||
!!! CYCLIC PERMUTATIONS
|
||||
phase(1:3) = 1.d0
|
||||
!!! IDENTITY PERMUTATION
|
||||
list = (/n,l,k,m,j,i/)
|
||||
idx_list(:,1) = list(:)
|
||||
!!! FIRST CYCLIC PERMUTATION
|
||||
list = (/n,l,k,j,i,m/)
|
||||
idx_list(:,2) = list(:)
|
||||
!!! FIRST CYCLIC PERMUTATION
|
||||
list = (/n,l,k,i,m,j/)
|
||||
idx_list(:,3) = list(:)
|
||||
|
||||
!!! NON CYCLIC PERMUTATIONS
|
||||
phase(1:3) = -1.d0
|
||||
!!! PARTICLE 1 is FIXED
|
||||
list = (/n,l,k,j,m,i/)
|
||||
idx_list(:,4) = list(:)
|
||||
!!! PARTICLE 2 is FIXED
|
||||
list = (/n,l,k,i,j,m/)
|
||||
idx_list(:,5) = list(:)
|
||||
!!! PARTICLE 3 is FIXED
|
||||
list = (/n,l,k,m,i,j/)
|
||||
idx_list(:,6) = list(:)
|
||||
|
||||
end
|
||||
|
||||
double precision function sym_3_e_int_from_6_idx_tensor(n,l,k,m,j,i)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns all good combinations of permutations of integrals with the good signs
|
||||
!
|
||||
! for a given (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins
|
||||
END_DOC
|
||||
integer, intent(in) :: n,l,k,m,j,i
|
||||
sym_3_e_int_from_6_idx_tensor = three_body_ints_bi_ort(n,l,k,m,j,i) & ! direct
|
||||
+ three_body_ints_bi_ort(n,l,k,j,i,m) & ! 1st cyclic permutation
|
||||
+ three_body_ints_bi_ort(n,l,k,i,m,j) & ! 2nd cyclic permutation
|
||||
- three_body_ints_bi_ort(n,l,k,j,m,i) & ! elec 1 is kept fixed
|
||||
- three_body_ints_bi_ort(n,l,k,i,j,m) & ! elec 2 is kept fixed
|
||||
- three_body_ints_bi_ort(n,l,k,m,i,j) ! elec 3 is kept fixed
|
||||
|
||||
end
|
||||
|
||||
double precision function direct_sym_3_e_int(n,l,k,m,j,i)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! returns all good combinations of permutations of integrals with the good signs
|
||||
!
|
||||
! for a given (k^dagger l^dagger n^dagger m j i) <nlk|L|mji> when all indices have the same spins
|
||||
END_DOC
|
||||
integer, intent(in) :: n,l,k,m,j,i
|
||||
double precision :: integral
|
||||
direct_sym_3_e_int = 0.d0
|
||||
call give_integrals_3_body_bi_ort(n,l,k,m,j,i,integral) ! direct
|
||||
direct_sym_3_e_int += integral
|
||||
call give_integrals_3_body_bi_ort(n,l,k,j,i,m,integral) ! 1st cyclic permutation
|
||||
direct_sym_3_e_int += integral
|
||||
call give_integrals_3_body_bi_ort(n,l,k,i,m,j,integral) ! 2nd cyclic permutation
|
||||
direct_sym_3_e_int += integral
|
||||
call give_integrals_3_body_bi_ort(n,l,k,j,m,i,integral) ! elec 1 is kept fixed
|
||||
direct_sym_3_e_int += -integral
|
||||
call give_integrals_3_body_bi_ort(n,l,k,i,j,m,integral) ! elec 2 is kept fixed
|
||||
direct_sym_3_e_int += -integral
|
||||
call give_integrals_3_body_bi_ort(n,l,k,m,i,j,integral) ! elec 3 is kept fixed
|
||||
direct_sym_3_e_int += -integral
|
||||
|
||||
end
|
||||
|
||||
double precision function three_e_diag_parrallel_spin(m,j,i)
|
||||
implicit none
|
||||
integer, intent(in) :: i,j,m
|
||||
three_e_diag_parrallel_spin = three_e_3_idx_direct_bi_ort(m,j,i) ! direct
|
||||
three_e_diag_parrallel_spin += three_e_3_idx_cycle_1_bi_ort(m,j,i) + three_e_3_idx_cycle_2_bi_ort(m,j,i) & ! two cyclic permutations
|
||||
- three_e_3_idx_exch23_bi_ort(m,j,i) - three_e_3_idx_exch13_bi_ort(m,j,i) & ! two first exchange
|
||||
- three_e_3_idx_exch12_bi_ort(m,j,i) ! last exchange
|
||||
end
|
||||
|
||||
double precision function three_e_single_parrallel_spin(m,j,k,i)
|
||||
implicit none
|
||||
integer, intent(in) :: i,k,j,m
|
||||
three_e_single_parrallel_spin = three_e_4_idx_direct_bi_ort(m,j,k,i) ! direct
|
||||
three_e_single_parrallel_spin += three_e_4_idx_cycle_1_bi_ort(m,j,k,i) + three_e_4_idx_cycle_2_bi_ort(m,j,k,i) & ! two cyclic permutations
|
||||
- three_e_4_idx_exch23_bi_ort(m,j,k,i) - three_e_4_idx_exch13_bi_ort(m,j,k,i) & ! two first exchange
|
||||
- three_e_4_idx_exch12_bi_ort(m,j,k,i) ! last exchange
|
||||
end
|
||||
|
||||
double precision function three_e_double_parrallel_spin(m,l,j,k,i)
|
||||
implicit none
|
||||
integer, intent(in) :: i,k,j,m,l
|
||||
three_e_double_parrallel_spin = three_e_5_idx_direct_bi_ort(m,l,j,k,i) ! direct
|
||||
three_e_double_parrallel_spin += three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) + three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) & ! two cyclic permutations
|
||||
- three_e_5_idx_exch23_bi_ort(m,l,j,k,i) - three_e_5_idx_exch13_bi_ort(m,l,j,k,i) & ! two first exchange
|
||||
- three_e_5_idx_exch12_bi_ort(m,l,j,k,i) ! last exchange
|
||||
end
|
140
src/tc_bi_ortho/symmetrized_3_e_int_prov.irp.f
Normal file
140
src/tc_bi_ortho/symmetrized_3_e_int_prov.irp.f
Normal file
@ -0,0 +1,140 @@
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_diag_parrallel_spin_prov, (mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS
|
||||
!
|
||||
! three_e_diag_parrallel_spin_prov(m,j,i) = All combinations of the form <mji|-L|mji> for same spin matrix elements
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_diag_parrallel_spin_prov can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, m
|
||||
double precision :: integral, wall1, wall0, three_e_diag_parrallel_spin
|
||||
|
||||
three_e_diag_parrallel_spin_prov = 0.d0
|
||||
print *, ' Providing the three_e_diag_parrallel_spin_prov ...'
|
||||
|
||||
integral = three_e_diag_parrallel_spin(1,1,1) ! to provide all stuffs
|
||||
call wall_time(wall0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_diag_parrallel_spin_prov)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = j, mo_num
|
||||
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin(m,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, j
|
||||
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin_prov(j,m,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_diag_parrallel_spin_prov', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_single_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_single_parrallel_spin_prov(m,j,k,i) = All combination of <mjk|-L|mji> for same spin matrix elements
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m
|
||||
double precision :: integral, wall1, wall0, three_e_single_parrallel_spin
|
||||
|
||||
three_e_single_parrallel_spin_prov = 0.d0
|
||||
print *, ' Providing the three_e_single_parrallel_spin_prov ...'
|
||||
|
||||
integral = three_e_single_parrallel_spin(1,1,1,1)
|
||||
call wall_time(wall0)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_single_parrallel_spin_prov)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
three_e_single_parrallel_spin_prov(m,j,k,i) = three_e_single_parrallel_spin(m,j,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_single_parrallel_spin_prov', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, three_e_double_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
|
||||
!
|
||||
! three_e_double_parrallel_spin_prov(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
|
||||
!
|
||||
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, m, l
|
||||
double precision :: integral, wall1, wall0, three_e_double_parrallel_spin
|
||||
|
||||
three_e_double_parrallel_spin_prov = 0.d0
|
||||
print *, ' Providing the three_e_double_parrallel_spin_prov ...'
|
||||
call wall_time(wall0)
|
||||
|
||||
integral = three_e_double_parrallel_spin(1,1,1,1,1)
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,k,m,l,integral) &
|
||||
!$OMP SHARED (mo_num,three_e_double_parrallel_spin_prov)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do i = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
do m = 1, mo_num
|
||||
three_e_double_parrallel_spin_prov(m,l,j,k,i) = three_e_double_parrallel_spin(m,l,j,k,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call wall_time(wall1)
|
||||
print *, ' wall time for three_e_double_parrallel_spin_prov', wall1 - wall0
|
||||
|
||||
END_PROVIDER
|
||||
|
61
src/tc_bi_ortho/tc_bi_ortho.irp.f
Normal file
61
src/tc_bi_ortho/tc_bi_ortho.irp.f
Normal file
@ -0,0 +1,61 @@
|
||||
program tc_bi_ortho
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end.
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
call routine_diag
|
||||
! call test
|
||||
end
|
||||
|
||||
subroutine test
|
||||
implicit none
|
||||
integer :: i,j
|
||||
double precision :: hmono,htwoe,hthree,htot
|
||||
use bitmasks
|
||||
|
||||
print*,'test'
|
||||
! call htilde_mu_mat_bi_ortho(psi_det(1,1,1), psi_det(1,1,2), N_int, hmono, htwoe, hthree, htot)
|
||||
call double_htilde_mu_mat_bi_ortho(N_int,psi_det(1,1,1), psi_det(1,1,2), hmono, htwoe, htot)
|
||||
print*,hmono, htwoe, htot
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_diag
|
||||
implicit none
|
||||
! provide eigval_right_tc_bi_orth
|
||||
provide overlap_bi_ortho
|
||||
! provide htilde_matrix_elmt_bi_ortho
|
||||
integer ::i,j
|
||||
print*,'eigval_right_tc_bi_orth = ',eigval_right_tc_bi_orth(1)
|
||||
print*,'e_tc_left_right = ',e_tc_left_right
|
||||
print*,'e_tilde_bi_orth_00 = ',e_tilde_bi_orth_00
|
||||
print*,'e_pt2_tc_bi_orth = ',e_pt2_tc_bi_orth
|
||||
print*,'e_pt2_tc_bi_orth_single = ',e_pt2_tc_bi_orth_single
|
||||
print*,'e_pt2_tc_bi_orth_double = ',e_pt2_tc_bi_orth_double
|
||||
print*,'***'
|
||||
print*,'e_corr_bi_orth = ',e_corr_bi_orth
|
||||
print*,'e_corr_bi_orth_proj = ',e_corr_bi_orth_proj
|
||||
print*,'e_corr_single_bi_orth = ',e_corr_single_bi_orth
|
||||
print*,'e_corr_double_bi_orth = ',e_corr_double_bi_orth
|
||||
print*,'Left/right eigenvectors'
|
||||
do i = 1,N_det
|
||||
write(*,'(I5,X,(100(F12.7,X)))')i,leigvec_tc_bi_orth(i,1),reigvec_tc_bi_orth(i,1)
|
||||
enddo
|
||||
do j=1,N_states
|
||||
do i=1,N_det
|
||||
psi_l_coef_bi_ortho(i,j) = leigvec_tc_bi_orth(i,j)
|
||||
psi_r_coef_bi_ortho(i,j) = reigvec_tc_bi_orth(i,j)
|
||||
enddo
|
||||
enddo
|
||||
SOFT_TOUCH psi_l_coef_bi_ortho psi_r_coef_bi_ortho
|
||||
call save_tc_bi_ortho_wavefunction
|
||||
! call routine_save_left_right_bi_ortho
|
||||
end
|
||||
|
24
src/tc_bi_ortho/tc_bi_ortho_prop.irp.f
Normal file
24
src/tc_bi_ortho/tc_bi_ortho_prop.irp.f
Normal file
@ -0,0 +1,24 @@
|
||||
program tc_bi_ortho_prop
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
! call routine_diag
|
||||
call test
|
||||
end
|
||||
|
||||
subroutine test
|
||||
implicit none
|
||||
integer :: i
|
||||
print*,'TC Dipole components'
|
||||
do i= 1, 3
|
||||
print*,tc_bi_ortho_dipole(i,1)
|
||||
enddo
|
||||
end
|
24
src/tc_bi_ortho/tc_cisd_sc2.irp.f
Normal file
24
src/tc_bi_ortho/tc_cisd_sc2.irp.f
Normal file
@ -0,0 +1,24 @@
|
||||
program tc_bi_ortho
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
call test
|
||||
end
|
||||
|
||||
subroutine test
|
||||
implicit none
|
||||
! double precision, allocatable :: dressing_dets(:),e_corr_dets(:)
|
||||
! allocate(dressing_dets(N_det),e_corr_dets(N_det))
|
||||
! e_corr_dets = 0.d0
|
||||
! call get_cisd_sc2_dressing(psi_det,e_corr_dets,N_det,dressing_dets)
|
||||
provide eigval_tc_cisd_sc2_bi_ortho
|
||||
end
|
145
src/tc_bi_ortho/tc_cisd_sc2_utils.irp.f
Normal file
145
src/tc_bi_ortho/tc_cisd_sc2_utils.irp.f
Normal file
@ -0,0 +1,145 @@
|
||||
BEGIN_PROVIDER [ double precision, reigvec_tc_cisd_sc2_bi_ortho, (N_det,N_states)]
|
||||
&BEGIN_PROVIDER [ double precision, leigvec_tc_cisd_sc2_bi_ortho, (N_det,N_states)]
|
||||
&BEGIN_PROVIDER [ double precision, eigval_tc_cisd_sc2_bi_ortho, (N_states)]
|
||||
implicit none
|
||||
integer :: it,n_real,degree,i,istate
|
||||
double precision :: e_before, e_current,thr, hmono,htwoe,hthree,accu
|
||||
double precision, allocatable :: e_corr_dets(:),h0j(:), h_sc2(:,:), dressing_dets(:)
|
||||
double precision, allocatable :: leigvec_tc_bi_orth_tmp(:,:),reigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:)
|
||||
allocate(leigvec_tc_bi_orth_tmp(N_det,N_det),reigvec_tc_bi_orth_tmp(N_det,N_det),eigval_right_tmp(N_det))
|
||||
allocate(e_corr_dets(N_det),h0j(N_det),h_sc2(N_det,N_det),dressing_dets(N_det))
|
||||
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag),eigval_tmp(N_states))
|
||||
dressing_dets = 0.d0
|
||||
do i = 1, N_det
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
|
||||
if(degree == 1 .or. degree == 2)then
|
||||
call htilde_mu_mat_bi_ortho(HF_bitmask,psi_det(1,1,i),N_int,hmono,htwoe,hthree,h0j(i))
|
||||
endif
|
||||
enddo
|
||||
reigvec_tc_bi_orth_tmp = 0.d0
|
||||
do i = 1, N_det
|
||||
reigvec_tc_bi_orth_tmp(i,1) = psi_r_coef_bi_ortho(i,1)
|
||||
enddo
|
||||
vec_tmp = 0.d0
|
||||
do istate = 1, N_states
|
||||
vec_tmp(:,istate) = reigvec_tc_bi_orth_tmp(:,istate)
|
||||
enddo
|
||||
do istate = N_states+1, n_states_diag
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
print*,'Diagonalizing the TC CISD '
|
||||
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
|
||||
do i = 1, N_det
|
||||
e_corr_dets(i) = reigvec_tc_bi_orth_tmp(i,1) * h0j(i)/reigvec_tc_bi_orth_tmp(1,1)
|
||||
enddo
|
||||
E_before = eigval_tmp(1)
|
||||
print*,'Starting from ',E_before
|
||||
|
||||
e_current = 10.d0
|
||||
thr = 1.d-5
|
||||
it = 0
|
||||
dressing_dets = 0.d0
|
||||
double precision, allocatable :: H_jj(:),vec_tmp(:,:),eigval_tmp(:)
|
||||
external htc_bi_ortho_calc_tdav
|
||||
external htcdag_bi_ortho_calc_tdav
|
||||
logical :: converged
|
||||
do while (dabs(E_before-E_current).gt.thr)
|
||||
it += 1
|
||||
E_before = E_current
|
||||
! h_sc2 = htilde_matrix_elmt_bi_ortho
|
||||
call get_cisd_sc2_dressing(psi_det,e_corr_dets,N_det,dressing_dets)
|
||||
do i = 1, N_det
|
||||
! print*,'dressing_dets(i) = ',dressing_dets(i)
|
||||
h_sc2(i,i) += dressing_dets(i)
|
||||
enddo
|
||||
print*,'********************'
|
||||
print*,'iteration ',it
|
||||
! call non_hrmt_real_diag(N_det,h_sc2,&
|
||||
! leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,&
|
||||
! n_real,eigval_right_tmp)
|
||||
! print*,'eigval_right_tmp(1)',eigval_right_tmp(1)
|
||||
vec_tmp = 0.d0
|
||||
do istate = 1, N_states
|
||||
vec_tmp(:,istate) = reigvec_tc_bi_orth_tmp(:,istate)
|
||||
enddo
|
||||
do istate = N_states+1, n_states_diag
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
call davidson_general_diag_dressed_ext_rout_nonsym_b1space(vec_tmp, H_jj, dressing_dets,eigval_tmp, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
|
||||
print*,'outside Davidson'
|
||||
print*,'eigval_tmp(1) = ',eigval_tmp(1)
|
||||
do i = 1, N_det
|
||||
reigvec_tc_bi_orth_tmp(i,1) = vec_tmp(i,1)
|
||||
e_corr_dets(i) = reigvec_tc_bi_orth_tmp(i,1) * h0j(i)/reigvec_tc_bi_orth_tmp(1,1)
|
||||
enddo
|
||||
! E_current = eigval_right_tmp(1)
|
||||
E_current = eigval_tmp(1)
|
||||
print*,'it, E(SC)^2 = ',it,E_current
|
||||
enddo
|
||||
eigval_tc_cisd_sc2_bi_ortho(1:N_states) = eigval_right_tmp(1:N_states)
|
||||
reigvec_tc_cisd_sc2_bi_ortho(1:N_det,1:N_states) = reigvec_tc_bi_orth_tmp(1:N_det,1:N_states)
|
||||
leigvec_tc_cisd_sc2_bi_ortho(1:N_det,1:N_states) = leigvec_tc_bi_orth_tmp(1:N_det,1:N_states)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine get_cisd_sc2_dressing(dets,e_corr_dets,ndet,dressing_dets)
|
||||
implicit none
|
||||
use bitmasks
|
||||
integer, intent(in) :: ndet
|
||||
integer(bit_kind), intent(in) :: dets(N_int,2,ndet)
|
||||
double precision, intent(in) :: e_corr_dets(ndet)
|
||||
double precision, intent(out) :: dressing_dets(ndet)
|
||||
integer, allocatable :: degree(:),hole(:,:),part(:,:),spin(:,:)
|
||||
integer(bit_kind), allocatable :: hole_part(:,:,:)
|
||||
integer :: i,j,k, exc(0:2,2,2),h1,p1,h2,p2,s1,s2
|
||||
integer(bit_kind) :: xorvec(2,N_int)
|
||||
|
||||
double precision :: phase
|
||||
dressing_dets = 0.d0
|
||||
allocate(degree(ndet),hole(2,ndet),part(2,ndet), spin(2,ndet),hole_part(N_int,2,ndet))
|
||||
do i = 2, ndet
|
||||
call get_excitation_degree(HF_bitmask,dets(1,1,i),degree(i),N_int)
|
||||
do j = 1, N_int
|
||||
hole_part(j,1,i) = xor( HF_bitmask(j,1), dets(j,1,i))
|
||||
hole_part(j,2,i) = xor( HF_bitmask(j,2), dets(j,2,i))
|
||||
enddo
|
||||
if(degree(i) == 1)then
|
||||
call get_single_excitation(HF_bitmask,psi_det(1,1,i),exc,phase,N_int)
|
||||
else if(degree(i) == 2)then
|
||||
call get_double_excitation(HF_bitmask,psi_det(1,1,i),exc,phase,N_int)
|
||||
endif
|
||||
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
hole(1,i) = h1
|
||||
hole(2,i) = h2
|
||||
part(1,i) = p1
|
||||
part(2,i) = p2
|
||||
spin(1,i) = s1
|
||||
spin(2,i) = s2
|
||||
enddo
|
||||
|
||||
integer :: same
|
||||
if(elec_alpha_num+elec_beta_num<3)return
|
||||
do i = 2, ndet
|
||||
do j = i+1, ndet
|
||||
same = 0
|
||||
if(degree(i) == degree(j) .and. degree(i)==1)cycle
|
||||
do k = 1, N_int
|
||||
xorvec(k,1) = iand(hole_part(k,1,i),hole_part(k,1,j))
|
||||
xorvec(k,2) = iand(hole_part(k,2,i),hole_part(k,2,j))
|
||||
same += popcnt(xorvec(k,1)) + popcnt(xorvec(k,2))
|
||||
enddo
|
||||
! print*,'i,j',i,j
|
||||
! call debug_det(dets(1,1,i),N_int)
|
||||
! call debug_det(hole_part(1,1,i),N_int)
|
||||
! call debug_det(dets(1,1,j),N_int)
|
||||
! call debug_det(hole_part(1,1,j),N_int)
|
||||
! print*,'same = ',same
|
||||
if(same.eq.0)then
|
||||
dressing_dets(i) += e_corr_dets(j)
|
||||
dressing_dets(j) += e_corr_dets(i)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
183
src/tc_bi_ortho/tc_h_eigvectors.irp.f
Normal file
183
src/tc_bi_ortho/tc_h_eigvectors.irp.f
Normal file
@ -0,0 +1,183 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ integer, index_HF_psi_det]
|
||||
implicit none
|
||||
integer :: i,degree
|
||||
do i = 1, N_det
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,i),degree,N_int)
|
||||
if(degree == 0)then
|
||||
index_HF_psi_det = i
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, eigval_right_tc_bi_orth, (N_states)]
|
||||
&BEGIN_PROVIDER [double precision, eigval_left_tc_bi_orth, (N_states)]
|
||||
&BEGIN_PROVIDER [double precision, reigvec_tc_bi_orth, (N_det,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, leigvec_tc_bi_orth, (N_det,N_states)]
|
||||
&BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth ]
|
||||
|
||||
BEGIN_DOC
|
||||
! eigenvalues, right and left eigenvectors of the transcorrelated Hamiltonian on the BI-ORTHO basis
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, idx_dress, j, istate
|
||||
logical :: converged, dagger
|
||||
integer :: n_real_tc_bi_orth_eigval_right,igood_r,igood_l
|
||||
double precision, allocatable :: reigvec_tc_bi_orth_tmp(:,:),leigvec_tc_bi_orth_tmp(:,:),eigval_right_tmp(:)
|
||||
|
||||
PROVIDE N_det N_int
|
||||
|
||||
if(n_det.le.N_det_max_full)then
|
||||
allocate(reigvec_tc_bi_orth_tmp(N_det,N_det),leigvec_tc_bi_orth_tmp(N_det,N_det),eigval_right_tmp(N_det))
|
||||
call non_hrmt_real_diag(N_det,htilde_matrix_elmt_bi_ortho,&
|
||||
leigvec_tc_bi_orth_tmp,reigvec_tc_bi_orth_tmp,&
|
||||
n_real_tc_bi_orth_eigval_right,eigval_right_tmp)
|
||||
double precision, allocatable :: coef_hf_r(:),coef_hf_l(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
allocate(coef_hf_r(N_det),coef_hf_l(N_det),iorder(N_det))
|
||||
do i = 1,N_det
|
||||
iorder(i) = i
|
||||
coef_hf_r(i) = -dabs(reigvec_tc_bi_orth_tmp(index_HF_psi_det,i))
|
||||
enddo
|
||||
call dsort(coef_hf_r,iorder,N_det)
|
||||
igood_r = iorder(1)
|
||||
print*,'igood_r, coef_hf_r = ',igood_r,coef_hf_r(1)
|
||||
do i = 1,N_det
|
||||
iorder(i) = i
|
||||
coef_hf_l(i) = -dabs(leigvec_tc_bi_orth_tmp(index_HF_psi_det,i))
|
||||
enddo
|
||||
call dsort(coef_hf_l,iorder,N_det)
|
||||
igood_l = iorder(1)
|
||||
print*,'igood_l, coef_hf_l = ',igood_l,coef_hf_l(1)
|
||||
|
||||
if(igood_r.ne.igood_l.and.igood_r.ne.1)then
|
||||
print *,''
|
||||
print *,'Warning, the left and right eigenvectors are "not the same" '
|
||||
print *,'Warning, the ground state is not dominated by HF...'
|
||||
print *,'State with largest RIGHT coefficient of HF ',igood_r
|
||||
print *,'coef of HF in RIGHT eigenvector = ',reigvec_tc_bi_orth_tmp(index_HF_psi_det,igood_r)
|
||||
print *,'State with largest LEFT coefficient of HF ',igood_l
|
||||
print *,'coef of HF in LEFT eigenvector = ',leigvec_tc_bi_orth_tmp(index_HF_psi_det,igood_l)
|
||||
endif
|
||||
if(state_following_tc)then
|
||||
print *,'Following the states with the largest coef on HF'
|
||||
print *,'igood_r,igood_l',igood_r,igood_l
|
||||
i= igood_r
|
||||
eigval_right_tc_bi_orth(1) = eigval_right_tmp(i)
|
||||
do j = 1, N_det
|
||||
reigvec_tc_bi_orth(j,1) = reigvec_tc_bi_orth_tmp(j,i)
|
||||
! print*,reigvec_tc_bi_orth(j,1)
|
||||
enddo
|
||||
i= igood_l
|
||||
eigval_left_tc_bi_orth(1) = eigval_right_tmp(i)
|
||||
do j = 1, N_det
|
||||
leigvec_tc_bi_orth(j,1) = leigvec_tc_bi_orth_tmp(j,i)
|
||||
enddo
|
||||
else
|
||||
do i = 1, N_states
|
||||
eigval_right_tc_bi_orth(i) = eigval_right_tmp(i)
|
||||
eigval_left_tc_bi_orth(i) = eigval_right_tmp(i)
|
||||
do j = 1, N_det
|
||||
reigvec_tc_bi_orth(j,i) = reigvec_tc_bi_orth_tmp(j,i)
|
||||
leigvec_tc_bi_orth(j,i) = leigvec_tc_bi_orth_tmp(j,i)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
else
|
||||
double precision, allocatable :: H_jj(:),vec_tmp(:,:)
|
||||
external htc_bi_ortho_calc_tdav
|
||||
external htcdag_bi_ortho_calc_tdav
|
||||
external H_tc_u_0_opt
|
||||
external H_tc_dagger_u_0_opt
|
||||
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag))
|
||||
do i = 1, N_det
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
|
||||
enddo
|
||||
!!!! Preparing the left-eigenvector
|
||||
print*,'Computing the left-eigenvector '
|
||||
vec_tmp = 0.d0
|
||||
do istate = 1, N_states
|
||||
vec_tmp(1:N_det,istate) = psi_l_coef_bi_ortho(1:N_det,istate)
|
||||
enddo
|
||||
do istate = N_states+1, n_states_diag
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, htcdag_bi_ortho_calc_tdav)
|
||||
call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_dagger_u_0_opt)
|
||||
do istate = 1, N_states
|
||||
leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
|
||||
enddo
|
||||
|
||||
print*,'Computing the right-eigenvector '
|
||||
!!!! Preparing the right-eigenvector
|
||||
vec_tmp = 0.d0
|
||||
do istate = 1, N_states
|
||||
vec_tmp(1:N_det,istate) = psi_r_coef_bi_ortho(1:N_det,istate)
|
||||
enddo
|
||||
do istate = N_states+1, n_states_diag
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
! call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, htc_bi_ortho_calc_tdav)
|
||||
call davidson_general_ext_rout_nonsym_b1space(vec_tmp, H_jj, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, converged, H_tc_u_0_opt)
|
||||
do istate = 1, N_states
|
||||
reigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
|
||||
enddo
|
||||
|
||||
deallocate(H_jj)
|
||||
endif
|
||||
call bi_normalize(leigvec_tc_bi_orth,reigvec_tc_bi_orth,size(reigvec_tc_bi_orth,1),N_det,N_states)
|
||||
print*,'leigvec_tc_bi_orth(1,1),reigvec_tc_bi_orth(1,1) = ',leigvec_tc_bi_orth(1,1),reigvec_tc_bi_orth(1,1)
|
||||
norm_ground_left_right_bi_orth = 0.d0
|
||||
do j = 1, N_det
|
||||
norm_ground_left_right_bi_orth += leigvec_tc_bi_orth(j,1) * reigvec_tc_bi_orth(j,1)
|
||||
enddo
|
||||
print*,'norm l/r = ',norm_ground_left_right_bi_orth
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
subroutine bi_normalize(u_l,u_r,n,ld,nstates)
|
||||
!!!! Normalization of the scalar product of the left/right eigenvectors
|
||||
double precision, intent(inout) :: u_l(ld,nstates), u_r(ld,nstates)
|
||||
integer, intent(in) :: n,ld,nstates
|
||||
integer :: i
|
||||
double precision :: accu, tmp
|
||||
do i = 1, nstates
|
||||
!!!! Normalization of right eigenvectors |Phi>
|
||||
accu = 0.d0
|
||||
do j = 1, n
|
||||
accu += u_r(j,i) * u_r(j,i)
|
||||
enddo
|
||||
accu = 1.d0/dsqrt(accu)
|
||||
print*,'accu_r = ',accu
|
||||
do j = 1, n
|
||||
u_r(j,i) *= accu
|
||||
enddo
|
||||
tmp = u_r(1,i) / dabs(u_r(1,i))
|
||||
do j = 1, n
|
||||
u_r(j,i) *= tmp
|
||||
enddo
|
||||
!!!! Adaptation of the norm of the left eigenvector such that <chi|Phi> = 1
|
||||
accu = 0.d0
|
||||
do j = 1, n
|
||||
accu += u_l(j,i) * u_r(j,i)
|
||||
! print*,j, u_l(j,i) , u_r(j,i)
|
||||
enddo
|
||||
if(accu.gt.0.d0)then
|
||||
accu = 1.d0/dsqrt(accu)
|
||||
else
|
||||
accu = 1.d0/dsqrt(-accu)
|
||||
endif
|
||||
tmp = (u_l(1,i) * u_r(1,i) )/dabs(u_l(1,i) * u_r(1,i))
|
||||
do j = 1, n
|
||||
u_l(j,i) *= accu * tmp
|
||||
u_r(j,i) *= accu
|
||||
enddo
|
||||
enddo
|
||||
end
|
45
src/tc_bi_ortho/tc_hmat.irp.f
Normal file
45
src/tc_bi_ortho/tc_hmat.irp.f
Normal file
@ -0,0 +1,45 @@
|
||||
|
||||
BEGIN_PROVIDER [double precision, htilde_matrix_elmt_bi_ortho, (N_det,N_det)]
|
||||
|
||||
BEGIN_DOC
|
||||
! htilde_matrix_elmt_bi_ortho(j,i) = <J| H^tilde |I>
|
||||
!
|
||||
! WARNING !!!!!!!!! IT IS NOT HERMITIAN !!!!!!!!!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
double precision :: hmono,htwoe,hthree,htot
|
||||
|
||||
PROVIDE N_int
|
||||
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j,hmono, htwoe, hthree, htot) &
|
||||
!$OMP SHARED (N_det, psi_det, N_int,htilde_matrix_elmt_bi_ortho)
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
! < J | Htilde | I >
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
|
||||
!print *, ' hmono = ', hmono
|
||||
!print *, ' htwoe = ', htwoe
|
||||
!print *, ' hthree = ', hthree
|
||||
htilde_matrix_elmt_bi_ortho(j,i) = htot
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
! print*,'htilde_matrix_elmt_bi_ortho = '
|
||||
! do i = 1, min(100,N_det)
|
||||
! write(*,'(100(F16.10,X))')htilde_matrix_elmt_bi_ortho(1:min(100,N_det),i)
|
||||
! enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, htilde_matrix_elmt_bi_ortho_tranp, (N_det,N_det)]
|
||||
implicit none
|
||||
integer ::i,j
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
htilde_matrix_elmt_bi_ortho_tranp(j,i) = htilde_matrix_elmt_bi_ortho(i,j)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
218
src/tc_bi_ortho/tc_natorb.irp.f
Normal file
218
src/tc_bi_ortho/tc_natorb.irp.f
Normal file
@ -0,0 +1,218 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, natorb_tc_reigvec_mo, (mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, natorb_tc_leigvec_mo, (mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, natorb_tc_eigval, (mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! natorb_tc_reigvec_mo : RIGHT eigenvectors of the ground state transition matrix (equivalent of natural orbitals)
|
||||
! natorb_tc_leigvec_mo : LEFT eigenvectors of the ground state transition matrix (equivalent of natural orbitals)
|
||||
! natorb_tc_eigval : eigenvalues of the ground state transition matrix (equivalent of the occupation numbers). WARNINING :: can be negative !!
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k
|
||||
double precision :: thr_d, thr_nd, thr_deg, accu
|
||||
double precision :: accu_d, accu_nd
|
||||
double precision, allocatable :: dm_tmp(:,:), fock_diag(:)
|
||||
|
||||
allocate(dm_tmp(mo_num,mo_num), fock_diag(mo_num))
|
||||
|
||||
dm_tmp(:,:) = -tc_transition_matrix(:,:,1,1)
|
||||
|
||||
print *, ' dm_tmp'
|
||||
do i = 1, mo_num
|
||||
fock_diag(i) = fock_matrix_tc_mo_tot(i,i)
|
||||
write(*, '(100(F16.10,X))') -dm_tmp(:,i)
|
||||
enddo
|
||||
|
||||
thr_d = 1.d-6
|
||||
thr_nd = 1.d-6
|
||||
thr_deg = 1.d-3
|
||||
call diag_mat_per_fock_degen( fock_diag, dm_tmp, mo_num, thr_d, thr_nd, thr_deg &
|
||||
, natorb_tc_leigvec_mo, natorb_tc_reigvec_mo, natorb_tc_eigval)
|
||||
! call non_hrmt_bieig( mo_num, dm_tmp&
|
||||
! , natorb_tc_leigvec_mo, natorb_tc_reigvec_mo&
|
||||
! , mo_num, natorb_tc_eigval )
|
||||
|
||||
accu = 0.d0
|
||||
do i = 1, mo_num
|
||||
print*,'natorb_tc_eigval(i) = ',-natorb_tc_eigval(i)
|
||||
accu += -natorb_tc_eigval(i)
|
||||
enddo
|
||||
print *, ' accu = ', accu
|
||||
|
||||
dm_tmp = 0.d0
|
||||
do i = 1, mo_num
|
||||
accu = 0.d0
|
||||
do k = 1, mo_num
|
||||
accu += natorb_tc_reigvec_mo(k,i) * natorb_tc_leigvec_mo(k,i)
|
||||
enddo
|
||||
accu = 1.d0/dsqrt(dabs(accu))
|
||||
natorb_tc_reigvec_mo(:,i) *= accu
|
||||
natorb_tc_leigvec_mo(:,i) *= accu
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
dm_tmp(j,i) += natorb_tc_reigvec_mo(k,i) * natorb_tc_leigvec_mo(k,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
accu_d = 0.d0
|
||||
accu_nd = 0.d0
|
||||
do i = 1, mo_num
|
||||
accu_d += dm_tmp(i,i)
|
||||
!write(*,'(100(F16.10,X))')dm_tmp(:,i)
|
||||
do j = 1, mo_num
|
||||
if(i==j)cycle
|
||||
accu_nd += dabs(dm_tmp(j,i))
|
||||
enddo
|
||||
enddo
|
||||
print *, ' Trace of the overlap between TC natural orbitals ', accu_d
|
||||
print *, ' L1 norm of extra diagonal elements of overlap matrix ', accu_nd
|
||||
|
||||
deallocate(dm_tmp, fock_diag)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, fock_diag_sorted_r_natorb, (mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, fock_diag_sorted_l_natorb, (mo_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, fock_diag_sorted_v_natorb, (mo_num)]
|
||||
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
integer, allocatable :: iorder(:)
|
||||
double precision, allocatable :: fock_diag(:)
|
||||
|
||||
print *, ' Diagonal elements of the Fock matrix before '
|
||||
|
||||
do i = 1, mo_num
|
||||
write(*,*) i, Fock_matrix_tc_mo_tot(i,i)
|
||||
enddo
|
||||
|
||||
allocate(fock_diag(mo_num))
|
||||
fock_diag = 0.d0
|
||||
do i = 1, mo_num
|
||||
fock_diag(i) = 0.d0
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
fock_diag(i) += natorb_tc_leigvec_mo(k,i) * Fock_matrix_tc_mo_tot(k,j) * natorb_tc_reigvec_mo(j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
allocate(iorder(mo_num))
|
||||
do i = 1, mo_num
|
||||
iorder(i) = i
|
||||
enddo
|
||||
call dsort(fock_diag, iorder, mo_num)
|
||||
|
||||
print *, ' Diagonal elements of the Fock matrix after '
|
||||
do i = 1, mo_num
|
||||
write(*,*) i, fock_diag(i)
|
||||
enddo
|
||||
deallocate(fock_diag)
|
||||
|
||||
do i = 1, mo_num
|
||||
fock_diag_sorted_v_natorb(i) = natorb_tc_eigval(iorder(i))
|
||||
do j = 1, mo_num
|
||||
fock_diag_sorted_r_natorb(j,i) = natorb_tc_reigvec_mo(j,iorder(i))
|
||||
fock_diag_sorted_l_natorb(j,i) = natorb_tc_leigvec_mo(j,iorder(i))
|
||||
enddo
|
||||
enddo
|
||||
deallocate(iorder)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, natorb_tc_reigvec_ao, (ao_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, natorb_tc_leigvec_ao, (ao_num, mo_num)]
|
||||
&BEGIN_PROVIDER [ double precision, overlap_natorb_tc_eigvec_ao, (mo_num, mo_num) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! EIGENVECTORS OF FOCK MATRIX ON THE AO BASIS and their OVERLAP
|
||||
!
|
||||
! THE OVERLAP SHOULD BE THE SAME AS overlap_natorb_tc_eigvec_mo
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, q, p
|
||||
double precision :: accu, accu_d
|
||||
double precision, allocatable :: tmp(:,:)
|
||||
|
||||
|
||||
! ! MO_R x R
|
||||
call dgemm( 'N', 'N', ao_num, mo_num, mo_num, 1.d0 &
|
||||
, mo_r_coef, size(mo_r_coef, 1) &
|
||||
, fock_diag_sorted_r_natorb, size(fock_diag_sorted_r_natorb, 1) &
|
||||
, 0.d0, natorb_tc_reigvec_ao, size(natorb_tc_reigvec_ao, 1) )
|
||||
!
|
||||
! MO_L x L
|
||||
call dgemm( 'N', 'N', ao_num, mo_num, mo_num, 1.d0 &
|
||||
, mo_l_coef, size(mo_l_coef, 1) &
|
||||
, fock_diag_sorted_l_natorb, size(fock_diag_sorted_l_natorb, 1) &
|
||||
, 0.d0, natorb_tc_leigvec_ao, size(natorb_tc_leigvec_ao, 1) )
|
||||
|
||||
|
||||
allocate( tmp(mo_num,ao_num) )
|
||||
|
||||
! tmp <-- L.T x S_ao
|
||||
call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
|
||||
, natorb_tc_leigvec_ao, size(natorb_tc_leigvec_ao, 1), ao_overlap, size(ao_overlap, 1) &
|
||||
, 0.d0, tmp, size(tmp, 1) )
|
||||
|
||||
! S <-- tmp x R
|
||||
call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
|
||||
, tmp, size(tmp, 1), natorb_tc_reigvec_ao, size(natorb_tc_reigvec_ao, 1) &
|
||||
, 0.d0, overlap_natorb_tc_eigvec_ao, size(overlap_natorb_tc_eigvec_ao, 1) )
|
||||
|
||||
deallocate( tmp )
|
||||
|
||||
! ---
|
||||
double precision :: norm
|
||||
do i = 1, mo_num
|
||||
norm = 1.d0/dsqrt(dabs(overlap_natorb_tc_eigvec_ao(i,i)))
|
||||
do j = 1, mo_num
|
||||
natorb_tc_reigvec_ao(j,i) *= norm
|
||||
natorb_tc_leigvec_ao(j,i) *= norm
|
||||
enddo
|
||||
enddo
|
||||
|
||||
allocate( tmp(mo_num,ao_num) )
|
||||
|
||||
! tmp <-- L.T x S_ao
|
||||
call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
|
||||
, natorb_tc_leigvec_ao, size(natorb_tc_leigvec_ao, 1), ao_overlap, size(ao_overlap, 1) &
|
||||
, 0.d0, tmp, size(tmp, 1) )
|
||||
|
||||
! S <-- tmp x R
|
||||
call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
|
||||
, tmp, size(tmp, 1), natorb_tc_reigvec_ao, size(natorb_tc_reigvec_ao, 1) &
|
||||
, 0.d0, overlap_natorb_tc_eigvec_ao, size(overlap_natorb_tc_eigvec_ao, 1) )
|
||||
|
||||
|
||||
|
||||
deallocate( tmp )
|
||||
|
||||
accu_d = 0.d0
|
||||
accu = 0.d0
|
||||
do i = 1, mo_num
|
||||
accu_d += overlap_natorb_tc_eigvec_ao(i,i)
|
||||
do j = 1, mo_num
|
||||
if(i==j)cycle
|
||||
accu += dabs(overlap_natorb_tc_eigvec_ao(j,i))
|
||||
enddo
|
||||
enddo
|
||||
print*,'Trace of the overlap_natorb_tc_eigvec_ao = ',accu_d
|
||||
print*,'mo_num = ',mo_num
|
||||
print*,'L1 norm of extra diagonal elements of overlap matrix ',accu
|
||||
accu = accu / dble(mo_num**2)
|
||||
|
||||
END_PROVIDER
|
||||
|
80
src/tc_bi_ortho/tc_prop.irp.f
Normal file
80
src/tc_bi_ortho/tc_prop.irp.f
Normal file
@ -0,0 +1,80 @@
|
||||
|
||||
BEGIN_PROVIDER [ double precision, tc_transition_matrix, (mo_num, mo_num,N_states,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! tc_transition_matrix(p,h,istate,jstate) = <Chi_istate| a^\dagger_p a_h |Phi_jstate>
|
||||
!
|
||||
! where <Chi_istate| and |Phi_jstate> are the left/right eigenvectors on a bi-ortho basis
|
||||
END_DOC
|
||||
integer :: i,j,istate,jstate,m,n,p,h
|
||||
double precision :: phase
|
||||
integer, allocatable :: occ(:,:)
|
||||
integer :: n_occ_ab(2),degree,exc(0:2,2,2)
|
||||
allocate(occ(N_int*bit_kind_size,2))
|
||||
tc_transition_matrix = 0.d0
|
||||
do istate = 1, N_states
|
||||
do jstate = 1, N_states
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
|
||||
if(degree.gt.1)then
|
||||
cycle
|
||||
else if (degree == 0)then
|
||||
call bitstring_to_list_ab(psi_det(1,1,i), occ, n_occ_ab, N_int)
|
||||
do p = 1, n_occ_ab(1) ! browsing the alpha electrons
|
||||
m = occ(p,1)
|
||||
tc_transition_matrix(m,m,istate,jstate)+= psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
|
||||
enddo
|
||||
do p = 1, n_occ_ab(2) ! browsing the beta electrons
|
||||
m = occ(p,1)
|
||||
tc_transition_matrix(m,m,istate,jstate)+= psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
|
||||
enddo
|
||||
else
|
||||
call get_single_excitation(psi_det(1,1,j),psi_det(1,1,i),exc,phase,N_int)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Single alpha
|
||||
h = exc(1,1,1) ! hole in psi_det(1,1,j)
|
||||
p = exc(1,2,1) ! particle in psi_det(1,1,j)
|
||||
else
|
||||
! Single beta
|
||||
h = exc(1,1,2) ! hole in psi_det(1,1,j)
|
||||
p = exc(1,2,2) ! particle in psi_det(1,1,j)
|
||||
endif
|
||||
tc_transition_matrix(p,h,istate,jstate)+= phase * psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, tc_bi_ortho_dipole, (3,N_states)]
|
||||
implicit none
|
||||
integer :: i,j,istate,m
|
||||
double precision :: nuclei_part(3)
|
||||
tc_bi_ortho_dipole = 0.d0
|
||||
do istate = 1, N_states
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
tc_bi_ortho_dipole(1,istate) += -(tc_transition_matrix(j,i,istate,istate)) * mo_bi_orth_bipole_x(j,i)
|
||||
tc_bi_ortho_dipole(2,istate) += -(tc_transition_matrix(j,i,istate,istate)) * mo_bi_orth_bipole_y(j,i)
|
||||
tc_bi_ortho_dipole(3,istate) += -(tc_transition_matrix(j,i,istate,istate)) * mo_bi_orth_bipole_z(j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
nuclei_part = 0.d0
|
||||
do m = 1, 3
|
||||
do i = 1,nucl_num
|
||||
nuclei_part(m) += nucl_charge(i) * nucl_coord(i,m)
|
||||
enddo
|
||||
enddo
|
||||
!
|
||||
do istate = 1, N_states
|
||||
do m = 1, 3
|
||||
tc_bi_ortho_dipole(m,istate) += nuclei_part(m)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
70
src/tc_bi_ortho/tc_som.irp.f
Normal file
70
src/tc_bi_ortho/tc_som.irp.f
Normal file
@ -0,0 +1,70 @@
|
||||
! ---
|
||||
|
||||
program tc_som
|
||||
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
print *, ' starting ...'
|
||||
print *, ' do not forget to do tc-scf first'
|
||||
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
! my_n_pt_r_grid = 10 ! small grid for quick debug
|
||||
! my_n_pt_a_grid = 26 ! small grid for quick debug
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
PROVIDE mu_erf
|
||||
print *, ' mu = ', mu_erf
|
||||
PROVIDE j1b_type
|
||||
print *, ' j1b_type = ', j1b_type
|
||||
print *, j1b_pen
|
||||
|
||||
read_wf = .true.
|
||||
touch read_wf
|
||||
|
||||
call main()
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine main()
|
||||
|
||||
implicit none
|
||||
integer :: i, i_HF, degree
|
||||
double precision :: hmono_1, htwoe_1, hthree_1, htot_1
|
||||
double precision :: hmono_2, htwoe_2, hthree_2, htot_2
|
||||
double precision :: U_SOM
|
||||
|
||||
PROVIDE N_int N_det
|
||||
|
||||
do i = 1, N_det
|
||||
call get_excitation_degree(HF_bitmask, psi_det(1,1,i), degree, N_int)
|
||||
if(degree == 0) then
|
||||
i_HF = i
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
print *, ' HF determinants:', i_HF
|
||||
print *, ' N_det :', N_det
|
||||
|
||||
U_SOM = 0.d0
|
||||
do i = 1, N_det
|
||||
if(i == i_HF) cycle
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i_HF), psi_det(1,1,i), N_int, hmono_1, htwoe_1, hthree_1, htot_1)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,i), psi_det(1,1,i_HF), N_int, hmono_2, htwoe_2, hthree_2, htot_2)
|
||||
U_SOM += htot_1 * htot_2
|
||||
enddo
|
||||
U_SOM = 0.5d0 * U_SOM
|
||||
print *, ' U_SOM = ', U_SOM
|
||||
|
||||
return
|
||||
end subroutine main
|
||||
|
||||
! ---
|
||||
|
51
src/tc_bi_ortho/test_natorb.irp.f
Normal file
51
src/tc_bi_ortho/test_natorb.irp.f
Normal file
@ -0,0 +1,51 @@
|
||||
program test_natorb
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Reads psi_det in the EZFIO folder and prints out the left- and right-eigenvectors together with the energy. Saves the left-right wave functions at the end.
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
call routine
|
||||
! call test
|
||||
|
||||
end
|
||||
|
||||
subroutine routine
|
||||
implicit none
|
||||
double precision, allocatable :: fock_diag(:),eigval(:),leigvec(:,:),reigvec(:,:),mat_ref(:,:)
|
||||
allocate(eigval(mo_num),leigvec(mo_num,mo_num),reigvec(mo_num,mo_num),fock_diag(mo_num),mat_ref(mo_num, mo_num))
|
||||
double precision, allocatable :: eigval_ref(:),leigvec_ref(:,:),reigvec_ref(:,:)
|
||||
allocate(eigval_ref(mo_num),leigvec_ref(mo_num,mo_num),reigvec_ref(mo_num,mo_num))
|
||||
|
||||
double precision :: thr_deg
|
||||
integer :: i,n_real,j
|
||||
print*,'fock_matrix'
|
||||
do i = 1, mo_num
|
||||
fock_diag(i) = Fock_matrix_mo(i,i)
|
||||
print*,i,fock_diag(i)
|
||||
enddo
|
||||
thr_deg = 1.d-6
|
||||
mat_ref = -one_e_dm_mo
|
||||
print*,'diagonalization by block'
|
||||
call diag_mat_per_fock_degen(fock_diag,mat_ref,mo_num,thr_deg,leigvec,reigvec,eigval)
|
||||
call non_hrmt_bieig( mo_num, mat_ref&
|
||||
, leigvec_ref, reigvec_ref&
|
||||
, n_real, eigval_ref)
|
||||
print*,'TEST ***********************************'
|
||||
double precision :: accu_l, accu_r
|
||||
do i = 1, mo_num
|
||||
accu_l = 0.d0
|
||||
accu_r = 0.d0
|
||||
do j = 1, mo_num
|
||||
accu_r += reigvec_ref(j,i) * reigvec(j,i)
|
||||
accu_l += leigvec_ref(j,i) * leigvec(j,i)
|
||||
enddo
|
||||
print*,i
|
||||
write(*,'(I3,X,100(F16.10,X))')i,eigval(i),eigval_ref(i),accu_l,accu_r
|
||||
enddo
|
||||
end
|
131
src/tc_bi_ortho/test_normal_order.irp.f
Normal file
131
src/tc_bi_ortho/test_normal_order.irp.f
Normal file
@ -0,0 +1,131 @@
|
||||
program test_normal_order
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
call provide_all_three_ints_bi_ortho
|
||||
call test
|
||||
end
|
||||
|
||||
subroutine test
|
||||
implicit none
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
integer :: h1,h2,p1,p2,s1,s2,i_ok,degree,Ne(2)
|
||||
integer :: exc(0:2,2,2)
|
||||
integer(bit_kind), allocatable :: det_i(:,:)
|
||||
double precision :: hmono,htwoe,hthree,htilde_ij,accu,phase,normal
|
||||
integer, allocatable :: occ(:,:)
|
||||
allocate( occ(N_int*bit_kind_size,2) )
|
||||
call bitstring_to_list_ab(ref_bitmask, occ, Ne, N_int)
|
||||
allocate(det_i(N_int,2))
|
||||
s1 = 1
|
||||
s2 = 2
|
||||
accu = 0.d0
|
||||
do h1 = 1, elec_beta_num
|
||||
do p1 = elec_alpha_num+1, mo_num
|
||||
do h2 = 1, elec_beta_num
|
||||
do p2 = elec_beta_num+1, mo_num
|
||||
det_i = ref_bitmask
|
||||
call do_single_excitation(det_i,h1,p1,s1,i_ok)
|
||||
call do_single_excitation(det_i,h2,p2,s2,i_ok)
|
||||
call htilde_mu_mat_bi_ortho(det_i,HF_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
|
||||
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
|
||||
hthree *= phase
|
||||
! !normal = normal_two_body_bi_orth_ab(p2,h2,p1,h1)
|
||||
call three_comp_two_e_elem(det_i,h1,h2,p1,p2,s1,s2,normal)
|
||||
! normal = eff_2_e_from_3_e_ab(p2,p1,h2,h1)
|
||||
accu += dabs(hthree-normal)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu opposite spin = ',accu
|
||||
stop
|
||||
|
||||
! p2=6
|
||||
! p1=5
|
||||
! h2=2
|
||||
! h1=1
|
||||
|
||||
s1 = 1
|
||||
s2 = 1
|
||||
accu = 0.d0
|
||||
do h1 = 1, elec_alpha_num
|
||||
do p1 = elec_alpha_num+1, mo_num
|
||||
do p2 = p1+1, mo_num
|
||||
do h2 = h1+1, elec_alpha_num
|
||||
det_i = ref_bitmask
|
||||
call do_single_excitation(det_i,h1,p1,s1,i_ok)
|
||||
if(i_ok.ne.1)cycle
|
||||
call do_single_excitation(det_i,h2,p2,s2,i_ok)
|
||||
if(i_ok.ne.1)cycle
|
||||
call htilde_mu_mat_bi_ortho(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
|
||||
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
|
||||
integer :: hh1, pp1, hh2, pp2, ss1, ss2
|
||||
call decode_exc(exc, 2, hh1, pp1, hh2, pp2, ss1, ss2)
|
||||
hthree *= phase
|
||||
! normal = normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1)
|
||||
normal = eff_2_e_from_3_e_aa(p2,p1,h2,h1)
|
||||
if(dabs(hthree).lt.1.d-10)cycle
|
||||
if(dabs(hthree-normal).gt.1.d-10)then
|
||||
print*,pp2,pp1,hh2,hh1
|
||||
print*,p2,p1,h2,h1
|
||||
print*,hthree,normal,dabs(hthree-normal)
|
||||
stop
|
||||
endif
|
||||
! print*,hthree,normal,dabs(hthree-normal)
|
||||
accu += dabs(hthree-normal)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu same spin alpha = ',accu
|
||||
|
||||
|
||||
s1 = 2
|
||||
s2 = 2
|
||||
accu = 0.d0
|
||||
do h1 = 1, elec_beta_num
|
||||
do p1 = elec_beta_num+1, mo_num
|
||||
do p2 = p1+1, mo_num
|
||||
do h2 = h1+1, elec_beta_num
|
||||
det_i = ref_bitmask
|
||||
call do_single_excitation(det_i,h1,p1,s1,i_ok)
|
||||
if(i_ok.ne.1)cycle
|
||||
call do_single_excitation(det_i,h2,p2,s2,i_ok)
|
||||
if(i_ok.ne.1)cycle
|
||||
call htilde_mu_mat_bi_ortho(det_i,ref_bitmask,N_int,hmono,htwoe,hthree,htilde_ij)
|
||||
call get_excitation_degree(ref_bitmask,det_i,degree,N_int)
|
||||
call get_excitation(ref_bitmask,det_i,exc,degree,phase,N_int)
|
||||
call decode_exc(exc, 2, hh1, pp1, hh2, pp2, ss1, ss2)
|
||||
hthree *= phase
|
||||
! normal = normal_two_body_bi_orth_aa_bb(p2,h2,p1,h1)
|
||||
normal = eff_2_e_from_3_e_bb(p2,p1,h2,h1)
|
||||
if(dabs(hthree).lt.1.d-10)cycle
|
||||
if(dabs(hthree-normal).gt.1.d-10)then
|
||||
print*,pp2,pp1,hh2,hh1
|
||||
print*,p2,p1,h2,h1
|
||||
print*,hthree,normal,dabs(hthree-normal)
|
||||
stop
|
||||
endif
|
||||
! print*,hthree,normal,dabs(hthree-normal)
|
||||
accu += dabs(hthree-normal)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu same spin beta = ',accu
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
254
src/tc_bi_ortho/test_tc_bi_ortho.irp.f
Normal file
254
src/tc_bi_ortho/test_tc_bi_ortho.irp.f
Normal file
@ -0,0 +1,254 @@
|
||||
program tc_bi_ortho
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
call test_h_u0
|
||||
! call test_slater_tc_opt
|
||||
! call timing_tot
|
||||
! call timing_diag
|
||||
! call timing_single
|
||||
! call timing_double
|
||||
end
|
||||
|
||||
subroutine test_h_u0
|
||||
implicit none
|
||||
double precision, allocatable :: v_0_ref(:),v_0_new(:),u_0(:), v_0_ref_dagger(:)
|
||||
double precision :: accu
|
||||
logical :: do_right
|
||||
integer :: i
|
||||
allocate(v_0_new(N_det),v_0_ref(N_det),u_0(N_det),v_0_ref_dagger(N_det))
|
||||
do_right = .True.
|
||||
do i = 1, N_det
|
||||
u_0(i) = psi_r_coef_bi_ortho(i,1)
|
||||
enddo
|
||||
call H_tc_u_0_nstates_openmp(v_0_new,u_0,N_states,N_det, do_right)
|
||||
call htc_bi_ortho_calc_tdav (v_0_ref,u_0,N_states,N_det)
|
||||
print*,'difference right '
|
||||
accu = 0.d0
|
||||
do i = 1, N_det
|
||||
print*,dabs(v_0_new(i) - v_0_ref(i)),v_0_new(i) , v_0_ref(i)
|
||||
accu += dabs(v_0_new(i) - v_0_ref(i))
|
||||
enddo
|
||||
print*,'accu = ',accu
|
||||
do_right = .False.
|
||||
v_0_new = 0.d0
|
||||
call H_tc_u_0_nstates_openmp(v_0_new,u_0,N_states,N_det, do_right)
|
||||
call htcdag_bi_ortho_calc_tdav(v_0_ref_dagger,u_0,N_states,N_det, do_right)
|
||||
print*,'difference left'
|
||||
accu = 0.d0
|
||||
do i = 1, N_det
|
||||
print*,dabs(v_0_new(i) - v_0_ref_dagger(i)),v_0_new(i) , v_0_ref_dagger(i)
|
||||
accu += dabs(v_0_new(i) - v_0_ref_dagger(i))
|
||||
enddo
|
||||
print*,'accu = ',accu
|
||||
end
|
||||
|
||||
subroutine test_slater_tc_opt
|
||||
implicit none
|
||||
integer :: i,j,degree
|
||||
double precision :: hmono, htwoe, htot, hthree
|
||||
double precision :: hnewmono, hnewtwoe, hnewthree, hnewtot
|
||||
double precision :: accu_d ,i_count, accu
|
||||
accu = 0.d0
|
||||
accu_d = 0.d0
|
||||
i_count = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1,N_det
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hnewmono, hnewtwoe, hnewthree, hnewtot)
|
||||
if(dabs(htot).gt.1.d-15)then
|
||||
i_count += 1.D0
|
||||
accu += dabs(htot-hnewtot)
|
||||
if(dabs(htot-hnewtot).gt.1.d-8.or.dabs(htot-hnewtot).gt.dabs(htot))then
|
||||
call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
|
||||
print*,j,i,degree
|
||||
call debug_det(psi_det(1,1,i),N_int)
|
||||
call debug_det(psi_det(1,1,j),N_int)
|
||||
print*,htot,hnewtot,dabs(htot-hnewtot)
|
||||
print*,hthree,hnewthree,dabs(hthree-hnewthree)
|
||||
stop
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu = ',accu/i_count
|
||||
|
||||
end
|
||||
|
||||
subroutine timing_tot
|
||||
implicit none
|
||||
integer :: i,j
|
||||
double precision :: wall0, wall1
|
||||
double precision, allocatable :: mat_old(:,:),mat_new(:,:)
|
||||
double precision :: hmono, htwoe, hthree, htot, i_count
|
||||
integer :: degree
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,2), N_int, hmono, htwoe, hthree, htot)
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,2), N_int, hmono, htwoe, hthree, htot)
|
||||
call wall_time(wall0)
|
||||
i_count = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
! call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
|
||||
i_count += 1.d0
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'i_count = ',i_count
|
||||
print*,'time for old hij for total = ',wall1 - wall0
|
||||
|
||||
call wall_time(wall0)
|
||||
i_count = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
! call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
|
||||
i_count += 1.d0
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'i_count = ',i_count
|
||||
print*,'time for new hij for total = ',wall1 - wall0
|
||||
call i_H_j(psi_det(1,1,1), psi_det(1,1,2),N_int,htot)
|
||||
call wall_time(wall0)
|
||||
i_count = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
call i_H_j(psi_det(1,1,j), psi_det(1,1,i),N_int,htot)
|
||||
i_count += 1.d0
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'i_count = ',i_count
|
||||
print*,'time for new hij STANDARD = ',wall1 - wall0
|
||||
|
||||
end
|
||||
|
||||
subroutine timing_diag
|
||||
implicit none
|
||||
integer :: i,j
|
||||
double precision :: wall0, wall1
|
||||
double precision, allocatable :: mat_old(:,:),mat_new(:,:)
|
||||
double precision :: hmono, htwoe, hthree, htot, i_count
|
||||
integer :: degree
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,1), N_int, hmono, htwoe, hthree, htot)
|
||||
call wall_time(wall0)
|
||||
i_count = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = i,i
|
||||
i_count += 1.d0
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'i_count = ',i_count
|
||||
print*,'time for old hij for diagonal= ',wall1 - wall0
|
||||
|
||||
call wall_time(wall0)
|
||||
i_count = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = i,i
|
||||
i_count += 1.d0
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'i_count = ',i_count
|
||||
print*,'time for new hij for diagonal= ',wall1 - wall0
|
||||
|
||||
end
|
||||
|
||||
subroutine timing_single
|
||||
implicit none
|
||||
integer :: i,j
|
||||
double precision :: wall0, wall1,accu
|
||||
double precision, allocatable :: mat_old(:,:),mat_new(:,:)
|
||||
double precision :: hmono, htwoe, hthree, htot, i_count
|
||||
integer :: degree
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,1), N_int, hmono, htwoe, hthree, htot)
|
||||
i_count = 0.d0
|
||||
accu = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
|
||||
if(degree.ne.1)cycle
|
||||
i_count += 1.d0
|
||||
call wall_time(wall0)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call wall_time(wall1)
|
||||
accu += wall1 - wall0
|
||||
enddo
|
||||
enddo
|
||||
print*,'i_count = ',i_count
|
||||
print*,'time for old hij for singles = ',accu
|
||||
|
||||
i_count = 0.d0
|
||||
accu = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
|
||||
if(degree.ne.1)cycle
|
||||
i_count += 1.d0
|
||||
call wall_time(wall0)
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call wall_time(wall1)
|
||||
accu += wall1 - wall0
|
||||
enddo
|
||||
enddo
|
||||
print*,'i_count = ',i_count
|
||||
print*,'time for new hij for singles = ',accu
|
||||
|
||||
end
|
||||
|
||||
subroutine timing_double
|
||||
implicit none
|
||||
integer :: i,j
|
||||
double precision :: wall0, wall1,accu
|
||||
double precision, allocatable :: mat_old(:,:),mat_new(:,:)
|
||||
double precision :: hmono, htwoe, hthree, htot, i_count
|
||||
integer :: degree
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,1), N_int, hmono, htwoe, hthree, htot)
|
||||
i_count = 0.d0
|
||||
accu = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
|
||||
if(degree.ne.2)cycle
|
||||
i_count += 1.d0
|
||||
call wall_time(wall0)
|
||||
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call wall_time(wall1)
|
||||
accu += wall1 - wall0
|
||||
enddo
|
||||
enddo
|
||||
print*,'i_count = ',i_count
|
||||
print*,'time for old hij for doubles = ',accu
|
||||
|
||||
i_count = 0.d0
|
||||
accu = 0.d0
|
||||
do i = 1, N_det
|
||||
do j = 1, N_det
|
||||
call get_excitation_degree(psi_det(1,1,j), psi_det(1,1,i),degree,N_int)
|
||||
if(degree.ne.2)cycle
|
||||
i_count += 1.d0
|
||||
call wall_time(wall0)
|
||||
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
|
||||
call wall_time(wall1)
|
||||
accu += wall1 - wall0
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(wall1)
|
||||
print*,'i_count = ',i_count
|
||||
print*,'time for new hij for doubles = ',accu
|
||||
|
||||
end
|
||||
|
194
src/tc_bi_ortho/test_tc_fock.irp.f
Normal file
194
src/tc_bi_ortho/test_tc_fock.irp.f
Normal file
@ -0,0 +1,194 @@
|
||||
program test_tc_fock
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
|
||||
!call routine_1
|
||||
!call routine_2
|
||||
! call routine_3()
|
||||
|
||||
! call test_3e
|
||||
call routine_tot
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine test_3e
|
||||
implicit none
|
||||
double precision :: integral_aaa,integral_aab,integral_abb,integral_bbb,accu
|
||||
double precision :: hmono, htwoe, hthree, htot
|
||||
call htilde_mu_mat_bi_ortho(ref_bitmask, ref_bitmask, N_int, hmono, htwoe, hthree, htot)
|
||||
! call diag_htilde_three_body_ints_bi_ort(N_int, ref_bitmask, hthree)
|
||||
print*,'hmono = ',hmono
|
||||
print*,'htwoe = ',htwoe
|
||||
print*,'hthree= ',hthree
|
||||
print*,'htot = ',htot
|
||||
print*,''
|
||||
print*,''
|
||||
print*,'TC_one= ',tc_hf_one_e_energy
|
||||
print*,'TC_two= ',TC_HF_two_e_energy
|
||||
print*,'TC_3e = ',diag_three_elem_hf
|
||||
print*,'TC_tot= ',TC_HF_energy
|
||||
print*,''
|
||||
print*,''
|
||||
call give_aaa_contrib(integral_aaa)
|
||||
print*,'integral_aaa = ',integral_aaa
|
||||
call give_aab_contrib(integral_aab)
|
||||
print*,'integral_aab = ',integral_aab
|
||||
call give_abb_contrib(integral_abb)
|
||||
print*,'integral_abb = ',integral_abb
|
||||
call give_bbb_contrib(integral_bbb)
|
||||
print*,'integral_bbb = ',integral_bbb
|
||||
accu = integral_aaa + integral_aab + integral_abb + integral_bbb
|
||||
print*,'accu = ',accu
|
||||
print*,'delta = ',hthree - accu
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_3()
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
integer :: i, a, i_ok, s1
|
||||
double precision :: hmono, htwoe, hthree, htilde_ij
|
||||
double precision :: err_ai, err_tot, ref, new
|
||||
integer(bit_kind), allocatable :: det_i(:,:)
|
||||
|
||||
allocate(det_i(N_int,2))
|
||||
|
||||
err_tot = 0.d0
|
||||
|
||||
do s1 = 1, 2
|
||||
|
||||
det_i = ref_bitmask
|
||||
call debug_det(det_i, N_int)
|
||||
print*, ' HF det'
|
||||
call debug_det(det_i, N_int)
|
||||
|
||||
do i = 1, elec_num_tab(s1)
|
||||
do a = elec_num_tab(s1)+1, mo_num ! virtual
|
||||
|
||||
|
||||
det_i = ref_bitmask
|
||||
call do_single_excitation(det_i, i, a, s1, i_ok)
|
||||
if(i_ok == -1) then
|
||||
print*, 'PB !!'
|
||||
print*, i, a
|
||||
stop
|
||||
endif
|
||||
print*, ' excited det'
|
||||
call debug_det(det_i, N_int)
|
||||
|
||||
call htilde_mu_mat_bi_ortho(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
|
||||
if(dabs(hthree).lt.1.d-10)cycle
|
||||
ref = hthree
|
||||
if(s1 == 1)then
|
||||
new = fock_a_tot_3e_bi_orth(a,i)
|
||||
else if(s1 == 2)then
|
||||
new = fock_b_tot_3e_bi_orth(a,i)
|
||||
endif
|
||||
err_ai = dabs(dabs(ref) - dabs(new))
|
||||
if(err_ai .gt. 1d-7) then
|
||||
print*,'s1 = ',s1
|
||||
print*, ' warning on', i, a
|
||||
print*, ref,new,err_ai
|
||||
endif
|
||||
print*, ref,new,err_ai
|
||||
err_tot += err_ai
|
||||
|
||||
write(22, *) htilde_ij
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print *, ' err_tot = ', err_tot
|
||||
|
||||
deallocate(det_i)
|
||||
|
||||
end subroutine routine_3
|
||||
|
||||
! ---
|
||||
subroutine routine_tot()
|
||||
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
|
||||
implicit none
|
||||
integer :: i, a, i_ok, s1,other_spin(2)
|
||||
double precision :: hmono, htwoe, hthree, htilde_ij
|
||||
double precision :: err_ai, err_tot, ref, new
|
||||
integer(bit_kind), allocatable :: det_i(:,:)
|
||||
|
||||
allocate(det_i(N_int,2))
|
||||
other_spin(1) = 2
|
||||
other_spin(2) = 1
|
||||
|
||||
err_tot = 0.d0
|
||||
|
||||
! do s1 = 1, 2
|
||||
s1 = 2
|
||||
det_i = ref_bitmask
|
||||
call debug_det(det_i, N_int)
|
||||
print*, ' HF det'
|
||||
call debug_det(det_i, N_int)
|
||||
|
||||
! do i = 1, elec_num_tab(s1)
|
||||
! do a = elec_num_tab(s1)+1, mo_num ! virtual
|
||||
do i = 1, elec_beta_num
|
||||
do a = elec_beta_num+1, elec_alpha_num! virtual
|
||||
! do i = elec_beta_num+1, elec_alpha_num
|
||||
! do a = elec_alpha_num+1, mo_num! virtual
|
||||
print*,i,a
|
||||
|
||||
det_i = ref_bitmask
|
||||
call do_single_excitation(det_i, i, a, s1, i_ok)
|
||||
if(i_ok == -1) then
|
||||
print*, 'PB !!'
|
||||
print*, i, a
|
||||
stop
|
||||
endif
|
||||
|
||||
call htilde_mu_mat_bi_ortho(det_i, ref_bitmask, N_int, hmono, htwoe, hthree, htilde_ij)
|
||||
print*,htilde_ij
|
||||
if(dabs(htilde_ij).lt.1.d-10)cycle
|
||||
print*, ' excited det'
|
||||
call debug_det(det_i, N_int)
|
||||
|
||||
if(s1 == 1)then
|
||||
new = Fock_matrix_tc_mo_alpha(a,i)
|
||||
else
|
||||
new = Fock_matrix_tc_mo_beta(a,i)
|
||||
endif
|
||||
ref = htilde_ij
|
||||
! if(s1 == 1)then
|
||||
! new = fock_a_tot_3e_bi_orth(a,i)
|
||||
! else if(s1 == 2)then
|
||||
! new = fock_b_tot_3e_bi_orth(a,i)
|
||||
! endif
|
||||
err_ai = dabs(dabs(ref) - dabs(new))
|
||||
if(err_ai .gt. 1d-7) then
|
||||
print*,'s1 = ',s1
|
||||
print*, ' warning on', i, a
|
||||
print*, ref,new,err_ai
|
||||
endif
|
||||
print*, ref,new,err_ai
|
||||
err_tot += err_ai
|
||||
|
||||
write(22, *) htilde_ij
|
||||
enddo
|
||||
enddo
|
||||
! enddo
|
||||
|
||||
print *, ' err_tot = ', err_tot
|
||||
|
||||
deallocate(det_i)
|
||||
|
||||
end subroutine routine_3
|
770
src/tc_bi_ortho/u0_h_u0.irp.f
Normal file
770
src/tc_bi_ortho/u0_h_u0.irp.f
Normal file
@ -0,0 +1,770 @@
|
||||
subroutine u_0_H_tc_u_0(e_0,u_0,n,keys_tmp,Nint,N_st,sze, do_right)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes $E_0 = \frac{\langle u_0 | H_TC | u_0 \rangle}{\langle u_0 | u_0 \rangle}$
|
||||
!
|
||||
! n : number of determinants
|
||||
!
|
||||
! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi>
|
||||
END_DOC
|
||||
integer, intent(in) :: n,Nint, N_st, sze
|
||||
logical, intent(in) :: do_right
|
||||
double precision, intent(out) :: e_0(N_st)
|
||||
double precision, intent(inout) :: u_0(sze,N_st)
|
||||
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
|
||||
|
||||
double precision, allocatable :: v_0(:,:), u_1(:,:)
|
||||
double precision :: u_dot_u,u_dot_v,diag_H_mat_elem
|
||||
integer :: i,j, istate
|
||||
|
||||
allocate (v_0(n,N_st),u_1(n,N_st))
|
||||
u_1(:,:) = 0.d0
|
||||
u_1(1:n,1:N_st) = u_0(1:n,1:N_st)
|
||||
call H_tc_u_0_nstates_openmp(v_0,u_1,N_st,n, do_right)
|
||||
u_0(1:n,1:N_st) = u_1(1:n,1:N_st)
|
||||
deallocate(u_1)
|
||||
double precision :: norm
|
||||
!$OMP PARALLEL DO PRIVATE(i,norm) DEFAULT(SHARED)
|
||||
do i=1,N_st
|
||||
norm = u_dot_u(u_0(1,i),n)
|
||||
if (norm /= 0.d0) then
|
||||
e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n) / dsqrt(norm)
|
||||
else
|
||||
e_0(i) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
deallocate (v_0)
|
||||
end
|
||||
|
||||
|
||||
subroutine H_tc_u_0_opt(v_0,u_0,N_st,sze)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes $v_0 = H | u_0\rangle$.
|
||||
!
|
||||
! Assumes that the determinants are in psi_det
|
||||
!
|
||||
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st)
|
||||
logical :: do_right
|
||||
do_right = .True.
|
||||
call H_tc_u_0_nstates_openmp(v_0,u_0,N_st,sze, do_right)
|
||||
end
|
||||
|
||||
subroutine H_tc_dagger_u_0_opt(v_0,u_0,N_st,sze)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes $v_0 = H | u_0\rangle$.
|
||||
!
|
||||
! Assumes that the determinants are in psi_det
|
||||
!
|
||||
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st)
|
||||
logical :: do_right
|
||||
do_right = .False.
|
||||
call H_tc_u_0_nstates_openmp(v_0,u_0,N_st,sze, do_right)
|
||||
end
|
||||
|
||||
|
||||
subroutine H_tc_u_0_nstates_openmp(v_0,u_0,N_st,sze, do_right)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes $v_0 = H | u_0\rangle$.
|
||||
!
|
||||
! Assumes that the determinants are in psi_det
|
||||
!
|
||||
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
||||
!
|
||||
! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi>
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
double precision, intent(inout) :: v_0(sze,N_st), u_0(sze,N_st)
|
||||
logical, intent(in) :: do_right
|
||||
integer :: k
|
||||
double precision, allocatable :: u_t(:,:), v_t(:,:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
|
||||
allocate(u_t(N_st,N_det),v_t(N_st,N_det))
|
||||
provide mo_bi_ortho_tc_one_e mo_bi_ortho_tc_two_e
|
||||
provide ref_tc_energy_tot fock_op_2_e_tc_closed_shell
|
||||
provide eff_2_e_from_3_e_ab eff_2_e_from_3_e_aa eff_2_e_from_3_e_bb
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
|
||||
enddo
|
||||
v_t = 0.d0
|
||||
call dtranspose( &
|
||||
u_0, &
|
||||
size(u_0, 1), &
|
||||
u_t, &
|
||||
size(u_t, 1), &
|
||||
N_det, N_st)
|
||||
|
||||
call H_tc_u_0_nstates_openmp_work(v_t,u_t,N_st,sze,1,N_det,0,1, do_right)
|
||||
deallocate(u_t)
|
||||
|
||||
call dtranspose( &
|
||||
v_t, &
|
||||
size(v_t, 1), &
|
||||
v_0, &
|
||||
size(v_0, 1), &
|
||||
N_st, N_det)
|
||||
deallocate(v_t)
|
||||
|
||||
do k=1,N_st
|
||||
call dset_order(v_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine H_tc_u_0_nstates_openmp_work(v_t,u_t,N_st,sze,istart,iend,ishift,istep, do_right)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes $v_t = H | u_t\rangle$
|
||||
!
|
||||
! Default should be 1,N_det,0,1
|
||||
!
|
||||
! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi>
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
logical, intent(in) :: do_right
|
||||
double precision, intent(out) :: v_t(N_st,sze)
|
||||
|
||||
|
||||
PROVIDE ref_bitmask_energy N_int
|
||||
|
||||
select case (N_int)
|
||||
case (1)
|
||||
call H_tc_u_0_nstates_openmp_work_1(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right)
|
||||
case (2)
|
||||
call H_tc_u_0_nstates_openmp_work_2(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right)
|
||||
case (3)
|
||||
call H_tc_u_0_nstates_openmp_work_3(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right)
|
||||
case (4)
|
||||
call H_tc_u_0_nstates_openmp_work_4(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right)
|
||||
case default
|
||||
call H_tc_u_0_nstates_openmp_work_N_int(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right)
|
||||
end select
|
||||
end
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine H_tc_u_0_nstates_openmp_work_$N_int(v_t,u_t,N_st,sze,istart,iend,ishift,istep,do_right)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes $v_t = H | u_t \\rangle$
|
||||
!
|
||||
! Default should be 1,N_det,0,1
|
||||
!
|
||||
! if do_right == True then you compute H_TC |Psi>, else H_TC^T |Psi>
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
logical, intent(in) :: do_right
|
||||
double precision, intent(out) :: v_t(N_st,sze)
|
||||
|
||||
double precision :: hij
|
||||
integer :: i,j,k,l,kk
|
||||
integer :: k_a, k_b, l_a, l_b, m_a, m_b
|
||||
integer :: istate
|
||||
integer :: krow, kcol, krow_b, kcol_b
|
||||
integer :: lrow, lcol
|
||||
integer :: mrow, mcol
|
||||
integer(bit_kind) :: spindet($N_int)
|
||||
integer(bit_kind) :: tmp_det($N_int,2)
|
||||
integer(bit_kind) :: tmp_det2($N_int,2)
|
||||
integer(bit_kind) :: tmp_det3($N_int,2)
|
||||
integer(bit_kind), allocatable :: buffer(:,:)
|
||||
integer :: n_doubles
|
||||
integer, allocatable :: doubles(:)
|
||||
integer, allocatable :: singles_a(:)
|
||||
integer, allocatable :: singles_b(:)
|
||||
integer, allocatable :: idx(:), idx0(:)
|
||||
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
|
||||
integer*8 :: k8
|
||||
logical :: compute_singles
|
||||
integer*8 :: last_found, left, right, right_max
|
||||
double precision :: rss, mem, ratio
|
||||
double precision, allocatable :: utl(:,:)
|
||||
integer, parameter :: block_size=128
|
||||
logical :: u_is_sparse
|
||||
|
||||
! call resident_memory(rss)
|
||||
! mem = dble(singles_beta_csc_size) / 1024.d0**3
|
||||
!
|
||||
! compute_singles = (mem+rss > qp_max_mem)
|
||||
!
|
||||
! if (.not.compute_singles) then
|
||||
! provide singles_beta_csc
|
||||
! endif
|
||||
compute_singles=.True.
|
||||
|
||||
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
allocate(idx0(maxab))
|
||||
|
||||
do i=1,maxab
|
||||
idx0(i) = i
|
||||
enddo
|
||||
|
||||
! Prepare the array of all alpha single excitations
|
||||
! -------------------------------------------------
|
||||
|
||||
PROVIDE N_int nthreads_davidson
|
||||
!$OMP PARALLEL DEFAULT(SHARED) NUM_THREADS(nthreads_davidson) &
|
||||
!$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
|
||||
!$OMP psi_bilinear_matrix_columns, &
|
||||
!$OMP psi_det_alpha_unique, psi_det_beta_unique, &
|
||||
!$OMP n_det_alpha_unique, n_det_beta_unique, N_int, &
|
||||
!$OMP psi_bilinear_matrix_transp_rows, &
|
||||
!$OMP psi_bilinear_matrix_transp_columns, &
|
||||
!$OMP psi_bilinear_matrix_transp_order, N_st, &
|
||||
!$OMP psi_bilinear_matrix_order_transp_reverse, &
|
||||
!$OMP psi_bilinear_matrix_columns_loc, &
|
||||
!$OMP psi_bilinear_matrix_transp_rows_loc, &
|
||||
!$OMP istart, iend, istep, irp_here, v_t, &
|
||||
!$OMP ishift, idx0, u_t, maxab, compute_singles, &
|
||||
!$OMP singles_alpha_csc,singles_alpha_csc_idx, &
|
||||
!$OMP singles_beta_csc,singles_beta_csc_idx) &
|
||||
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, &
|
||||
!$OMP lcol, lrow, l_a, l_b, utl, kk, u_is_sparse, &
|
||||
!$OMP buffer, doubles, n_doubles, umax, &
|
||||
!$OMP tmp_det2, hij, idx, l, kcol_prev,hmono, htwoe, hthree, &
|
||||
!$OMP singles_a, n_singles_a, singles_b, ratio, &
|
||||
!$OMP n_singles_b, k8, last_found,left,right,right_max)
|
||||
|
||||
! Alpha/Beta double excitations
|
||||
! =============================
|
||||
|
||||
allocate( buffer($N_int,maxab), &
|
||||
singles_a(maxab), &
|
||||
singles_b(maxab), &
|
||||
doubles(maxab), &
|
||||
idx(maxab), utl(N_st,block_size))
|
||||
|
||||
kcol_prev=-1
|
||||
|
||||
! Check if u has multiple zeros
|
||||
kk=1 ! Avoid division by zero
|
||||
!$OMP DO
|
||||
do k=1,N_det
|
||||
umax = 0.d0
|
||||
do l=1,N_st
|
||||
umax = max(umax, dabs(u_t(l,k)))
|
||||
enddo
|
||||
if (umax < 1.d-20) then
|
||||
!$OMP ATOMIC
|
||||
kk = kk+1
|
||||
endif
|
||||
enddo
|
||||
!$OMP END DO
|
||||
u_is_sparse = N_det / kk < 20 ! 5%
|
||||
|
||||
ASSERT (iend <= N_det)
|
||||
ASSERT (istart > 0)
|
||||
ASSERT (istep > 0)
|
||||
|
||||
!$OMP DO SCHEDULE(guided,64)
|
||||
do k_a=istart+ishift,iend,istep ! Loop over all determinants (/!\ not in psidet order)
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a) ! Index of alpha part of determinant k_a
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a) ! Index of beta part of determinant k_a
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
|
||||
if (kcol /= kcol_prev) then
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
if (compute_singles) then
|
||||
call get_all_spin_singles_$N_int( &
|
||||
psi_det_beta_unique, idx0, &
|
||||
tmp_det(1,2), N_det_beta_unique, &
|
||||
singles_b, n_singles_b)
|
||||
else
|
||||
n_singles_b = 0
|
||||
!DIR$ LOOP COUNT avg(1000)
|
||||
do k8=singles_beta_csc_idx(kcol),singles_beta_csc_idx(kcol+1)-1
|
||||
n_singles_b = n_singles_b+1
|
||||
singles_b(n_singles_b) = singles_beta_csc(k8)
|
||||
enddo
|
||||
endif
|
||||
endif
|
||||
kcol_prev = kcol
|
||||
|
||||
! -> Here, tmp_det is determinant k_a
|
||||
|
||||
! Loop over singly excited beta columns
|
||||
! -------------------------------------
|
||||
|
||||
!DIR$ LOOP COUNT avg(1000)
|
||||
do i=1,n_singles_b
|
||||
lcol = singles_b(i)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
|
||||
! tmp_det2 is a single excitation of tmp_det in the beta spin
|
||||
! the alpha part is not defined yet
|
||||
|
||||
!---
|
||||
! if (compute_singles) then
|
||||
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
ASSERT (l_a <= N_det)
|
||||
! rows : | 1 2 3 4 | 1 3 4 6 | .... | 1 2 4 5 |
|
||||
! cols : | 1 1 1 1 | 2 2 2 2 | .... | 8 8 8 8 |
|
||||
! index : | 1 2 3 4 | 5 6 7 8 | .... | 58 59 60 61 |
|
||||
! ^ ^
|
||||
! | |
|
||||
! l_a N_det
|
||||
! l_a is the index in the big vector os size Ndet of the position of the first element of column lcol
|
||||
|
||||
! Below we identify all the determinants with the same beta part
|
||||
|
||||
!DIR$ UNROLL(8)
|
||||
!DIR$ LOOP COUNT avg(50000)
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ! hot spot
|
||||
|
||||
ASSERT (l_a <= N_det)
|
||||
idx(j) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
j = j-1
|
||||
|
||||
! Get all single excitations from tmp_det(1,1) to buffer(1,?)
|
||||
|
||||
call get_all_spin_singles_$N_int( &
|
||||
buffer, idx, tmp_det(1,1), j, &
|
||||
singles_a, n_singles_a )
|
||||
|
||||
! Loop over alpha singles
|
||||
! -----------------------
|
||||
|
||||
double precision :: umax
|
||||
|
||||
!DIR$ LOOP COUNT avg(1000)
|
||||
do k = 1,n_singles_a,block_size
|
||||
umax = 0.d0
|
||||
! Prefetch u_t(:,l_a)
|
||||
if (u_is_sparse) then
|
||||
do kk=0,block_size-1
|
||||
if (k+kk > n_singles_a) exit
|
||||
l_a = singles_a(k+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
umax = max(umax, dabs(utl(l,kk+1)))
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do kk=0,block_size-1
|
||||
if (k+kk > n_singles_a) exit
|
||||
l_a = singles_a(k+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
utl(:,kk+1) = u_t(:,l_a)
|
||||
enddo
|
||||
umax = 1.d0
|
||||
endif
|
||||
if (umax < 1.d-20) cycle
|
||||
|
||||
do kk=0,block_size-1
|
||||
if (k+kk > n_singles_a) exit
|
||||
l_a = singles_a(k+kk)
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
! call i_H_j( tmp_det, tmp_det2, $N_int, hij) ! double alpha-beta
|
||||
if(do_right)then
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij)
|
||||
else
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij)
|
||||
endif
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do l=1,N_st
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO SCHEDULE(guided,64)
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
|
||||
! Single and double alpha excitations
|
||||
! ===================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! ----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
ASSERT (k_b <= N_det)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,1)
|
||||
|
||||
! Loop inside the beta column to gather all the connected alphas
|
||||
lcol = psi_bilinear_matrix_columns(k_a)
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
|
||||
!DIR$ LOOP COUNT avg(200000)
|
||||
do i=1,N_det_alpha_unique
|
||||
if (l_a > N_det) exit
|
||||
lcol = psi_bilinear_matrix_columns(l_a)
|
||||
if (lcol /= kcol) exit
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) ! Hot spot
|
||||
idx(i) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_a, doubles, n_singles_a, n_doubles )
|
||||
|
||||
! Compute Hij for all alpha singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
!DIR$ LOOP COUNT avg(1000)
|
||||
do i=1,n_singles_a,block_size
|
||||
umax = 0.d0
|
||||
! Prefetch u_t(:,l_a)
|
||||
if (u_is_sparse) then
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_a) exit
|
||||
l_a = singles_a(i+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
umax = max(umax, dabs(utl(l,kk+1)))
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_a) exit
|
||||
l_a = singles_a(i+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
utl(:,kk+1) = u_t(:,l_a)
|
||||
enddo
|
||||
umax = 1.d0
|
||||
endif
|
||||
if (umax < 1.d-20) cycle
|
||||
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_a) exit
|
||||
l_a = singles_a(i+kk)
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
! call i_h_j_single_spin( tmp_det, tmp_det2, $N_int, 1, hij)
|
||||
if(do_right)then
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij)
|
||||
else
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij)
|
||||
endif
|
||||
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do l=1,N_st
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
! Compute Hij for all alpha doubles
|
||||
! ----------------------------------
|
||||
|
||||
!DIR$ LOOP COUNT avg(50000)
|
||||
do i=1,n_doubles,block_size
|
||||
umax = 0.d0
|
||||
! Prefetch u_t(:,l_a)
|
||||
if (u_is_sparse) then
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
l_a = doubles(i+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
umax = max(umax, dabs(utl(l,kk+1)))
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
l_a = doubles(i+kk)
|
||||
ASSERT (l_a <= N_det)
|
||||
utl(:,kk+1) = u_t(:,l_a)
|
||||
enddo
|
||||
umax = 1.d0
|
||||
endif
|
||||
if (umax < 1.d-20) cycle
|
||||
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
l_a = doubles(i+kk)
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:N_int,1) = psi_det_alpha_unique(1:N_int, lrow)
|
||||
! call i_H_j( tmp_det, tmp_det2, $N_int, hij)
|
||||
! call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
|
||||
if(do_right)then
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij)
|
||||
else
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij)
|
||||
endif
|
||||
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do l=1,N_st
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
! Single and double beta excitations
|
||||
! ==================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,2)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
ASSERT (k_b <= N_det)
|
||||
|
||||
! Loop inside the alpha row to gather all the connected betas
|
||||
lrow = psi_bilinear_matrix_transp_rows(k_b)
|
||||
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
|
||||
!DIR$ LOOP COUNT avg(200000)
|
||||
do i=1,N_det_beta_unique
|
||||
if (l_b > N_det) exit
|
||||
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
||||
if (lrow /= krow) exit
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
idx(i) = l_b
|
||||
l_b = l_b+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_b, doubles, n_singles_b, n_doubles )
|
||||
|
||||
! Compute Hij for all beta singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
!DIR$ LOOP COUNT avg(1000)
|
||||
do i=1,n_singles_b,block_size
|
||||
umax = 0.d0
|
||||
if (u_is_sparse) then
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_b) exit
|
||||
l_b = singles_b(i+kk)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
ASSERT (l_b <= N_det)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
umax = max(umax, dabs(utl(l,kk+1)))
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_b) exit
|
||||
l_b = singles_b(i+kk)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
ASSERT (l_b <= N_det)
|
||||
ASSERT (l_a <= N_det)
|
||||
utl(:,kk+1) = u_t(:,l_a)
|
||||
enddo
|
||||
umax = 1.d0
|
||||
endif
|
||||
if (umax < 1.d-20) cycle
|
||||
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_singles_b) exit
|
||||
l_b = singles_b(i+kk)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
|
||||
! call i_H_j_single_spin( tmp_det, tmp_det2, $N_int, 2, hij)
|
||||
if(do_right)then
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij)
|
||||
else
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij)
|
||||
endif
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do l=1,N_st
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Compute Hij for all beta doubles
|
||||
! ----------------------------------
|
||||
|
||||
!DIR$ LOOP COUNT avg(50000)
|
||||
do i=1,n_doubles,block_size
|
||||
umax = 0.d0
|
||||
if (u_is_sparse) then
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
l_b = doubles(i+kk)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
ASSERT (l_b <= N_det)
|
||||
ASSERT (l_a <= N_det)
|
||||
do l=1,N_st
|
||||
utl(l,kk+1) = u_t(l,l_a)
|
||||
umax = max(umax, dabs(utl(l,kk+1)))
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
l_b = doubles(i+kk)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
ASSERT (l_b <= N_det)
|
||||
ASSERT (l_a <= N_det)
|
||||
utl(:,kk+1) = u_t(:,l_a)
|
||||
enddo
|
||||
umax = 1.d0
|
||||
endif
|
||||
if (umax < 1.d-20) cycle
|
||||
|
||||
do kk=0,block_size-1
|
||||
if (i+kk > n_doubles) exit
|
||||
l_b = doubles(i+kk)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det2(1:N_int,2) = psi_det_beta_unique(1:N_int, lcol)
|
||||
! call i_H_j( tmp_det, tmp_det2, $N_int, hij)
|
||||
! call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
|
||||
if(do_right)then
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det,tmp_det2,$N_int,hij)
|
||||
else
|
||||
call htilde_mu_mat_opt_bi_ortho_tot(tmp_det2,tmp_det,$N_int,hij)
|
||||
endif
|
||||
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do l=1,N_st
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
! Diagonal contribution
|
||||
! =====================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
if (u_is_sparse) then
|
||||
umax = 0.d0
|
||||
do l=1,N_st
|
||||
umax = max(umax, dabs(u_t(l,k_a)))
|
||||
enddo
|
||||
else
|
||||
umax = 1.d0
|
||||
endif
|
||||
if (umax < 1.d-20) cycle
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
double precision, external :: diag_H_mat_elem
|
||||
double precision :: hmono, htwoe, hthree
|
||||
|
||||
! hij = diag_H_mat_elem(tmp_det,$N_int)
|
||||
call diag_htilde_mu_mat_fock_bi_ortho ($N_int, tmp_det, hmono, htwoe, hthree, hij)
|
||||
!DIR$ LOOP COUNT AVG(4)
|
||||
do l=1,N_st
|
||||
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a)
|
||||
enddo
|
||||
|
||||
end do
|
||||
!$OMP END DO
|
||||
deallocate(buffer, singles_a, singles_b, doubles, idx, utl)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
end
|
||||
|
||||
SUBST [ N_int ]
|
||||
|
||||
1;;
|
||||
2;;
|
||||
3;;
|
||||
4;;
|
||||
N_int;;
|
||||
|
||||
END_TEMPLATE
|
||||
|
||||
|
@ -9,11 +9,13 @@ function run_Ne() {
|
||||
echo Ne > Ne.xyz
|
||||
qp create_ezfio -b cc-pcvdz Ne.xyz -o Ne_tc_scf
|
||||
qp run scf
|
||||
|
||||
qp set ao_two_e_erf_ints mu_erf 0.87
|
||||
qp set tc_keywords j1b_type 3
|
||||
qp set tc_keywords j1b_pen [1.5]
|
||||
qp set tc_keywords bi_ortho True
|
||||
qp set tc_keywords test_cycle_tc True
|
||||
qp set ao_two_e_erf_ints mu_erf 0.87
|
||||
qp set tc_keywords j1b_pen [1.5]
|
||||
qp set tc_keywords j1b_type 3
|
||||
|
||||
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
|
||||
eref=-128.552134
|
||||
energy="$(qp get tc_scf bitc_energy)"
|
||||
@ -25,3 +27,75 @@ function run_Ne() {
|
||||
run_Ne
|
||||
}
|
||||
|
||||
function run_C() {
|
||||
rm -rf C_tc_scf
|
||||
echo C > C.xyz
|
||||
qp create_ezfio -b cc-pcvdz C.xyz -o C_tc_scf -m 3
|
||||
qp run scf
|
||||
|
||||
qp set ao_two_e_erf_ints mu_erf 0.87
|
||||
qp set tc_keywords j1b_type 3
|
||||
qp set tc_keywords j1b_pen [1.5]
|
||||
qp set tc_keywords bi_ortho True
|
||||
qp set tc_keywords test_cycle_tc True
|
||||
|
||||
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
|
||||
eref=-37.691254356408791
|
||||
energy="$(qp get tc_scf bitc_energy)"
|
||||
eq $energy $eref 1e-6
|
||||
}
|
||||
|
||||
|
||||
@test "C" {
|
||||
run_C
|
||||
}
|
||||
|
||||
|
||||
function run_O() {
|
||||
rm -rf O_tc_scf
|
||||
echo O > O.xyz
|
||||
qp create_ezfio -b cc-pcvdz O.xyz -o O_tc_scf -m 3
|
||||
qp run scf
|
||||
|
||||
qp set ao_two_e_erf_ints mu_erf 0.87
|
||||
qp set tc_keywords j1b_type 3
|
||||
qp set tc_keywords j1b_pen [1.5]
|
||||
qp set tc_keywords bi_ortho True
|
||||
qp set tc_keywords test_cycle_tc True
|
||||
|
||||
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
|
||||
eref=-74.814687229354590
|
||||
energy="$(qp get tc_scf bitc_energy)"
|
||||
eq $energy $eref 1e-6
|
||||
}
|
||||
|
||||
|
||||
@test "O" {
|
||||
run_O
|
||||
}
|
||||
|
||||
|
||||
|
||||
function run_ch2() {
|
||||
rm -rf ch2_tc_scf
|
||||
cp ${QP_ROOT}/tests/input/ch2.xyz .
|
||||
qp create_ezfio -b "C:cc-pcvdz|H:cc-pvdz" ch2.xyz -o ch2_tc_scf
|
||||
qp run scf
|
||||
|
||||
qp set ao_two_e_erf_ints mu_erf 0.87
|
||||
qp set tc_keywords j1b_type 3
|
||||
qp set tc_keywords j1b_pen '[1.5,10000,10000]'
|
||||
qp set tc_keywords bi_ortho True
|
||||
qp set tc_keywords test_cycle_tc True
|
||||
|
||||
qp run tc_scf | tee ${EZFIO_FILE}.tc_scf.out
|
||||
eref=-38.903247818077737
|
||||
energy="$(qp get tc_scf bitc_energy)"
|
||||
eq $energy $eref 1e-6
|
||||
}
|
||||
|
||||
|
||||
@test "ch2" {
|
||||
run_ch2
|
||||
}
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
hartree_fock
|
||||
bi_ortho_mos
|
||||
three_body_ints
|
||||
ortho_three_e_ints
|
||||
bi_ort_ints
|
||||
tc_keywords
|
||||
non_hermit_dav
|
||||
|
@ -38,33 +38,9 @@
|
||||
, fock_tc_leigvec_mo, fock_tc_reigvec_mo &
|
||||
, n_real_tc, eigval_right_tmp )
|
||||
|
||||
!if(max_ov_tc_scf)then
|
||||
! call non_hrmt_fock_mat( mo_num, F_tmp, thresh_biorthog_diag, thresh_biorthog_nondiag &
|
||||
! , fock_tc_leigvec_mo, fock_tc_reigvec_mo &
|
||||
! , n_real_tc, eigval_right_tmp )
|
||||
!else
|
||||
! call non_hrmt_diag_split_degen_bi_orthog( mo_num, F_tmp &
|
||||
! , fock_tc_leigvec_mo, fock_tc_reigvec_mo &
|
||||
! , n_real_tc, eigval_right_tmp )
|
||||
!endif
|
||||
|
||||
deallocate(F_tmp)
|
||||
|
||||
|
||||
! if(n_real_tc .ne. mo_num)then
|
||||
! print*,'n_real_tc ne mo_num ! ',n_real_tc
|
||||
! stop
|
||||
! endif
|
||||
|
||||
eigval_fock_tc_mo = eigval_right_tmp
|
||||
! print*,'Eigenvalues of Fock_matrix_tc_mo_tot'
|
||||
! do i = 1, elec_alpha_num
|
||||
! print*, i, eigval_fock_tc_mo(i)
|
||||
! enddo
|
||||
! do i = elec_alpha_num+1, mo_num
|
||||
! print*, i, eigval_fock_tc_mo(i) - level_shift_tcscf
|
||||
! enddo
|
||||
! deallocate( eigval_right_tmp )
|
||||
|
||||
! L.T x R
|
||||
call dgemm( "T", "N", mo_num, mo_num, mo_num, 1.d0 &
|
||||
|
@ -49,6 +49,11 @@ END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, fock_3e_uhf_mo_a, (mo_num, mo_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! ALPHA part of the Fock matrix from three-electron terms
|
||||
!
|
||||
! WARNING :: non hermitian if bi-ortho MOS used
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: a, b, i, j, o
|
||||
double precision :: I_bij_aij, I_bij_ija, I_bij_jai, I_bij_aji, I_bij_iaj, I_bij_jia
|
||||
@ -145,6 +150,11 @@ END_PROVIDER
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, fock_3e_uhf_mo_b, (mo_num, mo_num)]
|
||||
BEGIN_DOC
|
||||
! BETA part of the Fock matrix from three-electron terms
|
||||
!
|
||||
! WARNING :: non hermitian if bi-ortho MOS used
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: a, b, i, j, o
|
||||
|
@ -6,10 +6,11 @@
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! two_e_tc_non_hermit_integral_seq_alpha(k,i) = <k| F^tc_alpha |i>
|
||||
! two_e_tc_non_hermit_integral_seq_alpha(k,i) = <k| F^tc_alpha |i> ON THE AO BASIS
|
||||
!
|
||||
! where F^tc is the two-body part of the TC Fock matrix and k,i are AO basis functions
|
||||
! where F^tc is the TWO-BODY part of the TC Fock matrix and k,i are AO basis functions
|
||||
!
|
||||
! works in SEQUENTIAL
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
@ -17,8 +18,6 @@
|
||||
double precision :: density, density_a, density_b
|
||||
double precision :: t0, t1
|
||||
|
||||
!print*, ' providing two_e_tc_non_hermit_integral_seq ...'
|
||||
!call wall_time(t0)
|
||||
|
||||
two_e_tc_non_hermit_integral_seq_alpha = 0.d0
|
||||
two_e_tc_non_hermit_integral_seq_beta = 0.d0
|
||||
@ -32,24 +31,6 @@
|
||||
density_b = TCSCF_density_matrix_ao_beta (l,j)
|
||||
density = density_a + density_b
|
||||
|
||||
!! rho(l,j) * < k l| T | i j>
|
||||
!two_e_tc_non_hermit_integral_seq_alpha(k,i) += density * ao_two_e_tc_tot(l,j,k,i)
|
||||
!! rho(l,j) * < k l| T | i j>
|
||||
!two_e_tc_non_hermit_integral_seq_beta (k,i) += density * ao_two_e_tc_tot(l,j,k,i)
|
||||
!! rho_a(l,j) * < l k| T | i j>
|
||||
!two_e_tc_non_hermit_integral_seq_alpha(k,i) -= density_a * ao_two_e_tc_tot(k,j,l,i)
|
||||
!! rho_b(l,j) * < l k| T | i j>
|
||||
!two_e_tc_non_hermit_integral_seq_beta (k,i) -= density_b * ao_two_e_tc_tot(k,j,l,i)
|
||||
|
||||
!! rho(l,j) * < k l| T | i j>
|
||||
!two_e_tc_non_hermit_integral_alpha(k,i) += density * ao_two_e_tc_tot(l,j,k,i)
|
||||
!! rho(l,j) * < k l| T | i j>
|
||||
!two_e_tc_non_hermit_integral_beta (k,i) += density * ao_two_e_tc_tot(l,j,k,i)
|
||||
!! rho_a(l,j) * < l k| T | i j>
|
||||
!two_e_tc_non_hermit_integral_alpha(k,i) -= density_a * ao_two_e_tc_tot(k,j,l,i)
|
||||
!! rho_b(l,j) * < l k| T | i j>
|
||||
!two_e_tc_non_hermit_integral_beta (k,i) -= density_b * ao_two_e_tc_tot(k,j,l,i)
|
||||
|
||||
! rho(l,j) * < k l| T | i j>
|
||||
two_e_tc_non_hermit_integral_seq_alpha(k,i) += density * ao_two_e_tc_tot(k,i,l,j)
|
||||
! rho(l,j) * < k l| T | i j>
|
||||
@ -64,8 +45,6 @@
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!call wall_time(t1)
|
||||
!print*, ' wall time for two_e_tc_non_hermit_integral_seq after = ', t1 - t0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
@ -76,9 +55,9 @@ END_PROVIDER
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! two_e_tc_non_hermit_integral_alpha(k,i) = <k| F^tc_alpha |i>
|
||||
! two_e_tc_non_hermit_integral_alpha(k,i) = <k| F^tc_alpha |i> ON THE AO BASIS
|
||||
!
|
||||
! where F^tc is the two-body part of the TC Fock matrix and k,i are AO basis functions
|
||||
! where F^tc is the TWO-BODY part of the TC Fock matrix and k,i are AO basis functions
|
||||
!
|
||||
END_DOC
|
||||
|
||||
@ -88,8 +67,6 @@ END_PROVIDER
|
||||
double precision :: t0, t1
|
||||
double precision, allocatable :: tmp_a(:,:), tmp_b(:,:)
|
||||
|
||||
!print*, ' providing two_e_tc_non_hermit_integral ...'
|
||||
!call wall_time(t0)
|
||||
|
||||
two_e_tc_non_hermit_integral_alpha = 0.d0
|
||||
two_e_tc_non_hermit_integral_beta = 0.d0
|
||||
@ -135,8 +112,6 @@ END_PROVIDER
|
||||
deallocate(tmp_a, tmp_b)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
!call wall_time(t1)
|
||||
!print*, ' wall time for two_e_tc_non_hermit_integral after = ', t1 - t0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
@ -181,14 +156,6 @@ BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_alpha, (mo_num, mo_num) ]
|
||||
|
||||
if(bi_ortho) then
|
||||
|
||||
!allocate(tmp(ao_num,ao_num))
|
||||
!tmp = Fock_matrix_tc_ao_alpha
|
||||
!if(three_body_h_tc) then
|
||||
! tmp += fock_3e_uhf_ao_a
|
||||
!endif
|
||||
!call ao_to_mo_bi_ortho(tmp, size(tmp, 1), Fock_matrix_tc_mo_alpha, size(Fock_matrix_tc_mo_alpha, 1))
|
||||
!deallocate(tmp)
|
||||
|
||||
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_alpha, size(Fock_matrix_tc_ao_alpha, 1) &
|
||||
, Fock_matrix_tc_mo_alpha, size(Fock_matrix_tc_mo_alpha, 1) )
|
||||
if(three_body_h_tc) then
|
||||
@ -217,14 +184,6 @@ BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_beta, (mo_num,mo_num) ]
|
||||
|
||||
if(bi_ortho) then
|
||||
|
||||
!allocate(tmp(ao_num,ao_num))
|
||||
!tmp = Fock_matrix_tc_ao_beta
|
||||
!if(three_body_h_tc) then
|
||||
! tmp += fock_3e_uhf_ao_b
|
||||
!endif
|
||||
!call ao_to_mo_bi_ortho(tmp, size(tmp, 1), Fock_matrix_tc_mo_beta, size(Fock_matrix_tc_mo_beta, 1))
|
||||
!deallocate(tmp)
|
||||
|
||||
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_beta, size(Fock_matrix_tc_ao_beta, 1) &
|
||||
, Fock_matrix_tc_mo_beta, size(Fock_matrix_tc_mo_beta, 1) )
|
||||
if(three_body_h_tc) then
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user