10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-23 12:55:37 +01:00

working on MO 2e ints

added functions to get MO 2e ints
still need routines to get multiple ints
reused some functions from AO 2e ints
This commit is contained in:
Kevin Gasperich 2020-02-04 13:35:09 -06:00
parent 7287312b73
commit 0914a60d63
3 changed files with 507 additions and 92 deletions

View File

@ -518,8 +518,12 @@ complex*16 function get_ao_two_e_integral_periodic_simple(i,j,k,l,map,map2) resu
endif
else
call map_get(map2,idx,tmp_re)
call map_get(map2,idx+1,tmp_im)
tmp_im *= sign
if (sign/=0.d0) then
call map_get(map2,idx+1,tmp_im)
tmp_im *= sign
else
tmp_im=0.d0
endif
endif
tmp = dcmplx(tmp_re,tmp_im)
result = tmp

View File

@ -41,22 +41,6 @@ subroutine insert_into_mo_integrals_map(n_integrals, &
call map_update(mo_integrals_map, buffer_i, buffer_values, n_integrals, thr)
end
subroutine insert_into_mo_integrals_map_2(n_integrals, &
buffer_i, buffer_values, thr)
use map_module
implicit none
BEGIN_DOC
! Create new entry into MO map, or accumulate in an existing entry
END_DOC
integer, intent(in) :: n_integrals
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
real(integral_kind), intent(in) :: thr
call map_update(mo_integrals_map_2, buffer_i, buffer_values, n_integrals, thr)
end
BEGIN_PROVIDER [ integer*4, mo_integrals_cache_min ]
&BEGIN_PROVIDER [ integer*4, mo_integrals_cache_max ]
&BEGIN_PROVIDER [ integer*8, mo_integrals_cache_min_8 ]
@ -110,45 +94,6 @@ BEGIN_PROVIDER [ double precision, mo_integrals_cache, (0_8:128_8*128_8*128_8*12
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_integrals_cache_periodic, (0_8:128_8*128_8*128_8*128_8) ]
implicit none
BEGIN_DOC
! Cache of MO integrals for fast access
END_DOC
PROVIDE mo_two_e_integrals_in_map
integer*8 :: i,j,k,l
integer*4 :: i4,j4,k4,l4
integer*8 :: ii
integer(key_kind) :: idx
complex(integral_kind) :: integral
complex*16 :: get_mo_two_e_integrals_periodic_simple
FREE ao_integrals_cache
!$OMP PARALLEL DO PRIVATE (i,j,k,l,i4,j4,k4,l4,idx,ii,integral)
do l=mo_integrals_cache_min_8,mo_integrals_cache_max_8
l4 = int(l,4)
do k=mo_integrals_cache_min_8,mo_integrals_cache_max_8
k4 = int(k,4)
do j=mo_integrals_cache_min_8,mo_integrals_cache_max_8
j4 = int(j,4)
do i=mo_integrals_cache_min_8,mo_integrals_cache_max_8
i4 = int(i,4)
!DIR$ FORCEINLINE
integral = get_mo_two_e_integrals_periodic_simple(i,j,k,l,&
mo_integrals_map,mo_integrals_map_2)
ii = l-mo_integrals_cache_min_8
ii = ior( shiftl(ii,7), k-mo_integrals_cache_min_8)
ii = ior( shiftl(ii,7), j-mo_integrals_cache_min_8)
ii = ior( shiftl(ii,7), i-mo_integrals_cache_min_8)
mo_integrals_cache_periodic(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
double precision function get_two_e_integral(i,j,k,l,map)
use map_module
implicit none
@ -181,40 +126,6 @@ double precision function get_two_e_integral(i,j,k,l,map)
endif
end
complex*16 function get_two_e_integral_periodic(i,j,k,l,map,map2)
use map_module
implicit none
! BEGIN_DOC
! ! Returns one integral <ij|kl> in the MO basis
! ! TODO: finish this
! END_DOC
! integer, intent(in) :: i,j,k,l
! integer(key_kind) :: idx
! integer :: ii
! integer*8 :: ii_8
! type(map_type), intent(inout) :: map
! real(integral_kind) :: tmp
! PROVIDE mo_two_e_integrals_in_map mo_integrals_cache_periodic
! ii = l-mo_integrals_cache_min
! ii = ior(ii, k-mo_integrals_cache_min)
! ii = ior(ii, j-mo_integrals_cache_min)
! ii = ior(ii, i-mo_integrals_cache_min)
! if (iand(ii, -128) /= 0) then
! !DIR$ FORCEINLINE
! call two_e_integrals_index(i,j,k,l,idx)
! !DIR$ FORCEINLINE
! call map_get(map,idx,tmp)
! get_two_e_integral_periodic = dble(tmp)
! else
! ii_8 = int(l,8)-mo_integrals_cache_min_8
! ii_8 = ior( shiftl(ii_8,7), int(k,8)-mo_integrals_cache_min_8)
! ii_8 = ior( shiftl(ii_8,7), int(j,8)-mo_integrals_cache_min_8)
! ii_8 = ior( shiftl(ii_8,7), int(i,8)-mo_integrals_cache_min_8)
! get_two_e_integral = mo_integrals_cache(ii_8)
! endif
end
double precision function mo_two_e_integral(i,j,k,l)
implicit none
BEGIN_DOC
@ -462,13 +373,15 @@ subroutine get_mo_two_e_integrals_exch_ii(k,l,sze,out_val,map)
endif
end
integer*8 function get_mo_map_size()
implicit none
BEGIN_DOC
! Return the number of elements in the MO map
END_DOC
get_mo_map_size = mo_integrals_map % n_elements
if (is_periodic) then
get_mo_map_size += mo_integrals_map_2 % n_elements
endif
end

View File

@ -0,0 +1,498 @@
use map_module
subroutine insert_into_mo_integrals_map_2(n_integrals, &
buffer_i, buffer_values, thr)
use map_module
implicit none
BEGIN_DOC
! Create new entry into MO map, or accumulate in an existing entry
END_DOC
integer, intent(in) :: n_integrals
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
real(integral_kind), intent(in) :: thr
call map_update(mo_integrals_map_2, buffer_i, buffer_values, n_integrals, thr)
end
BEGIN_PROVIDER [ complex*16, mo_integrals_cache_periodic, (0_8:128_8*128_8*128_8*128_8) ]
implicit none
BEGIN_DOC
! Cache of MO integrals for fast access
END_DOC
PROVIDE mo_two_e_integrals_in_map
integer*8 :: i,j,k,l
integer*4 :: i4,j4,k4,l4
integer*8 :: ii
integer(key_kind) :: idx
complex(integral_kind) :: integral
complex*16 :: get_two_e_integral_periodic_simple
FREE ao_integrals_cache
!$OMP PARALLEL DO PRIVATE (i,j,k,l,i4,j4,k4,l4,idx,ii,integral)
do l=mo_integrals_cache_min_8,mo_integrals_cache_max_8
l4 = int(l,4)
do k=mo_integrals_cache_min_8,mo_integrals_cache_max_8
k4 = int(k,4)
do j=mo_integrals_cache_min_8,mo_integrals_cache_max_8
j4 = int(j,4)
do i=mo_integrals_cache_min_8,mo_integrals_cache_max_8
i4 = int(i,4)
!DIR$ FORCEINLINE
integral = get_two_e_integral_periodic_simple(i,j,k,l,&
mo_integrals_map,mo_integrals_map_2)
ii = l-mo_integrals_cache_min_8
ii = ior( shiftl(ii,7), k-mo_integrals_cache_min_8)
ii = ior( shiftl(ii,7), j-mo_integrals_cache_min_8)
ii = ior( shiftl(ii,7), i-mo_integrals_cache_min_8)
mo_integrals_cache_periodic(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
complex*16 function get_two_e_integral_periodic_simple(i,j,k,l,map,map2) result(result)
use map_module
implicit none
BEGIN_DOC
! Gets one MO bi-electronic integral from the MO map
! reuse ao map/idx/sign function
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx
real(integral_kind) :: tmp_re, tmp_im
type(map_type), intent(inout) :: map,map2
complex(integral_kind) :: tmp
logical :: use_map1
double precision :: sign
PROVIDE mo_two_e_integrals_in_map
call ao_two_e_integral_periodic_map_idx_sign(i,j,k,l,use_map1,idx,sign)
if (use_map1) then
call map_get(map,idx,tmp_re)
if (sign/=0.d0) then
call map_get(map,idx+1,tmp_im)
tmp_im *= sign
else
tmp_im=0.d0
endif
else
call map_get(map2,idx,tmp_re)
if (sign/=0.d0) then
call map_get(map2,idx+1,tmp_im)
tmp_im *= sign
else
tmp_im=0.d0
endif
endif
tmp = dcmplx(tmp_re,tmp_im)
result = tmp
end
complex*16 function get_two_e_integral_periodic(i,j,k,l,map,map2)
use map_module
implicit none
BEGIN_DOC
! Returns one integral <ij|kl> in the MO basis
! TODO: finish this
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx
integer :: ii
integer*8 :: ii_8
type(map_type), intent(inout) :: map,map2
complex(integral_kind) :: tmp
complex(integral_kind) :: get_two_e_integral_periodic_simple
PROVIDE mo_two_e_integrals_in_map mo_integrals_cache_periodic
ii = l-mo_integrals_cache_min
ii = ior(ii, k-mo_integrals_cache_min)
ii = ior(ii, j-mo_integrals_cache_min)
ii = ior(ii, i-mo_integrals_cache_min)
if (iand(ii, -128) /= 0) then
tmp = get_two_e_integral_periodic_simple(i,j,k,l,map,map2)
else
ii_8 = int(l,8)-mo_integrals_cache_min_8
ii_8 = ior( shiftl(ii_8,7), int(k,8)-mo_integrals_cache_min_8)
ii_8 = ior( shiftl(ii_8,7), int(j,8)-mo_integrals_cache_min_8)
ii_8 = ior( shiftl(ii_8,7), int(i,8)-mo_integrals_cache_min_8)
tmp = mo_integrals_cache_periodic(ii_8)
endif
get_two_e_integral_periodic = tmp
end
complex*16 function mo_two_e_integral_periodic(i,j,k,l)
implicit none
BEGIN_DOC
! Returns one integral <ij|kl> in the MO basis
END_DOC
integer, intent(in) :: i,j,k,l
complex*16 :: get_two_e_integral_periodic
PROVIDE mo_two_e_integrals_in_map mo_integrals_cache_periodic
PROVIDE mo_two_e_integrals_in_map
!DIR$ FORCEINLINE
mo_two_e_integral_periodic = get_two_e_integral_periodic(i,j,k,l,mo_integrals_map,mo_integrals_map_2)
return
end
subroutine get_mo_two_e_integrals_periodic(j,k,l,sze,out_val,map,map2)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ij|kl> in the MO basis, all
! i for j,k,l fixed.
END_DOC
integer, intent(in) :: j,k,l, sze
complex*16, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map,map2
integer :: i
complex*16, external :: get_two_e_integral_periodic_simple
integer :: ii, ii0
integer*8 :: ii_8, ii0_8
complex(integral_kind) :: tmp
integer(key_kind) :: i1, idx
integer(key_kind) :: p,q,r,s,i2
PROVIDE mo_two_e_integrals_in_map mo_integrals_cache_periodic
!DEBUG
! do i=1,sze
! out_val(i) = get_two_e_integral_periodic(i,j,k,l,map,map2)
! enddo
! return
!DEBUG
ii0 = l-mo_integrals_cache_min
ii0 = ior(ii0, k-mo_integrals_cache_min)
ii0 = ior(ii0, j-mo_integrals_cache_min)
ii0_8 = int(l,8)-mo_integrals_cache_min_8
ii0_8 = ior( shiftl(ii0_8,7), int(k,8)-mo_integrals_cache_min_8)
ii0_8 = ior( shiftl(ii0_8,7), int(j,8)-mo_integrals_cache_min_8)
do i=1,sze
ii = ior(ii0, i-mo_integrals_cache_min)
if (iand(ii, -128) == 0) then
ii_8 = ior( shiftl(ii0_8,7), int(i,8)-mo_integrals_cache_min_8)
out_val(i) = mo_integrals_cache_periodic(ii_8)
else
out_val(i) = get_two_e_integral_periodic_simple(i,j,k,l,map,map2)
endif
enddo
end
!subroutine get_mo_two_e_integrals_ij_periodic(k,l,sze,out_array,map)
! use map_module
! implicit none
! BEGIN_DOC
! ! Returns multiple integrals <ij|kl> in the MO basis, all
! ! i(1)j(2) 1/r12 k(1)l(2)
! ! i, j for k,l fixed.
! END_DOC
! integer, intent(in) :: k,l, sze
! double precision, intent(out) :: out_array(sze,sze)
! type(map_type), intent(inout) :: map
! integer :: i,j,kk,ll,m
! integer(key_kind),allocatable :: hash(:)
! integer ,allocatable :: pairs(:,:), iorder(:)
! real(integral_kind), allocatable :: tmp_val(:)
!
! PROVIDE mo_two_e_integrals_in_map
! allocate (hash(sze*sze), pairs(2,sze*sze),iorder(sze*sze), &
! tmp_val(sze*sze))
!
! kk=0
! out_array = 0.d0
! do j=1,sze
! do i=1,sze
! kk += 1
! !DIR$ FORCEINLINE
! call two_e_integrals_index(i,j,k,l,hash(kk))
! pairs(1,kk) = i
! pairs(2,kk) = j
! iorder(kk) = kk
! enddo
! enddo
!
! logical :: integral_is_in_map
! if (key_kind == 8) then
! call i8radix_sort(hash,iorder,kk,-1)
! else if (key_kind == 4) then
! call iradix_sort(hash,iorder,kk,-1)
! else if (key_kind == 2) then
! call i2radix_sort(hash,iorder,kk,-1)
! endif
!
! call map_get_many(mo_integrals_map, hash, tmp_val, kk)
!
! do ll=1,kk
! m = iorder(ll)
! i=pairs(1,m)
! j=pairs(2,m)
! out_array(i,j) = tmp_val(ll)
! enddo
!
! deallocate(pairs,hash,iorder,tmp_val)
!end
!subroutine get_mo_two_e_integrals_i1j1_periodic(k,l,sze,out_array,map)
! use map_module
! implicit none
! BEGIN_DOC
! ! Returns multiple integrals <ik|jl> in the MO basis, all
! ! i(1)j(1) 1/r12 k(2)l(2)
! ! i, j for k,l fixed.
! END_DOC
! integer, intent(in) :: k,l, sze
! double precision, intent(out) :: out_array(sze,sze)
! type(map_type), intent(inout) :: map
! integer :: i,j,kk,ll,m
! integer(key_kind),allocatable :: hash(:)
! integer ,allocatable :: pairs(:,:), iorder(:)
! real(integral_kind), allocatable :: tmp_val(:)
!
! PROVIDE mo_two_e_integrals_in_map
! allocate (hash(sze*sze), pairs(2,sze*sze),iorder(sze*sze), &
! tmp_val(sze*sze))
!
! kk=0
! out_array = 0.d0
! do j=1,sze
! do i=1,sze
! kk += 1
! !DIR$ FORCEINLINE
! call two_e_integrals_index(i,k,j,l,hash(kk))
! pairs(1,kk) = i
! pairs(2,kk) = j
! iorder(kk) = kk
! enddo
! enddo
!
! logical :: integral_is_in_map
! if (key_kind == 8) then
! call i8radix_sort(hash,iorder,kk,-1)
! else if (key_kind == 4) then
! call iradix_sort(hash,iorder,kk,-1)
! else if (key_kind == 2) then
! call i2radix_sort(hash,iorder,kk,-1)
! endif
!
! call map_get_many(mo_integrals_map, hash, tmp_val, kk)
!
! do ll=1,kk
! m = iorder(ll)
! i=pairs(1,m)
! j=pairs(2,m)
! out_array(i,j) = tmp_val(ll)
! enddo
!
! deallocate(pairs,hash,iorder,tmp_val)
!end
subroutine get_mo_two_e_integrals_coulomb_ii_periodic(k,l,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ki|li>
! k(1)i(2) 1/r12 l(1)i(2) :: out_val(i1)
! for k,l fixed.
! always in map1, take conjugate if k>l, real if k==l
! TODO: determine best way to structure code
! to account for single/double integral_kind, real/complex, and +/- imag part
END_DOC
integer, intent(in) :: k,l, sze
complex*16, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze),hash_re(sze),hash_im(sze)
real(integral_kind) :: tmp_re(sze),tmp_im(sze)
complex*16 :: out_re(sze),out_im(sze)
double precision :: sign
PROVIDE mo_two_e_integrals_in_map
if (k.eq.l) then ! real, call other function
call get_mo_two_e_integrals_coulomb_ijij_periodic(k,sze,out_re,map)
do i=1,sze
out_val(i) = dcmplx(out_re(i),0.d0)
enddo
else ! complex
if (k.gt.l) then
sign = -1.d0
else
sign = 1.d0
endif
do i=1,sze
!DIR$ FORCEINLINE
call two_e_integrals_index(k,i,l,i,hash(i))
!hash_im(i) = hash(i)*2
hash_im(i) = shiftl(hash(i),1)
hash_re(i) = hash_im(i)-1
enddo
if (integral_kind == 8) then
call map_get_many(map, hash_re, out_re, sze)
call map_get_many(map, hash_im, out_im, sze)
do i=1,sze
out_val(i) = dcmplx(out_re(i),sign*out_im(i))
enddo
else
call map_get_many(map, hash_re, tmp_re, sze)
call map_get_many(map, hash_im, tmp_im, sze)
! Conversion to double complex
do i=1,sze
out_val(i) = dcmplx(tmp_re(i),sign*tmp_im(i))
enddo
endif
endif
end
subroutine get_mo_two_e_integrals_coulomb_ijij_periodic(j,sze,out_val,map)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ij|ij>
! i*(1)j*(2) 1/r12 i(1)j(2) :: out_val(i)
! for j fixed.
! always in map1, always real
END_DOC
integer, intent(in) :: j, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze),hash_re(sze)
real(integral_kind) :: tmp_re(sze)
PROVIDE mo_two_e_integrals_in_map
do i=1,sze
!DIR$ FORCEINLINE
call two_e_integrals_index(i,j,i,j,hash(i))
!hash_re(i) = hash(i)*2 - 1
hash_re(i) = shiftl(hash(i),1) - 1
enddo
if (integral_kind == 8) then
call map_get_many(map, hash_re, out_val, sze)
else
call map_get_many(map, hash_re, tmp_re, sze)
! Conversion to double complex
do i=1,sze
out_val(i) = dble(tmp_re(i))
enddo
endif
end
subroutine get_mo_two_e_integrals_exch_ii_periodic(k,l,sze,out_val,map,map2)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ki|il>
! k*(1)i*(2) 1/r12 i(1)l(2) :: out_val(i1)
! for k,l fixed.
!
! if k<l, then:
! i < k map2 +
! k <= i <= l map1 +
! l < i map2 -
!
! if l<k, then same maps as above, but take complex conjugate
END_DOC
integer, intent(in) :: k,l, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map
integer :: i
integer(key_kind) :: hash(sze),hash_re(sze),hash_im(sze)
real(integral_kind) :: tmp_re(sze),tmp_im(sze)
complex*16 :: out_re(sze),out_im(sze)
double precision :: sign,sign2(sze)
PROVIDE mo_two_e_integrals_in_map
if (k.eq.l) then ! real, call other function
call get_mo_two_e_integrals_exch_ijji_periodic(k,sze,out_re,map,map2)
do i=1,sze
out_val(i) = dcmplx(out_re(i),0.d0)
enddo
else ! complex
if (k.gt.l) then
sign = -1.d0
else
sign = 1.d0
endif
klmin = min(k,l) ! put these in conditional above?
klmax = max(k,l)
sign2(1:klmax) = 1.d0
sign2(klmax+1:sze) = -1.d0
do i=1,sze
!DIR$ FORCEINLINE
call two_e_integrals_index(k,i,i,l,hash(i))
!hash_im(i) = hash(i)*2
hash_im(i) = shiftl(hash(i),1)
hash_re(i) = hash_im(i)-1
enddo
if (integral_kind == 8) then
call map_get_many(map2, hash_re(1:klmin-1), out_re(1:klmin-1), klmin-1)
call map_get_many(map2, hash_im(1:klmin-1), out_im(1:klmin-1), klmin-1)
call map_get_many(map, hash_re(klmin:klmax), out_re(klmin:klmax), klmax-klmin+1)
call map_get_many(map, hash_im(klmin:klmax), out_im(klmin:klmax), klmax-klmin+1)
call map_get_many(map2, hash_re(klmax+1:sze), out_re(klmax+1:sze), sze-klmax)
call map_get_many(map2, hash_im(klmax+1:sze), out_im(klmax+1:sze), sze-klmax)
do i=1,sze
out_val(i) = dcmplx(out_re(i),sign*sign2(i)*out_im(i))
enddo
else
call map_get_many(map2, hash_re(1:klmin-1), tmp_re(1:klmin-1), klmin-1)
call map_get_many(map2, hash_im(1:klmin-1), tmp_im(1:klmin-1), klmin-1)
call map_get_many(map, hash_re(klmin:klmax), tmp_re(klmin:klmax), klmax-klmin+1)
call map_get_many(map, hash_im(klmin:klmax), tmp_im(klmin:klmax), klmax-klmin+1)
call map_get_many(map2, hash_re(klmax+1:sze), tmp_re(klmax+1:sze), sze-klmax)
call map_get_many(map2, hash_im(klmax+1:sze), tmp_im(klmax+1:sze), sze-klmax)
! Conversion to double complex
do i=1,sze
out_val(i) = dcmplx(tmp_re(i),sign*sign2(i)*tmp_im(i))
enddo
endif
endif
end
subroutine get_mo_two_e_integrals_exch_ijji_periodic(j,sze,out_val,map,map2)
use map_module
implicit none
BEGIN_DOC
! Returns multiple integrals <ij|ji>
! i*(1)j*(2) 1/r12 j(1)i(2) :: out_val(i)
! for j fixed.
! always real, always in map2 (except when j==i, then in map1)
END_DOC
integer, intent(in) :: j, sze
double precision, intent(out) :: out_val(sze)
type(map_type), intent(inout) :: map,map2
integer :: i
integer(key_kind) :: hash(sze),hash_re(sze)
real(integral_kind) :: tmp_val(sze)
PROVIDE mo_two_e_integrals_in_map
do i=1,sze
!DIR$ FORCEINLINE
call two_e_integrals_index(i,j,j,i,hash(i))
!hash_re(i) = 2*hash(i) - 1
hash_re(i) = shiftl(hash(i),1) - 1
enddo
if (integral_kind == 8) then
call map_get_many(map2, hash_re, out_val, sze)
call map_get(map,hash_re(j), out_val(j))
else
call map_get_many(map2, hash_re, tmp_val, sze)
call map_get(map, hash_re(j), tmp_val(j))
! Conversion to double precision
do i=1,sze
out_val(i) = dble(tmp_val(i))
enddo
endif
end