mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 20:34:58 +01:00
commit
078163f900
10
README.md
10
README.md
@ -39,6 +39,10 @@ https://arxiv.org/abs/1902.08154
|
||||
# Getting started
|
||||
|
||||
* [Visit the web site](https://quantumpackage.github.io/qp2)
|
||||
* Install from a singularity container<br>
|
||||
Singularity containers for x86_64 (amd64) and ARM (aarch64) architectures are available here:<br>
|
||||
https://cloud.sylabs.io/library/scemama/trex/qp2-qmcchem <br>
|
||||
The repository containing the recipes to build the singularity container is here: https://github.com/TREX-CoE/trex-containers
|
||||
* [Download the latest release](http://github.com/QuantumPackage/qp2/releases)
|
||||
* [Read the documentation](https://quantum-package.readthedocs.io)
|
||||
|
||||
@ -50,9 +54,9 @@ You can also look over its [archives](https://groupes.renater.fr/sympa/arc/quant
|
||||
|
||||
# Build status
|
||||
|
||||
* Master [![master build status](https://travis-ci.com/QuantumPackage/qp2.svg?branch=master)](https://travis-ci.org/QuantumPackage/qp2)
|
||||
* Development [![dev build status](https://travis-ci.com/QuantumPackage/qp2.svg?branch=dev)](https://travis-ci.org/QuantumPackage/qp2)
|
||||
* Documentation [![Documentation Status](https://readthedocs.org/projects/quantum-package/badge/?version=master)](https://quantum-package.readthedocs.io/en/master/?badge=master)
|
||||
* Master [![master build status](https://github.com/QuantumPackage/qp2/actions/workflows/compilation.yml/badge.svg)](https://github.com/QuantumPackage/qp2/actions/workflows/compilation.yml)
|
||||
* Development [![dev build status](https://github.com/QuantumPackage/qp2/actions/workflows/compilation.yml/badge.svg?branch=dev-stable)](https://github.com/QuantumPackage/qp2/actions/workflows/compilation.yml)
|
||||
* Documentation [![Documentation Status](https://readthedocs.org/projects/quantum-package/badge/?version=master)](https://quantum-package.readthedocs.io/en/master)
|
||||
|
||||
|
||||
|
||||
|
@ -82,12 +82,12 @@ interface: ezfio, provider
|
||||
[ao_expo_pw]
|
||||
type: double precision
|
||||
doc: plane wave part for each primitive GTOs |AO|
|
||||
size: (3,ao_basis.ao_num,ao_basis.ao_prim_num_max)
|
||||
size: (4,ao_basis.ao_num,ao_basis.ao_prim_num_max)
|
||||
interface: ezfio, provider
|
||||
|
||||
[ao_expo_phase]
|
||||
type: double precision
|
||||
doc: phase shift for each primitive GTOs |AO|
|
||||
size: (3,ao_basis.ao_num,ao_basis.ao_prim_num_max)
|
||||
size: (4,ao_basis.ao_num,ao_basis.ao_prim_num_max)
|
||||
interface: ezfio, provider
|
||||
|
||||
|
@ -30,3 +30,16 @@ the two electron integrals.
|
||||
|
||||
|
||||
|
||||
Complex Gaussian-Type Orbitals (cGTOs)
|
||||
=====================================
|
||||
|
||||
Complex Gaussian-Type Orbitals (cGTOs) are also supported:
|
||||
|
||||
.. math::
|
||||
|
||||
\chi_i(\mathbf{r}) = x^a y^b z^c \sum_k c_{ki} \left( e^{-\alpha_{ki} \mathbf{r}^2 - \imath \mathbf{k}_{ki} \cdot \mathbf{r} - \imath \phi_{ki}} + \text{C.C.} \right)
|
||||
|
||||
where:
|
||||
- :math:`\alpha \in \mathbb{C}` and :math:`\Re(\alpha) > 0` (specified by ``ao_expo`` and ``ao_expo_im_cgtos``),
|
||||
- :math:`\mathbf{k} = (k_x, k_y, k_z) \in \mathbb{R}^3` (specified by ``ao_expo_pw``),
|
||||
- :math:`\phi = \phi_x + \phi_y + \phi_z \in \mathbb{R}` (specified by ``ao_expo_phase``).
|
||||
|
@ -30,9 +30,9 @@ END_PROVIDER
|
||||
ao_expo_pw_ord_transp(m,i,j) = ao_expo_pw_ord(m,j,i)
|
||||
ao_expo_phase_ord_transp(m,i,j) = ao_expo_phase_ord(m,j,i)
|
||||
enddo
|
||||
ao_expo_pw_ord_transp(4,i,j) = ao_expo_pw_ord_transp(1,i,j) &
|
||||
+ ao_expo_pw_ord_transp(2,i,j) &
|
||||
+ ao_expo_pw_ord_transp(3,i,j)
|
||||
ao_expo_pw_ord_transp(4,i,j) = ao_expo_pw_ord_transp(1,i,j) * ao_expo_pw_ord_transp(1,i,j) &
|
||||
+ ao_expo_pw_ord_transp(2,i,j) * ao_expo_pw_ord_transp(2,i,j) &
|
||||
+ ao_expo_pw_ord_transp(3,i,j) * ao_expo_pw_ord_transp(3,i,j)
|
||||
ao_expo_phase_ord_transp(4,i,j) = ao_expo_phase_ord_transp(1,j,i) &
|
||||
+ ao_expo_phase_ord_transp(2,j,i) &
|
||||
+ ao_expo_phase_ord_transp(3,j,i)
|
||||
@ -47,10 +47,12 @@ BEGIN_PROVIDER [double precision, ao_coef_norm_cgtos, (ao_num, ao_prim_num_max)]
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i, j, powA(3), nz
|
||||
integer :: i, j, ii, m, powA(3), nz
|
||||
double precision :: norm
|
||||
complex*16 :: overlap_x, overlap_y, overlap_z, C_A(3)
|
||||
complex*16 :: integ1, integ2, expo
|
||||
double precision :: kA2, phiA
|
||||
complex*16 :: expo, expo_inv, C_A(3)
|
||||
complex*16 :: overlap_x, overlap_y, overlap_z
|
||||
complex*16 :: integ1, integ2, C1, C2
|
||||
|
||||
nz = 100
|
||||
|
||||
@ -62,22 +64,31 @@ BEGIN_PROVIDER [double precision, ao_coef_norm_cgtos, (ao_num, ao_prim_num_max)]
|
||||
|
||||
do i = 1, ao_num
|
||||
|
||||
ii = ao_nucl(i)
|
||||
powA(1) = ao_power(i,1)
|
||||
powA(2) = ao_power(i,2)
|
||||
powA(3) = ao_power(i,3)
|
||||
|
||||
! TODO
|
||||
! Normalization of the primitives
|
||||
if(primitives_normalized) then
|
||||
|
||||
do j = 1, ao_prim_num(i)
|
||||
|
||||
expo = ao_expo(i,j) + (0.d0, 1.d0) * ao_expo_im_cgtos(i,j)
|
||||
expo_inv = (1.d0, 0.d0) / expo
|
||||
do m = 1, 3
|
||||
C_A(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * expo_inv * ao_expo_pw(m,i,j)
|
||||
enddo
|
||||
phiA = ao_expo_phase(4,i,j)
|
||||
KA2 = ao_expo_pw(4,i,j)
|
||||
|
||||
call overlap_cgaussian_xyz(C_A, C_A, expo, expo, powA, powA, overlap_x, overlap_y, overlap_z, integ1, nz)
|
||||
call overlap_cgaussian_xyz(C_A, C_A, conjg(expo), expo, powA, powA, overlap_x, overlap_y, overlap_z, integ2, nz)
|
||||
C1 = zexp(-(0.d0, 2.d0) * phiA - 0.5d0 * expo_inv * KA2)
|
||||
C2 = zexp(-(0.5d0, 0.d0) * real(expo_inv) * KA2)
|
||||
|
||||
norm = 2.d0 * real(integ1 + integ2)
|
||||
call overlap_cgaussian_xyz(C_A, C_A, expo, expo, powA, powA, overlap_x, overlap_y, overlap_z, integ1, nz)
|
||||
call overlap_cgaussian_xyz(conjg(C_A), C_A, conjg(expo), expo, powA, powA, overlap_x, overlap_y, overlap_z, integ2, nz)
|
||||
|
||||
norm = 2.d0 * real(C1 * integ1 + C2 * integ2)
|
||||
|
||||
ao_coef_norm_cgtos(i,j) = ao_coef(i,j) / dsqrt(norm)
|
||||
enddo
|
||||
@ -98,14 +109,14 @@ END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, ao_coef_norm_cgtos_ord, (ao_num, ao_prim_num_max)]
|
||||
&BEGIN_PROVIDER [complex*16 , ao_expo_cgtos_ord, (ao_num, ao_prim_num_max)]
|
||||
&BEGIN_PROVIDER [double precision, ao_expo_pw_ord, (3, ao_num, ao_prim_num_max)]
|
||||
&BEGIN_PROVIDER [double precision, ao_expo_phase_ord, (3, ao_num, ao_prim_num_max)]
|
||||
&BEGIN_PROVIDER [double precision, ao_expo_pw_ord, (4, ao_num, ao_prim_num_max)]
|
||||
&BEGIN_PROVIDER [double precision, ao_expo_phase_ord, (4, ao_num, ao_prim_num_max)]
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i, j
|
||||
integer :: i, j, m
|
||||
integer :: iorder(ao_prim_num_max)
|
||||
double precision :: d(ao_prim_num_max,9)
|
||||
double precision :: d(ao_prim_num_max,11)
|
||||
|
||||
d = 0.d0
|
||||
|
||||
@ -116,28 +127,26 @@ END_PROVIDER
|
||||
d(j,1) = ao_expo(i,j)
|
||||
d(j,2) = ao_coef_norm_cgtos(i,j)
|
||||
d(j,3) = ao_expo_im_cgtos(i,j)
|
||||
d(j,4) = ao_expo_pw(1,i,j)
|
||||
d(j,5) = ao_expo_pw(2,i,j)
|
||||
d(j,6) = ao_expo_pw(3,i,j)
|
||||
d(j,7) = ao_expo_phase(1,i,j)
|
||||
d(j,8) = ao_expo_phase(2,i,j)
|
||||
d(j,9) = ao_expo_phase(3,i,j)
|
||||
|
||||
do m = 1, 4
|
||||
d(j,3+m) = ao_expo_pw(m,i,j)
|
||||
d(j,7+m) = ao_expo_phase(m,i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dsort(d(1,1), iorder, ao_prim_num(i))
|
||||
do j = 2, 9
|
||||
do j = 2, 11
|
||||
call dset_order(d(1,j), iorder, ao_prim_num(i))
|
||||
enddo
|
||||
|
||||
do j = 1, ao_prim_num(i)
|
||||
ao_expo_cgtos_ord (i,j) = d(j,1) + (0.d0, 1.d0) * d(j,3)
|
||||
ao_coef_norm_cgtos_ord(i,j) = d(j,2)
|
||||
ao_expo_pw_ord(i,j,1) = d(j,4)
|
||||
ao_expo_pw_ord(i,j,2) = d(j,5)
|
||||
ao_expo_pw_ord(i,j,3) = d(j,6)
|
||||
ao_expo_phase_ord(i,j,1) = d(j,7)
|
||||
ao_expo_phase_ord(i,j,2) = d(j,8)
|
||||
ao_expo_phase_ord(i,j,3) = d(j,9)
|
||||
|
||||
do m = 1, 4
|
||||
ao_expo_pw_ord(m,i,j) = d(j,3+m)
|
||||
ao_expo_phase_ord(m,i,j) = d(j,7+m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
@ -154,8 +163,10 @@ END_PROVIDER
|
||||
|
||||
integer :: i, j, m, n, l, ii, jj, dim1, power_A(3), power_B(3)
|
||||
double precision :: c, overlap, overlap_x, overlap_y, overlap_z
|
||||
complex*16 :: alpha, alpha_inv, A_center(3), KA2(3), phiA(3)
|
||||
complex*16 :: beta, beta_inv, B_center(3), KB2(3), phiB(3)
|
||||
double precision :: KA2(3), phiA(3)
|
||||
double precision :: KB2(3), phiB(3)
|
||||
complex*16 :: alpha, alpha_inv, A_center(3)
|
||||
complex*16 :: beta, beta_inv, B_center(3)
|
||||
complex*16 :: C1(1:4), C2(1:4)
|
||||
complex*16 :: overlap1, overlap_x1, overlap_y1, overlap_z1
|
||||
complex*16 :: overlap2, overlap_x2, overlap_y2, overlap_z2
|
||||
@ -199,7 +210,6 @@ END_PROVIDER
|
||||
|
||||
alpha = ao_expo_cgtos_ord_transp(n,j)
|
||||
alpha_inv = (1.d0, 0.d0) / alpha
|
||||
|
||||
do m = 1, 3
|
||||
phiA(m) = ao_expo_phase_ord_transp(m,n,j)
|
||||
A_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * alpha_inv * ao_expo_pw_ord_transp(m,n,j)
|
||||
@ -210,7 +220,6 @@ END_PROVIDER
|
||||
|
||||
beta = ao_expo_cgtos_ord_transp(l,i)
|
||||
beta_inv = (1.d0, 0.d0) / beta
|
||||
|
||||
do m = 1, 3
|
||||
phiB(m) = ao_expo_phase_ord_transp(m,l,i)
|
||||
B_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * beta_inv * ao_expo_pw_ord_transp(m,l,i)
|
||||
@ -232,7 +241,7 @@ END_PROVIDER
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, &
|
||||
overlap_x1, overlap_y1, overlap_z1, overlap1, dim1)
|
||||
|
||||
call overlap_cgaussian_xyz(A_center, B_center, conjg(alpha), beta, power_A, power_B, &
|
||||
call overlap_cgaussian_xyz(conjg(A_center), B_center, conjg(alpha), beta, power_A, power_B, &
|
||||
overlap_x2, overlap_y2, overlap_z2, overlap2, dim1)
|
||||
|
||||
overlap_x = 2.d0 * real(C1(1) * overlap_x1 + C2(1) * overlap_x2)
|
||||
|
@ -15,8 +15,10 @@ BEGIN_PROVIDER [double precision, ao_integrals_n_e_cgtos, (ao_num, ao_num)]
|
||||
integer :: power_A(3), power_B(3)
|
||||
integer :: i, j, k, l, m, n, ii, jj
|
||||
double precision :: c, Z, C_center(3)
|
||||
complex*16 :: alpha, alpha_inv, A_center(3), phiA, KA2
|
||||
complex*16 :: beta, beta_inv, B_center(3), phiB, KB2
|
||||
double precision :: phiA, KA2
|
||||
double precision :: phiB, KB2
|
||||
complex*16 :: alpha, alpha_inv, A_center(3)
|
||||
complex*16 :: beta, beta_inv, B_center(3)
|
||||
complex*16 :: C1, C2, I1, I2
|
||||
|
||||
complex*16 :: NAI_pol_mult_cgtos
|
||||
@ -54,7 +56,7 @@ BEGIN_PROVIDER [double precision, ao_integrals_n_e_cgtos, (ao_num, ao_num)]
|
||||
A_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * alpha_inv * ao_expo_pw_ord_transp(m,n,j)
|
||||
enddo
|
||||
phiA = ao_expo_phase_ord_transp(4,n,j)
|
||||
KA2 = ao_expo_pw_ord_transp(4,n,j) * ao_expo_pw_ord_transp(4,n,j)
|
||||
KA2 = ao_expo_pw_ord_transp(4,n,j)
|
||||
|
||||
do l = 1, ao_prim_num(i)
|
||||
|
||||
@ -65,7 +67,7 @@ BEGIN_PROVIDER [double precision, ao_integrals_n_e_cgtos, (ao_num, ao_num)]
|
||||
B_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * beta_inv * ao_expo_pw_ord_transp(m,l,i)
|
||||
enddo
|
||||
phiB = ao_expo_phase_ord_transp(4,l,i)
|
||||
KB2 = ao_expo_pw_ord_transp(4,l,i) * ao_expo_pw_ord_transp(4,l,i)
|
||||
KB2 = ao_expo_pw_ord_transp(4,l,i)
|
||||
|
||||
C1 = zexp((0.d0, 1.d0) * (-phiA - phiB) - 0.25d0 * (alpha_inv * KA2 + beta_inv * KB2))
|
||||
C2 = zexp((0.d0, 1.d0) * ( phiA - phiB) - 0.25d0 * (conjg(alpha_inv) * KA2 + beta_inv * KB2))
|
||||
@ -79,7 +81,7 @@ BEGIN_PROVIDER [double precision, ao_integrals_n_e_cgtos, (ao_num, ao_num)]
|
||||
|
||||
I1 = NAI_pol_mult_cgtos(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_max_integrals)
|
||||
|
||||
I2 = NAI_pol_mult_cgtos(A_center, B_center, power_A, power_B, conjg(alpha), beta, C_center, n_pt_max_integrals)
|
||||
I2 = NAI_pol_mult_cgtos(conjg(A_center), B_center, power_A, power_B, conjg(alpha), beta, C_center, n_pt_max_integrals)
|
||||
|
||||
c = c - Z * 2.d0 * real(C1 * I1 + C2 * I2)
|
||||
enddo
|
||||
|
@ -8,8 +8,10 @@
|
||||
implicit none
|
||||
integer :: i, j, m, n, l, ii, jj, dim1, power_A(3), power_B(3)
|
||||
double precision :: c, deriv_tmp
|
||||
complex*16 :: alpha, alpha_inv, A_center(3), KA2, phiA, C1
|
||||
complex*16 :: beta, beta_inv, B_center(3), KB2, phiB, C2
|
||||
double precision :: KA2, phiA
|
||||
double precision :: KB2, phiB
|
||||
complex*16 :: alpha, alpha_inv, A_center(3), C1
|
||||
complex*16 :: beta, beta_inv, B_center(3), C2
|
||||
complex*16 :: overlap_x, overlap_y, overlap_z, overlap
|
||||
complex*16 :: overlap_x0_1, overlap_y0_1, overlap_z0_1
|
||||
complex*16 :: overlap_x0_2, overlap_y0_2, overlap_z0_2
|
||||
@ -70,33 +72,31 @@
|
||||
|
||||
alpha = ao_expo_cgtos_ord_transp(n,j)
|
||||
alpha_inv = (1.d0, 0.d0) / alpha
|
||||
|
||||
do m = 1, 3
|
||||
A_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * alpha_inv * ao_expo_pw_ord_transp(m,n,j)
|
||||
enddo
|
||||
phiA = ao_expo_phase_ord_transp(4,n,j)
|
||||
KA2 = ao_expo_pw_ord_transp(4,n,j) * ao_expo_pw_ord_transp(4,n,j)
|
||||
KA2 = ao_expo_pw_ord_transp(4,n,j)
|
||||
|
||||
do l = 1, ao_prim_num(i)
|
||||
|
||||
beta = ao_expo_cgtos_ord_transp(l,i)
|
||||
beta_inv = (1.d0, 0.d0) / beta
|
||||
|
||||
do m = 1, 3
|
||||
B_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * beta_inv * ao_expo_pw_ord_transp(m,l,i)
|
||||
enddo
|
||||
phiB = ao_expo_phase_ord_transp(4,l,i)
|
||||
KB2 = ao_expo_pw_ord_transp(4,l,i) * ao_expo_pw_ord_transp(4,l,i)
|
||||
KB2 = ao_expo_pw_ord_transp(4,l,i)
|
||||
|
||||
c = ao_coef_cgtos_norm_ord_transp(n,j) * ao_coef_cgtos_norm_ord_transp(l,i)
|
||||
|
||||
C1 = zexp((0.d0, 1.d0) * (-phiA - phiB) - 0.25d0 * (alpha_inv * KA2 + beta_inv * KB2))
|
||||
C2 = zexp((0.d0, 1.d0) * ( phiA - phiB) - 0.25d0 * (conjg(alpha_inv) * KA2 + beta_inv * KB2))
|
||||
C1 = zexp((0.d0, 1.d0) * (-phiA - phiB) - 0.25d0 * (alpha_inv * KA2 + beta_inv * KB2))
|
||||
C2 = zexp((0.d0, 1.d0) * (-phiA + phiB) - 0.25d0 * (alpha_inv * KA2 + conjg(beta_inv) * KB2))
|
||||
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, &
|
||||
overlap_x0_1, overlap_y0_1, overlap_z0_1, overlap, dim1)
|
||||
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, &
|
||||
call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, &
|
||||
overlap_x0_2, overlap_y0_2, overlap_z0_2, overlap, dim1)
|
||||
|
||||
! ---
|
||||
@ -106,7 +106,7 @@
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, &
|
||||
overlap_m2_1, overlap_y, overlap_z, overlap, dim1)
|
||||
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, &
|
||||
call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, &
|
||||
overlap_m2_2, overlap_y, overlap_z, overlap, dim1)
|
||||
else
|
||||
overlap_m2_1 = (0.d0, 0.d0)
|
||||
@ -117,7 +117,7 @@
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, &
|
||||
overlap_p2_1, overlap_y, overlap_z, overlap, dim1)
|
||||
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, &
|
||||
call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, &
|
||||
overlap_p2_2, overlap_y, overlap_z, overlap, dim1)
|
||||
|
||||
power_A(1) = power_A(1) - 2
|
||||
@ -141,7 +141,7 @@
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, &
|
||||
overlap_x, overlap_m2_1, overlap_y, overlap, dim1)
|
||||
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, &
|
||||
call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, &
|
||||
overlap_x, overlap_m2_2, overlap_y, overlap, dim1)
|
||||
else
|
||||
overlap_m2_1 = (0.d0, 0.d0)
|
||||
@ -152,7 +152,7 @@
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, &
|
||||
overlap_x, overlap_p2_1, overlap_y, overlap, dim1)
|
||||
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, &
|
||||
call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, &
|
||||
overlap_x, overlap_p2_2, overlap_y, overlap, dim1)
|
||||
|
||||
power_A(2) = power_A(2) - 2
|
||||
@ -176,7 +176,7 @@
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, &
|
||||
overlap_x, overlap_y, overlap_m2_1, overlap, dim1)
|
||||
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, &
|
||||
call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, &
|
||||
overlap_x, overlap_y, overlap_m2_2, overlap, dim1)
|
||||
else
|
||||
overlap_m2_1 = (0.d0, 0.d0)
|
||||
@ -187,7 +187,7 @@
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, &
|
||||
overlap_x, overlap_y, overlap_p2_1, overlap, dim1)
|
||||
|
||||
call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, &
|
||||
call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, &
|
||||
overlap_x, overlap_y, overlap_p2_2, overlap, dim1)
|
||||
|
||||
power_A(3) = power_A(3) - 2
|
||||
@ -227,11 +227,12 @@ BEGIN_PROVIDER [double precision, ao_kinetic_integrals_cgtos, (ao_num, ao_num)]
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: i, j
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i, j) &
|
||||
!$OMP SHARED(ao_num, ao_kinetic_integrals_cgtos, ao_deriv2_cgtos_x, ao_deriv2_cgtos_y, ao_deriv2_cgtos_z)
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i, j) &
|
||||
!$OMP SHARED(ao_num, ao_kinetic_integrals_cgtos, ao_deriv2_cgtos_x, ao_deriv2_cgtos_y, ao_deriv2_cgtos_z)
|
||||
do j = 1, ao_num
|
||||
do i = 1, ao_num
|
||||
ao_kinetic_integrals_cgtos(i,j) = -0.5d0 * (ao_deriv2_cgtos_x(i,j) + &
|
||||
@ -239,8 +240,9 @@ BEGIN_PROVIDER [double precision, ao_kinetic_integrals_cgtos, (ao_num, ao_num)]
|
||||
ao_deriv2_cgtos_z(i,j))
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -17,10 +17,14 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l)
|
||||
integer :: ii, jj, kk, ll, dim1, I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p1(3), iorder_p2(3), iorder_q1(3), iorder_q2(3)
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
complex*16 :: expo1, expo1_inv, I_center(3), KI2, phiI
|
||||
complex*16 :: expo2, expo2_inv, J_center(3), KJ2, phiJ
|
||||
complex*16 :: expo3, expo3_inv, K_center(3), KK2, phiK
|
||||
complex*16 :: expo4, expo4_inv, L_center(3), KL2, phiL
|
||||
double precision :: KI2, phiI
|
||||
double precision :: KJ2, phiJ
|
||||
double precision :: KK2, phiK
|
||||
double precision :: KL2, phiL
|
||||
complex*16 :: expo1, expo1_inv, I_center(3)
|
||||
complex*16 :: expo2, expo2_inv, J_center(3)
|
||||
complex*16 :: expo3, expo3_inv, K_center(3)
|
||||
complex*16 :: expo4, expo4_inv, L_center(3)
|
||||
complex*16 :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv
|
||||
complex*16 :: P2_new(0:max_dim,3), P2_center(3), fact_p2, pp2, p2_inv
|
||||
complex*16 :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv
|
||||
@ -70,7 +74,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l)
|
||||
I_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * expo1_inv * ao_expo_pw_ord_transp(m,p,i)
|
||||
enddo
|
||||
phiI = ao_expo_phase_ord_transp(4,p,i)
|
||||
KI2 = ao_expo_pw_ord_transp(4,p,i) * ao_expo_pw_ord_transp(4,p,i)
|
||||
KI2 = ao_expo_pw_ord_transp(4,p,i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
|
||||
@ -81,7 +85,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l)
|
||||
J_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * expo2_inv * ao_expo_pw_ord_transp(m,q,j)
|
||||
enddo
|
||||
phiJ = ao_expo_phase_ord_transp(4,q,j)
|
||||
KJ2 = ao_expo_pw_ord_transp(4,q,j) * ao_expo_pw_ord_transp(4,q,j)
|
||||
KJ2 = ao_expo_pw_ord_transp(4,q,j)
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian(P1_new, P1_center, pp1, fact_p1, iorder_p1, &
|
||||
expo1, expo2, I_power, J_power, I_center, J_center, dim1)
|
||||
@ -100,7 +104,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l)
|
||||
K_center(m) = nucl_coord(kk,m) - (0.d0, 0.5d0) * expo3_inv * ao_expo_pw_ord_transp(m,r,k)
|
||||
enddo
|
||||
phiK = ao_expo_phase_ord_transp(4,r,k)
|
||||
KK2 = ao_expo_pw_ord_transp(4,r,k) * ao_expo_pw_ord_transp(4,r,k)
|
||||
KK2 = ao_expo_pw_ord_transp(4,r,k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
|
||||
@ -111,7 +115,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l)
|
||||
L_center(m) = nucl_coord(ll,m) - (0.d0, 0.5d0) * expo4_inv * ao_expo_pw_ord_transp(m,s,l)
|
||||
enddo
|
||||
phiL = ao_expo_phase_ord_transp(4,s,l)
|
||||
KL2 = ao_expo_pw_ord_transp(4,s,l) * ao_expo_pw_ord_transp(4,s,l)
|
||||
KL2 = ao_expo_pw_ord_transp(4,s,l)
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian(Q1_new, Q1_center, qq1, fact_q1, iorder_q1, &
|
||||
expo3, expo4, K_power, L_power, K_center, L_center, dim1)
|
||||
@ -189,7 +193,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l)
|
||||
I_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * expo1_inv * ao_expo_pw_ord_transp(m,p,i)
|
||||
enddo
|
||||
phiI = ao_expo_phase_ord_transp(4,p,i)
|
||||
KI2 = ao_expo_pw_ord_transp(4,p,i) * ao_expo_pw_ord_transp(4,p,i)
|
||||
KI2 = ao_expo_pw_ord_transp(4,p,i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
|
||||
@ -200,7 +204,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l)
|
||||
J_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * expo2_inv * ao_expo_pw_ord_transp(m,q,j)
|
||||
enddo
|
||||
phiJ = ao_expo_phase_ord_transp(4,q,j)
|
||||
KJ2 = ao_expo_pw_ord_transp(4,q,j) * ao_expo_pw_ord_transp(4,q,j)
|
||||
KJ2 = ao_expo_pw_ord_transp(4,q,j)
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
|
||||
@ -211,7 +215,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l)
|
||||
K_center(m) = nucl_coord(kk,m) - (0.d0, 0.5d0) * expo3_inv * ao_expo_pw_ord_transp(m,r,k)
|
||||
enddo
|
||||
phiK = ao_expo_phase_ord_transp(4,r,k)
|
||||
KK2 = ao_expo_pw_ord_transp(4,r,k) * ao_expo_pw_ord_transp(4,r,k)
|
||||
KK2 = ao_expo_pw_ord_transp(4,r,k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
|
||||
@ -222,7 +226,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l)
|
||||
L_center(m) = nucl_coord(ll,m) - (0.d0, 0.5d0) * expo4_inv * ao_expo_pw_ord_transp(m,s,l)
|
||||
enddo
|
||||
phiL = ao_expo_phase_ord_transp(4,s,l)
|
||||
KL2 = ao_expo_pw_ord_transp(4,s,l) * ao_expo_pw_ord_transp(4,s,l)
|
||||
KL2 = ao_expo_pw_ord_transp(4,s,l)
|
||||
|
||||
C1 = zexp((0.d0, 1.d0) * (-phiI - phiJ - phiK - phiL) &
|
||||
- 0.25d0 * (expo1_inv * KI2 + expo2_inv * KJ2 + expo3_inv * KK2 + expo4_inv * KL2))
|
||||
@ -313,10 +317,14 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
integer :: ii, jj, kk, ll, dim1, I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p1(3), iorder_p2(3), iorder_q1(3), iorder_q2(3)
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
complex*16 :: expo1, expo1_inv, I_center(3), KI2, phiI
|
||||
complex*16 :: expo2, expo2_inv, J_center(3), KJ2, phiJ
|
||||
complex*16 :: expo3, expo3_inv, K_center(3), KK2, phiK
|
||||
complex*16 :: expo4, expo4_inv, L_center(3), KL2, phiL
|
||||
double precision :: KI2, phiI
|
||||
double precision :: KJ2, phiJ
|
||||
double precision :: KK2, phiK
|
||||
double precision :: KL2, phiL
|
||||
complex*16 :: expo1, expo1_inv, I_center(3)
|
||||
complex*16 :: expo2, expo2_inv, J_center(3)
|
||||
complex*16 :: expo3, expo3_inv, K_center(3)
|
||||
complex*16 :: expo4, expo4_inv, L_center(3)
|
||||
complex*16 :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv
|
||||
complex*16 :: P2_new(0:max_dim,3), P2_center(3), fact_p2, pp2, p2_inv
|
||||
complex*16 :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv
|
||||
@ -366,7 +374,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
K_center(m) = nucl_coord(kk,m) - (0.d0, 0.5d0) * expo1_inv * ao_expo_pw_ord_transp(m,r,k)
|
||||
enddo
|
||||
phiK = ao_expo_phase_ord_transp(4,r,k)
|
||||
KK2 = ao_expo_pw_ord_transp(4,r,k) * ao_expo_pw_ord_transp(4,r,k)
|
||||
KK2 = ao_expo_pw_ord_transp(4,r,k)
|
||||
|
||||
schwartz_kl(0,r) = 0.d0
|
||||
do s = 1, ao_prim_num(l)
|
||||
@ -378,7 +386,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
L_center(m) = nucl_coord(ll,m) - (0.d0, 0.5d0) * expo2_inv * ao_expo_pw_ord_transp(m,s,l)
|
||||
enddo
|
||||
phiL = ao_expo_phase_ord_transp(4,s,l)
|
||||
KL2 = ao_expo_pw_ord_transp(4,s,l) * ao_expo_pw_ord_transp(4,s,l)
|
||||
KL2 = ao_expo_pw_ord_transp(4,s,l)
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian(P1_new, P1_center, pp1, fact_p1, iorder_p1, &
|
||||
expo1, expo2, K_power, L_power, K_center, L_center, dim1)
|
||||
@ -393,7 +401,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
!C3 = C2
|
||||
C4 = zexp((0.d0, 2.d0) * (phiK - phiL) - 0.5d0 * (conjg(expo1_inv) * KK2 + expo2_inv * KL2))
|
||||
C5 = zexp(-(0.d0, 2.d0) * phiK - 0.5d0 * (expo1_inv * KK2 + real(expo2_inv) * KL2))
|
||||
C6 = zexp(-0.5d0 * (real(expo1_inv) * KK2 + real(expo2_inv) * KL2))
|
||||
C6 = zexp(-(0.5d0, 0.d0) * (real(expo1_inv) * KK2 + real(expo2_inv) * KL2))
|
||||
!C7 = C6
|
||||
!C8 = conjg(C5)
|
||||
|
||||
@ -452,7 +460,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
I_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * expo1_inv * ao_expo_pw_ord_transp(m,p,i)
|
||||
enddo
|
||||
phiI = ao_expo_phase_ord_transp(4,p,i)
|
||||
KI2 = ao_expo_pw_ord_transp(4,p,i) * ao_expo_pw_ord_transp(4,p,i)
|
||||
KI2 = ao_expo_pw_ord_transp(4,p,i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
|
||||
@ -463,7 +471,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
J_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * expo2_inv * ao_expo_pw_ord_transp(m,q,j)
|
||||
enddo
|
||||
phiJ = ao_expo_phase_ord_transp(4,q,j)
|
||||
KJ2 = ao_expo_pw_ord_transp(4,q,j) * ao_expo_pw_ord_transp(4,q,j)
|
||||
KJ2 = ao_expo_pw_ord_transp(4,q,j)
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian(P1_new, P1_center, pp1, fact_p1, iorder_p1, &
|
||||
expo1, expo2, I_power, J_power, I_center, J_center, dim1)
|
||||
@ -478,7 +486,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
!C3 = C2
|
||||
C4 = zexp((0.d0, 2.d0) * (phiI - phiJ) - 0.5d0 * (conjg(expo1_inv) * KI2 + expo2_inv * KJ2))
|
||||
C5 = zexp(-(0.d0, 2.d0) * phiI - 0.5d0 * (expo1_inv * KI2 + real(expo2_inv) * KJ2))
|
||||
C6 = zexp(-0.5d0 * (real(expo1_inv) * KI2 + real(expo2_inv) * KJ2))
|
||||
C6 = zexp(-(0.5d0, 0.d0) * (real(expo1_inv) * KI2 + real(expo2_inv) * KJ2))
|
||||
!C7 = C6
|
||||
!C8 = conjg(C5)
|
||||
|
||||
@ -533,7 +541,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
K_center(m) = nucl_coord(kk,m) - (0.d0, 0.5d0) * expo3_inv * ao_expo_pw_ord_transp(m,r,k)
|
||||
enddo
|
||||
phiK = ao_expo_phase_ord_transp(4,r,k)
|
||||
KK2 = ao_expo_pw_ord_transp(4,r,k) * ao_expo_pw_ord_transp(4,r,k)
|
||||
KK2 = ao_expo_pw_ord_transp(4,r,k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
if(schwartz_kl(s,r)*schwartz_ij < thr) cycle
|
||||
@ -545,7 +553,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
L_center(m) = nucl_coord(ll,m) - (0.d0, 0.5d0) * expo4_inv * ao_expo_pw_ord_transp(m,s,l)
|
||||
enddo
|
||||
phiL = ao_expo_phase_ord_transp(4,s,l)
|
||||
KL2 = ao_expo_pw_ord_transp(4,s,l) * ao_expo_pw_ord_transp(4,s,l)
|
||||
KL2 = ao_expo_pw_ord_transp(4,s,l)
|
||||
|
||||
call give_explicit_cpoly_and_cgaussian(Q1_new, Q1_center, qq1, fact_q1, iorder_q1, &
|
||||
expo3, expo4, K_power, L_power, K_center, L_center, dim1)
|
||||
@ -624,7 +632,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
K_center(m) = nucl_coord(kk,m) - (0.d0, 0.5d0) * expo1_inv * ao_expo_pw_ord_transp(m,r,k)
|
||||
enddo
|
||||
phiK = ao_expo_phase_ord_transp(4,r,k)
|
||||
KK2 = ao_expo_pw_ord_transp(4,r,k) * ao_expo_pw_ord_transp(4,r,k)
|
||||
KK2 = ao_expo_pw_ord_transp(4,r,k)
|
||||
|
||||
schwartz_kl(0,r) = 0.d0
|
||||
do s = 1, ao_prim_num(l)
|
||||
@ -636,14 +644,14 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
L_center(m) = nucl_coord(ll,m) - (0.d0, 0.5d0) * expo2_inv * ao_expo_pw_ord_transp(m,s,l)
|
||||
enddo
|
||||
phiL = ao_expo_phase_ord_transp(4,s,l)
|
||||
KL2 = ao_expo_pw_ord_transp(4,s,l) * ao_expo_pw_ord_transp(4,s,l)
|
||||
KL2 = ao_expo_pw_ord_transp(4,s,l)
|
||||
|
||||
C1 = zexp(-(0.d0, 2.d0) * (phiK + phiL) - 0.5d0 * (expo1_inv * KK2 + expo2_inv * KL2))
|
||||
C2 = zexp(-(0.d0, 2.d0) * phiL - 0.5d0 * (real(expo1_inv) * KK2 + expo2_inv * KL2))
|
||||
!C3 = C2
|
||||
C4 = zexp((0.d0, 2.d0) * (phiK - phiL) - 0.5d0 * (conjg(expo1_inv) * KK2 + expo2_inv * KL2))
|
||||
C5 = zexp(-(0.d0, 2.d0) * phiK - 0.5d0 * (expo1_inv * KK2 + real(expo2_inv) * KL2))
|
||||
C6 = zexp(-0.5d0 * (real(expo1_inv) * KK2 + real(expo2_inv) * KL2))
|
||||
C6 = zexp(-(0.5d0, 0.d0) * (real(expo1_inv) * KK2 + real(expo2_inv) * KL2))
|
||||
!C7 = C6
|
||||
!C8 = conjg(C5)
|
||||
|
||||
@ -708,7 +716,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
I_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * expo1_inv * ao_expo_pw_ord_transp(m,p,i)
|
||||
enddo
|
||||
phiI = ao_expo_phase_ord_transp(4,p,i)
|
||||
KI2 = ao_expo_pw_ord_transp(4,p,i) * ao_expo_pw_ord_transp(4,p,i)
|
||||
KI2 = ao_expo_pw_ord_transp(4,p,i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
|
||||
@ -719,14 +727,14 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
J_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * expo2_inv * ao_expo_pw_ord_transp(m,q,j)
|
||||
enddo
|
||||
phiJ = ao_expo_phase_ord_transp(4,q,j)
|
||||
KJ2 = ao_expo_pw_ord_transp(4,q,j) * ao_expo_pw_ord_transp(4,q,j)
|
||||
KJ2 = ao_expo_pw_ord_transp(4,q,j)
|
||||
|
||||
C1 = zexp(-(0.d0, 2.d0) * (phiI + phiJ) - 0.5d0 * (expo1_inv * KI2 + expo2_inv * KJ2))
|
||||
C2 = zexp(-(0.d0, 2.d0) * phiJ - 0.5d0 * (real(expo1_inv) * KI2 + expo2_inv * KJ2))
|
||||
!C3 = C2
|
||||
C4 = zexp((0.d0, 2.d0) * (phiI - phiJ) - 0.5d0 * (conjg(expo1_inv) * KI2 + expo2_inv * KJ2))
|
||||
C5 = zexp(-(0.d0, 2.d0) * phiI - 0.5d0 * (expo1_inv * KI2 + real(expo2_inv) * KJ2))
|
||||
C6 = zexp(-0.5d0 * (real(expo1_inv) * KI2 + real(expo2_inv) * KJ2))
|
||||
C6 = zexp(-(0.5d0, 0.d0) * (real(expo1_inv) * KI2 + real(expo2_inv) * KJ2))
|
||||
!C7 = C6
|
||||
!C8 = conjg(C5)
|
||||
|
||||
@ -788,7 +796,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
K_center(m) = nucl_coord(kk,m) - (0.d0, 0.5d0) * expo3_inv * ao_expo_pw_ord_transp(m,r,k)
|
||||
enddo
|
||||
phiK = ao_expo_phase_ord_transp(4,r,k)
|
||||
KK2 = ao_expo_pw_ord_transp(4,r,k) * ao_expo_pw_ord_transp(4,r,k)
|
||||
KK2 = ao_expo_pw_ord_transp(4,r,k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
if(schwartz_kl(s,r)*schwartz_ij < thr) cycle
|
||||
@ -800,7 +808,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l)
|
||||
L_center(m) = nucl_coord(ll,m) - (0.d0, 0.5d0) * expo4_inv * ao_expo_pw_ord_transp(m,s,l)
|
||||
enddo
|
||||
phiL = ao_expo_phase_ord_transp(4,s,l)
|
||||
KL2 = ao_expo_pw_ord_transp(4,s,l) * ao_expo_pw_ord_transp(4,s,l)
|
||||
KL2 = ao_expo_pw_ord_transp(4,s,l)
|
||||
|
||||
C1 = zexp((0.d0, 1.d0) * (-phiI - phiJ - phiK - phiL) &
|
||||
- 0.25d0 * (expo1_inv * KI2 + expo2_inv * KJ2 + expo3_inv * KK2 + expo4_inv * KL2))
|
||||
|
@ -187,6 +187,10 @@ BEGIN_PROVIDER [ double precision, psi_coef, (psi_det_size,N_states) ]
|
||||
logical :: exists
|
||||
character*(64) :: label
|
||||
|
||||
! Make psi_coef depend on psi_det explicitly to detect potential problems
|
||||
! if psi_det changes and psi_coef is kept constant
|
||||
PROVIDE psi_det
|
||||
|
||||
PROVIDE read_wf N_det mo_label ezfio_filename
|
||||
psi_coef = 0.d0
|
||||
do i=1,min(N_states,psi_det_size)
|
||||
|
@ -42,12 +42,12 @@ complex*16 function overlap_cgaussian_x(A_center, B_center, alpha, beta, power_A
|
||||
|
||||
overlap_cgaussian_x *= fact_p
|
||||
|
||||
end function overlap_cgaussian_x
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine overlap_cgaussian_xyz( A_center, B_center, alpha, beta, power_A, power_B &
|
||||
, overlap_x, overlap_y, overlap_z, overlap, dim )
|
||||
subroutine overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, &
|
||||
overlap_x, overlap_y, overlap_z, overlap, dim )
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
@ -113,7 +113,7 @@ subroutine overlap_cgaussian_xyz( A_center, B_center, alpha, beta, power_A, powe
|
||||
|
||||
overlap = overlap_x * overlap_y * overlap_z
|
||||
|
||||
end subroutine overlap_cgaussian_xyz
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
|
@ -162,6 +162,7 @@ integer function get_total_available_memory() result(res)
|
||||
integer :: iunit
|
||||
integer*8, parameter :: KB = 1024
|
||||
integer*8, parameter :: GiB = 1024**3
|
||||
integer*8 :: kb_read
|
||||
integer, external :: getUnitAndOpen
|
||||
|
||||
iunit = getUnitAndOpen('/proc/meminfo','r')
|
||||
@ -170,8 +171,8 @@ integer function get_total_available_memory() result(res)
|
||||
do
|
||||
read(iunit, '(A)', END=10) line
|
||||
if (line(1:10) == "MemTotal: ") then
|
||||
read(line(11:), *, ERR=20) res
|
||||
res = int((res*KB) / GiB,4)
|
||||
read(line(11:), *, ERR=20) kb_read
|
||||
res = int((kb_read*KB) / GiB,4)
|
||||
exit
|
||||
20 continue
|
||||
end if
|
||||
|
Loading…
Reference in New Issue
Block a user