mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-15 18:43:51 +01:00
added lccsd
This commit is contained in:
parent
9eba86fea0
commit
0440def363
@ -5,3 +5,11 @@ interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
|
||||
|
||||
[lcc_energy]
|
||||
type: double precision
|
||||
doc: lccsd energy
|
||||
interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
selectors_full
|
||||
single_ref_method
|
||||
davidson_undressed
|
||||
dav_general_mat
|
||||
|
95
src/cisd/lccsd.irp.f
Normal file
95
src/cisd/lccsd.irp.f
Normal file
@ -0,0 +1,95 @@
|
||||
program lccsd
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Linerarized CCSD
|
||||
!
|
||||
! This program takes a reference Slater determinant of ROHF-like occupancy,
|
||||
!
|
||||
! and performs all single and double excitations on top of it, disregarding
|
||||
! spatial symmetry and compute the "n_states" lowest eigenstates of that CI
|
||||
! matrix (see :option:`determinants n_states`).
|
||||
!
|
||||
! This program can be useful in many cases:
|
||||
!
|
||||
! * **Ground state calculation**: if even after a :c:func:`cis` calculation, natural
|
||||
! orbitals (see :c:func:`save_natorb`) and then :c:func:`scf` optimization, you are not sure to have the lowest scf
|
||||
! solution,
|
||||
! do the same strategy with the :c:func:`cisd` executable instead of the :c:func:`cis` exectuable to generate the natural
|
||||
! orbitals as a guess for the :c:func:`scf`.
|
||||
!
|
||||
!
|
||||
!
|
||||
! * **Excited states calculations**: the lowest excited states are much likely to
|
||||
! be dominanted by single- or double-excitations.
|
||||
! Therefore, running a :c:func:`cisd` will save the "n_states" lowest states within
|
||||
! the CISD space
|
||||
! in the |EZFIO| directory, which can afterward be used as guess wave functions
|
||||
! for a further multi-state fci calculation if you specify "read_wf" = True
|
||||
! before running the fci executable (see :option:`determinants read_wf`).
|
||||
! Also, if you specify "s2_eig" = True, the cisd will only retain states
|
||||
! having the good value :math:`S^2` value
|
||||
! (see :option:`determinants expected_s2` and :option:`determinants s2_eig`).
|
||||
! If "s2_eig" = False, it will take the lowest n_states, whatever
|
||||
! multiplicity they are.
|
||||
!
|
||||
!
|
||||
!
|
||||
! Note: if you would like to discard some orbitals, use
|
||||
! :ref:`qp_set_mo_class` to specify:
|
||||
!
|
||||
! * "core" orbitals which will be always doubly occupied
|
||||
!
|
||||
! * "act" orbitals where an electron can be either excited from or to
|
||||
!
|
||||
! * "del" orbitals which will be never occupied
|
||||
!
|
||||
END_DOC
|
||||
PROVIDE N_states
|
||||
read_wf = .False.
|
||||
TOUCH read_wf
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine run
|
||||
implicit none
|
||||
|
||||
if(pseudo_sym)then
|
||||
call H_apply_cisd_sym
|
||||
else
|
||||
call H_apply_cisd
|
||||
endif
|
||||
call get_lccsd_2
|
||||
end
|
||||
|
||||
subroutine get_lccsd_2
|
||||
implicit none
|
||||
integer :: i,k
|
||||
double precision :: cisdq(N_states), delta_e
|
||||
double precision,external :: diag_h_mat_elem
|
||||
psi_coef = lccsd_coef
|
||||
SOFT_TOUCH psi_coef
|
||||
call save_wavefunction_truncated(save_threshold)
|
||||
call ezfio_set_cisd_lcc_energy(lccsd_energies)
|
||||
|
||||
print *, 'N_det = ', N_det
|
||||
print*,''
|
||||
print*,'******************************'
|
||||
print *, 'LCCSD Energies'
|
||||
do i = 1,N_states
|
||||
print *, i, lccsd_energies(i)
|
||||
enddo
|
||||
if (N_states > 1) then
|
||||
print*,'******************************'
|
||||
print*,'Excitation energies (au) (LCCSD)'
|
||||
do i = 2, N_states
|
||||
print*, i ,lccsd_energies(i) - lccsd_energies(1)
|
||||
enddo
|
||||
print*,''
|
||||
print*,'******************************'
|
||||
print*,'Excitation energies (eV) (LCCSD)'
|
||||
do i = 2, N_states
|
||||
print*, i ,(lccsd_energies(i) - lccsd_energies(1)) * ha_to_ev
|
||||
enddo
|
||||
endif
|
||||
|
||||
end
|
44
src/cisd/lccsd_prov.irp.f
Normal file
44
src/cisd/lccsd_prov.irp.f
Normal file
@ -0,0 +1,44 @@
|
||||
BEGIN_PROVIDER [ double precision, lccsd_coef, (N_det, N_states)]
|
||||
&BEGIN_PROVIDER [ double precision, lccsd_energies, (N_states)]
|
||||
implicit none
|
||||
double precision, allocatable :: Dress_jj(:), H_jj(:), u_in(:,:)
|
||||
double precision :: ebefore, eafter, ecorr, thresh
|
||||
integer :: i,it
|
||||
logical :: converged
|
||||
external H_u_0_nstates_openmp
|
||||
allocate(Dress_jj(N_det),H_jj(N_det),u_in(N_det,N_states_diag))
|
||||
thresh = 1.d-6
|
||||
converged = .False.
|
||||
Dress_jj = 0.d0
|
||||
u_in = 0.d0
|
||||
it = 0
|
||||
! initial guess
|
||||
do i = 1, N_states_diag
|
||||
u_in(i,i) = 1.d0
|
||||
enddo
|
||||
do i = 1,N_det
|
||||
call i_H_j(psi_det(1,1,i),psi_det(1,1,i),N_int,H_jj(i))
|
||||
enddo
|
||||
ebefore = H_jj(1)
|
||||
do while (.not.converged)
|
||||
it += 1
|
||||
print*,'N_det = ',N_det
|
||||
call davidson_general_ext_rout_diag_dressed(u_in,H_jj,Dress_jj,lccsd_energies,&
|
||||
N_det,N_states,N_states_diag,converged,H_u_0_nstates_openmp)
|
||||
ecorr = lccsd_energies(1) - H_jj(1)
|
||||
print*,'---------------------'
|
||||
print*,'it = ',it
|
||||
print*,'ecorr = ',ecorr
|
||||
Dress_jj(1) = 0.d0
|
||||
do i = 2, N_det
|
||||
Dress_jj(i) = ecorr
|
||||
enddo
|
||||
eafter = lccsd_energies(1)
|
||||
converged = (dabs(eafter - ebefore).lt.thresh)
|
||||
ebefore = eafter
|
||||
enddo
|
||||
do i = 1, N_states
|
||||
lccsd_coef(1:N_det,i) = u_in(1:N_det,i)
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
Loading…
Reference in New Issue
Block a user