10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-11 05:28:24 +01:00

fixed problem with iterating over unique 2-electron integrals

should loop over union of two sets of integrals:
set 1:
  i<=k
  j<=l
  ik<=jl
set 2:
  i>k
  j<l
  ik<=jl

looping over kpts in same way is incorrect
here I've relaxed the constraints over kpt indices, while keeping those over orbital indices
There is probably a more efficient way to do this where we have more kpt constraints and additional logic in orbital loops
This commit is contained in:
Kevin Gasperich 2020-02-18 14:11:22 -06:00
parent 3c0ef34836
commit 02c6539daa
4 changed files with 320 additions and 7 deletions

View File

@ -150,9 +150,10 @@ subroutine ao_map_fill_from_df
!$OMP DO SCHEDULE(guided) !$OMP DO SCHEDULE(guided)
do kk=1,kl do kk=1,kl
ki=kconserv(kl,kk,kj) ki=kconserv(kl,kk,kj)
if ((kl == kj) .and. (ki > kk)) cycle if (ki>kl) cycle
! if ((kl == kj) .and. (ki > kk)) cycle
call idx2_tri_int(ki,kk,kikk2) call idx2_tri_int(ki,kk,kikk2)
if (kikk2 > kjkl2) cycle ! if (kikk2 > kjkl2) cycle
if (ki < kk) then if (ki < kk) then
do i_ao=1,ao_num_per_kpt do i_ao=1,ao_num_per_kpt
do j_ao=1,ao_num_per_kpt do j_ao=1,ao_num_per_kpt

View File

@ -472,6 +472,199 @@ def pyscf2QP(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
outfile.write('%s %s %s %s %s %s\n' % (ii+1,jj+1,kk+1,ll+1,v.real,v.imag)) outfile.write('%s %s %s %s %s %s\n' % (ii+1,jj+1,kk+1,ll+1,v.real,v.imag))
def testprintbi(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8):
'''
kpts = List of kpoints coordinates. Cannot be null, for gamma is other script
kmesh = Mesh of kpoints (optional)
cas_idx = List of active MOs. If not specified all MOs are actives
int_threshold = The integral will be not printed in they are bellow that
'''
from pyscf.pbc import ao2mo
from pyscf.pbc import tools
from pyscf.pbc.gto import ecp
from pyscf.data import nist
import h5py
import scipy
bielec_int_threshold = int_threshold
natom = cell.natm
nelec = cell.nelectron
neleca,nelecb = cell.nelec
atom_xyz = mf.cell.atom_coords()
if not(mf.cell.unit.startswith(('B','b','au','AU'))):
atom_xyz /= nist.BOHR # always convert to au
strtype=h5py.special_dtype(vlen=str)
atom_dset=qph5.create_dataset('nuclei/nucl_label',(natom,),dtype=strtype)
for i in range(natom):
atom_dset[i] = mf.cell.atom_pure_symbol(i)
qph5.create_dataset('nuclei/nucl_coord',data=atom_xyz)
qph5.create_dataset('nuclei/nucl_charge',data=mf.cell.atom_charges())
print('n_atom per kpt', natom)
print('num_elec per kpt', nelec)
mo_coeff = mf.mo_coeff
# Mo_coeff actif
mo_k = np.array([c[:,cas_idx] for c in mo_coeff] if cas_idx is not None else mo_coeff)
e_k = np.array([e[cas_idx] for e in mf.mo_energy] if cas_idx is not None else mf.mo_energy)
Nk, nao, nmo = mo_k.shape
print("n Kpts", Nk)
print("n active Mos per kpt", nmo)
print("n AOs per kpt", nao)
naux = mf.with_df.auxcell.nao
print("n df fitting functions", naux)
#in old version: param << nelec*Nk, nmo*Nk, natom*Nk
# ___ _
# | ._ _|_ _ _ ._ _. | _ |_) o
# _|_ | | |_ (/_ (_| | (_| | _> |_) |
# _|
#
kconserv = tools.get_kconserv(cell, kpts)
qph5.create_dataset('nuclei/kconserv',data=np.transpose(kconserv+1,(0,2,1)))
kcon_test = np.zeros((Nk,Nk,Nk),dtype=int)
for a in range(Nk):
for b in range(Nk):
for c in range(Nk):
kcon_test[a,c,b] = kconserv[a,b,c]+1
qph5.create_dataset('nuclei/kconserv_test',data=kcon_test)
with open('K.qp','w') as outfile:
for a in range(Nk):
for b in range(Nk):
for c in range(Nk):
d = kconserv[a,b,c]
outfile.write('%s %s %s %s\n' % (a+1,c+1,b+1,d+1))
intfile=h5py.File(mf.with_df._cderi,'r')
j3c = intfile.get('j3c')
naosq = nao*nao
naotri = (nao*(nao+1))//2
j3ckeys = list(j3c.keys())
j3ckeys.sort(key=lambda strkey:int(strkey))
# in new(?) version of PySCF, there is an extra layer of groups before the datasets
# datasets used to be [/j3c/0, /j3c/1, /j3c/2, ...]
# datasets now are [/j3c/0/0, /j3c/1/0, /j3c/2/0, ...]
j3clist = [j3c.get(i+'/0') for i in j3ckeys]
if j3clist==[None]*len(j3clist):
# if using older version, stop before last level
j3clist = [j3c.get(i) for i in j3ckeys]
nkinvsq = 1./np.sqrt(Nk)
# dimensions are (kikj,iaux,jao,kao), where kikj is compound index of kpts i and j
# output dimensions should be reversed (nao, nao, naux, nkptpairs)
j3arr=np.array([(i.value.reshape([-1,nao,nao]) if (i.shape[1] == naosq) else makesq3(i.value,nao)) * nkinvsq for i in j3clist])
nkpt_pairs = j3arr.shape[0]
df_ao_tmp = np.zeros((nao,nao,naux,nkpt_pairs),dtype=np.complex128)
if print_ao_ints_df:
with open('D.qp','w') as outfile:
pass
with open('D.qp','a') as outfile:
for k,kpt_pair in enumerate(j3arr):
for iaux,dfbasfunc in enumerate(kpt_pair):
for i,i0 in enumerate(dfbasfunc):
for j,v in enumerate(i0):
if (abs(v) > bielec_int_threshold):
outfile.write('%s %s %s %s %s %s\n' % (i+1,j+1,iaux+1,k+1,v.real,v.imag))
df_ao_tmp[i,j,iaux,k]=v
qph5.create_dataset('ao_two_e_ints/df_ao_integrals_real',data=df_ao_tmp.real)
qph5.create_dataset('ao_two_e_ints/df_ao_integrals_imag',data=df_ao_tmp.imag)
if print_mo_ints_df:
kpair_list=[]
for i in range(Nk):
for j in range(Nk):
if(i>=j):
kpair_list.append((i,j,idx2_tri((i,j))))
j3mo = np.array([np.einsum('mij,ik,jl->mkl',j3arr[kij],mo_k[ki].conj(),mo_k[kj]) for ki,kj,kij in kpair_list])
df_mo_tmp = np.zeros((nmo,nmo,naux,nkpt_pairs),dtype=np.complex128)
with open('D_mo.qp','w') as outfile:
pass
with open('D_mo.qp','a') as outfile:
for k,kpt_pair in enumerate(j3mo):
for iaux,dfbasfunc in enumerate(kpt_pair):
for i,i0 in enumerate(dfbasfunc):
for j,v in enumerate(i0):
if (abs(v) > bielec_int_threshold):
outfile.write('%s %s %s %s %s %s\n' % (i+1,j+1,iaux+1,k+1,v.real,v.imag))
df_mo_tmp[i,j,iaux,k]=v
qph5.create_dataset('mo_two_e_ints/df_mo_integrals_real',data=df_mo_tmp.real)
qph5.create_dataset('mo_two_e_ints/df_mo_integrals_imag',data=df_mo_tmp.imag)
# eri_4d_ao = np.zeros((Nk,nao,Nk,nao,Nk,nao,Nk,nao), dtype=np.complex)
# for d, kd in enumerate(kpts):
# for c, kc in enumerate(kpts):
# if c > d: break
# idx2_cd = idx2_tri(c,d)
# for b, kb in enumerate(kpts):
# if b > d: break
# a = kconserv[b,c,d]
# if idx2_tri(a,b) > idx2_cd: continue
# if ((c==d) and (a>b)): continue
# ka = kpts[a]
# v = mf.with_df.get_ao_eri(kpts=[ka,kb,kc,kd],compact=False).reshape((nao,)*4)
# v *= 1./Nk
# eri_4d_ao[a,:,b,:,c,:,d] = v
#
# eri_4d_ao = eri_4d_ao.reshape([Nk*nao]*4)
with open('W.qp','w') as outfile:
pass
for d, kd in enumerate(kpts):
for c, kc in enumerate(kpts):
if c > d: break
idx2_cd = idx2_tri((c,d))
for b, kb in enumerate(kpts):
if b > d: break
a = kconserv[b,c,d]
#if idx2_tri((a,b)) > idx2_cd: continue
if a>d: continue
#if ((c==d) and (a>b)): continue
ka = kpts[a]
with open('W.qp','a') as outfile:
eri_4d_ao_kpt = mf.with_df.get_ao_eri(kpts=[ka,kb,kc,kd],compact=False).reshape((nao,)*4)
eri_4d_ao_kpt *= 1./Nk
for l in range(nao):
ll=l+d*nao
for j in range(nao):
jj=j+c*nao
if jj>ll: break
idx2_jjll = idx2_tri((jj,ll))
for k in range(nao):
kk=k+b*nao
if kk>ll: break
for i in range(nao):
ii=i+a*nao
if idx2_tri((ii,kk)) > idx2_jjll: break
if ((jj==ll) and (ii>kk)): break
v=eri_4d_ao_kpt[i,k,j,l]
if (abs(v) > bielec_int_threshold):
outfile.write('%s %s %s %s %s %s\n' % (ii+1,jj+1,kk+1,ll+1,v.real,v.imag))
def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8, def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
print_ao_ints_bi=False, print_ao_ints_bi=False,
print_mo_ints_bi=False, print_mo_ints_bi=False,
@ -754,8 +947,9 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
for b, kb in enumerate(kpts): for b, kb in enumerate(kpts):
if b > d: break if b > d: break
a = kconserv[b,c,d] a = kconserv[b,c,d]
if idx2_tri((a,b)) > idx2_cd: continue #if idx2_tri((a,b)) > idx2_cd: continue
if ((c==d) and (a>b)): continue if a > d: continue
#if ((c==d) and (a>b)): continue
ka = kpts[a] ka = kpts[a]
if print_ao_ints_bi: if print_ao_ints_bi:

View File

@ -52,9 +52,10 @@ subroutine run_ao_dump
do kk=1,kl do kk=1,kl
ki=kconserv(kl,kk,kj) ki=kconserv(kl,kk,kj)
if ((kl == kj) .and. (ki > kk)) cycle if (ki > kl) cycle
!if ((kl == kj) .and. (ki > kk)) cycle
call idx2_tri_int(ki,kk,kikk2) call idx2_tri_int(ki,kk,kikk2)
if (kikk2 > kjkl2) cycle !if (kikk2 > kjkl2) cycle
if (ki < kk) then if (ki < kk) then
do i_ao=1,ao_num_per_kpt do i_ao=1,ao_num_per_kpt
do j_ao=1,ao_num_per_kpt do j_ao=1,ao_num_per_kpt
@ -72,7 +73,7 @@ subroutine run_ao_dump
(1.d0,0.d0), ints_ik, ao_num_kpt_2, & (1.d0,0.d0), ints_ik, ao_num_kpt_2, &
ints_jl, ao_num_kpt_2, & ints_jl, ao_num_kpt_2, &
(0.d0,0.d0), ints_ikjl, ao_num_kpt_2) (0.d0,0.d0), ints_ikjl, ao_num_kpt_2)
print'((A),4(I4))','IJKL',ki,kj,kk,kl
do il=1,ao_num_per_kpt do il=1,ao_num_per_kpt
l=il+(kl-1)*ao_num_per_kpt l=il+(kl-1)*ao_num_per_kpt
do ij=1,ao_num_per_kpt do ij=1,ao_num_per_kpt

View File

@ -0,0 +1,117 @@
program dump_ao_2e_from_df
call run_ao_dump
end
subroutine run_ao_dump
use map_module
implicit none
BEGIN_DOC
! fill ao bielec integral map using 3-index df integrals
END_DOC
integer :: i,k,j,l
integer :: ki,kk,kj,kl
integer :: ii,ik,ij,il
integer :: kikk2,kjkl2,jl2,ik2
integer :: i_ao,j_ao,i_df
complex*16,allocatable :: ints_ik(:,:,:), ints_jl(:,:,:), ints_ikjl(:,:,:,:)
complex*16 :: integral,intmap, get_ao_two_e_integral_complex
double precision :: tmp_re,tmp_im
integer :: ao_num_kpt_2
logical :: use_map1
integer(keY_kind) :: idx_tmp
double precision :: sign
ao_num_kpt_2 = ao_num_per_kpt * ao_num_per_kpt
allocate( ints_jl(ao_num_per_kpt,ao_num_per_kpt,df_num))
do kl=1, kpt_num
do kj=1, kpt_num
call idx2_tri_int(kj,kl,kjkl2)
if (kj < kl) then
do i_ao=1,ao_num_per_kpt
do j_ao=1,ao_num_per_kpt
do i_df=1,df_num
ints_jl(i_ao,j_ao,i_df) = dconjg(df_ao_integrals_complex(j_ao,i_ao,i_df,kjkl2))
enddo
enddo
enddo
else
ints_jl = df_ao_integrals_complex(:,:,:,kjkl2)
endif
allocate( &
ints_ik(ao_num_per_kpt,ao_num_per_kpt,df_num), &
ints_ikjl(ao_num_per_kpt,ao_num_per_kpt,ao_num_per_kpt,ao_num_per_kpt) &
)
do kk=1,kpt_num
ki=kconserv(kl,kk,kj)
! if ((kl == kj) .and. (ki > kk)) cycle
call idx2_tri_int(ki,kk,kikk2)
! if (kikk2 > kjkl2) cycle
if (ki < kk) then
do i_ao=1,ao_num_per_kpt
do j_ao=1,ao_num_per_kpt
do i_df=1,df_num
ints_ik(i_ao,j_ao,i_df) = dconjg(df_ao_integrals_complex(j_ao,i_ao,i_df,kikk2))
enddo
enddo
enddo
! ints_ik = conjg(reshape(df_mo_integral_array(:,:,:,kikk2),(/mo_num_per_kpt,mo_num_per_kpt,df_num/),order=(/2,1,3/)))
else
ints_ik = df_ao_integrals_complex(:,:,:,kikk2)
endif
call zgemm('N','T', ao_num_kpt_2, ao_num_kpt_2, df_num, &
(1.d0,0.d0), ints_ik, ao_num_kpt_2, &
ints_jl, ao_num_kpt_2, &
(0.d0,0.d0), ints_ikjl, ao_num_kpt_2)
print'((A),4(I4))','IJKL',ki,kj,kk,kl
do il=1,ao_num_per_kpt
l=il+(kl-1)*ao_num_per_kpt
do ij=1,ao_num_per_kpt
j=ij+(kj-1)*ao_num_per_kpt
! if (j>l) exit
call idx2_tri_int(j,l,jl2)
do ik=1,ao_num_per_kpt
k=ik+(kk-1)*ao_num_per_kpt
! if (k>l) exit
do ii=1,ao_num_per_kpt
i=ii+(ki-1)*ao_num_per_kpt
! if ((j==l) .and. (i>k)) exit
! call idx2_tri_int(i,k,ik2)
! if (ik2 > jl2) exit
integral = ints_ikjl(ii,ik,ij,il)
intmap = get_ao_two_e_integral_complex(i,j,k,l,ao_integrals_map,ao_integrals_map_2)
! print*,i,k,j,l,real(integral),imag(integral)
if ((cdabs(integral) + cdabs(intmap)) < ao_integrals_threshold) then
cycle
endif
if (cdabs(integral-intmap) < 1.d-14) then
cycle
!print'(4(I4),4(E15.7))',i,j,k,l,integral,intmap
else
print'(4(I4),4(E15.7),(A))',i,j,k,l,integral,intmap,'***'
endif
enddo !ii
enddo !ik
enddo !ij
enddo !il
enddo !kk
deallocate( &
ints_ik, &
ints_ikjl &
)
enddo !kj
enddo !kl
deallocate( ints_jl )
end