10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-07 22:53:52 +01:00
QuantumPackage/src/utils/block_diag_degen.irp.f

219 lines
6.2 KiB
Fortran
Raw Normal View History

subroutine diag_mat_per_fock_degen(fock_diag, mat_ref, n, thr_d, thr_nd, thr_deg, leigvec, reigvec, eigval)
BEGIN_DOC
!
! subroutine that diagonalizes a matrix mat_ref BY BLOCK
!
! the blocks are defined by the elements having the SAME DEGENERACIES in the entries "fock_diag"
!
! examples : all elements having degeneracy 1 in fock_diag (i.e. not being degenerated) will be treated together
!
! : all elements having degeneracy 2 in fock_diag (i.e. two elements are equal) will be treated together
!
! : all elements having degeneracy 3 in fock_diag (i.e. two elements are equal) will be treated together
!
! etc... the advantage is to guarentee no spurious mixing because of numerical problems.
!
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: fock_diag(n), mat_ref(n,n), thr_d, thr_nd, thr_deg
double precision, intent(out) :: leigvec(n,n), reigvec(n,n), eigval(n)
integer :: n_degen_list, n_degen,size_mat, i, j, k, icount, m, index_degen
integer :: ii, jj, i_good, j_good, n_real
integer :: icount_eigval
logical, allocatable :: is_ok(:)
integer, allocatable :: list_degen(:,:), list_same_degen(:)
integer, allocatable :: iorder(:), list_degen_sorted(:)
double precision, allocatable :: leigvec_unsrtd(:,:), reigvec_unsrtd(:,:), eigval_unsrtd(:)
double precision, allocatable :: mat_tmp(:,:), eigval_tmp(:), leigvec_tmp(:,:), reigvec_tmp(:,:)
allocate(leigvec_unsrtd(n,n), reigvec_unsrtd(n,n), eigval_unsrtd(n))
leigvec_unsrtd = 0.d0
reigvec_unsrtd = 0.d0
eigval_unsrtd = 0.d0
! obtain degeneracies
allocate(list_degen(n,0:n))
call give_degen_full_list(fock_diag, n, thr_deg, list_degen, n_degen_list)
allocate(iorder(n_degen_list), list_degen_sorted(n_degen_list))
do i = 1, n_degen_list
n_degen = list_degen(i,0)
list_degen_sorted(i) = n_degen
iorder(i) = i
enddo
! sort by number of degeneracies
call isort(list_degen_sorted, iorder, n_degen_list)
allocate(is_ok(n_degen_list))
is_ok = .True.
icount_eigval = 0
! loop over degeneracies
do i = 1, n_degen_list
if(.not.is_ok(i)) cycle
is_ok(i) = .False.
n_degen = list_degen_sorted(i)
print *, ' diagonalizing for n_degen = ', n_degen
k = 1
! group all the entries having the same degeneracies
!! do while (list_degen_sorted(i+k)==n_degen)
do m = i+1, n_degen_list
if(list_degen_sorted(m)==n_degen) then
is_ok(i+k) = .False.
k += 1
endif
enddo
print *, ' number of identical degeneracies = ', k
size_mat = k*n_degen
print *, ' size_mat = ', size_mat
allocate(mat_tmp(size_mat,size_mat), list_same_degen(size_mat))
allocate(eigval_tmp(size_mat), leigvec_tmp(size_mat,size_mat), reigvec_tmp(size_mat,size_mat))
! group all the elements sharing the same degeneracy
icount = 0
do j = 1, k ! jth set of degeneracy
index_degen = iorder(i+j-1)
do m = 1, n_degen
icount += 1
list_same_degen(icount) = list_degen(index_degen,m)
enddo
enddo
print *, ' list of elements '
do icount = 1, size_mat
print *, icount, list_same_degen(icount)
enddo
! you copy subset of matrix elements having all the same degeneracy in mat_tmp
do ii = 1, size_mat
i_good = list_same_degen(ii)
do jj = 1, size_mat
j_good = list_same_degen(jj)
mat_tmp(jj,ii) = mat_ref(j_good,i_good)
enddo
enddo
call non_hrmt_bieig( size_mat, mat_tmp, thr_d, thr_nd &
, leigvec_tmp, reigvec_tmp &
, n_real, eigval_tmp )
do ii = 1, size_mat
icount_eigval += 1
eigval_unsrtd(icount_eigval) = eigval_tmp(ii) ! copy eigenvalues
do jj = 1, size_mat ! copy the eigenvectors
j_good = list_same_degen(jj)
leigvec_unsrtd(j_good,icount_eigval) = leigvec_tmp(jj,ii)
reigvec_unsrtd(j_good,icount_eigval) = reigvec_tmp(jj,ii)
enddo
enddo
deallocate(mat_tmp, list_same_degen)
deallocate(eigval_tmp, leigvec_tmp, reigvec_tmp)
enddo
if(icount_eigval .ne. n) then
print *, ' pb !! (icount_eigval.ne.n)'
print *, ' icount_eigval,n', icount_eigval, n
stop
endif
deallocate(iorder)
allocate(iorder(n))
do i = 1, n
iorder(i) = i
enddo
call dsort(eigval_unsrtd, iorder, n)
do i = 1, n
print*,'sorted eigenvalues '
i_good = iorder(i)
eigval(i) = eigval_unsrtd(i)
print*,'i,eigval(i) = ',i,eigval(i)
do j = 1, n
leigvec(j,i) = leigvec_unsrtd(j,i_good)
reigvec(j,i) = reigvec_unsrtd(j,i_good)
enddo
enddo
deallocate(leigvec_unsrtd, reigvec_unsrtd, eigval_unsrtd)
deallocate(list_degen)
deallocate(iorder, list_degen_sorted)
deallocate(is_ok)
end
! ---
subroutine give_degen_full_list(A, n, thr, list_degen, n_degen_list)
BEGIN_DOC
! you enter with an array A(n) and spits out all the elements degenerated up to thr
!
! the elements of A(n) DON'T HAVE TO BE SORTED IN THE ENTRANCE: TOTALLY GENERAL
!
! list_degen(i,0) = number of degenerate entries
!
! list_degen(i,1) = index of the first degenerate entry
!
! list_degen(i,2:list_degen(i,0)) = list of all other dengenerate entries
!
! if list_degen(i,0) == 1 it means that there is no degeneracy for that element
END_DOC
implicit none
double precision, intent(in) :: A(n)
double precision, intent(in) :: thr
integer, intent(in) :: n
integer, intent(out) :: list_degen(n,0:n), n_degen_list
integer :: i, j, icount, icheck
logical, allocatable :: is_ok(:)
allocate(is_ok(n))
n_degen_list = 0
is_ok = .True.
do i = 1, n
if(.not.is_ok(i)) cycle
n_degen_list +=1
is_ok(i) = .False.
list_degen(n_degen_list,1) = i
icount = 1
do j = i+1, n
if(dabs(A(i)-A(j)).lt.thr.and.is_ok(j)) then
is_ok(j) = .False.
icount += 1
list_degen(n_degen_list,icount) = j
endif
enddo
list_degen(n_degen_list,0) = icount
enddo
icheck = 0
do i = 1, n_degen_list
icheck += list_degen(i,0)
enddo
if(icheck.ne.n)then
print *, ' pb ! :: icheck.ne.n'
print *, icheck, n
stop
endif
end
! ---