10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-19 04:22:32 +01:00
QuantumPackage/src/mol_properties/print_properties.irp.f

195 lines
7.1 KiB
Fortran
Raw Normal View History

2023-03-11 22:31:57 +01:00
! Dipole moments
! Provided
! | N_states | integer | Number of states |
! | multi_s_x_dipole_moment(N_states,N_states) | double precision | (transition) dipole moments along x axis |
! | multi_s_y_dipole_moment(N_states,N_states) | double precision | (transition) dipole moments along y axis |
! | multi_s_z_dipole_moment(N_states,N_states) | double precision | (transition) dipole moments along z axis |
! | multi_s_dipole_moment(N_states,N_states) | double precision | Total (transition) dipole moments |
subroutine print_dipole_moment
implicit none
BEGIN_DOC
2023-06-29 18:31:48 +02:00
! To print the dipole moment ||<\Psi_i|\mu|\Psi_i>|| and its x,y,z components
2023-03-11 22:31:57 +01:00
END_DOC
integer :: istate
double precision, allocatable :: d(:), d_x(:), d_y(:), d_z(:)
allocate(d(N_states),d_x(N_states),d_y(N_states),d_z(N_states))
do istate = 1, N_states
d_x(istate) = multi_s_x_dipole_moment(istate,istate)
d_y(istate) = multi_s_y_dipole_moment(istate,istate)
d_z(istate) = multi_s_z_dipole_moment(istate,istate)
d(istate) = multi_s_dipole_moment(istate,istate)
enddo
! Atomic units
print*,''
print*,'# Dipoles:'
print*,'=============================================='
print*,' Dipole moments (au)'
2023-06-29 18:31:48 +02:00
print*,' State X Y Z ||MU||'
2023-03-11 22:31:57 +01:00
do istate = 1, N_states
write(*,'(I5,4(F12.6))') (istate-1), d_x(istate), d_y(istate), d_z(istate), d(istate)
enddo
! Debye
print*,''
print*,' Dipole moments (D)'
2023-06-29 18:31:48 +02:00
print*,' State X Y Z ||MU||'
2023-03-11 22:31:57 +01:00
do istate = 1, N_states
write(*,'(I5,4(F12.6))') (istate-1), d_x(istate)*au_to_D, d_y(istate)*au_to_D, d_z(istate)*au_to_D, d(istate)*au_to_D
enddo
print*,'=============================================='
print*,''
deallocate(d,d_x,d_y,d_z)
end
! Transition dipole moments
! Provided
! | N_states | integer | Number of states |
! | multi_s_x_dipole_moment(N_states,N_states) | double precision | (transition) dipole moments along x axis |
! | multi_s_y_dipole_moment(N_states,N_states) | double precision | (transition) dipole moments along y axis |
! | multi_s_z_dipole_moment(N_states,N_states) | double precision | (transition) dipole moments along z axis |
! | multi_s_dipole_moment(N_states,N_states) | double precision | Total (transition) dipole moments |
subroutine print_transition_dipole_moment
implicit none
BEGIN_DOC
2023-06-29 18:31:48 +02:00
! To print the transition dipole moment ||<\Psi_i|\mu|\Psi_j>|| and its components along x, y and z
2023-03-11 22:31:57 +01:00
END_DOC
integer :: istate,jstate, n_states_print
double precision :: f, d, d_x, d_y, d_z, dip_str
if (N_states == 1 .or. N_det == 1) then
return
endif
print*,''
print*,'# Transition dipoles:'
print*,'=============================================='
print*,' Transition dipole moments (au)'
2023-06-29 18:31:48 +02:00
write(*,'(A89)') ' # Transition X Y Z ||MU|| Dip. str. Osc. str.'
2023-03-11 22:31:57 +01:00
if (print_all_transitions) then
n_states_print = N_states
else
n_states_print = 1
endif
do jstate = 1, n_states_print !N_states
do istate = jstate + 1, N_states
d_x = multi_s_x_dipole_moment(istate,jstate)
d_y = multi_s_y_dipole_moment(istate,jstate)
d_z = multi_s_z_dipole_moment(istate,jstate)
dip_str = d_x**2 + d_y**2 + d_z**2
d = multi_s_dipole_moment(istate,jstate)
f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate))
write(*,'(I4,I4,A4,I3,6(F12.6))') (istate-1), (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
enddo
enddo
print*,''
print*,' Transition dipole moments (D)'
2023-06-29 18:31:48 +02:00
write(*,'(A89)') ' # Transition X Y Z ||MU|| Dip. str. Osc. str.'
2023-03-11 22:31:57 +01:00
do jstate = 1, n_states_print !N_states
do istate = jstate + 1, N_states
d_x = multi_s_x_dipole_moment(istate,jstate) * au_to_D
d_y = multi_s_y_dipole_moment(istate,jstate) * au_to_D
d_z = multi_s_z_dipole_moment(istate,jstate) * au_to_D
d = multi_s_dipole_moment(istate,jstate)
dip_str = d_x**2 + d_y**2 + d_z**2
f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate))
d = multi_s_dipole_moment(istate,jstate) * au_to_D
write(*,'(I4,I4,A4,I3,6(F12.6))') (istate-1), (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
enddo
enddo
print*,'=============================================='
print*,''
end
! Oscillator strengths
! Provided
! | N_states | integer | Number of states |
! | multi_s_dipole_moment(N_states,N_states) | double precision | Total (transition) dipole moments |
! | multi_s_deriv1_moment(N_states,N_states) | double precision | Total (transition) ... |
! | ci_energy_no_diag(N_states) | double precision | CI energy of each state |
! Internal
! | f_l | double precision | Oscillator strength in length gauge |
! | f_v | double precision | Oscillator strength in velocity gauge |
! | f_m | double precision | Oscillator strength in mixed gauge |
! | n_states_print | integer | Number of printed states |
subroutine print_oscillator_strength
implicit none
BEGIN_DOC
! https://doi.org/10.1016/j.cplett.2004.03.126
! Oscillator strength in:
! - length gauge, f^l_{ij} = 2/3 (E_i - E_j) <\Psi_i|r|\Psi_j> <\Psi_j|r|\Psi_i>
! - velocity gauge, f^v_{ij} = 2/3 (E_i - E_j)^(-1) <\Psi_i|v|\Psi_j> <\Psi_j|v|\Psi_i>
! - mixed gauge, f^m_{ij} = -2i/3 <\Psi_i|r|\Psi_j> <\Psi_j|v|\Psi_i>
END_DOC
integer :: istate,jstate,k, n_states_print
double precision :: f_l,f_v,f_m,d,v
if (N_states == 1 .or. N_det == 1) then
return
endif
print*,''
print*,'# Oscillator strength:'
print*,'=============================================='
if (print_all_transitions) then
n_states_print = N_states
else
n_states_print = 1
endif
write(*,'(A103)') ' Oscillator strength in length gauge (f_l), velocity gauge (f_v) and mixed length-velocity gauge (f_m)'
do jstate = 1, n_states_print !N_states
do istate = jstate + 1, N_states
d = multi_s_dipole_moment(istate,jstate)
v = multi_s_deriv_1(istate,jstate)
! Length gauge
f_l = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate))
! Velocity gauge
f_v = 2d0/3d0 * v * v * 1d0/dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate))
! Mixed gauge
f_m = 2d0/3d0 * d * v
write(*,'(A19,I3,A9,F10.6,A5,F7.1,A10,F9.6,A6,F9.6,A6,F9.6,A8,F7.3)') ' # Transition n.', (istate-1), ': Excit.=', dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*ha_to_ev, &
' eV ( ',dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*Ha_to_nm,' nm), f_l=',f_l, ', f_v=', f_v, ', f_m=', f_m, ', <S^2>=', s2_values(istate)
!write(*,'(I4,I4,A4,I3,A6,F6.1,A6,F6.1)') (istate-1), (jstate-1), ' ->', (istate-1), ', %T1=', percent_exc(2,istate), ', %T2=',percent_exc(3,istate)
enddo
enddo
print*,'=============================================='
print*,''
end