mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-08 23:23:51 +01:00
365 lines
12 KiB
Fortran
365 lines
12 KiB
Fortran
|
! ---
|
||
|
|
||
|
!______________________________________________________________________________________________________________________
|
||
|
!______________________________________________________________________________________________________________________
|
||
|
|
||
|
double precision function general_primitive_integral_coul_shifted( dim &
|
||
|
, P_new, P_center, fact_p, p, p_inv, iorder_p, shift_P &
|
||
|
, Q_new, Q_center, fact_q, q, q_inv, iorder_q, shift_Q )
|
||
|
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
integer, intent(in) :: dim
|
||
|
integer, intent(in) :: iorder_p(3), shift_P(3)
|
||
|
integer, intent(in) :: iorder_q(3), shift_Q(3)
|
||
|
double precision, intent(in) :: P_new(0:max_dim,3), P_center(3), fact_p, p, p_inv
|
||
|
double precision, intent(in) :: Q_new(0:max_dim,3), Q_center(3), fact_q, q, q_inv
|
||
|
|
||
|
integer :: n_Ix, n_Iy, n_Iz, nx, ny, nz
|
||
|
integer :: ix, iy, iz, jx, jy, jz, i
|
||
|
integer :: n_pt_tmp, n_pt_out, iorder
|
||
|
integer :: ii, jj
|
||
|
double precision :: rho, dist
|
||
|
double precision :: dx(0:max_dim), Ix_pol(0:max_dim)
|
||
|
double precision :: dy(0:max_dim), Iy_pol(0:max_dim)
|
||
|
double precision :: dz(0:max_dim), Iz_pol(0:max_dim)
|
||
|
double precision :: a, b, c, d, e, f, accu, pq, const
|
||
|
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2, pq_inv_2
|
||
|
double precision :: d1(0:max_dim), d_poly(0:max_dim)
|
||
|
double precision :: p_plus_q
|
||
|
|
||
|
double precision :: rint_sum
|
||
|
|
||
|
general_primitive_integral_coul_shifted = 0.d0
|
||
|
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||
|
|
||
|
! Gaussian Product
|
||
|
! ----------------
|
||
|
p_plus_q = (p+q)
|
||
|
pq = p_inv * 0.5d0 * q_inv
|
||
|
pq_inv = 0.5d0 / p_plus_q
|
||
|
p10_1 = q * pq ! 1/(2p)
|
||
|
p01_1 = p * pq ! 1/(2q)
|
||
|
pq_inv_2 = pq_inv + pq_inv
|
||
|
p10_2 = pq_inv_2 * p10_1 * q ! 0.5d0 * q / (pq + p*p)
|
||
|
p01_2 = pq_inv_2 * p01_1 * p ! 0.5d0 * p / (q*q + pq)
|
||
|
|
||
|
accu = 0.d0
|
||
|
|
||
|
iorder = iorder_p(1) + iorder_q(1) + iorder_p(1) + iorder_q(1)
|
||
|
iorder = iorder + shift_P(1) + shift_Q(1)
|
||
|
iorder = iorder + shift_P(1) + shift_Q(1)
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do ix = 0, iorder
|
||
|
Ix_pol(ix) = 0.d0
|
||
|
enddo
|
||
|
n_Ix = 0
|
||
|
do ix = 0, iorder_p(1)
|
||
|
|
||
|
ii = ix + shift_P(1)
|
||
|
a = P_new(ix,1)
|
||
|
if(abs(a) < thresh) cycle
|
||
|
|
||
|
do jx = 0, iorder_q(1)
|
||
|
|
||
|
jj = jx + shift_Q(1)
|
||
|
d = a * Q_new(jx,1)
|
||
|
if(abs(d) < thresh) cycle
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call give_polynom_mult_center_x( P_center(1), Q_center(1), ii, jj &
|
||
|
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dx, nx )
|
||
|
!DEC$ FORCEINLINE
|
||
|
call add_poly_multiply(dx, nx, d, Ix_pol, n_Ix)
|
||
|
enddo
|
||
|
enddo
|
||
|
if(n_Ix == -1) then
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
iorder = iorder_p(2) + iorder_q(2) + iorder_p(2) + iorder_q(2)
|
||
|
iorder = iorder + shift_P(2) + shift_Q(2)
|
||
|
iorder = iorder + shift_P(2) + shift_Q(2)
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do ix = 0, iorder
|
||
|
Iy_pol(ix) = 0.d0
|
||
|
enddo
|
||
|
n_Iy = 0
|
||
|
do iy = 0, iorder_p(2)
|
||
|
|
||
|
if(abs(P_new(iy,2)) > thresh) then
|
||
|
|
||
|
ii = iy + shift_P(2)
|
||
|
b = P_new(iy,2)
|
||
|
|
||
|
do jy = 0, iorder_q(2)
|
||
|
|
||
|
jj = jy + shift_Q(2)
|
||
|
e = b * Q_new(jy,2)
|
||
|
if(abs(e) < thresh) cycle
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call give_polynom_mult_center_x( P_center(2), Q_center(2), ii, jj &
|
||
|
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dy, ny )
|
||
|
!DEC$ FORCEINLINE
|
||
|
call add_poly_multiply(dy, ny, e, Iy_pol, n_Iy)
|
||
|
enddo
|
||
|
endif
|
||
|
enddo
|
||
|
if(n_Iy == -1) then
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
iorder = iorder_p(3) + iorder_q(3) + iorder_p(3) + iorder_q(3)
|
||
|
iorder = iorder + shift_P(3) + shift_Q(3)
|
||
|
iorder = iorder + shift_P(3) + shift_Q(3)
|
||
|
do ix = 0, iorder
|
||
|
Iz_pol(ix) = 0.d0
|
||
|
enddo
|
||
|
n_Iz = 0
|
||
|
do iz = 0, iorder_p(3)
|
||
|
|
||
|
if( abs(P_new(iz,3)) > thresh ) then
|
||
|
|
||
|
ii = iz + shift_P(3)
|
||
|
c = P_new(iz,3)
|
||
|
|
||
|
do jz = 0, iorder_q(3)
|
||
|
|
||
|
jj = jz + shift_Q(3)
|
||
|
f = c * Q_new(jz,3)
|
||
|
if(abs(f) < thresh) cycle
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call give_polynom_mult_center_x( P_center(3), Q_center(3), ii, jj &
|
||
|
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dz, nz )
|
||
|
!DEC$ FORCEINLINE
|
||
|
call add_poly_multiply(dz, nz, f, Iz_pol, n_Iz)
|
||
|
enddo
|
||
|
endif
|
||
|
enddo
|
||
|
if(n_Iz == -1) then
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
rho = p * q * pq_inv_2
|
||
|
dist = (P_center(1) - Q_center(1)) * (P_center(1) - Q_center(1)) &
|
||
|
+ (P_center(2) - Q_center(2)) * (P_center(2) - Q_center(2)) &
|
||
|
+ (P_center(3) - Q_center(3)) * (P_center(3) - Q_center(3))
|
||
|
const = dist*rho
|
||
|
|
||
|
n_pt_tmp = n_Ix + n_Iy
|
||
|
do i = 0, n_pt_tmp
|
||
|
d_poly(i) = 0.d0
|
||
|
enddo
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(Ix_pol, n_Ix, Iy_pol, n_Iy, d_poly, n_pt_tmp)
|
||
|
if(n_pt_tmp == -1) then
|
||
|
return
|
||
|
endif
|
||
|
n_pt_out = n_pt_tmp + n_Iz
|
||
|
do i = 0, n_pt_out
|
||
|
d1(i) = 0.d0
|
||
|
enddo
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out)
|
||
|
accu = accu + rint_sum(n_pt_out, const, d1)
|
||
|
|
||
|
general_primitive_integral_coul_shifted = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / dsqrt(p_plus_q)
|
||
|
|
||
|
return
|
||
|
end function general_primitive_integral_coul_shifted
|
||
|
!______________________________________________________________________________________________________________________
|
||
|
!______________________________________________________________________________________________________________________
|
||
|
|
||
|
|
||
|
|
||
|
!______________________________________________________________________________________________________________________
|
||
|
!______________________________________________________________________________________________________________________
|
||
|
|
||
|
double precision function general_primitive_integral_erf_shifted( dim &
|
||
|
, P_new, P_center, fact_p, p, p_inv, iorder_p, shift_P &
|
||
|
, Q_new, Q_center, fact_q, q, q_inv, iorder_q, shift_Q )
|
||
|
|
||
|
include 'utils/constants.include.F'
|
||
|
|
||
|
implicit none
|
||
|
|
||
|
integer, intent(in) :: dim
|
||
|
integer, intent(in) :: iorder_p(3), shift_P(3)
|
||
|
integer, intent(in) :: iorder_q(3), shift_Q(3)
|
||
|
double precision, intent(in) :: P_new(0:max_dim,3), P_center(3), fact_p, p, p_inv
|
||
|
double precision, intent(in) :: Q_new(0:max_dim,3), Q_center(3), fact_q, q, q_inv
|
||
|
|
||
|
integer :: n_Ix, n_Iy, n_Iz, nx, ny, nz
|
||
|
integer :: ix, iy, iz, jx, jy, jz, i
|
||
|
integer :: n_pt_tmp, n_pt_out, iorder
|
||
|
integer :: ii, jj
|
||
|
double precision :: rho, dist
|
||
|
double precision :: dx(0:max_dim), Ix_pol(0:max_dim)
|
||
|
double precision :: dy(0:max_dim), Iy_pol(0:max_dim)
|
||
|
double precision :: dz(0:max_dim), Iz_pol(0:max_dim)
|
||
|
double precision :: a, b, c, d, e, f, accu, pq, const
|
||
|
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2, pq_inv_2
|
||
|
double precision :: d1(0:max_dim), d_poly(0:max_dim)
|
||
|
double precision :: p_plus_q
|
||
|
|
||
|
double precision :: rint_sum
|
||
|
|
||
|
general_primitive_integral_erf_shifted = 0.d0
|
||
|
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol
|
||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||
|
|
||
|
! Gaussian Product
|
||
|
! ----------------
|
||
|
p_plus_q = (p+q) * ( (p*q)/(p+q) + mu_erf*mu_erf ) / (mu_erf*mu_erf)
|
||
|
pq = p_inv * 0.5d0 * q_inv
|
||
|
pq_inv = 0.5d0 / p_plus_q
|
||
|
p10_1 = q * pq ! 1/(2p)
|
||
|
p01_1 = p * pq ! 1/(2q)
|
||
|
pq_inv_2 = pq_inv + pq_inv
|
||
|
p10_2 = pq_inv_2 * p10_1 * q ! 0.5d0 * q / (pq + p*p)
|
||
|
p01_2 = pq_inv_2 * p01_1 * p ! 0.5d0 * p / (q*q + pq)
|
||
|
|
||
|
accu = 0.d0
|
||
|
|
||
|
iorder = iorder_p(1) + iorder_q(1) + iorder_p(1) + iorder_q(1)
|
||
|
iorder = iorder + shift_P(1) + shift_Q(1)
|
||
|
iorder = iorder + shift_P(1) + shift_Q(1)
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do ix = 0, iorder
|
||
|
Ix_pol(ix) = 0.d0
|
||
|
enddo
|
||
|
n_Ix = 0
|
||
|
do ix = 0, iorder_p(1)
|
||
|
|
||
|
ii = ix + shift_P(1)
|
||
|
a = P_new(ix,1)
|
||
|
if(abs(a) < thresh) cycle
|
||
|
|
||
|
do jx = 0, iorder_q(1)
|
||
|
|
||
|
jj = jx + shift_Q(1)
|
||
|
d = a * Q_new(jx,1)
|
||
|
if(abs(d) < thresh) cycle
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call give_polynom_mult_center_x( P_center(1), Q_center(1), ii, jj &
|
||
|
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dx, nx )
|
||
|
!DEC$ FORCEINLINE
|
||
|
call add_poly_multiply(dx, nx, d, Ix_pol, n_Ix)
|
||
|
enddo
|
||
|
enddo
|
||
|
if(n_Ix == -1) then
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
iorder = iorder_p(2) + iorder_q(2) + iorder_p(2) + iorder_q(2)
|
||
|
iorder = iorder + shift_P(2) + shift_Q(2)
|
||
|
iorder = iorder + shift_P(2) + shift_Q(2)
|
||
|
!DIR$ VECTOR ALIGNED
|
||
|
do ix = 0, iorder
|
||
|
Iy_pol(ix) = 0.d0
|
||
|
enddo
|
||
|
n_Iy = 0
|
||
|
do iy = 0, iorder_p(2)
|
||
|
|
||
|
if(abs(P_new(iy,2)) > thresh) then
|
||
|
|
||
|
ii = iy + shift_P(2)
|
||
|
b = P_new(iy,2)
|
||
|
|
||
|
do jy = 0, iorder_q(2)
|
||
|
|
||
|
jj = jy + shift_Q(2)
|
||
|
e = b * Q_new(jy,2)
|
||
|
if(abs(e) < thresh) cycle
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call give_polynom_mult_center_x( P_center(2), Q_center(2), ii, jj &
|
||
|
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dy, ny )
|
||
|
!DEC$ FORCEINLINE
|
||
|
call add_poly_multiply(dy, ny, e, Iy_pol, n_Iy)
|
||
|
enddo
|
||
|
endif
|
||
|
enddo
|
||
|
if(n_Iy == -1) then
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
iorder = iorder_p(3) + iorder_q(3) + iorder_p(3) + iorder_q(3)
|
||
|
iorder = iorder + shift_P(3) + shift_Q(3)
|
||
|
iorder = iorder + shift_P(3) + shift_Q(3)
|
||
|
do ix = 0, iorder
|
||
|
Iz_pol(ix) = 0.d0
|
||
|
enddo
|
||
|
n_Iz = 0
|
||
|
do iz = 0, iorder_p(3)
|
||
|
|
||
|
if( abs(P_new(iz,3)) > thresh ) then
|
||
|
|
||
|
ii = iz + shift_P(3)
|
||
|
c = P_new(iz,3)
|
||
|
|
||
|
do jz = 0, iorder_q(3)
|
||
|
|
||
|
jj = jz + shift_Q(3)
|
||
|
f = c * Q_new(jz,3)
|
||
|
if(abs(f) < thresh) cycle
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call give_polynom_mult_center_x( P_center(3), Q_center(3), ii, jj &
|
||
|
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dz, nz )
|
||
|
!DEC$ FORCEINLINE
|
||
|
call add_poly_multiply(dz, nz, f, Iz_pol, n_Iz)
|
||
|
enddo
|
||
|
endif
|
||
|
enddo
|
||
|
if(n_Iz == -1) then
|
||
|
return
|
||
|
endif
|
||
|
|
||
|
rho = p * q * pq_inv_2
|
||
|
dist = (P_center(1) - Q_center(1)) * (P_center(1) - Q_center(1)) &
|
||
|
+ (P_center(2) - Q_center(2)) * (P_center(2) - Q_center(2)) &
|
||
|
+ (P_center(3) - Q_center(3)) * (P_center(3) - Q_center(3))
|
||
|
const = dist*rho
|
||
|
|
||
|
n_pt_tmp = n_Ix + n_Iy
|
||
|
do i = 0, n_pt_tmp
|
||
|
d_poly(i) = 0.d0
|
||
|
enddo
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(Ix_pol, n_Ix, Iy_pol, n_Iy, d_poly, n_pt_tmp)
|
||
|
if(n_pt_tmp == -1) then
|
||
|
return
|
||
|
endif
|
||
|
n_pt_out = n_pt_tmp + n_Iz
|
||
|
do i = 0, n_pt_out
|
||
|
d1(i) = 0.d0
|
||
|
enddo
|
||
|
|
||
|
!DEC$ FORCEINLINE
|
||
|
call multiply_poly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out)
|
||
|
accu = accu + rint_sum(n_pt_out, const, d1)
|
||
|
|
||
|
general_primitive_integral_erf_shifted = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / dsqrt(p_plus_q)
|
||
|
|
||
|
return
|
||
|
end function general_primitive_integral_erf_shifted
|
||
|
!______________________________________________________________________________________________________________________
|
||
|
!______________________________________________________________________________________________________________________
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|